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Geometric Gaussianity and non-Gaussianity in the cosmic microwave background
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 18 February 2000; published 3 October 2000!

In this paper, the Gaussianity of eigenmodes and non-Gaussianity in the cosmic microwave background
~CMB! temperature fluctuations in the two smallest compact hyperbolic~CH! models are investigated. First, it
is numerically found that the expansion coefficients of low-lying eigenmodes on the two CH manifolds behave
as if they are Gaussian random numbers in almost all places. Next, the non-Gaussianity of the temperature
fluctuations in the (l ,m) space in these models is studied. Assuming that the initial fluctuations are Gaussian,
the real expansion coefficientsblm of the temperature fluctuations in the sky are found to be distinctively
non-Gaussian. In particular, the cosmic variances are found to be much larger than for Gaussian models. On
the other hand, the anisotropic structure is vastly erased if one averages the fluctuations at a number of different
observation points because of the Gaussian pseudorandomness of the eigenmodes. Thus the dominant contri-
bution to the two-point correlation functions comes from the isotropic terms described by the angular power
spectraCl . Finally, topological quantities, the total length and the genus of isotemperature contours are
investigated. The variances of total length and genus at high and low threshold levels are found to be consid-
erably larger than that of Gaussian models while the means almost agree with them.

PACS number~s!: 98.70.Vc, 98.80.Hw
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I. INTRODUCTION

In recent years, locally isotropic and homogeneo
Friedmann-Robertson-Walker~FRW! models with a non-
trivial topology have attracted much attention. In the sta
dard scenario, a simple connectivity of the spatial hypers
face is assumed for simplicity. However, the Einste
equations, being local equations, do not fix the global top
ogy of the spacetime. In other words, a wide variety of
pologically distinct spacetimes with the same local geome
described by a local metric element remain unspecified~see
Ref. @1# for review on the cosmological topology!. The de-
termination of the global topology of the universe is one
the most important problem of the modern observational c
mology.

For flat models without the cosmological constant, sev
est constraints have been obtained by using the cosmic b
ground explorer~COBE! differential microwave radiomete
~DMR! data. The suppression of the fluctuations on sca
beyond the topological identification scaleL leads to a de-
crease in the angular power spectraCl of the cosmic micro-
wave background~CMB! temperature fluctuations on larg
angular scales which puts a lower boundL>2400h21 Mpc
~with h5H0/100 km s21 Mpc21) for a compact flat three
torus model without a cosmological constant@2,3#. Similar
constraints have been obtained for other compact flat mo
@4#. The maximum expected number of copies of the fun
mental domain~cell! inside the last scattering surface is a
proximately 8 for the three-torus model.

In contrast, for low density models, the constraint cou
be considerably milder than the locally isotropic and hom
geneous flat~Einstein–de Sitter! models since a bulk o
large-angle CMB fluctuations can be produced by the
called~late! integrated Sachs-Wolfe~ISW! effect@5,6# which
is the gravitational blueshift effect of the free streaming ph
tons by the decay of the gravitational potential. As the gra
tational potential decays in eitherL-dominant epoch or cur
0556-2821/2000/62~10!/103001~16!/$15.00 62 1030
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vature dominant epoch, the free streaming photons with la
wavelength~the light travel time across the wavelength
greater than or comparable to the decay time! that climbed a
potential well at the last scattering experience blueshifts
to the contraction of the comoving space along the trajec
ries of the photons. Because the angular sizes of the fluc
tions produced at late time are large, the suppression of
fluctuations on scale larger than the topological identificat
scale does not lead to a significant suppression of the la
angle power if the ISW effect is dominant. Recent wor
@7–10# have shown that the large-angle powers (2< l<20)
are completely consistent with the COBE DMR data f
compact hyperbolic~CH! models which include a small CH
orbifold and Weeks and the Thurston manifolds with volum
0.72, 0.94, and 0.98 in units of the cube of the curvat
radius, respectively. Note that the Weeks manifold is
smallest and the Thurston manifolds is the second smalle
the known CH manifolds. For instance, the number of cop
of the fundamental domain inside the last scattering surf
at present is approximately 190 for a Weeks model w
V050.3.

If the space is negatively curved, for a fixed number of t
copies of the fundamental domain inside the present horiz
the large-angle fluctuations can be produced very effectiv
In negatively curved spaces~hyperbolic spaces!, trajectories
of photons subtend a much smaller angle in the sky fo
given scale. In other words, for a given angle of a pair of t
photon trajectories, the physical distance of the trajectorie
much greater than that in flat space. Therefore, even if th
is a number of copies of the fundamental domain which
tersect the last scattering surface, the number of copies w
intersect the wave front~a sphere withz5const) of the free
streaming photons is exponentially decreased at late t
when the large-angle fluctuations are produced due to
ISW effect.

However, one may not be satisfied with the constrai
using only the angular power spectrumCl since it contains
©2000 The American Physical Society01-1
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only isotropic information of the ensemble averaged te
perature fluctuations@11#. If they have anisotropic structure
non-Gaussian signatures must be revealed. In fact, the g
isotropy of the locally isotropic and homogeneous FR
models is generally broken. For instance, a flat three-to
obtained by identifying the opposite faces of a cube is ob
ously anisotropic at any points. Thus the temperature fl
tuations averaged over the initial conditions in these multi
connected FRW models are no longer SO~3! invariant at a
certain point. The temperature fluctuations on the sky
written in terms of~real! spherical harmonicsQlm(n) as

DT

T
~n!5(

l
(

m52 l

l

blmQlm~n!. ~1!

If the distribution functions of the real expansion coefficien
blm are SO~3! invariant, the temperature fluctuations must
Gaussian provided thatblm’s are independent random num
bers@12#. Therefore, the temperature fluctuations at a cer
point in the multiply connected FRW models are not Gau
ian if blm’s are independent.

For the simplest flat three-torus models~without rotations
in the identification maps! which are globally homogeneous
it is sufficient to choose one observing point and estim
how the power is distributed among them’s for a given
angular scalel in order to see the effect of the global aniso
ropy. However, in general, one must consider an ensemb
fluctuations at different observing points because of the s
tial ~global! inhomogeneity. In previous analyses, the dep
dence of the temperature fluctuations on the choice of ob
vation points has not been fully investigated.

The lack of analytical results on the eigenmodes make
difficult to investigate the nature of the temperature fluct
tions in CH models. However, we may expect a high deg
of complexity in the eigenmodes since the correspond
classical systems~geodesic flows! are strongly chaotic. In
fact, it has been numerically found that the expansion co
ficients of the low-lying eigenmodes on the Thurston ma
fold at the point where the injectivity radius is maximal a
Gaussian pseudorandom numbers@13# which supports the
previous analysis of the excited states~higher modes! of a
two-dimensional asymmetrical CH model@14#. We have put
a prefix ‘‘pseudo’’ since the eigenmodes are actually c
strained by the periodic boundary conditions. These res
imply that the statistical properties of the eigenmodes on
spaces ~orbifolds and manifolds! can be described by
random-matrix theory~RMT! @15,16#. An investigation of
the dependence of the property on the observation poin
also important since CH spaces have symmetries~isometric
groups! which may veil the random feature of the eige
modes. In this paper, a detailed analysis on the statis
property of low-lying eigenmodes on the Weeks and
Thurston manifolds is conducted.

