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Fractional S-branes on a spacetime orbifold
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Unstable D-branes are central objects in string theory, and exist also in time-dependent backgrounds. In
this paper we take first steps to studying brane decay in space-time orbifolds. As a concrete model we
focus on the R1;d=Z2 orbifold. We point out that on a space-time orbifold there exist two kinds of
S-branes, fractional S-branes in addition to the usual ones. We investigate their construction in the open
string and closed string boundary state approach. As an application of these constructions, we consider a
scenario where an unstable brane nucleates at the origin of time of a space-time, its initial energy then
converting into energy flux in the form of closed strings. The dual open string description allows for a
well-defined description of this process even if it originates at a singular origin of the space-time.

DOI: 10.1103/PhysRevD.73.106004 PACS numbers: 11.25.Hf, 98.80.Bp
I. INTRODUCTION

There has been considerable interest in constructing
time-dependent string backgrounds for cosmological
model-building purposes. This is a difficult problem in
general. An easier route is to take a known string back-
ground and alter its global structure by identifying points
under the action of a discrete group so as to generate an
interesting time-dependent background. This is the idea
behind Lorentzian orbifold constructions. The prototype
cosmological toy background is the Misner space (see [1]
for a review), which contains regions corresponding to a
big crunch and a big bang. The most important problem in
this type of background is to develop a resolution of the
cosmological singularity. In the case of Euclidean orbi-
folds, this is a known story. An interesting part in the theory
of the resolved singularities is played by D-branes. On an
orbifold, there are two kinds ofD-branes, bulk branes away
from the fixed points and fractional ones passing through
the fixed points. After the resolution, the fractional
D-branes lift up to regular branes wrapping around cycles
in the resolved geometry.

It is interesting to ask how to construct D-branes in
Lorentzian orbifolds. There have been studies of e.g.
D-branes in Misner space1 [8,9]. Here we would like to
address a further issue. The D-branes of bosonic string
theory are unstable, and such branes (or configurations of
stable branes that destabilize at a subcritical separation)
exist also in supersymmetric theories. Hence one must be
able to describe their decay in Lorentzian orbifolds.
Understanding of the brane decay by itself is an important
topic for completeness of string theory. Further such pro-
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in other time-dependent backgrounds have been
n [2–7].
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cesses play an important role in many cosmological sce-
narios, adding to the interest in this problem with
applications in mind.

There are many ways to investigate brane decay. The
most straightforward and hence in a sense a most illumi-
nating one is to work on the level of world sheet string
theory and attempt to deform the action by an operator that
describes the decay in the form of a rolling tachyon back-
ground [10,11]. Such deformations must be exactly mar-
ginal, i.e. preserve the conformal invariance even at large
deformations in order not to spoil the unitarity of the
theory. The construction of such exactly marginal defor-
mations is difficult in general, and a hurdle for studies of
brane decay in Lorentzian orbifolds.

In this paper we take the first steps to investigating brane
decay (S-branes [12]) in time-dependent string back-
grounds, in particular, on space-time orbifolds. On orbifold
backgrounds, it turns out that there exists a new class of
S-branes that we call fractional S-branes, in analogy to the
fractional D-branes on Euclidean orbifolds. As a particular
example, we focus on orbifolds R1;d=Z2 [13] where the
problem of finding the exactly marginal deformation gen-
erating the rolling tachyon background is simple.

There is another motivation for considering this back-
ground, as we have discussed in [14]. So far, studies of
cosmological backgrounds in string theory and string cos-
mology have largely focused on models where the past
history of the Universe has been extended beyond the big
bang into an era where it undergoes a big crunch with the
hope that conversion into the big bang is possible through a
resolution mechanism to be discovered, as sketched in
Fig. 1(a), so that the arrow of time can be continued across.
Since the time’s arrow classically ‘‘breaks‘‘ at the singu-
larity, one could ask if it could be taken to point to multiple
directions from it. In other words, one could imagine the
Universe to be created from the big bang with multiple
branches, each with its own arrow of time, an example is
depicted in Fig. 1(b). An additional ingredient in such
-1 © 2006 The American Physical Society
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FIG. 1. The pre-big bang scenario (a), and the creation of two-
branched Universe from the big bang, which is interpreted as a
space-time Z2 orbifold (b).
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speculations could be the role of the CPT invariance. Why
does it exist in the first place, and could it mean that
Universe has two branches, each a CPT reflection of one
another? This question has been studied before in the
elliptic interpretation of the de Sitter space [15–19]. It
might be that allowing the Universe to have multiple
branches allows for novel mechanisms for singularity
resolution.

In models of branched Universes, the complication is the
lack of global time-orientability. However, it is possible
that this problem can be circumvented by a proper calcula-
tional prescription. Anyway, in each branch, long after the
big bang, local time-orientability is again restored and
local observers should not be affected by global issues. A
simple model of such branching of time is the orbifold
R1;d=Z2. After the time function has been defined on the
fundamental domain, lifting it up to the covering space can
lead to a model where time’s arrow points in opposite
directions away from the initial X0 � 0 origin. This was
studied in [20].

