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In this paper, the Gaussianity of eigenmodes and non-Gaussianity in the cosmic microwave background
(CMB) temperature fluctuations in the two smallest compact hyperb@hkb models are investigated. First, it
is numerically found that the expansion coefficients of low-lying eigenmodes on the two CH manifolds behave
as if they are Gaussian random numbers in almost all places. Next, the non-Gaussianity of the temperature
fluctuations in the I;m) space in these models is studied. Assuming that the initial fluctuations are Gaussian,
the real expansion coefficients,, of the temperature fluctuations in the sky are found to be distinctively
non-Gaussian. In particular, the cosmic variances are found to be much larger than for Gaussian models. On
the other hand, the anisotropic structure is vastly erased if one averages the fluctuations at a number of different
observation points because of the Gaussian pseudorandomness of the eigenmodes. Thus the dominant contri-
bution to the two-point correlation functions comes from the isotropic terms described by the angular power
spectraC, . Finally, topological quantities, the total length and the genus of isotemperature contours are
investigated. The variances of total length and genus at high and low threshold levels are found to be consid-
erably larger than that of Gaussian models while the means almost agree with them.

PACS numbd(s): 98.70.Vc, 98.80.Hw

[. INTRODUCTION vature dominant epoch, the free streaming photons with large
wavelength(the light travel time across the wavelength is
In recent years, locally isotropic and homogeneougyreater than or comparable to the decay jithat climbed a
Friedmann-Robertson-WalkgFRW) models with a non- potential well at the last scattering experience blueshifts due
trivial topology have attracted much attention. In the stanto the contraction of the comoving space along the trajecto-
dard scenario, a simple connectivity of the spatial hypersurries of the photons. Because the angular sizes of the fluctua-
face is assumed for simplicity. However, the Einsteintions produced at late time are large, the suppression of the
equations, being local equations, do not fix the global topolfluctuations on scale larger than the topological identification
ogy of the spacetime. In other words, a wide variety of to-scale does not lead to a significant suppression of the large-
pologically distinct spacetimes with the same local geometnangle power if the ISW effect is dominant. Recent works
described by a local metric element remain unspecifée@ [7-10] have shown that the large-angle powers<(220)
Ref. [1] for review on the cosmological topologyThe de- are completely consistent with the COBE DMR data for
termination of the global topology of the universe is one ofcompact hyperboli€CH) models which include a small CH
the most important problem of the modern observational coserbifold and Weeks and the Thurston manifolds with volume
mology. 0.72, 0.94, and 0.98 in units of the cube of the curvature
For flat models without the cosmological constant, severradius, respectively. Note that the Weeks manifold is the
est constraints have been obtained by using the cosmic backmallest and the Thurston manifolds is the second smallest in
ground explore(COBE) differential microwave radiometer the known CH manifolds. For instance, the number of copies
(DMR) data. The suppression of the fluctuations on scalesf the fundamental domain inside the last scattering surface
beyond the topological identification scdleleads to a de- at present is approximately 190 for a Weeks model with
crease in the angular power sped@@aof the cosmic micro- ,=0.3.
wave backgroundCMB) temperature fluctuations on large  If the space is negatively curved, for a fixed number of the
angular scales which puts a lower boung2400h~! Mpc  copies of the fundamental domain inside the present horizon,
(with h=H/100 km s * Mpc™1) for a compact flat three- the large-angle fluctuations can be produced very effectively.
torus model without a cosmological constg@t3]. Similar  In negatively curved spaceélyperbolic spacgstrajectories
constraints have been obtained for other compact flat modelsf photons subtend a much smaller angle in the sky for a
[4]. The maximum expected number of copies of the fundagiven scale. In other words, for a given angle of a pair of two
mental domain(cell) inside the last scattering surface is ap- photon trajectories, the physical distance of the trajectories is
proximately 8 for the three-torus model. much greater than that in flat space. Therefore, even if there
In contrast, for low density models, the constraint couldis a number of copies of the fundamental domain which in-
be considerably milder than the locally isotropic and homo-tersect the last scattering surface, the number of copies which
geneous flat(Einstein—de Sittgr models since a bulk of intersect the wave frorna sphere witte= const) of the free
large-angle CMB fluctuations can be produced by the sostreaming photons is exponentially decreased at late time
called(late) integrated Sachs-Wolf@¢SW) effect[5,6] which ~ when the large-angle fluctuations are produced due to the
is the gravitational blueshift effect of the free streaming pho-SW effect.
tons by the decay of the gravitational potential. As the gravi- However, one may not be satisfied with the constraints
tational potential decays in eithér-dominant epoch or cur- using only the angular power spectru@ since it contains
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only isotropic information of the ensemble averaged tem-believes the Copernican principle that we are not in the cen-
perature fluctuationgl 1]. If they have anisotropic structures, ter of the universe. Even if the space is anisotropic at a
non-Gaussian signatures must be revealed. In fact, the globeértain point, the averaged fluctuations may look isotropic by
isotropy of the locally isotropic and homogeneous FRWconsidering an ensemble of fluctuations at all the possible
models is generally broken. For instance, a flat three-torusbserving points. Note that the eigenmodes on CH spaces
obtained by identifying the opposite faces of a cube is obvi-have no particular directions if they are Gaussian.
ously anisotropic at any points. Thus the temperature fluc- If the initial fluctuations are constant for each eigenmode,
tuations averaged over the initial conditions in these multiplyas we shall see, the Gaussian randomness of the temperature
connected FRW models are no longer(SQOnvariant at a fluctuations can be solely attributed to the Gaussian pseudo-
certain point. The temperature fluctuations on the sky areandomness of the eigenmodes. In this case, the Gaussian
written in terms of(real) spherical harmonic®,,(n) as randomness of the temperature fluctuations has its origin in
the geometrical property of the spa@geometric Gaussian-
AT ! ity). Choosing an observing point is equivalent to fixing a
T(n)=§|: mzl BimQim(n)- (1) certain initial condition. However, it is much natural to as-
sume that the initial fluctuations are also random Gaussian as

If the distribution functions of the real expansion coefficientsthe standard inflationary scenarios predict. Then the tempera-
by, are S@3) invariant, the temperature fluctuations must beture fluctuations may not obey the Gaussian statistics be-
Gaussian provided thdd,,'s are independent random num- Cause they are written in terms of products of two dlfferent
bers[12]. Therefore, the temperature fluctuations at a certaifndependent Gaussian numbers rather than sums while they
point in the multiply connected FRW models are not Gaussf€main almost spatially isotropic if averaged over the space.
ian if by,,'s are independent. In thls_pa_per, the Gaussianity of eigenmodes and non-
For the simplest flat three-torus modégthout rotations ~ Gaussianity in the CMB for two smallest CH modétae
in the identification mapswhich are globally homogeneous, Weeks and the Thurston modeése investigated. In Sec. |,
it is sufficient to choose one observing point and estimatdumerical results on Gaussianity of eigenmodes are shown
how the power is distributed among tme's for a given and we discuss to what extent the resqlts are generic. In Sec.
angular scalé in order to see the effect of the global anisot- !!l: We study the non-Gaussian behavior of the temperature
ropy. However, in general, one must consider an ensemble dfuctuations in thel(m) space. In Sec. IV, topological quan-
fluctuations at different observing points because of the spdities (total length and genuf isotemperature contours are
tial (globa) inhomogeneity. In previous analyses, the depenhumerically simulated for studying the non-Gaussian behav-
dence of the temperature fluctuations on the choice of obseor In the real space. Finally, we summarize our conclusions
vation points has not been fully investigated. in Sec. V.
The lack of analytical results on the eigenmodes makes it
difficult to investigate the nature of the temperature fluctua- [l. GEOMETRIC GAUSSIANITY
tions in CH models. However, we may expect a high degree

of co_mplexny in the elg_enmodes since the corres_pondln%paces’ each typ@calar, vector, and tengoof first-order
classical systemsggeodesic flows are strongly chaotic. In