Assuming that the eigenmodes are Gaussian, one can
pect that the anisotropic structure in the (l ,m) space is vastly
erased when one averages the fluctuations over the sp
This seems to be a paradox since the CH spaces are ac
globally anisotropic. However, one should consider a spa
average of fluctuations with different initial conditions if on
10300
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believes the Copernican principle that we are not in the c
ter of the universe. Even if the space is anisotropic a
certain point, the averaged fluctuations may look isotropic
considering an ensemble of fluctuations at all the poss
observing points. Note that the eigenmodes on CH spa
have no particular directions if they are Gaussian.

If the initial fluctuations are constant for each eigenmo
as we shall see, the Gaussian randomness of the temper
fluctuations can be solely attributed to the Gaussian pseu
randomness of the eigenmodes. In this case, the Gaus
randomness of the temperature fluctuations has its origi
the geometrical property of the space~geometric Gaussian
ity!. Choosing an observing point is equivalent to fixing
certain initial condition. However, it is much natural to a
sume that the initial fluctuations are also random Gaussia
the standard inflationary scenarios predict. Then the temp
ture fluctuations may not obey the Gaussian statistics
cause they are written in terms of products of two differe
independent Gaussian numbers rather than sums while
remain almost spatially isotropic if averaged over the spa

In this paper, the Gaussianity of eigenmodes and n
Gaussianity in the CMB for two smallest CH models~the
Weeks and the Thurston models! are investigated. In Sec. II
numerical results on Gaussianity of eigenmodes are sh
and we discuss to what extent the results are generic. In
III, we study the non-Gaussian behavior of the temperat
fluctuations in the (l ,m) space. In Sec. IV, topological quan
tities ~total length and genus! of isotemperature contours ar
numerically simulated for studying the non-Gaussian beh
ior in the real space. Finally, we summarize our conclusio
in Sec. V.

II. GEOMETRIC GAUSSIANITY

In locally isotropic and homogeneous FRW backgrou
spaces, each type~scalar, vector, and tensor! of first-order
perturbations can be decomposed into a decoupled se
equations. In order to solve the decomposed linearly p
turbed Einstein equations, it is useful to expand the per
bations in terms of eigenmodes of the Laplacian which s
isfies the Helmholtz equation with certain bounda
conditions

~¹21k2!uk~x!50, ~2!

since each eigenmode evolves independently in the lin
approximation. Then one can easily see that the time ev
tion of the perturbations in the multiply connected loca
isotropic and homogeneous FRW spaces coincide with
in the FRW spaces while the global structure of the ba
ground space is described solely by these eigenmodes.

Unfortunately, no analytical expressions of eigenmod
on CH spaces have been known. Nevertheless, the co
spondence between classical and quantum mechanics
provide us a clue for understanding the generic property
the eigenmodes. If one recognizes the Laplacian as
Hamiltonian in a quantum system, each eigenmode can
interpreted as a wave function in a stationary state. Beca
classical dynamical systems~5geodesic flows! on CH
spaces are strongly chaotic~or more precisely they areK
1-2
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GEOMETRIC GAUSSIANITY AND NON-GAUSSIANITY . . . PHYSICAL REVIEW D62 103001
systems with ergodicity, mixing and Bernoulli properti
@17#!, one can expect a high degree of complexity for ea
eigenstate. The imprint of the chaos in the classical syst
may be hidden in the quantum counterparts. In fact, in m
cases, the short-range correlations observed in the eige
ues~energy states! have been found to be consistent with t
universal prediction of RMT for three universality classe
the Gaussian orthogonal ensemble~GOE!, the Gaussian uni-
tary ensemble~GUE!, and the Gaussian symplectic ensem
~GSE! @15,16#. In our case the statistical properties are d
scribed by GOE„which consist of real symmetricN3N ma-
trices H which obey the Gaussian distributio
}exp@2Tr H2/(4a2)# ~wherea is a constant! as the systems
possess a time-reversal symmetry. RMT also predicts
the squared expansion coefficients of an eigenstate with
spect to a generic basis are distributed as Gaussian ran
numbers@18#. Unfortunately, no analytic forms of gener
bases~5eigenmodes! are known for CH spaces which seem
to be an intractable problem. However, if the eigenmodes
continued onto the universal covering space by the perio
boundary conditions, they can be written in terms of a ‘‘g
neric’’ basis on the universal covering space~5three-
hyperboloidH3). In pseudospherical coordinates (R,x,u,f),
the eigenmodes are written in terms of complex expans
coefficientsjn lm and eigenmodes on the universal coveri
space,

un5(
lm

jn lm Xn l~x!Ylm~u,f!, ~3!

wheren5Ak221, Xn l , andYlm denote the radial eigenfunc
tion and~complex! spherical harmonic on the pseudosphe
with radiusR, respectively. Then the real expansion coe
cientsan lm are given by

an0052Im~jn00!, an l05Acn lRe~jn l0!,

an lm5A2 Re~jn lm!, m.0,

an lm52A2 Im~jn l 2m!, m,0, ~4!

where

cn l5
2

$11Re@F~n,l !#%
,

F~n,l !5
G~ l 1n i 11!

G~n i !

G~2n i !

G~ l 2n i 11!
. ~5!

In this paper, the low-lying eigenmodes (k,13) on the
Weeks and Thurston manifolds are numerically computed
the direct boundary element method. The identification m
trices of the Dirichlet domains are obtained by a compu
program ‘‘SNAPPEA’’ by Weeks @19#. The computed eigen
values are well consistent with that in the previous literat
@13,20#. The estimated errors ink are within 0.01. However,
the last digits ink may be incorrect.an lm ’s can be promptly
obtained after the normalization and orthogonalization
these eigenmodes. The orthogonalization is achieved a
10300
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level of 1023 to 1024 ~for the inner product of the normal
ized eigenmodes! which implies that each eigenmode
computed with relatively high accuracy. In Figs. 1 and 2, o
can see a high degree of complexity in the lowest eig
modes on the Poincare´ ball which is isometric given by

x5R tanh
x

2
sinu cosf, y5R tanh

x

2
sinu sinf,

z5R tanh
x

2
cosu. ~6!

Replacing tanh (x/2) by tanhx for each coordinate, one ob
tains the Klein~projective! coordinates. In the Poincar e co
ordinates, angles of geodesics coincide with that of Euc

FIG. 1. The lowest eigenmodek55.268 on the Weeks manifold
continued onto the Poincare´ ball and the boundaries of the copie
Dirichlet domains~solid curves! plotted on a slicez50.

FIG. 2. The lowest eigenmodek55.404 on the Thurston mani
fold continued onto the Poincare´ ball and the boundaries of th
copied Dirichlet domains~solid curves! plotted on a slicez50.
1-3
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FIG. 3. Plots ofan lm’s which
are ordered asl ( l 11)1m11,0
< l<20 for eigenmodesk55.268
~left! andk512.789~right! on the
Weeks manifold at a point which
is randomly chosen.
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ean ones. In the Klein coordinates, all geodesics are stra
lines while angles does not coincide with that of Euclide
ones. In what followsR is normalized to 1 without loss o
generality.