This paper is constructed as follows. In Sec. II we recall
the basic construction of the Lorentzian orbifold. In Sec. III
we review briefly the construction of fractionalD-branes in
Euclidean orbifolds, focusing, in particular, to the relation
of their description in the open string sigma model and the
closed string boundary state formalism. The relation is
established by considering the annulus open string parti-
tion function and its interpretation as tree-level propaga-
tion between closed string boundary states. In Sec. IV we
then review the results of [21] for bosonic boundary CFT
and its rolling tachyon deformations corresponding to the
various S-branes. In Sec. V we will then collect the infor-
mation obtained in previous sections and extract out the
associated deformed fractional boundary states, and use
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them to calculate overlaps between the vacua in the twisted
and untwisted sectors. In Sec. VI we then address the Wick
rotation back to the Lorentzian orbifold, and compute the
production of closed strings in the decay and overlaps with
the untwisted and twisted vacua. Sec. VII contains con-
clusions and outlook.

II. THE ORBIFOLD R1;d=Z2

This section collects some basic facts of the orbifold
R1;d=Z2. We begin with the covering space R1;d where d
denotes the number of spacelike directions; in principle we
can consider any value d � 0, and a critical string back-
ground would include an additional CFT which we will not
mention further. We let Z2 act as a PT reflection

�X0; ~X� � ��X0;� ~X� (1)

on the timelike and spacelike coordinates. The origin is a
fixed point of the orbifold action. By a Wick rotation to
Euclidean signature, the orbifold is related to the standard
Euclidean orbifold R1�d=Z2. String theory (bosonic and
type II superstrings) and quantum field theory on the orbi-
fold (1) was investigated in [13,20]. It was found that
(1) T
-2
here are no physical states in the twisted sector in
the bosonic theory when d > 15; in type II theory no
physical states occur in the NS sector when d > 3;
in the R sector, the twisted vacuum is the only
physical state, for any d.
(2) N
egative norm states are absent at tree level in the
untwisted sector. In the twisted sector, in the bosonic
theory, they are absent when d � 8, while for 15 �
d � 8 the vacuum is the only physical state in the
twisted sector. In type II theory, the twisted NS
vacuum has a non-negative norm when d � 3.
(3) I
n the superstring theory, the one-loop partition
function vanishes when d � 3.
(4) T
here are no forward oriented closed causal curves
when the notion of a time function has been properly
defined.
(5) T
he Hilbert space needs to be doubled to contain a
backward in time propagating image for every for-
ward in time propagating quantum on the covering
space, the two are identified on the fundamental
domain. (More detail below.)
(6) T
he one-loop vacuum expectation value of the stress
tensor vanishes almost everywhere on the orbifold,
both in string theory and in quantum field theory.
This signals the absence of any dangerous back-
reaction. In quantum field theory, the only nonzero
contribution is a divergence at the initial time slice.
This is related to issues regarding the resolution of
the initial singular slice.
Perhaps the most interesting feature of this orbifold is a
subtlety involving the definition of the time function. There
are three different natural choices for time orientation on
the quotient, each giving rise to physically inequivalent
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FIG. 2. Three possible time-arrows on the quotient R1;1=Z2.
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FIG. 3 (color online). Three possible time-arrows, shown in
the covering space R1;1. The time orientation line bundle is not
orientable in the quotient; consequently, a time function pos-
sesses zeroes along some locus; there are three distinct choices.
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spacetimes (Fig. 2). In this paper we are considering the
choice (b), where time runs upwards from the X-axis with
the origin representing a ‘‘big bang.’’ On the covering
space this corresponds to time axis pointing back-to-back
to opposite directions from the X-axis (Fig. 3). This leads
to the other main difference with Euclidean orbifold theo-
ries. Since the Z2 identification also involves time reflec-
tion, forward and backward propagating quanta are
identified. Thus, when we consider string theory or quan-
tum field theory on the orbifold, we must start with a
doubled free particle Fock space involving sectors with
both sign choices of energy,

H � �
Y
~k

H�
~k

with k0 � !~k > 0

H� �
Y
~k

H�
~k

with k0 � �!~k < 0
(2)

so the full Fock space is the direct sum

H �H� 	H�: (3)

The Z2 action then acts as an isomorphism H
 !H�

and the invariant Fock space is2

H inv �H =Z2: (4)

For example, 1-particle states have the form

j!~k;
~kiinv �

1���
2
p

j �!~k;�
~ki

j �!~k;�
~ki

 !
: (5)

In this paper we will specifically consider on shell states in
closed string theory. Since the lower half of the covering
space is the mirror image of the upper half, it is convenient
to introduce a notation X0 � �X00; X0i� � ��X0;�Xi� for
the vertex operators while using standard notation for the
momentum k, such that k0 > 0 for nontachyonic states.
Thus, for example, in bosonic string theory the lowest
invariant states are

jVTiinv �
1���
2
p

eik�Xj0i

eik�X
0
j0i

 !
;

jV��iinv �
1���
2
p

@X� �@X�eik�Xj0i

@X0� �@X0�eik�X
0
j0i

 !
;

(6)
2Note that in ordinary quantum theory (with a globally defined
time orientation), the physical Hilbert space may also be thought
of as a projection of (3), where H� is projected out.
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with the on-shell condition M2 � �k2 � �8=l2s , 0, re-
spectively. We will return to this formalism later in the
paper, in Sec. VI.

III. FRACTIONAL BRANES IN EUCLIDEAN
ORBIFOLDS

The novel feature of Euclidean orbifold theories is the
existence of fractional branes, localized at the orbifold
fixed points. In this section we review the role of Chan-
Paton indices in the construction of branes in the non-
compact Euclidean RD=Z2 orbifold models (with a single
fixed point). The route we will take is to deduce the frac-
tional brane boundary states from the open string partition
function with Chan-Paton indices. This formalism will be
carried over later to the case of deformed boundary states,
and to Lorentzian signature.

