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Polarization tensors in strong magnetic fields
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The vacuum polarization tensor in strong external magnetic fields has been evaluated numerically for
various strengths of magnetic fields and momenta of photons under the threshold of thee6 pair creation. The
fitting formula has been obtained which reproduces the calculated results within 10% of error. The proper time
method is employed further to obtain the retarded polarization tensor for finite temperature plasmas.
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I. INTRODUCTION

The strong magnetic field is attracting the attention
astrophysicists these days. It has been known that the m
netized vacuum shows interesting features as the mag
field strength exceeds a critical valueBc5me

2/e;4
31013G @1,2#. Since this value is so large even in the un
verse compared, for example, with the canonical magn
field of 1012 G for a pulsar, it was supposed that this was
subject of academic interest only. This has been chang
drastically recently.

Some observations@3# suggest the existence of neutro
stars with a magnetic field far greater (;1015 G) than the
canonical one for the observed pulsars, and they are call
magnetar, as dubbed by Duncun and Thompson@4#. As the
reality of very large magnetic fields looms, some research
speculated further that some other peculiar extraterres
phenomena might also involve very strong magnetic fie
Among them are gamma ray bursts and hypernovae@5#. It is
supposed for the latter that a jet is somehow produced
these objects and the dipolar magnetic field is playing
essential role. On the other hand, some models for
gamma ray bursts are employing the magnetic fields to
tract the enormous energy of the phenomenon itself@6#. Fur-
thermore, evidence of generic asymmetry for collapse-dri
supernovae has been accumulated@7#, and the strong mag
netic field might have some implications for the ordina
supernova if the magnetar as observed is the end produ
the supernova explosion and the observed asymmetry
dynamical consequence involving the strong magnetic fi
@8#. The fast proper motion of young pulsars might be e
plained by the combination of the strong magnetic fields a
some processes such as neutrino oscillations, for exam
@9#. The explosion mechanism of the supernova will
changed substantially as well as nucleosynthesis therein

It is, therefore, not only of academic interest to consid
the features of the strongly magnetized vacuum. In part
lar, the quantum electrodynamical processes are most im
tant, since those objects quoted above are mostly obse
by electromagnetic waves, though the weak interactions
no less important@9,10#. The study of the strongly magne
tized vacuum has a long history, though. Adler@11#, for ex-
ample, gave detailed formulations for the polarization ten
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and the photon splitting rate as well as some useful anal
expressions for limit cases~see also@2,12–14# and the refer-
ences therein for many other contributions!. Astrophysicists
have used these approximate formulas for their model bu
ing @15,16#.

Those analytic expressions are approximate ones, tho
valid for some limit cases such as the strong or weak m
netic field limits and the zero photon energy limit. It appea
that we are lacking the complementary numerical evaluati
of the polarization tensor for the intermediate values of m
netic field strength and/or photon energy. In particular,
energy dependence near the threshold of the pair creation
not been studied in detail. It is the purpose of the paper to
this gap and give the interpolation formula based on the
ting to the numerical integrations. Our interest is, howev
also directed to the dispersion relation of photons in
strongly magnetized plasma. In Sec. IV we will extend t
Schwinger formulation and give the expression for the
tarded polarization tensor for finite temperature plasmas.

The paper is organized as follows. In Sec. II we formula
the vacuum polarization tensors in a strong magnetic fie
We study the refractive indices numerically in Sec. III.
Sec. IV we extend the formulation to the retarded polari
tion tensors in the finite density and temperature cases.
nally, Sec. V is devoted to the conclusion.

II. VACUUM POLARIZATION IN A STRONG MAGNETIC
FIELD

This section is devoted to giving the formula of th
vacuum polarization tensor which we employ from the p
vious papers@12,13# for the numerical calculations. Usin
Schwinger’s proper-time method@17#, as was shown in Ref
@13#, the vacuum polarization tensor in a strong magne
field ~see Fig. 1! is expanded as

Pmn~k,B!5(
i 50

2

Gi f i
mn , ~1!

wherek5(v,k' ,0,ki) is the energy-momentum 4-vector o
a photon,v the photon energy,k'5v sinu, ki5v cosu, u
©2002 The American Physical Society06-1
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the direction of 3-momentum with respect to the magne
field, andB is the magnetic field.Gi is given by the follow-
ing equations:

Gi5
e2

~2p!2
LE

0

`

daE
0

1

db g i E~a,b,k,L !, ~2!

with

g05k2
cosh~Lba!

2sinh~La! H 12b
tanh~Lba!

tanh~La! J , ~3!

g15k'
2 Fcosh~Lba!2cosh~La!

sinh3~La!