In Fig. 3, one can see that the distribution ofan lm’s which
are ordered asl ( l 11)1m11 are qualitatively random. In
order to estimate the randomness quantitatively, we cons
a cumulative distribution of

bn lm5
uan lm2ānu2

sn
2

, ~7!

where ān is the mean ofan lm’s and sn
2 is the variance. If

an lm’s are Gaussian thenbn lm ’s obey a x2 distribution
P(x)5(1/2)1/2G(1/2)x21/2e2x/2 with 1 degree of freedom
To test the goodness of fit between the the theoretical cu
lative distributionI (x) and the empirical cumulative distri
bution functionI N(x), we use the Kolmogorov-Smirnov sta
tistic DN which is the least upper bound of all pointwis
differencesuI N(x)2I (x)u @21#,

DN[sup
x

uI N~x!2I ~x!u. ~8!

I N(x) is defined as

I N~x!5H 0, x,y1 ,

j /N, yj<x,yj 11 , j 51,2, . . . ,N21,

1, yN<x,

~9!

wherey1,y2,•••,yN are the computed values of a ra
dom sample which consists ofN elements. For random vari
ablesDN for any z.0, it can be shown that the probabilit
of DN,d is given by@22#

lim
N→`

P~DN,d5zN21/2!5L~z!, ~10!

where

L~z!5122(
j 51

`

~21! j 21e22 j 2z2
. ~11!

From the observed maximum differenceDN5d, we obtain
the significance levelaD512P which is equal to the prob
ability of DN.d. If aD is found to be large enough, th
hypothesisI N(x)5” I (x) is not verified. The significance lev
els aN for 0< l<20 for eigenmodesk,13 on the Thurston
manifold are shown in Table I. The agreement with the RM
10300
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prediction is fairly good for most of eigenmodes which
consistent with the previous computation in Ref.@13#. How-
ever, for five degenerated modes, the non-Gaussian si
tures are prominent@in Ref. @13#, two modes in (k,10) have
been missed#. Where does this non-Gaussianity come from

First of all, we must pay attention to the fact that th
expansion coefficientsan lm depend on the observing poin
In mathematical literature the point is called the base po
For a given base point, it is possible to construct a particu
class of fundamental domain called the Dirichlet~fundamen-
tal! domain which is a convex polyhedron. A Dirichlet do
main V(x) centered at a base pointx is defined as

V~x!5ùgH~g,x!, H~g,x!5$zud~z,x!,d@g~z!,x#%,
~12!

where g is an element of a Kleinian groupG @a discrete
isometry group of PSL(2,C)# and d(z,x) is the proper dis-
tance betweenz andx.

The shape of the Dirichlet domain depends on the b
point but the volume is invariant. Although the base po
can be chosen arbitrarily, it is a standard to choose a poinQ

TABLE I. Eigenvaluesk and the corresponding significance le
els aD for the test of the hypothesisI N(x)5” I (x) for the Thurston
manifold. The injectivity radius is maximal at the base point.

k aD k aD

5.404 0.98 10.686~b! 7.931024

5.783 0.68 10.737 0.96
6.807~a! 0.52 10.830 0.67
6.807~b! 7.131024 11.103~a! 0.041

6.880 1.00 11.103~b! 8.8310215

7.118 0.79 11.402 0.98
7.686~a! 0.26 11.710 0.92
7.686~b! 2.331028 11.728 0.93

8.294 0.45 11.824 0.31
8.591 0.91 12.012~a! 0.52
8.726 1.00 12.012~b! 0.73
9.246 0.28 12.230 0.032
9.262 0.85 12.500 0.27
9.754 0.39 12.654 0.88
9.904 0.99 12.795 0.76
9.984 0.20 12.806 0.42
10.358 0.40 12.897~a! 0.87

10.686~a! 0.76 12.897~b! 6.931024
1-4
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FIG. 4. A Dirichlet domain of
the Thurston manifold in the
Klein coordinates viewed from
opposite directions atQ where the
injectivity radius is locally maxi-
mal. The Dirichlet domain has a
Z2 symmetry~invariant byp ro-
tation! at Q.
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where the injective radius1 is locally maximal. More intu-
itively, Q is a center where one can put a largest connec
ball on the manifold. If one chooses other point as the b
point, the nearest copy of the base point can be much ne
The reason to chooseQ as a base point is that one can exp
the corresponding Dirichlet domain to have many symm
tries atQ @23#.

As shown in Fig. 4, the Dirichlet domain atQ has aZ2
symmetry~invariant byp rotation! if all the congruent faces
are identified. Generally, congruent faces are distinguis
but it is found that these five modes have exactly the sa
values of eigenmodes on these congruent faces. Then
can no longer consideran lm’s as ‘‘independent’’ random
numbers. Choosing the invariant axis by thep rotation as the
z axis, an lm’s are zero for oddm’s which leads to the ob-
served non-Gaussian behavior. It should be noted that
observedZ2 symmetry is not the subgroup of the isome
group ~or symmetry group in mathematical literature! D2
~dihedral group with order 2) of the Thurston manifold sin
the congruent faces must be actually distinguished in
manifold.2

Thus the observed non-Gaussianity is caused by a par
lar choice of the base point. However, in general, the cha
that we actually observe any symmetries~elements of the
isometry group of the manifold or the finite sheeted cover
the manifold! is expected to be very low. Because a fix
point by an element of the isometric group is either a par
one-dimensional line~for instance, an axis of a rotation! or
an isolated point~for instance, a center of an antipodal ma!.

In order to confirm that the chance is actually low, the K
statisticsaD of an lm’s are computed at 300 base points whi
are randomly chosen. As shown in Table II, the avera
significance levelŝaD& are remarkably consistent with th

1The injective radius of a pointp is equal to half the length of the
shortest periodic geodesic atp.

2The observedZ2 symmetry is considered to be a ‘‘hidden sym
metry’’ which is a symmetry of the finite sheeted cover of t
manifold ~which tessellates the manifold as well as the univer
covering space!. For instance, the Dirichlet domain of the Thursto
manifold can be tessellated by four pieces with three neighbo
kitelike quadrilateral faces and one equilateral triangle on
boundary and seven faces which contain the center as a verte
identifying the four pieces~by a tetrahedral symmetry!, one obtains
an orbifold which has aZ2 symmetry.
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Gaussian prediction. 1s of aD are found to be 0.26 to 0.30
Next, we apply the run test for testing the randomness

an lm’s where each set ofan lm ’s are ordered asl ( l 11)1m
11 ~see Ref.@21#!. Suppose that we haven observations of
the random variableU which falls above the median and
observations of the random variableL which falls below the
median. The combination of those variables into 2n obser-
vations placed in ascending order of magnitude yields

UUU LL UU LLL UL UU LL.

Each underlined group which consists of successive va
of U or L is called the run. The total number of runs is call
the run number. The run test is useful because the run n
ber always obeys the Gaussian statistics in the limitn→`
regardless of the type of the distribution function of the ra
dom variables. As shown in Table III, averaged significan
levels^a r& are very high (1s is 0.25 to 0.31!. Thus each set
of an lm’s ordered asl ( l 11)1m11 can be interpreted as
set of Gaussian pseudorandom numbers except for lim
choices of the base point where one can observe symme
of eigenmodes.