Begin with aD-brane which is pointlike in the directions
of the orbifold. An open string in the covering space then
sees two D-branes, at X and�X. Consequently there are 4
types of open strings which are labeled by the branes upon
which they end, summarized by the Chan-Paton matrix

� �
D0�D0 D0�D00

D00 �D0 D00 �D00

� �
: (7)

The Z2 action exchanges the brane and image brane, in the
above basis the group elements are represented by

��e� �
1 0
0 1

� �
; ��g� �

0 1
1 0

� �
: (8)

At the fixed point, the representation is reducible, and it is
useful to work in a different basis where

��e� �
1 0
0 1

� �
; ��g� �

1 0
0 �1

� �
: (9)

Fractional branes are associated with the irreducible one-
dimensional representations. In the closed string language,
they are described by boundary states which we denote by
jD;�ifrac, with � � 
.

Now consider the open string partition function, corre-
sponding to an annulus diagram. Take the open string to be
suspended between two fractional branes at the same fixed
point, with labels �, �. This is encoded in the partition
function by inserting appropriate projection operators P�,
-3
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P� for each boundary into the Chan-Paton traces. They
impose the projection into the two irreducible representa-
tions, and are given by

P� �
1 0
0 0

� �
; P� �

0 0
0 1

� �
: (10)

The projection operators are then inserted into the open
string partition function as follows:

Z�;�DD �
1
2�trP���e��trP���e�

�1�Tre��H � trP���g��

� trP���g��1�Trge��H�

� 1
2�Tre��H � ��� Trge��H�; (11)

with �
;
 � 1 and �
;� � �1. Cardy’s condition then
relates the one-loop open string partition function to the
tree level closed string exchange between fractional brane
boundary states,

Z�;�DD ! frachD;�j��~q�jD;�ifrac: (12)

It is natural to isolate the untwisted j�iU and twisted j�iT
sector boundary states, normalized as

hDj�jDiU � Tre��H; hDj�jDiT � Trge��H: (13)

From (11), we then read off the fractional boundary states
as linear combinations

jD;�ifrac � A�jDiU � B�jDiT (14)

with the coefficients

A
 �
1���
2
p ; B
 � 


1���
2
p : (15)

In other words, the two fractional states are

jD;
i �
1���
2
p �jDiU 
 jDiT�: (16)

The regular representation is the direct sum of irreduc-
ible representations, associated to P� � P�. Thus, the
regular D-brane is identified with jDoi � jD;�ifrac �

jD;�ifrac �
���
2
p
jDiU. One can check that this correctly

accounts for the factors of two and such that occur in the
analysis away from the fixed points.

The calculations in the following sections will actually
involve deformations away from Neumann-Neumann am-
plitude. However, because varying the strength of the
deformation parameter smoothly interpolates between
Neumann and Dirichlet boundary conditions, the Chan-
Paton structures can be treated in essentially the same
manner as discussed above.

IV. SUMMARY OF CFT RESULTS

We now carefully summarize the results of the compan-
ion paper [21]. Depending on the choice of radius, there are
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different computational techniques available and different
results.

A. The free theory

First we recall that in free open string theory on a circle
of radius R, the Neumann-Neumann annulus amplitude has
the form [22]

A NN���� �
1

	�q�

X
n

q�
0�n=R���=2
R�2 : (17)

where we have allowed for a Wilson line ��. Here, q �
e�
t and this has been written in the open string channel.
By Poisson resummation this becomes, with ~q � e�2
=t,

A NN �
R��������

2�0
p

	�~q2�

X
m2Z

�~q2�m
2R2=4�0e�im��: (18)

This result may be factorized on the lowest lying closed
string states [23]

A NN���� � hN; �j��~q�jN; �� ��i (19)

where ��~q� is the closed string propagator. We may then
deduce the Neumann boundary state in oscillator form,

jN; �i � 2�1=4e
P

k
�k ~�k j0iFock �

X
m2Z

eim�
��������mR�0 ;�mR�0

�
:

(20)

It has zero momentum, and is at fixed ~X � XL � XR.
Applying T-duality, we may obtain the Dirichlet boundary
state at dual radius ~R � �0=R,

jD; xi � 2�1=4e�
P

k
�k ~�k j0iFock �

X
n2Z

e�inx0= ~R

��������n~R ; n~R
�
(21)

for a D-brane located at point x0 in the dual circle.
At infinite radius, the Wilson line of the Neumann state

is effectively projected to zero, while in the Dirichlet state,
the momentum becomes continuous.

At self-dual radius, R �
�����
�0
p

, the conformal dimensions
are square integers, and the spectrum can be classified by

an dSU�2� current algebra (see e.g. [24]). To make it ex-
plicit, (18) can be rewritten in the form [25]

A NN �
1���
2
p

X
j�0;1=2;1;...