. i . rturbation n m in I f
fact, it has been numerically found that the expansion coefpe turbations can be decomposed into a decoupled set o

e . . ~equations. In order to solve the decomposed linearly per-
ficients of the low-lying eigenmodes on the Thurston mani- q P y b

fold at the point where the injectivity radius is maximal are turk_)ed Einstein equations, it Is useful o expa_nd the_ pertur-
. . bations in terms of eigenmodes of the Laplacian which sat-
Gau_55|an pseuc_iorandom nu_mbél@] W.h'Ch supports the isfies the Helmholtz equation with certain boundary
previous analysis of the excited statgsgher modes of a conditions
two-dimensional asymmetrical CH modédl]. We have put
a prefix “pseudo” since the eigenmodes are actually con- (V2+K?)u(x)=0, 2)
strained by the periodic boundary conditions. These results
imply that the statistical properties of the eigenmodes on Chsince each eigenmode evolves independently in the linear
spaces (orbifolds and manifolds can be described by approximation. Then one can easily see that the time evolu-
random-matrix theoryRMT) [15,16. An investigation of tion of the perturbations in the multiply connected locally
the dependence of the property on the observation points isotropic and homogeneous FRW spaces coincide with that
also important since CH spaces have symmetiiEsmetric  in the FRW spaces while the global structure of the back-
groups which may veil the random feature of the eigen- ground space is described solely by these eigenmodes.
modes. In this paper, a detailed analysis on the statistical Unfortunately, no analytical expressions of eigenmodes
property of low-lying eigenmodes on the Weeks and theon CH spaces have been known. Nevertheless, the corre-
Thurston manifolds is conducted. spondence between classical and quantum mechanics may
Assuming that the eigenmodes are Gaussian, one can egrovide us a clue for understanding the generic property of
pect that the anisotropic structure in tHen() space is vastly the eigenmodes. If one recognizes the Laplacian as the
erased when one averages the fluctuations over the spad¢¢amiltonian in a quantum system, each eigenmode can be
This seems to be a paradox since the CH spaces are actuailierpreted as a wave function in a stationary state. Because
globally anisotropic. However, one should consider a spatiatlassical dynamical systemé=geodesic flows on CH
average of fluctuations with different initial conditions if one spaces are strongly chaotior more precisely they ar&

In locally isotropic and homogeneous FRW background

103001-2



GEOMETRIC GAUSSIANITY AND NON-GAUSSIANITY . .. PHYSICAL REVIEW D62 103001

systems with ergodicity, mixing and Bernoulli properties Weeks manifold

[17]), one can expect a high degree of complexity for each
eigenstate. The imprint of the chaos in the classical systems
may be hidden in the quantum counterparts. In fact, in many
cases, the short-range correlations observed in the eigenval-
ues(energy stateshave been found to be consistent with the
universal prediction of RMT for three universality classes:
the Gaussian orthogonal ensemi@OE), the Gaussian uni-
tary ensembléGUE), and the Gaussian symplectic ensemble
(GSBE [15,16. In our case the statistical properties are de-
scribed by GOHwhich consist of real symmetrid X N ma-
trices H which obey the Gaussian distribution
xexf —TrH?/(4a?)] (wherea is a constantas the systems
possess a time-reversal symmetry. RMT also predicts that
the squared expansion coefficients of an eigenstate with re-
spect to a generic basis are distributed as Gaussian random
numbers[18]. Unfortunately, no analytic forms of generic
baseg=eigenmodesare known for CH spaces which seems
to be an intractable problem. However, if the eigenmodes are FIG. 1. The lowest eigenmode=5.268 on the Weeks manifold
continued onto the universal covering space by the periodicontinued onto the Poincateall and the boundaries of the copied
boundary conditions, they can be written in terms of a “ge-Dirichlet domains(solid curves plotted on a slice=0.

neric” basis on the universal covering spacethree-

hyperboloidH?). In pseudospherical coordinateR, f, 6, ¢),  level of 102 to 10 * (for the inner product of the normal-
the eigenmodes are written in terms of complex expansiofzeéd eigenmodegswhich implies that each eigenmode is

coefficientsé,,, and eigenmodes on the universal coveringcomputed with relatively high accuracy. In Figs. 1 and 2, one
space, can see a high degree of complexity in the lowest eigen-

modes on the Poincateall which is isometric given by

uv=% Entm Xt ) Yim(6,0), 3

X= Rtanhg sinfdcos¢p, y= Rtanh%sin fsing,

wherev= k-1, X,,, andY,,,, denote the radial eigenfunc-

tion and(compleX spherical harmonic on the pseudosphere X

with radiusR, respectively. Then the real expansion coeffi- z=Rtanh; cos6. (6)
cientsa,, are given by

B B Replacing tanhy/2) by tanhy for each coordinate, one ob-
8,00= ~IM(£,00).  A,10=VCREE,10), tains the Klein(projective coordinates. In the Poincar e co-

ordinates, angles of geodesics coincide with that of Euclid-
avlm:\/ERdgvlm)i m>0’

Thurston manifold

Aum=—2Im(&,_ ), m<O, (4)
where
_ 2
CITITRAF(mDT
F(V,|)=F(I+Vi+l) I'(—vi) 5

T(vi) T(—-vi+l)

In this paper, the low-lying eigenmodek<13) on the
Weeks and Thurston manifolds are numerically computed by
the direct boundary element method. The identification ma-
trices of the Dirichlet domains are obtained by a computer
program “sNAPPEA’ by Weeks [19]. The computed eigen-
values are well consistent with that in the previous literature
[13,20. The estimated errors ikare within 0.01. However,
the last digits ik may be incorrecta,,, 's can be promptly FIG. 2. The lowest eigenmode=5.404 on the Thurston mani-
obtained after the normalization and orthogonalization offold continued onto the Poincatfeall and the boundaries of the
these eigenmodes. The orthogonalization is achieved at thmpied Dirichlet domaingsolid curves$ plotted on a slice=0.
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FIG. 3. Plots ofa,,’s which
are ordered ad(l+1)+m+1,0
<|=<20 for eigenmodek=5.268
(left) andk=12.789(right) on the
Weeks manifold at a point which
is randomly chosen.