Up to now, we have consideredl and m as the index
numbers ofan lm at a fixed base point. However, for a fixe
( l ,m), the statistical property of a set ofan lm’s at a number
of different base points is also important since the tempe
ture fluctuations must be averaged all over the places
spatially inhomogeneous models. From Fig. 5, one can
the behavior ofm-averaged significance levels

aD~n,l ![ (
m52 l

l
aD~an lm!

2l 11
~13!

which are calculated based on 300 realizations of the b
points. It should be noted that eachan lm at a particular base
point is now considered to be ‘‘one realization’’ whereas
choice ofl andm is considered to be ‘‘one realization’’ in th
previous analysis~Table I!. The agreement with the RMT
prediction is considerably good for componentsl .1. For
componentsl 51, the disagreement occurs for only seve
modes. However, the non-Gaussian behavior is distinctl
50 components. What is the reason of the non-Gaus
behavior forl 50? Let us estimate the values of the expa
sion coefficients forl 50. In general, the complex expansio
coefficientsjn lm can be written as

-

al

ng
e
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TABLE II. Eigenvaluesk and corresponding averaged significance levels^aD& based on 300 realization
of the base points for the test of the hypothesisI N(x)5” I (x) for the Weeks and the Thurston manifolds.

Weeks Thurston
k ^aD& k ^aD& k ^aD& k ^aD&

5.268 0.58 10.452~b! 0.62 5.404 0.63 10.686~b! 0.62
5.737~a! 0.61 10.804 0.63 5.783 0.61 10.737 0.62
5.737~b! 0.61 10.857 0.62 6.807~a! 0.62 10.830 0.63

6.563 0.62 11.283 0.57 6.807~b! 0.62 11.103~a! 0.59
7.717 0.59 11.515 0.61 6.880 0.63 11.103~b! 0.60
8.162 0.61 11.726~a! 0.63 7.118 0.61 11.402 0.61

8.207~a! 0.65 11.726~b! 0.59 7.686~a! 0.61 11.710 0.62
8.207~b! 0.61 11.726~c! 0.61 7.686~b! 0.63 11.728 0.64
8.335~a! 0.59 11.726~d! 0.61 8.294 0.60 11.824 0.62
8.335~b! 0.62 12.031~a! 0.60 8.591 0.60 12.012~a! 0.63

9.187 0.59 12.031~b! 0.60 8.726 0.60 12.012~b! 0.61
9.514 0.56 12.222~a! 0.61 9.246 0.60 12.230 0.60
9.687 0.61 12.222~b! 0.62 9.262 0.63 12.500 0.63

9.881~a! 0.61 12.648 0.59 9.754 0.62 12.654 0.62
9.881~b! 0.62 12.789 0.59 9.904 0.60 12.795 0.62
10.335~a! 0.63 9.984 0.60 12.806 0.62
10.335~b! 0.60 10.358 0.62 12.897~a! 0.62
10.452~a! 0.63 10.686~a! 0.60 12.897~b! 0.56
n-
en-
al

e-
for
jn lm~x0!5
1

Xn l~x0!
E un~x0 ,u,f!Ylm* ~u,f!dV. ~14!

For l 50, the equation becomes

jn00~x0!52
i

2A2

sinhx0

sinnx0
E un~x0 ,u,f!dV. ~15!

Taking the limitx0→0, one obtains
10300
jn0052
2pun~0!i

n
. ~16!

Thusan00 can be written in terms of the value of the eige
mode at the base point. As shown in Fig. 1, the lowest eig
modes have only one ‘‘wave’’ on scale of the topologic
identification scaleL ~which will be defined later on! inside a
single Dirichlet domain which implies that the random b
havior within the domain may be not present. Therefore,
TABLE III. Eigenvaluesk and corresponding averaged significance levels^a r& for the test of the hy-
pothesis that thean lm’s are not random numbers for the Weeks and Thurston manifolds.a r ’s at 300 points
which are randomly chosen are used for the computation.

Weeks Thurston
k ^a r& k ^a r& k ^a r& k ^a r&

5.268 0.51 10.452~b! 0.52 5.404 0.48 10.686~b! 0.51
5.737~a! 0.48 10.804 0.52 5.783 0.45 10.737 0.49
5.737~b! 0.45 10.857 0.53 6.807~a! 0.53 10.830 0.53
6.563 0.54 11.283 0.49 6.807~b! 0.50 11.103~a! 0.52
7.717 0.50 11.515 0.51 6.880 0.47 11.103~b! 0.53
8.162 0.54 11.726~a! 0.51 7.118 0.50 11.402 0.51
8.207~a! 0.52 11.726~b! 0.48 7.686~a! 0.49 11.710 0.51
8.207~b! 0.49 11.726~c! 0.49 7.686~b! 0.52 11.728 0.49
8.335~a! 0.53 11.726~d! 0.48 8.294 0.50 11.824 0.54
8.335~b! 0.50 12.031~a! 0.54 8.591 0.50 12.012~a! 0.51
9.187 0.53 12.031~b! 0.51 8.726 0.51 12.012~b! 0.49
9.514 0.55 12.222~a! 0.54 9.246 0.43 12.230 0.51
9.687 0.53 12.222~b! 0.50 9.262 0.50 12.500 0.48
9.881~a! 0.51 12.648 0.54 9.754 0.54 12.654 0.48
9.881~b! 0.51 12.789 0.48 9.904 0.52 12.795 0.50
10.335~a! 0.54 9.984 0.49 12.806 0.51
10.335~b! 0.51 10.358 0.53 12.897~a! 0.57
10.452~a! 0.53 10.686~a! 0.51 12.897~b! 0.55
1-6



s

s

e
el

GEOMETRIC GAUSSIANITY AND NON-GAUSSIANITY . . . PHYSICAL REVIEW D62 103001
FIG. 5. Plots of m averaged
significance levelsaD(n,l ) based
on 300 realizations for the Week
and the Thurston manifolds (0< l
<20 and k,13). n denotes the
index number which correspond
to an eigenmodeuk where the
number of eigenmodes less thank
is equal ton @k(n51) is the low-
est nonzero eigenvalue#. The ac-
companying palettes show th
correspondence between the lev
of the gray and the value.
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low-lying eigenmodes, one would generally expect no
Gaussianity in a set ofan00’s. However, for high-lying
eigenmodes, this may not be the case since these modes
a number of ‘‘waves’’ on scale ofL and they may change
their values locally in an almost random fashion.