�Vir
j2 �~q2��SU�2�j �e�2i��J3

0 � (22)

with SU�2� characters

�SU�2�j �g� � TrjD
�j��g�; (23)

where D�j��g� is the matrix representing the SU�2� element
g in representation j, and Virasoro characters

�Vir
j2 �~q2� �

~q2j2
� ~q2�j�1�2

	�~q2�
: (24)
-4



FRACTIONAL S-BRANES ON A SPACETIME ORBIFOLD PHYSICAL REVIEW D 73, 106004 (2006)
Finally, one often uses Ishibashi states, with the normal-
ization

hhj; m; nj��~q�jj0; m0; n0ii � �Vir
j2 �~q2��jj0�mm0�nn0 (25)

to express the boundary state explicitly in the dSU�2� basis

jN; �i � 2�1=4
X

j�0;1=2;1;...

Xj
m;n��j

D�j�
m;n�e�2i�J3

0 �jj;�m; nii:

(26)
B. The free orbifold theory

The Z2 orbifold is implemented in the open string sector,
apart from Chan-Paton factors, by a projection operator
1
2 �1� g�. The first ‘‘1’’ term is proportional to the results of
the last subsection, and gives rise to untwisted boundary
states. The g term will give rise to twisted boundary states.
Note that at finite radius, there are two fixed orbifold points
at x � 0 and x � 
R; correspondingly, there are two dis-
crete Wilson lines at � � 0,
 that are fixed by the orbifold.

At self-dual radius, we find

Zg;NN � TrgqL0�1=24 (27)

�
1

	�q�

X
n2Z

��1�nqn
2

(28)

�
1���
2
p

1

	�~q2�

X
m2Z

�~q2��m�1=2�2=4: (29)

Writing a boundary state for the twisted states only is
complicated by the presence of two fixed points. In a later
section, we will show how the lowest lying twisted modes
contribute to the boundary states.

It is interesting to note that, at the self-dual radius, the
orbifold partition function is T-dual to an unorbifolded
partition function at twice the self-dual radius [26]. In
making this equivalence we exchange the J3 current at
twice the self-dual radius with the J1 current of the self-
dual radius theory. Consider again the orbifold partition
function

ZNN �
1

2
Tr�1� g�qL0�1=24 �

1

	�q�

X
n2Z

qn
2

�
1� ��1�n

2

�
:

(30)

Clearly, n must be even, and we can rewrite this as

ZNN �
1

	�q�

X
n2Z

q4n2
(31)

which indeed is the partition function at radius R ������
�0
p

=2. After rewriting it in the closed string channel,
and T-dualizing to radius ~R � 2

�����
�0
p

, we find the
Dirichlet boundary state with zero modes
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jD; xi �
X
m2Z

e�imx0=2
����
�0
p

�������� m
2�0

;
m

2�0

�
: (32)

For different discrete values of x0, we have boundary states
which correspond to fractional brane states in the orbifold
theory. This implies a relationship between fractional
branes in the self-dual radius theory, and D-branes at twice
the self-dual radius [27]. We will elaborate on this in the
next subsection. If we allow for the possibility of branes
centered at differing positions in the twice self-dual theory,
we find

ZDDR�2Rs:d:
�

1

	�q�

X
n2Z

q�2n��x0=2

����
�0
p
�2 : (33)
C. The deformed theory

Now we consider the boundary perturbation

S� �
Z
@�
ds��eX

0�s�=
����
�0
p

� ��e�X
0�s�=

����
�0
p

�: (34)

Classically (using the correlators of the undeformed the-
ory), this perturbation is marginal, that is hcl � 1. For
�
 � ��=2�e
X

0
0=
����
�0
p

, this is related to the ‘‘full S-brane’’
[12], while for �� � 0, we have the ‘‘half S-brane’’ [28].
The full S-brane corresponds to a process where a carefully
fine-tuned initial closed string configuration time evolves
to form an unstable D-brane which then decays to a final
state of closed strings only. The whole process is centered
around the time X0

0 and is time reflection invariant about it,
as evident from writing the deformation in the form

S� � �
Z
@�
ds cosh�X0�s� � X0

0�=
�����
�0
p
�; (35)

in particular the initial state of closed strings is a time
reflection image of the final state. The deformation was
known to be exactly marginal by Wick rotation. Wick
rotating X0 � iX, it becomes

S� � ��
Z
@�
ds cos�X�s� � X0�=

�����
�0
p
�; (36)

which is a known exactly marginal deformation. In prac-
tise, computations in the background (35) are first per-
formed in the Euclidean signature with (36), and the
results are then Wick rotated back to the Lorentzian
signature.

One could absorb the parameter X0 into the definition of
the origin of time. However, for a world sheet with multiple
boundaries, there can be a distinct deformation for each
boundary component. For example, if we consider the
annulus, we will consider a boundary deformation of the
form
-5
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Sint � ��
Z
@�1

ds cos
�
X� X�1�0�����

�0
p

�
� ~�

Z
@�2

ds cos
�
X� X�2�0�����

�0
p

�
(37)

where @�j are the boundary components. This is essen-
tially a Chan-Paton structure. Indeed in the presence of
multiple branes, � and ~� would be replaced by matrices,
and the annulus would include overall traces for each
boundary component. For simplicity, we will assume that
the � deformations are diagonal. A priori, there is no need
to take the cosines to be centered at the same point on
different boundaries, and the difference cannot be absorbed
to the choice of the time origin.