0 100 200 300 400 0 100 200 300 400

ean ones. In the Klein coordinates, all geodesics are straiglprediction is fairly good for most of eigenmodes which is
lines while angles does not coincide with that of Euclideanconsistent with the previous computation in Réf3]. How-
ones. In what followsR is normalized to 1 without loss of ever, for five degenerated modes, the non-Gaussian signa-
generality. tures are prominerftn Ref.[13], two modes in k<10) have

In Fig. 3, one can see that the distributionagf,,'s which ~ been misseld Where does this non-Gaussianity come from?
are ordered a$(l+1)+m+1 are qualitatively random. In First of all, we must pay attention to the fact that the
order to estimate the randomness quantitatively, we considexxpansion coefficienta,,,, depend on the observing point.
a cumulative distribution of In mathematical literature the point is called the base point.
For a given base point, it is possible to construct a particular
class of fundamental domain called the Dirichfietndamen-
tal) domain which is a convex polyhedron. A Dirichlet do-
main () (x) centered at a base poixtis defined as

|aV| _gv|2
bylm:m—21 (7)

(TV
wherea, is the mean ofa,;,'s and ai is the variance. If
a,m's are Gaussian theb,, 's obey a x? distribution
P(x) = (1/2)Y2I' (1/2)x Y2%e7%? with 1 degree of freedom.
To test the goodness of fit between the the theoretical cumu-
lative distributionl(x) and the empirical cumulative distri- where g is an element of a Kleinian group [a discrete
bution functionl \(x), we use the Kolmogorov-Smirnov sta- isometry group of PSL(2)] andd(z,X) is the proper dis-
tistic Dy which is the least upper bound of all pointwise tance betweer and x.
differences|I y(x) —1(x)| [21], The shape of the Dirichlet domain depends on the base
point but the volume is invariant. Although the base point
DNESEF“ N() = 1) (8 can be chosen arbitrarily, it is a standard to choose a @int

Q(x)=NgH(g,x), H(Q,X)={Z|d(Z,X)<d[g(Z),X]}(,12)

In(X) is defined as

TABLE I. Eigenvaluesk and the corresponding significance lev-
els ap for the test of the hypothesig(x) #1(x) for the Thurston

0, x<yq, manifold. The injectivity radius is maximal at the base point.
In)=1 J/IN,  yj=<x<yjs1, j=12,...N—-1, (9 K a0 K o
1, yNSX,
5.404 0.98 10.686b) 7.9x10°4
wherey;<y,<---<yy are the computed values of a ran- 5.783 0.68 10.737 0.96
dom sample which consists df elements. For random vari- 6.807(a) 0.52 10.830 0.67
ablesDy for any z>0, it can be shown that the probability = 6.807(b) 7.1x1074 11.103(a) 0.041
of Dy<d is given by[22] 6.880 1.00 11.108b) 8.8x10 %
im P(Dy<d=zN"Y2=L(2) 10 7.118 0.79 11.402 0.98
N N ' 7.686(a) 0.26 11.710 0.92
7.686(b) 2.3x1078 11.728 0.93
where 8.294 0.45 11.824 0.31
. 8.591 0.91 12.012a) 0.52
’ ) 8.726 1.00 12.01 0.73
L= 1_2121 (-~ e A (12) 9.246 0.28 12.2‘?3 0.032
9.262 0.85 12.500 0.27
From the observed maximum differenBg=d, we obtain 9.754 0.39 12.654 0.88
the significance levedry=1— P which is equal to the prob- 9.904 0.99 12.795 0.76
ability of Dy>d. If «p is found to be large enough, the 9.984 0.20 12.806 0.42
hypothesid y(x) # | (X) is not verified. The significance lev- 10.358 0.40 12.8973) 0.87
els ay for 0=<1=<20 for eigenmode&<13 on the Thurston 10.686(a) 0.76 12.897(b) 6.9x 104

manifold are shown in Table I. The agreement with the RMT:
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|

FIG. 4. A Dirichlet domain of
the Thurston manifold in the
Klein coordinates viewed from
opposite directions &) where the
injectivity radius is locally maxi-
mal. The Dirichlet domain has a
Z2 symmetry(invariant by 7 ro-
tation at Q.

where the injective radidsis locally maximal. More intu- Gaussian prediction.d of ap are found to be 0.26 to 0.30.
itively, Q is a center where one can put a largest connected Next, we apply the run test for testing the randomness of
ball on the manifold. If one chooses other point as the basa,,,’s where each set ai,,, 's are ordered as(l +1)+m
point, the nearest copy of the base point can be much nearet.1 (see Ref[21]). Suppose that we haweobservations of
The reason to choos@ as a base point is that one can expectthe random variablé) which falls above the median and n
the corresponding Dirichlet domain to have many symme-observations of the random varialilevhich falls below the
tries atQ [23]. median. The combination of those variables into @ser-
As shown in Fig. 4, the Dirichlet domain & has aZ2  vations placed in ascending order of magnitude yields
symmetry(invariant by rotation if all the congruent faces
are identified. Generally, congruent faces are distinguished UUU LL UU LLL UL UU LL.
but it is found that these five modes have exactly the same - —

values of elgenmodgs on t,hese SP”gr”e“t fac,fes. T0r|1en O&ch underlined group which consists of successive values
can no longer considea,,’s as “independent” random ¢y or| is called the run. The total number of runs is called
numbers. Choosing the invariant axis by theotation as the  yhe ryn number. The run test is useful because the run num-

z axis, a,m's are zero for oddn's which leads to the ob- o g\yays obeys the Gaussian statistics in the limitoc

served non-Gaussian behavior. It should be noted that theyargless of the type of the distribution function of the ran-
observedz2 symmetry is not the subgroup of the isometry 4o yariables. As shown in Table IlI, averaged significance

group (or symmetry group in mathematical literaturB2  |ey615( ) are very high (I is 0.25 to 0.31 Thus each set
(dihedral group with order 2) of the Thurston manifold since ¢ a,m's ordered ag(l+1)+m+1 can be interpreted as a

the congruent faces must be actually distinguished in th@g¢ of Gaussian pseudorandom numbers except for limited

H 2
manifold: o . choices of the base point where one can observe symmetries
Thus the observed non-Gaussianity is caused by a particis; eigenmodes.

lar choice of the base point. However, in general, the chance Up to now, we have considerddand m as the index
that we actually observe any symmetrigdements of the  , mhers ofa,, - at a fixed base point. However, for a fixed
isometry group of the manifold or the finite sheeted cover of(| ,m), the statistical property of a set af,,'s at a number

the manifold is expected to be very low. Because a fixed ot gitferent base points is also important since the tempera-
point by an element of the isometric group is either a part of,re fjyctuations must be averaged all over the places for

one-dimensional lingfor instance, an axis of a rotatipor spatially inhomogeneous models. From Fig. 5, one can see
an isolated pointfor instance, a center of an antipodal map he pehavior ofn-averaged significance levels
In order to confirm that the chance is actually low, the KS

statisticsap of a,;,'s are computed at 300 base points which |
are randomly chosen. As shown in Table Il, the averaged ap(v,)= E ap(8yim) (13)
significance levelg ap) are remarkably consistent with the Tom=o 21+1

which are calculated based on 300 realizations of the base

The injective radius of a poini is equal to half the length of the POINts. It should be noted that eaah, at a particular base
shortest periodic geodesic pt point is now considered to be “one realization” whereas a

2The observed?2 symmetry is considered to be a “hidden sym- choice ofl andmis considered to be “one realization™ in the
metry” which is a symmetry of the finite sheeted cover of the Previous analysigTable ). The agreement with the RMT
manifold (which tessellates the manifold as well as the universalPrediction is considerably good for components1. For
covering space For instance, the Dirichlet domain of the Thurston componentd =1, the disagreement occurs for only several
manifold can be tessellated by four pieces with three neighboringnodes. However, the non-Gaussian behavior is distinét in
kitelike quadrilateral faces and one equilateral triangle on the=0 components. What is the reason of the non-Gaussian
boundary and seven faces which contain the center as a vertex. B3ehavior forl =07? Let us estimate the values of the expan-
identifying the four piecesgby a tetrahedral symmetryone obtains ~ Sion coefficients fot =0. In general, the complex expansion
an orbifold which has &2 symmetry. coefficients¢,,, can be written as
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TABLE Il. Eigenvaluesk and corresponding averaged significance leyels) based on 300 realizations
of the base points for the test of the hypothdsjex) # | (x) for the Weeks and the Thurston manifolds.