The above argument cannot be applicable toan lm’s for l
Þ0 whereXn l approaches zero in the limitx0→0 while the
integral term

E un~x0 ,u,f!Ylm* ~u,f!dV ~17!

also goes to zero because of the symmetric property of
spherical harmonics. Thereforean lm’s cannot be written in
terms of the local value of the eigenmode forl 5” 0. For these
modes, it is better to consider the opposite limitx0→`. It is
numerically found that the sphere with very large radiusx0
intersects each copy of the Dirichlet domain almost r
domly ~the pulled back surface into a single Dirichlet doma
chaotically fills up the domain!. Then the values of the eigen
modes on the sphere with very large radius vary in an alm
random fashion. For largex0, we have

Xn l~x0!}e22x01f(n,l ) i , ~18!

wheref(n,l ) describes the phase factor. Therefore, the
der of the integrand in Eq.~14! is approximatelye22x0 since
Eq. ~14! does not depend on the choice ofx0. As the spheri-
cal harmonics do not have correlation with the eigenmo
un(x0 ,u,f), the integrand varies almost randomly for diffe
ent choices of (l ,m) or base points. Thus we conjecture th
Gaussianity ofan lm’s have their origins in the chaotic prop
erty of the sphere with large radius in CH spaces. The pr
erty may be related to the classical chaos in geodesic flo3

So far we have seen the Gaussian pseudorandomne
the an lm’s. Let us now consider the statistical properties

3If one considers a great circle on a sphere with large radius,
length of the circle is very long except for rare cases in which
circle ‘‘comes back’’ before it wraps around in the universal co
ering space. Because the long geodesics in CH spaces chaot
~with no particular direction and position! wrap through the mani-
fold, it is natural to assume that the great circles also have
chaotic property.
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the expansion coefficients. As the eigenmodes have osc
tory features, it is natural to expect that the averages
equal to zero. In fact, the averages of^an lm& ’s over 0< l
<20 and2 l<m<2 l and 300 realizations of base points f
each n mode are numerically found to be 0.00660.04
20.02 (1s) for the Weeks manifold, and 0.00360.04
20.02 (1s) for the Thurston manifold. Let us next consid
the n dependence (k dependence! of the variances
Var(an lm). In order to crudely estimate then dependence,
we need the angular sizedu of the characteristic length o
the eigenmodeun at x0 @13#

du2'
16p2Vol~M !

k2$sinh@2~x01r ave!#2sinh@2~x02r ave!#24r ave%
,

~19!

where Vol(M ) denotes the volume of a manifoldM andr ave
is the averaged radius of the Dirichlet domain. There is
arbitrariness in the definition ofr ave. Here we definer ave as
the radius of a sphere with volume equivalent to the volu
of the manifold

Vol~M !5p@sinh~2r ave!22r ave#, ~20!

which does not depend on the choice of the base point.
topological identification lengthL is defined asL52r ave.
For the Weeks and the Thurston manifold,L51.19 andL
51.20, respectively. From Eq.~19!, for large x0, one can
approximateun(x0);un8(x08) by choosing an appropriate ra
diusx08 which satisfiesn22exp(22x0)5n822exp(22x08). Av-
eraging Eq.~14! over l ’s andm’s or the base points, for large
x0, one obtains

^ujn8 lmu2&;
exp~22xo!

exp~22xo8!
^ujn lmu2&, ~21!

which gives^ujn lmu2&;n22. Thus the variance ofan lm’s is
proportional ton22. The numerical results for the two CH
manifolds shown in Fig. 6 clearly support then22 depen-
dence of the variance.

As we have seen, the property of eigenmodes on gen
CH manifolds is summarized in the following conjecture.

Conjecture: Except for the base points which are too clo
to any fixed points by symmetries, for a fixedn, a set of the

e
e

ally

is
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FIG. 6. Averaged squaredan’s (k,13) based on 300 realizations of the base points for the Weeks and the Thurston manifold with61s
run-to-run variations.an is defined to be Var(an lm) averaged over 0< l<20 and2 l<m< l . The best-fit curves for the Weeks and th
Thurston manifolds are 21.0n22 and 20.3n22, respectively.
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expansion coefficientsan lm over (l ,m)’s can be considered
as Gaussian pseudorandom numbers. For a fixed (n lm)( l
.0), the expansion coefficients at different base points
are randomly chosen can also be considered as Gau
pseudorandom numbers. In either case, the variance is
portional ton22 and the average is zero.

III. NON-GAUSSIANITY IN OBSERVABLE ANGULAR
POWER SPECTRA

As mentioned in the last section, perturbations in C
models are written in terms of linear combinations of eige
modes and the time evolution of the perturbations. Beca
the time evolution of the perturbations coincides with that
open models, once the expansion coefficientsjn lm ~or an lm)
are given, the evolution of perturbations in CH models c
be readily obtained.

If one assumes that the perturbation is a adiabatic sc
type without anisotropic pressure, and the subhorizon eff
such as acoustic oscillations of the temperature and the
locity of the bulk fluid, and the effect of the radiation co
tribution at highz are negligible, the time evolution of th
growing mode of the Newtonian curvatureF is analytically
given as~see, e.g., Refs.@24,25#!

F~h!5
5~sinh2h23h sinhh14 coshh24!

~coshh21!3
, ~22!

where h denotes the conformal time. In terms ofF, the
temperature fluctuation in the sky are written as

DT~n!

T
5(

lm
almYlm~n!5(

n lm
Fn~0!jn lmFn l~h0!Ylm~n!,

~23!

where

Fn l~h0![2
1

3
F~h* !Xn l~h02h* !

22E
h
*

h0
dh

dF

dh
Xn l~h02h!. ~24!

HereFn(0) is the initial value of the curvature perturbatio
andh* andh0 are the conformal time of the last scatterin
10300
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and the present conformal time, respectively. The ang
power spectrumCl is defined as

~2l 11!Cl5 (
m52 l

l

^ualmu2&

5(
n,m

4p4PF~n!

n~n211!Vol~M !
^ujn lmu2&uFn l~h0!u2,

~25!

where PF(n) is the initial power spectrum. It should b
noted that the above formula converges to that of open m
els in the short-wavelength limit~summation to integration!
provided that̂ ujn lmu2& is proportional ton22. The reason is
as follows: Let us denote the number of eigenmodes w
eigenvalues equal to or less thann by N(n). In the short-
wavelength limitn@1 one can use Weyl’s asymptotic fo
mula which leads to

dN~n!

dn
5

Vol~M !

2p2
n2. ~26!

Thus then2 dependence in Eq.~26! is exactly cancelled ou
by then22 dependence of eigenmodes. In what follows w
assume the extended Harrison-Zel’dovich spectrum,
PF(n)5const~in the flat limit, it converges to the scale in
variant Harrison-Zel’dovich spectrum! as the initial power
spectrum.

In estimating the temperature correlations, the no
diagonal terms (l 5” l 8 or m5” m8) may not be negligible if the
background spatial hypersurface is not isotropic, in ot
words, the angular power spectrumCl may not be sufficient
in describing the temperature correlations sinceCl provides
us with only an isotropic information of statistics of the co
relations. However, this is not the case for CH models
which the conjecture proposed in Sec. II is applicable. Ba
on the Copernican principle, it is not likely that we are at t
center of any symmetries. Therefore, in order to statistica
estimate the temperature correlations in the globally inhom
geneous background space, one has to consider an ense
of fluctuations with different initial conditions at differen
places~or base points! with different orientations. Almost all
1-8
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FIG. 7. Contributions of nondiagonal terms in the temperature correlations in unit of diagonal terms which are definedf l 8m8
lm

5u^alma* l 8m8&u/A^ualmu2&^ual 8m8u
2& for the Thurston model withV050.3. The four-dimensional space (l ,m,l 8,m8) is represented in the

two-dimensional space as (n,n8)5@ l ( l 11)1m11,l 8( l 811)1m811# for 2< l<10,2 l<m< l and 2< l 8<10,2 l 8<m8< l 8. f l 8m8
lm ’s are

represented by the level of gray shown in the accompanying palettes. The left figure representsf l 8m8
lm ’s averaged over 300 realizations of th

base points with infinite number of initial conditions for the Newtonian curvature. The right figure representsf l 8m8
lm ’s at a base point where

the injective radius is maximal with infinite number of initial conditions. The computation is based on 36 eigenmodes (k,13) that are
numerically obtained by using the direct boundary element method. The averaged values of the nondiagonalf l 8m8

lm ’s ( l 5” l 8 or m5” m8) are
0.016~left! and 0.25~right!.
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the anisotropic information is lost in the spatial averag
process since the eigenmodes are Gaussian.