1. The orbifold case

In the orbifold R1;d=Z2 the Z2 acts by
�X0; X1; . . . ; Xd� ! ��X0; X1; . . . ; Xd�. After Wick rota-
tion X0 � iX, we obtain an Euclidean orbifold Rd�1=Z2,
where Z2 acts by �X;X1; . . . ; Xd� ! ��X;X1; . . . ; Xd�. The
full S-brane deformation is invariant under the orbifold
identifications, if we choose it to be centered around X0 �
0. In the Euclidean signature, for world sheets with mul-
tiple boundaries, if allow for distinct deformations at each
boundary component @�j, we would then need each of

them to be centered around X � 0 (i.e., set X�j�0 � 0, but
the associated parameters �j can be independent of one
another). Wick rotation back to Lorentzian signature is
subtle, because of the issues with the branching of time’s
arrow. This will be discussed in Sec. VI.

The infinite radius.—Our basic task, performed in [21],
is to compute the annulus partition function for the de-
formed orbifold theory. The techniques available to us
depend on the choice of radius. In the noncompact case,
the deformation (without the orbifold) was studied in [29]
(see also [30]). The orbifold insertion was considered in
[21]. An infinite radius requires the use of fermionization
techniques. The boundary deformation is then written as a
sum of fermionic bilinears. The resulting action is qua-
dratic in the fermion fields. The noncompact partition
functions are

Z1 �
1

	�q�

Z 1

0
d�

X
m2Z

q�m������
2

(38)

and

Zg �
1

	�q�

X
��0;1=2

X
m2Z

��1�mq�m������
2
: (39)

Here,
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sin
� �
�
sin2

�


2
��� ~��

�
cos2�
��

� cos2

�


2
��� ~��

�
sin2�
��

�
1=2
: (40)

In both expressions, � corresponds to the fractional part
of the open string’s momenta.

The finite radius.—If one is interested in the deformed
orbifold theory at finite radius one can construct that
theory, in the particular case of a rational radius, by im-
plementing a suitable projection (a translation orbifold). At
self-dual radius one may also use the adsorption technique
because the boundary deformation is proportional to andsu�2� generator. The function Z1 was computed at self-dual
radius in [31]. In [21], this result was reviewed and clari-
fied and the function Zg was computed. The self-dual
results are

Z1;�;~� �
1

	�q�

X
n2Z

q�n����~��=2�2 (41)

Zg;�;~� �
1

	�q�

X
n2Z

���nq�n����~��=2�2 : (42)

Note that if we add these results we get a partition function
of a theory on a circle of twice the self-dual radius,

Z�;~� �
1

	�q�

X
n2Z

q�2n���=2�2 ; (43)

with �� � �� ~�. This can be identified with the previous
partition function (33) for D-branes in the twice self-dual
radius circle theory, with the identification

�x0 � ��

�����
�0
p

: (44)
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The parameter x0 plays the role of the center-of-mass
coordinate of the D-brane in the 2Rs:d: theory, whereas
the parameter � is associated with varying the open string
boundary conditions in the Rs:d: orbifold theory. The rela-
tionship between deforming through the fractional branes
in the Rs:d: orbifold theory and the D-branes in the 2Rs:d:
theory is shown in Fig. 4, elaborating upon [27].

V. THE BOUNDARY STATE INTERPRETATION

Having described open string partition functions, the
next task is to pull out interesting space-time physics in
the closed string channel. We consider the calculation of
the overlap between the deformed boundary state and
various closed string states; these correspond to one-point
functions on the disk. Here we will be interested in extract-
ing the overlap with lowest lying closed string states, as
they contain information about the center-of-mass posi-
tion. In the untwisted sector, this is the tachyon, and this
problem has been studied extensively ([32] is a review).
The overlap with the tachyonic vacuum in the infinite
radius theory is the function

f��x� �
1

1� eix sin�
��
�

1

1� e�ix sin�
��
� 1; (45)

also corresponding to the open string disk partition func-
tion in the S-brane background.

One could attempt to get at these results by factorization
of the annulus amplitudes in the closed string channel. The
idea would be that we can try to isolate the disk amplitudes
via

hB; ~�j�jB;�i !
X
 

h jB; ~�i�� h jB;�i (46)

and we want to isolate h jB;�i for suitable  . In the
untwisted sector, we would like j i to be a momentum p
tachyon. We have
106004
Z1 �
1���
2
p

1

	�~q2�

Z 1

0
d�

X
n2Z

�~q2�n
2=4e2
i����n (47)

Because we are interested in information describing the
center-of-mass positions, we need to isolate the contribu-
tions of Virasoro primaries that do not correspond to
oscillator excitations. This subset of states will build up
f��x�.

A. Untwisted sector: Self-dual radius

At self-dual radius, we have � � 0, and � �
��� ~��=2, so the amplitude becomes

Z1;sd �
1���
2
p

1

	�~q2�

X
n2Z

�~q2�n
2=4ei
���~��n (48)

It is tempting to simply take the above amplitude and
discard the eta function 	�~q2�, as this is usually associated
with oscillator contributions. We would obtain a phase
ei
�n for each n. However, this would not give the proper
f��x�. The issue here is that the discrete primaries are also
built out of the oscillators. We should subtract the contri-
butions from both conformal descendants and the discrete
primaries to identify the quantity f��x�: This is in fact what
the SU�2� formalism does for us—it converts the annulus
to the true Virasoro character, and gives a coefficient which
is related to an SU�2� character,

Z1 �
1���
2
p

X
j�0;1=2;1;...