14

Weeks Thurston
K (aD> k <aD> k <aD> k (aD>

5.268 0.58 10.452b) 0.62 5.404 0.63 10.68@) 0.62
5.737(a) 0.61 10.804 0.63 5.783 0.61 10.737 0.62
5.737(b) 0.61 10.857 0.62 6.80[@) 0.62 10.830 0.63

6.563 0.62 11.283 0.57 6.8@B) 0.62 11.1034a) 0.59

7.717 0.59 11.515 0.61 6.880 0.63 11.1638 0.60

8.162 0.61 11.726a) 0.63 7.118 0.61 11.402 0.61
8.207(a) 0.65 11.726(b) 0.59 7.686(a) 0.61 11.710 0.62
8.207(b) 0.61 11.726(c) 0.61 7.686(b) 0.63 11.728 0.64
8.335(a) 0.59 11.726(d) 0.61 8.294 0.60 11.824 0.62
8.335(b) 0.62 12.031(a) 0.60 8.591 0.60 12.01®) 0.63

9.187 0.59 12.031b) 0.60 8.726 0.60 12.01@) 0.61

9.514 0.56 12.222a) 0.61 9.246 0.60 12.230 0.60

9.687 0.61 12.222b) 0.62 9.262 0.63 12.500 0.63
9.881(a) 0.61 12.648 0.59 9.754 0.62 12.654 0.62
9.881(b) 0.62 12.789 0.59 9.904 0.60 12.795 0.62
10.335(a) 0.63 9.984 0.60 12.806 0.62
10.335(b) 0.60 10.358 0.62 12.89@) 0.62
10.452(a) 0.63 10.686(a) 0.60 12.897(b) 0.56

1 27ru,(0)i
Eum(xo0) = —f Uy(X0,6,8)Yim(0,4)dQ. (14) ) R — (16)
XV|(X0)

For1=0, the equation becomes

i
&,00(x0)=—

?E SinVXO

Taking the limit yo— 0, one obtains

f u,(xo.0,¢)dQ2. (15

Thusa,gg can be written in terms of the value of the eigen-
mode at the base point. As shown in Fig. 1, the lowest eigen-
modes have only one “wave” on scale of the topological
identification scald. (which will be defined later oninside a
single Dirichlet domain which implies that the random be-
havior within the domain may be not present. Therefore, for

TABLE llI. Eigenvaluesk and corresponding averaged significance leyels for the test of the hy-
pothesis that the,,,'s are not random numbers for the Weeks and Thurston manifalds.at 300 points
which are randomly chosen are used for the computation.

Weeks Thurston

k (ar> k (ar> K <ar> k <ar>
5.268 0.51 10.452b) 0.52 5.404 0.48 10.68@) 0.51
5.737(a) 0.48 10.804 0.52 5.783 0.45 10.737 0.49
5.737(b) 0.45 10.857 0.53 6.80/@) 0.53 10.830 0.53
6.563 0.54 11.283 0.49 6.8@B) 0.50 11.103a) 0.52
7.717 0.50 11.515 0.51 6.880 0.47 11.163 0.53
8.162 0.54 11.726a) 0.51 7.118 0.50 11.402 0.51
8.207(a) 0.52 11.726(b) 0.48 7.686(a) 0.49 11.710 0.51
8.207 (b) 0.49 11.726(c) 0.49 7.686(b) 0.52 11.728 0.49
8.335(a) 0.53 11.726(d) 0.48 8.294 0.50 11.824 0.54
8.335(b) 0.50 12.031(a) 0.54 8.591 0.50 12.01@&) 0.51
9.187 0.53 12.031b) 0.51 8.726 0.51 12.01) 0.49
9.514 0.55 12.222a) 0.54 9.246 0.43 12.230 0.51
9.687 0.53 12.222h) 0.50 9.262 0.50 12.500 0.48
9.881(a) 0.51 12.648 0.54 9.754 0.54 12.654 0.48
9.881(b) 0.51 12.789 0.48 9.904 0.52 12.795 0.50
10.335(a) 0.54 9.984 0.49 12.806 0.51
10.335(b) 0.51 10.358 0.53 12.898) 0.57
10.452(a) 0.53 10.686(a) 0.51 12.897(b) 0.55
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Weeks Thurston FIG. 5. Plots ofm averaged

0 significance levelsyp(v,l) based
on 300 realizations for the Weeks
and the Thurston manifolds €0l
<20 andk<13). n denotes the
index number which corresponds
to an eigenmodeu, where the
number of eigenmodes less thian
is equal ton [k(n=1) is the low-
est nonzero eigenvallleThe ac-
companying palettes show the

i) 5 10 15 20 ! ) 5 10 15 20 correspondence between the level

I I of the gray and the value.

low-lying eigenmodes, one would generally expect non-the expansion coefficients. As the eigenmodes have oscilla-
Gaussianity in a set oh,gy's. However, for high-lying tory features, it is natural to expect that the averages are
eigenmodes, this may not be the case since these modes hagual to zero. In fact, the averages{af,,,) 's over 0<I

a number of “waves” on scale of and they may change =20 and—I<m= —I and 300 realizations of base points for

their values locally in an almost random fashion. each v mode are numerically found to be 0.G06.04
The above argument cannot be applicable jg,’s for | —0.02 (1o) for the Weeks manifold, and 0.083.04

#0 whereX,, approaches zero in the limit,—0 while the  —0.02 (1o) for the Thurston manifold. Let us next consider

integral term the v dependence k( dependenge of the variances

Var(a, ). In order to crudely estimate the dependence,
17) we need the angular siz&9 of the characteristic length of

*
f U,(X0:0,0)Yin(6,¢0)dQ the eigenmodei, at o [13]

also goes to zero because of the symmetric property of the 16m2Vol(M)
spherical harmonics. Therefoee,,'s cannot be written in ~ o - ,
terms of the local value of the eigenmode fgr0. For these kA sin 2(xo+ I ave) 1 —SIN 2(xo— fav&]—4fav%1g)

modes, it is better to consider the opposite ligpgt—o°. It is
numerically found that the sphere with very large radigs
intersects each copy of the Dirichlet domain almost ran

domly (the pulled back surface into a single Dirichlet domamarbitrariness in the definition of,,.. Here we defing .. as

chaotically fills up the domainThen the values of the eigen- the radius of a sphere with volume equivalent to the volume
modes on the sphere with very large radius vary in an almostgf the manifold

random fashion. For largg,, we have

where Vol(M) denotes the volume of a manifol andr
is the averaged radius of the Dirichlet domain. There is an

X,1(xo) €~ 2x0T i, (18 VoI(M) = m{ Sinh(2r aye) = 2r ayel, (20

) which does not depend on the choice of the base point. The
where ¢(v,l) describes the phase factor. Therefore, the Oliopological identification length. is defined ast = 2r .
der of the integrand in Eq14) is approximatelye™ *\ since For the Weeks and the Thurston manifolds=1.19 andL
Eq. (14) does not depend on the choice)gf. As the spheri- =1.20, respectively. From Eq19), for large o, one can
cal harmonics do not have correlation with the eigeand%pproximateJ (xo)~U'(x4) by choosing an appropriate ra-
u,(xo,6,¢), the integrand varies almost randomly for differ- dius v whichysatisfie;‘20exp(—2)(0)=v"zexp(—z)(é). Av-

ent choices ofl;m) or base points. Thus we conjecture that ‘ ; : y
S 4 S : eraging Eq(14) overl’s andm’s or the base points, for large
Gaussianity ofa,,,'s have their origins in the chaotic prop-pX one obtains
X0

erty of the sphere with large radius in CH spaces. The pro
erty may be related to the classical chaos in geodesic flows.