As shown in Fig. 7, for 300 realizations of observin
points~left!, the averaged absolute values of the off-diago
elements in unit of diagonal elements are very sm
(;0.016) whereas their contributions seem to be not ne
gible (;0.25) at one particular observing point~right! where
one can observe a symmetry of the Dirichlet domain. Th
the statistical property of the temperature correlation can
estimated by usingCl ’s provided that the eigenmodes a
Gaussian which validates the previous analyses usingCl ’s
for constraining the CH models@7–10#. The spatial averag
ing process4 must be taken into account since there is
reason to believe that we are in the center of any symmet

If the initial conditions satisfy@Fn(0)#22}n(n211) that
corresponds to the extended Harrison-Zel’dovich spectr
then Eq. ~23! tells us that the temperature fluctuation
Gaussian since it is equal to a sum of Gaussian~pseudo!ran-
dom numbers at almost all the observing points. In this ca
the Gaussian randomness of the temperature fluctuation
CH models can be solely attributed to the geometrical pr
erty of the space~geometric Gaussianity! which may be re-
lated to the deterministic chaos of the corresponding cla
cal system. In other words, the Gaussian randomness ca
explained in terms of the classical physical quantities w
out considering the initial quantum fluctuations provided t
the above conditions are initially~deterministically! satisfied.

However, it is natural to assume thatFn(0)’s are also

4In general, one should include an averaging process over di
ent choices of orientation of coordinates as well as an avera
process over different choices of the observing point. Neverthe
the Gaussian conjecture in Sec. II implies that the eigenmode
CH spaces are ‘‘SO~3! invariant’’ @12# if averaged all over the
space. Therefore, omission of the averaging procedure for diffe
orientations of coordinates make no difference.
10300
l
ll
li-

s
e

s.

,

e,
in
-

i-
be
-
t

random Gaussian as in the inflationary scenarios in wh
Gaussianity~on large scales! of the temperature fluctuation
has its origin in Gaussianity of the initial quantum fluctu
tions because the angular powers are generally similar to
extended Harisson-Zel’dovich spectrum. Then the statist
properties of the temperature fluctuations are determined
the sum of the products of the two independent Gauss
random numbers~the initial fluctuations and the expansio
coefficients of the eigenmodes!.

Let us calculate the distribution functionF(Z,sZ) of a
product of two independent random numbersX and Y that
obey the Gaussian~normal! distributions N(X;0,sX) and
N(Y;0,sY), respectively

N~X;m,s![
1

A2ps
e2(X2m)2/2s2

. ~27!

ThenF(Z5XY,sZ) is readily given by

F~Z,sZ!52E
0

`

N~Z/Y,0,sX!N~Y,0,sY!
dY

Y

5
1

psXsY
K0S uZu

sXsY
D , ~28!

whereK0(z) is the modified Bessel function. The average
Z is zero and the standard deviation satisfiessZ5sXsY . As
is well known,K0(z) is the Green function of the diffusion
equation with sources distributed along an infinite line. A
thoughK0(z) diverges atz50 its integration over (2`,`)
is convergent. From the asymptotic expansion of the mo
fied Bessel function
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g
s,

on

nt
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FIG. 8. On the left, the distribution functionF(Z,1) for a product of two random Gaussian numbers is plotted in solid curves. O
right, the distribution functionG(Z,1) (1s51) of a sum of two random variables that obeyF(Z,1/A2). The dashed curves represent t
Gaussian distributionN(Z;0,1).
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K0~z!;Ap

2z
e2zF12

12

1!8z
1

12332

2!~8z!2

2
12332352

3!~8z!3
1•••G , z@1, ~29!

one obtains in the lowest order approximation

F~Z,s!;
1

A2psuZu
e2uZu/s, Z@1. ~30!

Thus F(Z,s) is slowly decreased than the Gaussian dis
bution function with the same variance in the large lim
One can see the two non-Gaussian features in Fig. 8~left!:
the divergence atZ→0 and the slow convergence to zero
Z→`. The slow convergence is an important feature, as
shall see, in distinguishing the non-Gaussian models with
Gaussian ones. In the modest region 0.4,uZu,2.4, F(Z,1)
is much less thanN(Z,0,1). Generally, the temperature flu
tuation is written as a sum of the random variablesZi which
obeys the distribution functionF(Zi ,sZi

) for a fixed set of
cosmological parameters. For large-angle fluctuations, o
the eigenmodes with large wavelength ([2p/k) can con-
tribute to the sum. Due to the finiteness of the space,
number of eigenmodes which dominantly contribute to
sum is finite. Therefore, the fluctuations are distinctive
non-Gaussian. For small-angle fluctuations, the numbe
eigenmodes that contribute to the sum becomes so large
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the distribution function converges to the Gaussian distri
tion as the central limit theorem implies. One can see fr
Fig. 8 ~right! that the distribution functionG(W,1) of W
5Z11Z2 where bothZ1 and Z2 obey F(Z,A2) is more
similar to the Gaussian distributionN(Z,0,1) thanF(W,1) in
the modest region.

Now let us see the non-Gaussian features of the obs
able angular power spectrumĈl assuming that the initia
fluctuations are Gaussian. First of all, we define a stati
x̃2[(2l 11)Ĉl /Cl , where

~2l 11!Ĉl5 (
m52 l

l

blm
2 . ~31!

If the expansion coefficientsblm of the temperature fluctua
tion in the sky are Gaussian,x̃2 must obey thex2 distribu-
tion with 2m11 degrees of freedom. Figure 9 shows the tw
non-Gaussian features in the distribution ofblm’s: a slight
shift of the peak to the center~zero!; slow convergence to
zero for largex̃2. As shown in Fig. 10, the distribution ofx̃2

is approximately obtained by assuming thatblm’s obey
G(Z,1) ~actually, the distribution functions ofblm’s are
slightly much similar to the Gaussian distributions on lar
angular scales!. The two non-Gaussian features are attribu
to the nature of the distribution functions of eachblm which
give large values atblm;0 and decrease slowly atblm@1
compared with the Gaussian distributions.
ian
FIG. 9. The distributions ofx̃2[(2l 11)Ĉl /Cl for the Weeks model withV050.2, l 55 ~left! and 15~right!. The horizontal axes

represent the values ofx̃2. The distributions are calculated using 33 eigenmodes (k,13) based on 200 realizations of the initial Gauss
fluctuationsFn(0), and 200realizations of the base points. The contribution of modesk.13 is approximately less than 8% forl<15. The
solid curves represent thex2 distributions with 11~left! and 31~right! degrees of freedom.
1-10
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FIG. 10. The distributions ofx̃2[(2l 11)Ĉl /Cl in an approximated model in whichblm’s obeyG(Z,1) for l 55 and l 515 based on

40 000 realizations for eachblm . The horizontal axes represent the values ofx̃2. The solid curves correspond to thex2 distributions with 11
~left! and 31~right! degrees of freedom.
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The slow decrease of the distribution ofx̃2 is important in
discriminating the non-Gaussian models with the Gauss
models. As shown in Fig. 11, observingx̃2;50 are not im-
probable for the WeeksV0 model (l 515) whereas it is al-
most unlikely for the Gaussian model. Because the distri
tion is slowly decreased for largex̃, the cosmic variances
(DCl)

2 are expected to be larger than that of the Gauss
models. From Fig. 12, on large angular scales (2< l<15),
one can see that the standard deviationsDCl of Ĉl in the two
CH models are approximately 1–2 times of that for t
Gaussian models.