�Vir
j2 �~q2�

Xj
m��j

D�j�
m;m�e2
i���~��J1

�:

This factorizes into the Ishibashi states
D�m;n�e2
i�J1

�jj; m; nii. The nonoscillator parts of this
correspond to m, n � 
j and we arrive at
X
p

eipxhp; pjB;�isd �D�j;j���
X
p

eipxhp; pjj; j; jii �Dj;�j���
X
p

eipxhp; pjj;�j;�jii

�D�j;�j���
X
p

eipxhp; pjj; j;�jii �Dj;j���
X
p

eipxhp; pjj;�j; jii (49)

�
X
m

eimx�� sin
��jmj �
X
m

eim~x�i cos
��jmj � f��x� � ~f��~x�; (50)

where we reintroduced the variable ~x, T-dual of x. It is also possible to study the overlaps of boundary states with low lying
states within the dual theory on the circle of twice the self-dual radius. In this case however, there are some subtleties
involving the identification of zero modes in the two representations.
-7



3There is an unfortunate inconsistency in the literature which
would seem to imply that � � 1=2 should correspond to X �



�����
�0
p

. However, those statements correspond to a situation with
translational invariance (so a choice was made), whereas in the
case of the orbifold, the position is fixed uniquely. This will be
demonstrated carefully in the next subsection.
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B. Untwisted sector: Infinite radius

At infinite radius, this computation simplifies: the ~f
contribution decouples. We can see this directly given
our infinite radius expression

Z1 �
1���
2
p

1

	�~q2�

Z 1

0
d�

X
m2Z

�~q2�m
2=4e2
i����m; (51)

in the closed channel. Fortunately, once this is rewritten in
terms of the Virasoro character, analogous to the above
discussion, the � integral is easily performed. The net
effect is to reduce the result toX
p

eipxhp; pjB;�i1 �D�j;j���
X
p

eipxhp; pjj; j; jii

�Dj;�j���
X
p

eipxhp; pjj;�j;�jii

�
X
m

eimx�� sin
��jmj (52)

�
1

1� eix sin�
��
�

1

1� e�ix sin�
��
� 1 � f��x�;

(53)

so we have rederived (45).

C. Twisted factorization: Self-dual radius

Now in the twisted sector, we can follow the same path.
Here, it is in fact easier, because there is no subtlety
concerning the Virasoro character—it is just what appears
in the amplitude

Zg �
1���
2
p

1

	�~q2�

X
�

X
m2Z

�~q2��m�1=2�2=4e2
i�����m�1=2�:

(54)

The nonoscillator part of this corresponds to the m � 0, 1
contributions. Recall that there are no zero modes in the
twisted sectors, so we just need to carefully enumerate the
states that are contributing to the partition function. We
note that since we have considered the most general de-
formation (with separate deformations �, ~� on each bound-
ary), we have enough information to do so.

At self-dual radius, we have only � � 0, and the am-
plitude reduces to

Zg �
1���
2
p

1

	�~q2�

X
m2Z

�~q2��m�1=2�2=4ei
���~���m�1=2�: (55)

Keeping only m � 0, 1, we find

Zg;vac �
1���
2
p �~q2�1=16ei
���~��=2 � e�i
���~��=2�: (56)

The ability to separate this amplitude into two factors
depending on either � or ~� only, implies that there are
two orthogonal states contributing here, which we will
106004
denote by jIiT and jIIiT . We are finding that

jB; �; 0iT;sd � 2�1=4ei
�=2jIiT � 2�1=4e�i
�=2jIIiT: (57)

We reemphasize here that we are not considering the full
boundary state, but really only its overlap with the twisted
vacua. The full boundary state contains oscillator excita-
tions as well. However, the dependence on the twisted
vacua already contains the information about the space-
time positions.

At � � 0, this reduces to

jB; 0; 0iT;sd � 2�1=4�jIiT � jIIiT� � jN; 0; 0iT;sd; (58)

which must coincide with one of the usual Neumann states
[22]. We will verify this below. Further, at � � 1, it reduces
to

jB; 1; 0iT;sd � i2�1=4�jIiT � jIIiT� � jN; 1; 0iT;sd; (59)

which must be the other Neumann state. Note that these
two states are orthogonal. Next consider the Dirichlet
states. We should get these by deforming to � � 1=2 and
� � �1=2. The former corresponds to a D0-brane at the
fixed point X � 0, the latter to a D0-brane at X � 


�����
�0
p

.
So we identify3

jB; 1=2; 0iT;sd � 2�1=4�e�i
=4jIiT � e�i
=4jIIiT� � j0iT
(60)

and

jB;�1=2; 0iT;sd � 2�1=4�e�i
=4jIiT � e�i
=4jIIiT�

� j

�����
�0
p
iT: (61)

These states were called jD��0�Ti with �0 � 0, 
r re-
spectively in [22] (r �

�����
�0
p

for self-dual radius). Note that
they are orthogonal. Now we can represent the states that
we called jIiT , jIIiT in terms of the Dirichlet states:

jIiT � 2�3=4�e�i
=4j0iT � ei
=4j

�����
�0
p
iT�

jIIiT � 2�3=4�ei
=4j0iT � e�i
=4j

�����
�0
p
iT�

and plug these back into the general expression for the
deformed twisted boundary state (57). We obtain

jB;�; 0iT � cos
�


2

�
��

1

2

��
j0iT

� cos
�


2

�
��

1

2

��
j


�����
�0
p
iT: (62)

At � � 0, 1 we then obtain the two Neumann boundary
states
-8
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jN; 0; 0i � 2�1=2�j0iT � j

�����
�0
p
iT�

jN; 1; 0i � 2�1=2�j0iT � j

�����
�0
p
iT�:

(63)

These agree with the expressions in [22]. In fact, [22]
assumed the form of the two twisted Neumann boundary
states. Here we have derived them by deforming from
known (Dirichlet) states.