So far we have seen the Gaussian pseudorandomness of (|é ,Im|2>~exﬁ_2){o) Uéuml® (21)
the a,;,'s. Let us now consider the statistical properties of ! exp(—2x,) ! ’

which gives(|&,,m|?)~»~2. Thus the variance od,,’s is

. _2 .
3If one considers a great circle on a sphere with large radius, th@roportional tov <. The numerical results for the two CH

length of the circle is very long except for rare cases in which theManifolds shown in Fig. 6 clearly support the ? depen-
circle “comes back” before it wraps around in the universal cov- dence of the variance.

ering space. Because the long geodesics in CH spaces chaotically AS We have seen, the property of eigenmodes on general
(with no particular direction and positipmvrap through the mani- CH manifolds is summarized in the following conjecture.

fold, it is natural to assume that the great circles also have this Conjecture Except for the base points which are too close
chaotic property. to any fixed points by symmetries, for a fixeda set of the
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FIG. 6. Averaged square,’'s (k<13) based on 300 realizations of the base points for the Weeks and the Thurston manifatdlwith
run-to-run variationsa, is defined to be Vad,,,,) averaged over €1=<20 and—I=<=m=I. The best-fit curves for the Weeks and the
Thurston manifolds are 2102 and 20.3 2, respectively.

expansion coefficienta,;,, over (I,m)’s can be considered and the present conformal time, respectively. The angular
as Gaussian pseudorandom numbers. For a fixeoh)(! power spectrunC, is defined as
>0), the expansion coefficients at different base points that
are randomly chosen can also be considered as Gaussian !
pseudorandom numbers. In either case, the variance is pro- (21+1)C,= >, | {laml?)
=

portional tov ™2 and the average is zero.

IIl. NON-GAUSSIANITY IN OBSERVABLE ANGULAR
POWER SPECTRA

As mentioned in the last section, perturbations in CH

474Pg(v)

= _am Fell) 2y(F ,
v,\m V(V2+1)Vo|(|v|)<|§”|m| >| VI(770)| )

(29

models are written in terms of linear combinations of eigen- . o
modes and the time evolution of the perturbations. Becauswhere Py(v) is the initial power spectrum. It should be
the time evolution of the perturbations coincides with that innoted that the above formula converges to that of open mod-

open models, once the expansion coefficights, (or a, )

els in the short-wavelength limisummation to integration

are given, the evolution of perturbations in CH models carProvided that|,i|%) is proportional tov 2. The reason is

be readily obtained.

as follows: Let us denote the number of eigenmodes with

If one assumes that the perturbation is a adiabatic scal&igenvalues equal to or less thanby N(»). In the short-
type without anisotropic pressure, and the subhorizon effect¢avelength limit»>1 one can use Weyl's asymptotic for-
such as acoustic oscillations of the temperature and the vénula which leads to

locity of the bulk fluid, and the effect of the radiation con-
tribution at highz are negligible, the time evolution of the

growing mode of the Newtonian curvatude is analytically
given as(see, e.g., Ref§24,25)

_ 5(sinif»—37ysinhy+4 coshy—4)

)
(m) (coshp—1)3

. (22

where » denotes the conformal time. In terms &, the
temperature fluctuation in the sky are written as

AT(n
T( )=% AmYim(M) =2 ©(0)€,imF 1 (70) Yim(1),
(23

where

1
Fm(?]o)f—§<I>(77*)XV|(770—71*)

—2f”°d a0 e 24
, Tdn (10— 7). (24)

dN(v) Vol(M)
dv 22

V2. (26)

Thus ther? dependence in Eq26) is exactly cancelled out
by the v~2 dependence of eigenmodes. In what follows we
assume the extended Harrison-Zel'dovich spectrum, i.e.,
Po(v)=const(in the flat limit, it converges to the scale in-
variant Harrison-Zel'dovich spectrurmas the initial power
spectrum.

In estimating the temperature correlations, the non-
diagonal termsl@#|’ orm#m’) may not be negligible if the
background spatial hypersurface is not isotropic, in other
words, the angular power spectru®y may not be sufficient
in describing the temperature correlations si@;eprovides
us with only an isotropic information of statistics of the cor-
relations. However, this is not the case for CH models to
which the conjecture proposed in Sec. Il is applicable. Based
on the Copernican principle, it is not likely that we are at the
center of any symmetries. Therefore, in order to statistically
estimate the temperature correlations in the globally inhomo-
geneous background space, one has to consider an ensemble

Here® ,(0) is the initial value of the curvature perturbation of fluctuations with different initial conditions at different
and », and 5, are the conformal time of the last scattering places(or base poingswith different orientations. Almost all
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FIG. 7. Contributions of nondiagonal terms in the temperature correlations in unit of diagonal terms which are delﬁﬁﬁd as
=|(ama* m )/ {|am?){|a;w]?) for the Thurston model witl),=0.3. The four-dimensional spackrf,|’,m’) is represented in the
two-dimensional space as,(’)=[I(I+1)+m+21]"(I"+1)+m’+1] for 2<I<10,~I=m=<I| and 2<I'<10—-1I'sm'=l|’. f:r,“m,’s are
represented by the level of gray shown in the accompanying palettes. The left figure reﬂrﬁﬁe’ataveraged over 300 realizations of the
base points with infinite number of initial conditions for the Newtonian curvature. The right figure repré:ghmsat a base point where
the injective radius is maximal with infinite number of initial conditions. The computation is based on 36 eigenkeaded) that are
numerically obtained by using the direct boundary element method. The averaged values of the nondi&gtmél#l’ orm#m’) are
0.016(left) and 0.25(right).