IV. TOPOLOGICAL QUANTITIES

Topological measures:total area of the excursion regio
total length and the genus of the isotemperature conto
have been used for testing Gaussianity of the tempera
fluctuations in the COBE DMR data@26,27#. Let us first
summarize the known results for Gaussian fields~see Refs.
@28,29#!.

The genusG of the excursion set for a random temper
ture field on a connected and simply connected two-surf
can be loosely defined as

G5number of isolated high-temperature connected region

2number of isolated low-temperature connected regio
~32!

For instance, for a certain threshold, a hot spot will contr
ute11 and a cold spot will contribute21 to the genus. If a
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hot spot contains a cold spot, the total contribution to
genus is zero. The genus which is the global property of
random field can be related to the integration of the lo
properties of the field. From the Gauss-Bonnet theorem,
genus of a closed curveC being the boundary of a simply
connected regionVC which consists ofN arcs with exterior
anglesa1 ,a2 , . . . ,aN can be written in terms of the geode
sic curvatureks and the Gaussian curvatureK as

G5
1

2p F E
C
kgds1(

i 51

N

a i1E
VC

KdAG . ~33!

For a random field on the two-dimensional Euclidean sp
E2 where the N arcs are all geodesic segments~straight line
segments!, K andkg vanish. Therefore, the genus is writte
as

GE25
1

2p (
i 51

N

a i . ~34!

The above formula is applicable to the locally flat spac
such asE13S1 andT2 which haveE2 as the universal cov-
ering space sinceK and kg also vanish in these spaces.
these multiply connected spaces, the naive definition
~32! is not correct for excursion regions surrounded by
loop which cannot be contracted to a point.

In order to compute the genus for a random field on
sphereS2 with radius equal to 1, it is convenient to use
mapc:S22$p1%2$p2%→S13(0,p) defined as
FIG. 11. Plots of 12P(Z)@P(Z) is the cumulative distribution function# which gives the probability of observingX>Z. The solid curves

correspond to 12P(x̃2) for the Weeks modelV050.2, l 55 ~left! and l 515 ~right!. The dashed curves correspond to 12P(x2) of the
Gaussian model.
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FIG. 12. Plots ofDCl(CH)/
DCl(Gauss) for the two CH mod-
els based on 200 realizations o
the initial perturbationFn(0) and
200 realizations of the base poin
DCl denotes the standard devia

tion (1s) of Ĉl .
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c:~sinu cosf,sinu sinf,cosu!→~f,u!,

0<f,2p, 0,u,p, ~35!

wherep1 and p2 denote the north pole and the south po
respectively. BecauseS13(0,p) can be considered as lo
cally flat spaces (f,u) with metric ds25du21df2 which
have boundariesu50,p, the genus for excursion regions th
do not contain the poles surrounded by straight segmen
the locally flat (f,u) space is given by Eq.~34!. It should be
noted that the straight segments do not necessarily co
spond to the geodesic segments inS2. If a pole is inside an
excursion region and the pole temperature is above
threshold then the genus is increased by one. If the p
temperature is below the threshold, it does not need any
rection. Thus the genus for the excursions is

GS25
1

2p (
i

a i1Np , ~36!
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where a i is the exterior angles at the intersection of tw
straight segments in the (f,u) space andNp is the number of
poles above the threshold.

Now consider an isotropic and homogeneous Gaus
random temperature field on a sphereS2 with radius 1. Let
(x,y) be the local Cartesian coordinates onS2 and let
the temperature correlation function beC(r )
5^(DT/T)0(DT/T) r& with r 5x21y2 and C05C(0)[s2,
where s is the standard deviation andC252(d2C/
dr2) r 50. Then the expectation value of the genus for
thresholdDT/T5ns is given as@29#

^GS2&5A2

p

C2

C0
ne2n2/21erfcS n

A2
D , ~37!

where erfc(x) is the complementary error function. The fir
term in Eq.~37! is equal to the averaged contribution for th
FIG. 13. Contour maps of the CMB~not
smoothed by the DMR beam! for the Thurston
model V050.4 and a flat~Einstein–de Sitter!
Harrison-Zel’dovich modelCl}1/@ l ( l 11)# in
which all multipolesl .20 are removed.
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FIG. 14. The mean genuses averaged over 100 realizations of the initial fluctuations and 100 realizations of the base points61s
run-to-run variations at 27 threshold levels for the Weeks and the Thurston models withV050.2. The dashed curves denote the mean val
for a Gaussian model whereC0 andC2 are obtained by assuming that the expansion coefficients of the eigenmodes are random G
numbers~the mean is zero and the variance is proportional ton22). The solid curves denote the mean values for a Gaussian model tha
best-fitted to that for CH models.
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excursions which do not contain the poles while the sec
term in Eq.~37! is the expectation value ofNp .

The mean contour length per unit area for an isotro
homogeneous Gaussian random field is@28,29#

^s&5
1

2 S C2

C0
D 1/2

e2n2/2, ~38!

and the mean fractional area of excursion regions for
field is the cumulative probability of a threshold level

^a&5
1

2
erfcS n

A2
D , ~39!

which gives the second term in Eq.~37!.
As in Sec. III, the CMB anisotropy maps for the two C

adiabatic models are produced by using eigenmodesk,13
and angular components 2< l<20 for V050.2 and 0.4. The
contribution of higher modes are approximately 7 and 10
for V050.2 and 0.4, respectively. The initial power spe
trum is assumed to be the extended Harrison-Zel’dov
spectrum. The beam-smoothing effect is not included.
comparison, sky maps for the Einstein–de Sitter model w
the Harrison-Zel’dovich spectrumCl}1/@ l ( l 11)# are also
simulated.

In order to compute the genus and the contour length
each model, 10 000 CMB sky maps on a 4003200 grid in
10300
d

c

e

-
h
r

h

r

the (f,u) space are produced. The contours are appro
mated by oriented straight segments. The genus comes
the sum of the exterior angles at the vertices of the conto
and the number of poles at which the temperature is ab
the threshold. The total contour length is approximated
the sum of all the straight segments. Typical realizations
the sky map are shown in Fig. 13.