D. Twisted factorization: Infinite radius

It is instructive to also look at this factorization in the
infinite radius theory. In this case, both � � 0 and � �
1=2 contribute and we arrive at

Zg �
1���
2
p

1

	�~q2�

X
m2Z

�~q2��m�1=2�2=4ei
���~���m�1=2�

� ei
���~��1��m�1=2��: (64)

The contribution of the twisted vacua is

Zg;vac �
1���
2
p �~q2�1=16ei
���~��=2 � e�i
���~��=2

� ei
���~��1�=2 � e�i
���~��1�=2�: (65)

We note that this expression factorizes

Zg;vac �
1���
2
p �~q2�1=16e�i
~�=2 � iei
~�=2�ei
�=2 � ie�i
�=2�

(66)

and thus we interpret this as only one state contributing,

jB; �iT;1 � 2�1=4ei
�=2 � ie�i
�=2�j0iT: (67)

Note that the state jB;�1=2iT;1 is orthogonal to
jB; 1=2iT;1 as well as itself: that is, it decouples. This
corresponds to the fact that the second fixed point, present
at finite radius, has moved off to infinity, and the corre-
sponding twisted boundary states decouple. Similarly, by
looking at integer �, it is possible to see that j


�����
�0
p
iT

decouples. Thus, at infinite radius we only obtain the
contribution from the twisted sector at the remaining fixed
point X � 0.

VI. BACK TO THE LORENTZIAN SIGNATURE

After the Euclidean computations, we will now move
back to Lorentzian signature. As discussed in Sec. II, in the
case of the orbifold there are some subtleties. We will also
be interested in analyzing how the brane decays into closed
strings in the orbifold. We will compute the average total
energy and number densities of the emitted untwisted
closed strings and compare the calculation and the results
with those of [33]. The computations involve a prescription
for a time integration contour, which in turn is related to
how the initial state of the brane is prepared. A natural
contour to use on the orbifold turns out to be the Hartle-
Hawking (HH) contour which was introduced in [33]. With
106004
this choice, on the fundamental domain we can interpret
the unstable brane to nucleate at the origin of time and then
decay into closed strings.

Let us first review the standard case without the orbifold.
Upon Wick rotation back to the Lorentzian signature the
overlap of the deformed boundary state with the vacuum
becomes

f�x0� �1 h0jD�
��i1

�
1

1� ex
0

sin�
��
�

1

1� e�x
0

sin�
��
� 1: (68)

The full boundary state has the structure

jBi �N pjBiX0 jBiXjBibc (69)

where

jBiX0 � f�x0�j0i � ��x0��0
�1 ~�0

�1j0i � � � � (70)

with

��x0� � cos�2
�� � 1� f�x0�: (71)

To compute the overlap with any on shell closed string
state, it is convenient to express the vertex operators in the
gauge

V � eiEX
0
Vsp (72)

where Vsp contains only the space part. The overlap then
takes a simple form

hVjBi � h0jeiEX
0
jBiX0 � �phase� (73)

yielding the amplitude

I�E� � i
Z
C
dx0eiEx

0
f�x0� (74)

with a suitable choice of the integration contour C.
In the case of the orbifold, the computations are simplest

to perform in the covering space. As discussed in Sec. II, a
new feature is the need to double the Hilbert space by hand
upon Wick rotating back to the Lorentzian signature. This
is because on the covering space a single quantum corre-
sponds to two copies propagating into the opposite time
directions X0 and X00 � �X0. The on shell closed string
states then take the form

jVi �
1���
2
p

eiEX
0
Vspj0i

eiEX
00
V 0spj0i

 !
: (75)

Similarly, the time direction part of the boundary state
becomes

jBiX0 �
1���
2
p

f�x0�j0i
f�x00�j0i

� �
� � � � : (76)

Note however that
-9
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FIG. 6. The double HH contour in the covering space.
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FIG. 5. Untwisted closed string emission in the covering space.
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f�x00� � f�x0� �
1

1� ex
0

sin�
��
�

1

1� e�x
0

sin�
��
� 1

(77)

because of time reflection symmetry. The overlap with the
closed string state becomes

hVjBi � 1
2�e

iEx0
f�x0� � eiEx

00
f�x00��: (78)

Let us pause to compare the physical interpretation of
the above with the standard full S-brane. The full S-brane
corresponds to formation and decay of an unstable brane,
centered at the origin of the time axis. On the orbifold, the
full Minkowski space is replaced by the covering space,
with a two-branched time direction. The unstable brane is
centered at the origin of the time coordinates, but decays
into closed strings propagating into the opposite time
directions, as illustrated in Fig. 5.