the anisotropic information is lost in the spatial averagingrandom Gaussian as in the inflationary scenarios in which
process since the eigenmodes are Gaussian. Gaussianity(on large scalesof the temperature fluctuations
As shown in Fig. 7, for 300 realizations of observing has its origin in Gaussianity of the initial quantum fluctua-
points(left), the averaged absolute values of the off-diagonations because the angular powers are generally similar to the
elements in unit of diagonal elements are very smallextended Harisson-Zel'dovich spectrum. Then the statistical
(~0.016) whereas their contributions seem to be not negliproperties of the temperature fluctuations are determined by
gible (~0.25) at one particular observing poinight) where  the sum of the products of the two independent Gaussian
one can observe a symmetry of the Dirichlet domain. Thugandom numbersthe initial fluctuations and the expansion
the statistical property of the temperature correlation can beoefficients of the eigenmodes
estimated by usingC,’s provided that the eigenmodes are Let us calculate the distribution functiof(Z,o,) of a
Gaussian which validates the previous analyses u€ify  product of two independent random numbeérsind Y that
for constraining the CH model§—10]. The spatial averag- obey the Gaussiafinorma) distributions N(X;0,0«) and
ing proces$ must be taken into account since there is noN(Y;0,0v), respectively
reason to believe that we are in the center of any symmetries.
If the initial conditions satisfy ® ,(0)] 2« v(v?+1) that
corresponds to the extended Harrison-Zel'dovich spectrum,
then Eg.(23) tells us that the temperature fluctuation is NCX p,0)=
Gaussian since it is equal to a sum of Gausgpmeudgran-
dom numbers at almost all the observing points. In this case,
the Gaussian randomness of the temperature fluctuations in ) o
CH models can be solely attributed to the geometrical prop? N"€NF(Z=XY,07) is readily given by
erty of the spacégeometric Gaussianitywhich may be re-
lated to the deterministic chaos of the corresponding classi- dy
cal system. In other words, the Gaussian randomness can be P =1
explained in terms of the classical physical quantities with- F(Z’UZ)_ZJ’O N(Z7Y.000N(Y.00v)
out considering the initial quantum fluctuations provided that
the above conditions are initiallgleterministically satisfied. _ 1 K |Z|
However, it is natural to assume thd,(0)’'s are also Toxoy O\ oxoy)’

e~ (X- ,u,)2/202_ (27)

mo

(28)

4In general, one should include an averaging process over differ/N€réKo(2) is the modified Bessel function. The average of
ent choices of orientation of coordinates as well as an averaging IS 2€ro and the standard deviation satisfigs- oxoy . AS
process over different choices of the observing point. Nevertheles$S Well known,Ky(2) is the Green function of the diffusion
the Gaussian conjecture in Sec. Il implies that the eigenmodes ofduation with sources distributed along an infinite line. Al-
CH spaces are “S@) invariant” [12] if averaged all over the thoughKy(z) diverges az=0 its integration over {,x)
space. Therefore, omission of the averaging procedure for differeris convergent. From the asymptotic expansion of the modi-
orientations of coordinates make no difference. fied Bessel function
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FIG. 8. On the left, the distribution functioR(Z,1) for a product of two random Gaussian numbers is plotted in solid curves. On the
right, the distribution functiorG(Z,1) (1o0=1) of a sum of two random variables that obe¢Z,1/\2). The dashed curves represent the
Gaussian distributioN(Z;0,1).

i 12 12% 32 the distribution function converges to the Gaussian distribu-
Ko(z)~ \ge‘Z 1- th — tion as the central limit theorem implies. One can see from
z $62 21(82) Fig. 8 (right) that the distribution functiorG(W,1) of W
12% 32 52 =Z71+Z2 where bothZ1l andZ2 obeyF(Z,+2) is more
_ T ] 1, (29  similar to the Gaussian distributid®(Z,0,1) thanF(W,1) in
31(82)3 the modest region.

Now let us see the non-Gaussian features of the observ-

one obtains in the lowest order approximation able angular power spectruf@, assuming that the initial
fluctuations are Gaussian. First of all, we define a statistic

1 Y?=(21+1)C,/C,, where
F(Z,0)~ ——=¢ #l", 7>1. 309 X =( A
( V2ma|Z|
[
ThusF(Z,0) is slowly decreased than the Gaussian distri- 20+ 1)8 = b2 31
bution function with the same variance in the large limit. ( )i m:z—| m- 3D

One can see the two non-Gaussian features in Fi¢ef8:

the divergence aZ— 0 and the slow convergence to zero at

Z—. The slow convergence is an important feature, as wéf the expansion coefficients, of the temperature fluctua-
shall see, in distinguishing the non-Gaussian models with théion in the sky are Gaussiay? must obey they? distribu-
Gaussian ones. In the modest region<0|Z|<2.4, F(Z,1)  tion with 2m+ 1 degrees of freedom. Figure 9 shows the two
is much less thah(Z,0,1). Generally, the temperature fluc- non-Gaussian features in the distributiontpf,’s: a slight
tuation is written as a sum of the random varialifesvhich  shift of the peak to the centdeerg; slow convergence to
obeys the distribution functiok (Z; o) for a fixed set of  zero for largey?. As shown in Fig. 10, the distribution gf?
cosmological parameters. For large-angle fluctuations, onlis approximately obtained by assuming that,’s obey
the eigenmodes with large wavelengtiZ7/k) can con- G(Z,1) (actually, the distribution functions ob,,’s are
tribute to the sum. Due to the finiteness of the space, thslightly much similar to the Gaussian distributions on large
number of eigenmodes which dominantly contribute to theangular scalgs The two non-Gaussian features are attributed
sum is finite. Therefore, the fluctuations are distinctivelyto the nature of the distribution functions of edgl, which
non-Gaussian. For small-angle fluctuations, the number afive large values ab,,~0 and decrease slowly &f,>1
eigenmodes that contribute to the sum becomes so large thedmpared with the Gaussian distributions.

e 0.05
0.08 Weeks 0. ga Weeks
0.06 Omega=0.2 e Omega=0.2
0.04 I=5 0.02 I=15
0.02 0.01

0

5 10 15 20 25 30 35 40 20 40 60 80

FIG. 9. The distributions of?=(2l+1)C,/C, for the Weeks model witf),=0.2,1=5 (left) and 15(right). The horizontal axes

represent the values qf. The distributions are calculated using 33 eigenmodtesi(3) based on 200 realizations of the initial Gaussian
fluctuations® ,(0), and 200realizations of the base points. The contribution of mdded 3 is approximately less than 8% fbe 15. The
solid curves represent the distributions with 11(left) and 31(right) degrees of freedom.
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I=15

Approximation

0.03
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0.02

0.01
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FIG. 10. The distributions of?=(2l +1)C| /C, in an approximated model in whidh,,'s obeyG(Z,1) for =5 andl =15 based on

40 000 realizations for eadh),,. The horizontal axes represent the valuegofThe solid curves correspond to tyé distributions with 11
(left) and 31(right) degrees of freedom.

The slow decrease of the distributionyf is important in "ot spot contains a cold spot, the total contribution to the
discriminating the non-Gaussian models with the Gaussiad€nus is zero. The genus which is the global property of the
models. As shown in Fig. 11, observijg~50 are not im- random field can be related to the integration of the local

probable for the Week&, model (= 15) whereas it is al properties of the field. From the Gauss-Bonnet theorem, the
o = -

most unlikely for the Gaussian model. Because the distribudeNYS of a closed curve being the boundary of a simply

o ~ ) ] connected regiott) - which consists ol arcs with exterior

?223 'S slowly dectre;stedbfo: Iarg,ei{hthe tti]ostmlfctr\]/argnces_ anglesa;,a,, ... ,ay can be written in terms of the geode-
1)* are expected to be larger than that of the Gaussiagiccyryaturex, and the Gaussian curvatukeas

models. From Fig. 12, on large angular scaless(&15),

one can see that the standard deviatid@; of é| in the two N

CH models are approximately 1-2 times of that for the G:i J kgds+ D, ai+ KdA|. (33
Gaussian models. 27| Jc 9T & Q¢
IV. TOPOLOGICAL QUANTITIES For a random field on the two-dimensional Euclidean space

E2 where the N arcs are all geodesic segmésitsight line

Topological measures:total area Qf the excursion regionssegment‘,s K and x, vanish. Therefore, the genus is written
total length and the genus of the isotemperature contourgg g '

have been used for testing Gaussianity of the temperature

fluctuations in the COBE DMR datf26,27. Let us first N

summarize the known results for Gaussian figlslse Refs. 1

[28,29). Cer=p 2 .
The genusG of the excursion set for a random tempera-

ture field on a connected and simply connected two-surfac

can be loosely defined as

(34)

The above formula is applicable to the locally flat spaces
such asE!x St and T2 which haveE? as the universal cov-

G=number of isolated high-temperature connected regions €MNg space sinc& and «, also vanish in these spaces. In
these multiply connected spaces, the naive definition EQq.