Figures 14 and 15 clearly show that the mean genuses
the mean total contours for the two CH models are w
approximated by the theoretical values for the Gauss
models. This is a natural result since the distribution of
expansion coefficientsblm is very similar to the Gaussian
distribution in the modest range. On the other hand, at h
and low threshold levels, the variances of the total cont
lengths and the genuses are larger than that for the Gau
models that can be attributed to the nature of the distribu
function ofblm . One can easily see the non-Gaussian sig
tures from Figs. 16 and 17. The excess variances for
Weeks modelV050.4 compared with the Gaussian fl
Harrison-Zel’dovich model are observed at the absol
threshold level approximatelyunu.1.4 for genus andunu
.0.6 for total contour length. If one assumes that the ini
fluctuations are given by@Fn(0)#22}n(n211), the tem-
perature fluctuations for CH models can be described
Gaussian pseudorandom fields. One can see from Fig. 18
the behavior of the variances of genus and total cont
length for the Gaussian CH models is very similar to that
oints and
an
andom
odel
FIG. 15. The mean contour lengths averaged over 100 realizations of the initial fluctuations and 100 realizations of the base p
61s run-to-run variations at 27 threshold levels for the Weeks and the Thurston models withV050.2. The dashed curves denote the me
values for a Gaussian model whereC0 and C2 are obtained by assuming that the expansion coefficients of the eigenmodes are r
Gaussian numbers~the mean is zero and the variance is proportional ton22). The solid curves denote the mean values for a Gaussian m
that are best-fitted to that for CH models.
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FIG. 16. The mean genuses and61s run-to-run variations at 27 threshold levels for a Weeks model withV050.4 averaged over 100
realizations of the initial fluctuations and 100 realizations of the base points and that for a flat Harisson-Zel’dovich model avera
10 000 realizations. The dashed curves denote the mean genuses for the corresponding Gaussian models.
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the flat Harrison-Zel’dovich model and the variances at h
and low threshold levels are considerably smaller than
for the non-Gaussian models.

Because the mean behavior for the two non-Gaussian
models is well described by the Gaussian models, the CO
DMR data which exclude grossly non-Gaussian mod
@26,27# cannot constrain the two CH models by the topolo
cal measurements. However, one should take account
fact that the signals in the 10 ° smoothed COBE DMR fo
year sky maps are comparable to the noises@30# that makes
it hard to detect the non-Gaussian signals in the backgro
fluctuations. In fact, some recent works using different s
tistical tools have shown that the COBE DMR four-year s
maps are non-Gaussian@31–33# although some authors ca
doubts upon the cosmological origin of the observed n
Gaussian signals@34,35#. Thus the evidence of Gaussiani
in the CMB fluctuations is still not conclusive.

V. CONCLUSION

In this paper, Gaussianity of the eigenmodes and n
Gaussianity in the CMB temperature fluctuations in tw
smallest CH~Weeks and Thurston! models are investigated
As shown in Sec. II, it is numerically shown that the expa
sion coefficients of the two CH spaces behave as if they
random Gaussian numbers at almost all the places. If
recognizes the Laplacian as the Hamiltonian of a free p
ticle, each eigenmode is interpreted as a wave function
stationary state. The observed behavior is consistent wi
prediction of RMT which has been considered to be a go
empirical theory to describe the statistical properties of qu
10300
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tum mechanical systems whose classical counterparts
strongly chaotic. However, as we have seen, the global s
metries in the system can veil the generic properties.
instance, some eigenmodes on the Thurston manifold ha
Z2 symmetry at a point where the injectivity radius is ma
mal. For these eigenmodes, the expansion coefficients
strongly correlated; hence they can no longer be conside
to be random Gaussian numbers.

Because the eigenmodes actually satisfy the perio
boundary conditions, there are points on a sphereS2 which
are identified with different points onS2. These points form
pairs of circles which are identified by the periodic bounda
conditions @36#. If one could identify all the circles on a
sphere, one would be able to construct the corresponding
space@37#. Similarly, if one could identify all the fixed
points and the corresponding symmetries, one would be
to construct a CH space which have these symmetries.
observed ‘‘randomness’’ in the eigenmodes is actually de
mined by these simple structures.

In order to understand the symmetric structures of the
spaces, it is useful to choose an observing point~base point!
at which one enjoys symmetries as many as possible. H
ever, in reality, there is no natural reason to consider fl
tuations at only these particular points since the CH spa
are globally inhomogeneous.

Since the CMB fluctuations can be written in terms of
linear combination of eigenmodes, the fluctuations in C
models are almost spatially ‘‘isotropic’’ if averaged all ov
the space except for very limited places at which the eig
modes have certain symmetries provided that the eig
veraged

FIG. 17. The mean total contour lengths and61s run-to-run variations at 27 threshold levels for a Weeks model withV050.4 averaged

over 100 realizations of the initial fluctuations and 100 realizations of the base points and that for a flat Harisson-Zel’dovich model a
over 10 000 realizations. The dashed curves denote the mean total contour lengths for the corresponding Gaussian models.
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FIG. 18. The mean total contour lengths and genuses and61s run-to-run variations at 27 threshold levels for a Weeks model w
V050.4 averaged over 300 realizations of the base points. Here it is assumed that the initial fluctuations deterministically
@Fn(0)#22}n(n211) so that the fluctuations are described by the Gaussian statistics. The dashed curves denote the mean tot
lengths and the mean genuses for the corresponding Gaussian models.
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modes are Gaussian. The spatial ‘‘isotropy’’ implies that
contribution of nondiagonal terms in the two-point corre
tion functions are negligible. Thus the validity of the stat
tical tests using the angular power spectrumCl @7–10# can-
not be questioned on the ground that the background spa
anisotropic at a certain point.

If one assumes that the initial fluctuations are Gaussia
in the standard inflationary scenarios, the temperature fl
tuations are described by isotropic non-Gaussian rand
fields since they are written in terms of a sum of products
two independent random Gaussian variables, namely, the
tial perturbations and the expansion coefficients of the eig
modes. The distribution functions of the expansion coe
cients blm for the sky maps at large values are slow
converged to zero than the Gaussian distribution with
same variance and the cosmic variances are found to
larger than that of the Gaussian models.

The increase in the variances are much conspicuous
topological quantities at large or small threshold levels.
the other hand, the mean behavior is well approximated
the Gaussian predictions. Therefore, the obtained res
agree with the COBE DMR four-year maps analyzed
Refs. @26,27#. In real observations one has to tackle w
what obscure the real signals such as pixel noises, gala
contaminations, beam-smoothing effect and systematic c
bration errors which have not been considered in this pa
The absence of large deviations from the mean value
large or small threshold levels in the current data may be
to these effects, which will be much explored in the futu
work.

Although the recent observations seem to prefer the
FRW models with the cosmological constant, the evidenc
y
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not perfectly conclusive. If one includes the cosmologic
constant for a fixed curvature radius, the radius of the
scattering surface~horizon! at present in units of curvatur
radius becomes large. Therefore the observable imprint
the nontrivial topology of the background space become v
prominent. For instance, the numberNf of copies of the fun-
damental domains inside the last scattering at the pre
slice is approximately 27.9 for a Weeks model withVL
50.6 and Vm50.2 whereasNf54.3 if VL50 and Vm
50.8. Thus we have still great possibilities in detecting t
nontrivial topology by the future satellite missions such
the Microwave Anisotropy Probe and Planck which will pr
vide us much better information on the statistical propert
of the real signals. The large deviations of the topologi
quantities from the mean values would be good signals
indicate the hyperbolicity~negative curvature! and the finite-
ness~smallness! of the universe in addition to the direct ob
servation of the periodic structures peculiar to each n
trivial topology ~see Ref.@38# for recent developments!.
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