For the decay amplitude calculation, we then need a
contour integration prescription. The fundamental domain
has a semi-infinite time axis, X0 � 0. We have set the
decay of the brane to start at X0 � 0. Since there is no
past to X0 � 0, we cannot build up the brane from some
closed string initial state. Instead, it is most natural to adopt
the prescription in [33] for ‘‘nucleating’’ the brane via
smeared D-instantons (see also [34]) in imaginary time.
This corresponds to using a Hartle-Hawking time contour,
coming in from X0 � i1 along the imaginary time axis to
the origin and then proceeding along the real time axis to
X0 � 1. For the actual calculation, we move back to the
covering space where time runs from X0 � 0 to opposite
time directions X0 ! 1 and X00 � �X0 ! 1. The HH
contour then maps to the double contour with branches (see
Fig. 6.)

C HH; ~CHH: X0; X00 � i1 ! 0! 1: (79)

Applying the contour to the overlap (78), we get
106004
hVjBi �
1

2

Z
CHH

eiEx
0
f�x0�dx0 �

1

2

Z
~CHH

eiEx
00
f�x00�dx00

� e�iE ln� 

sinh�
E�

; (80)

as in [33] for the full brane with the HH contour. The same
is true for the total average energy and average number
densities for the produced untwisted closed strings on the
fundamental domain. The results are the same as in the
standard case,

�N
Vp
�
X
n

n�1�p=4;
�E
Vp
�
X
n

n�1=2�p=4; (81)

where the sums are over the level numbers. To conclude, in
the orbifold the decay in the untwisted sector is quantita-
tively the same as in the usual case.

The twisted sector is more problematic conceptually.
Since the twisted strings are localized in time, the concept
of ‘‘producing’’ them in the decay is ill defined. Moreover,
there are very few physical states in the twisted sector. At
present we do not have much more to say about this matter.
VII. CONCLUSIONS AND OUTLOOK

The decay of unstable D-branes or D-brane configura-
tions is an important open question in string theory. They
may play a crucial role in cosmology, and there already
exist several scenarios making use of them. While space-
time orbifolds may be considered just toy models, captur-
ing some features of string theory in more general time-
dependent backgrounds, they are nevertheless useful for
gaining insights into problems associated with quantum
string theory. We have argued that the twisted sector which
exists in orbifolds may contribute to the decay of unstable
branes. In particular, we have presented a detailed analysis
of how to implement the orbifold identifications into the
decay, in a simple example, both in the open string and
closed string formalism, and argued that this leads to a new
class of S-branes, which we have called fractional
-10
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S-branes, in analogy to the fractional branes of Euclidean
orbifolds. We expect that the existence of fractional
S-branes is a generic feature of space-time orbifolds, and
may reflect some physics ofD-brane decay in more general
time-dependent backgrounds. They may also be relevant
for the question of resolution of spacelike singularities.

In particular, we have constructed a model where the
D-brane decay has a semi-infinite duration, without a prior
build-up phase. This is in contrast to the full S-brane and
half S-brane constructions, where either the brane must
first be formed from a fine-tuned closed string initial state,
or the decay starts from infinite past without any parameter
to control its pace. For potential applications of our con-
struction, we can make at least the following speculative
remarks.
(i) W
4Exce
e have presented a model where an unstable
brane, prepared at the ‘‘big bang’’ origin of the
space-time, stores a large amount of energy which
then gets released in the decay into heavy closed
string modes and the subsequent cascade into ligh-
ter excitations. Presumably the large energy back-
reacts into the space-time and converts it into an
expanding cosmological model. The initial condi-
tion, while defined at an initial spacelike singular-
ity, is still under control because it has a well-
defined dual formulation in terms of open string
world sheet theory. If the unstable brane is taken to
be volume filling, it also provides a homogeneous4

initial condition. This may be compared with brane
cosmological models where a collision of almost
parallel branes provides a homogeneous initial con-
dition—in our case the homogeneity only involves
a single brane.
(ii) T
he idea of an initial unstable brane at the big bang
may be coupled with string/brane gas cosmology
[35,36]. Take the spacelike directions to be com-
pactified to Planck scale, and the initial unstable
brane to be wrapped in all directions. The brane
then decays into closed strings, which interact and
presumably thermalize; thus brane decay could be
viewed as the origin of the hot string gas.
(iii) I
n our orbifold construction, the covering space of
the orbifold can be viewed as a model where two
branches of space-time originate from the same big
bang event. One may view the other branch and the
images of closed strings in it simply as a calcula-
tional trick, in analogy to the thermal ghosts in the
pt for possible effects at the conical singularity.

106004-11
real time formulation of finite temperature quantum
field theory or thermofield dynamics. But one could
also view it as a real branch of the space-time, so
that the total space-time contains a multibranched
arrow of time.
(iv) I
f the other branch of the space-time from the origin
of time is viewed simply as a calculational trick,
one may ask if this trick could be applied in other
cases. Consider, for example, the setup of
D �D-inflationary models, where a D-brane and an
anti D-brane first approach each other, with the
scalar excitation from interpolating open string
providing the rolling inflaton, and then form an
unstable system where the rolling tachyon provides
an exit mechanism from inflation and may be re-
sponsible for the subsequent reheating. It is not
well understood how to actually model this in the
language of the open string sigma model. If the
rolling tachyon has a hyperbolic cosine profile,
then it contains an unwanted stage where the
tachyon rolls ‘‘up.’’ If it only has an exponential
profile, then the decay starts at infinite past leaving
no room for the inflationary stage. It may be pos-
sible to develop a model, where the decay is mod-
eled by our construction, viewing the other branch
or time direction from the origin simply as a cal-
culational trick.
All the above comments are very tentative, but we
believe they illustrate that there are exciting possibilities
ahead to unravel and study.
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