— number of isolated low-temperature connected regions(32 1S not correct for excursion regions surrounded by a
(32)  loop which cannot be contracted to a point.
In order to compute the genus for a random field on a
For instance, for a certain threshold, a hot spot will contrib-sphereS? with radius equal to 1, it is convenient to use a
ute +1 and a cold spot will contribute-1 to the genus. If a  map ¢:S?>—{p;} —{p,} —S*x (0,7) defined as

1 1
0.8 Weeks 0.8 Weeks
0.6 Omega=0.2 0.6 Omega=0.2
0.4 I=5 0.4 I=15
0.2 0.2 i
% 10 2‘20-- —30 40 R o a7 . 80 100 120 140

FIG. 11. Plots of - P(Z)[ P(2) is the cumulative distribution functignvhich gives the probability of observing=Z. The solid curves

correspond to + P(x?) for the Weeks modef),=0.2, |=5 (left) and|=15 (right). The dashed curves correspond te B(y?) of the
Gaussian model.
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2.5 2.5
2.2 2.25 e
Weeks o Thurston o FIG. 12. Plots of AC,(CH)/
e & 2 - AC,(Gauss) for the two CH mod-
1.75 . 1.75 els based on 200 realizations of
1.5 o a0t 1.5 the initial perturbation,(0) and
125 g 4~ Omega=0.2 1 25 4 Omega=0.2 200 realizations of the base point.

AC, denotes the standard devia-

—k— Omega=0.4 - .
tion (1o0) of C,.

—k— Omega=0.4

2 4 6 8 10 12 14 2 4 6 8 10 1z 14
1 1
:(sind cose,siné sing,cosl) — (¢, H), where ¢; is the exterior angles at the intersection of two
straight segments in thep( 6) space and\, is the number of
Os¢<2m, O0<6<m, (39 poles above the threshold.

Now consider an isotropic and homogeneous Gaussian
random temperature field on a sph&ewith radius 1. Let
(x,y) be the local Cartesian coordinates & and let

wherep,; and p, denote the north pole and the south pole,
respectively. Becaus&'x (0,r) can be considered as lo-

cally flat spaces ¢, 6) with metric ds’=d¢*+d4* which the temperature correlation  function  beC(r)
have boundarieg= 0,7, the genus for excursion regions that — ((ATIT)o(AT/T),) with r=x2+y? and Co=C(0)=0?
do not contain the poles surrounded by straight segments i\/Q/here o ?s the rstandard deviation an%l: _ —(d2C/
the locally flat (¢, 8) space is given by Ed34). It should be dr?) Then the expectation value of thé genus for a
noted that the straight segments do not necessarily corres rEO.IdAT/Tz is given ag29]

spond to the geodesic segmentsSh If a pole is inside an esho vo is givena

excursion region and the pole temperature is above the

threshold then the genus is increased by one. If the pole 2C, ) v
temperature is below the threshold, it does not need any cor- (Ge)=\_c e’ 2.+ erf &)
rection. Thus the genus for the excursions is 0 z

(37

1 here erfck) is the complementary error function. The first
Geo==— > a;+N,, 3p ~ Where . P y Hon.
€ on Z “iT o (36) term in Eq.(37) is equal to the averaged contribution for the

Thurston Q=0.4

0.5Pi

6 — .O_épj_. — p‘i — '1,51:1‘ — 21;1 FIG. 13. Contour maps of the CMREnot

o smoothed by the DMR begnfor the Thurston
model Q,=0.4 and a flat(Einstein—de Sitter
Harrison-Zel'dovich modelC,ec1/[1(1+1)] in
which all multipolesl >20 are removed.

Pi

0.5Pi
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FIG. 14. The mean genuses averaged over 100 realizations of the initial fluctuations and 100 realizations of the base pdlnts and
run-to-run variations at 27 threshold levels for the Weeks and the Thurston modelQ yvith.2. The dashed curves denote the mean values
for a Gaussian model whefg, andC, are obtained by assuming that the expansion coefficients of the eigenmodes are random Gaussian
numbers(the mean is zero and the variance is proportional t6). The solid curves denote the mean values for a Gaussian model that are
best-fitted to that for CH models.

excursions which do not contain the poles while the seconthe (¢,0) space are produced. The contours are approxi-

term in Eq.(37) is the expectation value df,. mated by oriented straight segments. The genus comes from
The mean contour length per unit area for an isotropiche sum of the exterior angles at the vertices of the contours
homogeneous Gaussian random fiel{l28,29 and the number of poles at which the temperature is above

o the threshold. The total contour length is_ approx_ima_ted by
(s)= 1(%) —2p the sum of all the straight segments. Typical realizations of
2\Cyp the sky map are shown in Fig. 13.

Figures 14 and 15 clearly show that the mean genuses and
and the mean fraCtiona| area Of eXCUI’Sion regions for tthe mean tota' contours for the two CH mode's are We”

: (39

field is the cumulative probability of a threshold level approximated by the theoretical values for the Gaussian
models. This is a natural result since the distribution of the

(a)= lerfc( L) (39) expansion coefficientd,,, is very similar to the Gaussian
2 N distribution in the modest range. On the other hand, at high

and low threshold levels, the variances of the total contour

which gives the second term in E@7). lengths and the genuses are larger than that for the Gaussian

As in Sec. lll, the CMB anisotropy maps for the two CH models that can be attributed to the nature of the distribution
adiabatic models are produced by using eigenmdde$3  function ofb,,. One can easily see the non-Gaussian signa-
and angular componentssd <20 for 0,=0.2 and 0.4. The tures from Figs. 16 and 17. The excess variances for the
contribution of higher modes are approximately 7 and 10 %Neeks modelQ);=0.4 compared with the Gaussian flat
for 2;=0.2 and 0.4, respectively. The initial power spec-Harrison-Zel’dovich model are observed at the absolute
trum is assumed to be the extended Harrison-Zel'dovichthreshold level approximatelyw|>1.4 for genus andyv|
spectrum. The beam-smoothing effect is not included. For>0.6 for total contour length. If one assumes that the initial
comparison, sky maps for the Einstein—de Sitter model wittfluctuations are given by® ,(0)] 2« p(v?+1), the tem-
the Harrison-Zel'dovich spectrur@,«<1/[I(1+1)] are also perature fluctuations for CH models can be described as
simulated. Gaussian pseudorandom fields. One can see from Fig. 18 that

In order to compute the genus and the contour length fothe behavior of the variances of genus and total contour
each model, 10000 CMB sky maps on a 400 grid in  length for the Gaussian CH models is very similar to that for

Weeks Thurston

. Omega=0.2 . Omega=0.2
=2 =1 0 1 2 =2 =1 0 1 2
v A%

FIG. 15. The mean contour lengths averaged over 100 realizations of the initial fluctuations and 100 realizations of the base points and
+ 10 run-to-run variations at 27 threshold levels for the Weeks and the Thurston modelQ yvitB.2. The dashed curves denote the mean
values for a Gaussian model wheg and C, are obtained by assuming that the expansion coefficients of the eigenmodes are random
Gaussian numberghe mean is zero and the variance is proportional t6). The solid curves denote the mean values for a Gaussian model
that are best-fitted to that for CH models.
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FIG. 16. The mean genuses and o run-to-run variations at 27 threshold levels for a Weeks model @itk 0.4 averaged over 100
realizations of the initial fluctuations and 100 realizations of the base points and that for a flat Harisson-Zel'dovich model averaged over
10 000 realizations. The dashed curves denote the mean genuses for the corresponding Gaussian models.

the flat Harrison-Zel'dovich model and the variances at highum mechanical systems whose classical counterparts are
and low threshold levels are considerably smaller than thagtrongly chaotic. However, as we have seen, the global sym-
metries in the system can veil the generic properties. For
Because the mean behavior for the two non-Gaussian Cithstance, some eigenmodes on the Thurston manifold have a
models is well described by the Gaussian models, the COBEZ Symmetry at a point where the injectivity radius is maxi-
DMR data which exclude grossly non-Gaussian modelsnal. For these eigenmodes, the expansion coefficients are

[26,27] cannot constrain the two CH models by the topologi-sirongly correlated; hence they can no longer be considered
cal measurements. However, one should take account of § pe random Gaussian numbers.

for the non-Gaussian models.

fact that the signals in the 10 ° smoothed COBE DMR four-
year sky maps are comparable to the no[8€8 that makes

it hard to detect the non-Gaussian signals in the backgroung
fluctuations. In fact, some recent works using different sta-
tistical tools have shown that the COBE DMR four-year sky
maps are non-GaussigBl1-33 although some authors cast
doubts upon the cosmological origin of the observed non
Gaussian signalf34,35. Thus the evidence of Gaussianity

in the CMB fluctuations is still not conclusive.

V. CONCLUSION

Because the eigenmodes actually satisfy the periodic
boundary conditions, there are points on a spl®revhich
re identified with different points 08%. These points form
pairs of circles which are identified by the periodic boundary
conditions[36]. If one could identify all the circles on a
sphere, one would be able to construct the corresponding CH
space[37]. Similarly, if one could identify all the fixed
points and the corresponding symmetries, one would be able

to construct a CH space which have these symmetries. The
observed “randomness” in the eigenmodes is actually deter-
mined by these simple structures.
In this paper, Gaussianity of the eigenmodes and non- In order to understand the symmetric structures of the CH
Gaussianity in the CMB temperature fluctuations in twospaces, it is useful to choose an observing p(hase point

smallest CH(Weeks and Thurstgrmodels are investigated. at which one enjoys symmetries as many as possible. How-
As shown in Sec. Il, it is numerically shown that the expan-ever, in reality, there is no natural reason to consider fluc-
sion coefficients of the two CH spaces behave as if they aruations at only these particular points since the CH spaces
random Gaussian numbers at almost all the places. If onare globally inhomogeneous.

recognizes the Laplacian as the Hamiltonian of a free par- Since the CMB fluctuations can be written in terms of a
ticle, each eigenmode is interpreted as a wave function in Binear combination of eigenmodes, the fluctuations in CH
stationary state. The observed behavior is consistent with models are almost spatially “isotropic” if averaged all over
prediction of RMT which has been considered to be a goodhe space except for very limited places at which the eigen-
empirical theory to describe the statistical properties of quanmodes have certain symmetries provided that the eigen-
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-2 -1 0 1 2 -2 =1 0 1 2
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FIG. 17. The mean total contour lengths ahd o run-to-run variations at 27 threshold levels for a Weeks model @k 0.4 averaged

over 100 realizations of the initial fluctuations and 100 realizations of the base points and that for a flat Harisson-Zel'dovich model averaged

over 10 000 realizations. The dashed curves denote the mean total contour lengths for the corresponding Gaussian models.
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FIG. 18. The mean total contour lengths and genuseszaha run-to-run variations at 27 threshold levels for a Weeks model with
0,=0.4 averaged over 300 realizations of the base points. Here it is assumed that the initial fluctuations deterministically satisfy
[®,(0)] 2= v(v?*+1) so that the fluctuations are described by the Gaussian statistics. The dashed curves denote the mean total contour
lengths and the mean genuses for the corresponding Gaussian models.

modes are Gaussian. The spatial “isotropy” implies that thenot perfectly conclusive. If one includes the cosmological
contribution of nondiagonal terms in the two-point correla-constant for a fixed curvature radius, the radius of the last
tion functions are negligible. Thus the validity of the statis- scattering surfacéhorizon at present in units of curvature
tical tests using the angular power spectrGm{7—10] can-  radius becomes large. Therefore the observable imprints of
not be questioned on the ground that the background spacetfze nontrivial topology of the background space become very
anisotropic at a certain point_ promlnent. For ||_']Sta_nce, the numb\é{ of Coples of the fun-

If one assumes that the initial fluctuations are Gaussian g&@mental domains inside the last scattering at the present
in the standard inflationary scenarios, the temperature fluglice is approximately 27.9 for a Weeks model with,
tuations are described by isotropic non-Gaussian randort 0-6 and Q,=0.2 whereasN;=4.3 if ,=0 and Q
fields since they are written in terms of a sum of products of - 0-8: Thus we have still great possibilities in detecting the
two independent random Gaussian variables, namely, the inp_ontrlwal topology by the future satellite missions such as

tial perturbations and the expansion coefficients of the eigertl® Microwave Anisotropy Probe and Planck which will pro-

modes. The distribution functions of the expansion Coefﬁ_vide us much better information on the statistical properties

cients by, for the sky maps at large values are slowly of the real signals. The large deviations of the topological

converged to zero than the Gaussian distribution with thguantities from the mean valu_es would be good 5|g_n<_ells that
same variance and the cosmic variances are found to Hgdmate the hyperbollcny_neganye curv_a_ltubeand the_ finite-
larger than that of the Gaussian models ness(smallness of the universe in addition to the direct ob-

The increase in the variances are much conspicuous férgryation of the periodic structures peculiar to each non-
topological quantities at large or small threshold levels. orfrivial topology (see Ref{38] for recent developments

the other hand, the mean behavior is well approximated by
the Gaussian predictions. Therefore, the obtained results
agree with the COBE DMR four-year maps analyzed in | would like to thank Jeff Weeks, Makoto Sakuma, Michi-
Refs.[26,27. In real observations one has to tackle with hiko Fujii, and Craig Hodgson for answering many questions
what obscure the real signals such as pixel noises, galacta@bout symmetric structures of compact hyperbolic three-
contaminations, beam-smoothing effect and systematic calspaces and topology of three-manifolds. | would also like to
bration errors which have not been considered in this papethank N. J. Cornish, Naoshi Sugiyama, and Kenji Tomita for
The absence of large deviations from the mean values aheir informative comments. The numerical computation in
large or small threshold levels in the current data may be duthis work was carried out at the Data Processing Center in
to these effects, which will be much explored in the futureKyoto University and Yukawa Institute Computer Facility.
work. K. T. Inoue is supported by the JSPS and this work is sup-

Although the recent observations seem to prefer the flaported partially by Grant-in-Aid for Scientific Research Fund
FRW models with the cosmological constant, the evidence i$Grant No. 9809834
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