1
cosh~Lba!

2sinh~La! H 12b
tanh~Lba!

tanh~La! J G , ~4!

g25~v22ki
2!F12b2

2
coth~La!

2
cosh~Lba!

2sinh~La! H 12b
tanh~Lba!

tanh~La! J G , ~5!

and

E~a,b,k,L !5expF2a1
a~12b2!

4

k2

me
2

1H a~12b2!

4

1
cosh~Lba!2cosh~La!

2L sinh~La! J k'
2

me
2G , ~6!

where e denotes the electron charge in MKS units (e2

.1/137), me is the electron mass, andL([B/Bc) is a di-
mensionless magnetic field normalized by the critical m
netic field (Bc5me

2/e). f i
mn is expressed as

FIG. 1. Vacuum polarization in a strong magnetic field. T
double solid line denotes the electron propagator which include
contributions of the vertices from the magnetic field.
04300
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f 0
mn5gmn2

kmkn

k2
, ~7!

f l
mn5

bl
mbl

n

bl
gblg

~ for l 51,2!, ~8!

with

b1
m5Fmgkg , b2

m5F* mgkg , ~9!

b3
m5k2FmgFgdkd2kmkgFgdFdeke , ~10!

b4
m5km, ~11!

whereFmn denotes the Maxwell stress 4-tensor and its d
tensor is defined byF* mn[2 1

2 emngdFgd .
As was carefully discussed in Ref.@13#, only G0 contrib-

utes to the vacuum polarization tensor if the magnetic field
very weak,L!1. In such a week field limit, we know the
form of Pmn(k) in familiar QED as

Pmn~k,0!5G0uB50 f 0
mn , ~12!

where

G0uB505
e2

~2p!2
k2E

0

`

daE
0

1

db
12b2

2a

3expF2a1
a~12b2!

4

k2

me
2G . ~13!

In Eq. ~13! we should get rid of the divergence ata50 and
regularize it. Then we obtain the regularized form of t
vacuum polarization tensor atL50,

regPmn~k,0!5A~k! f 0
mn , ~14!

with

A~k![regG0uB50

52
e2

~2p!2
k2F1

9
2

~12h~k!!~4me
212k2!

3k2 G , ~15!

where

ll
h~k!55A
4me

2

k2
21cot21SA4me

2

k2
21D ~ for 0<k2&4me

2!,

A12
4me

2

k2
coth21SA12

4me
2

k2 D ~ for k2,0!.

~16!
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Thus, to obtain the regularized form of the polarization te
sor in a strong magnetic field (L*1), we have only to sub-
stituteG0 with

regG05G02G0uB501A~k!. ~17!

As we mentioned in the previous sections, the refract
indices of photon would deviate from unity in a strong ma
netic field because the vacuum polarization is influenced
the magnetic field and the dispersion relation is changed.
refractive indices are defined from the dispersion relation

m25
uku2

v2
, ~18!

wherek is a spatial 3-vector ofk. To obtain the dispersion
relation in a strong magnetic field, we consider the wa
equation of the photon,

@k2gmn2kmkn14p regPmn~k!# Am~k!50. ~19!

In this equation the prefactor ofPmn(k), ‘‘4p,’’ originates in
MKS unit. The determinant of the matrix should be zero
that Eq. ~19! could have a nontrivial solution. When w
choose the radiation gaugeAm5(0,A), we get a quadratic
equation and we obtain two solutions,

m1
25

11x0

11x02sin2ux1

, ~20!

m2
25

11x01x2

11x01cos2ux2

, ~21!

where

x05
4pregG0

k2
, ~22!

x15
4pG1

k'
2

, ~23!

x25
4pG2

ki
2

. ~24!

Here m1
2 corresponds to the eigen vector~0,1,0! and m2

2 to
„(11x01x2)cosu, 0,2(11x0)sinu…. Since eachx i de-
pends onm2 throughk and Gi , Eqs.~20! and ~21! are im-
plicit equations form2. In the literature, e.g.,@13#, the au-
thors gave only the integral form and some limit cases.

To wrap up, we numerically integrate Eq.~2! and then
regularize the results according to Eq.~17!. Using this result,
we solve the implicit Eqs.~20! and~21! to obtain the refrac-
tive indices.
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III. NUMERICAL RESULTS FOR THE VACUUM
POLARIZATION TENSOR IN A STRONG MAGNETIC

FIELD

We show here the main results for the magnetiz
vacuum. The numerical integrations of Eq.~2! have been
done with the Monte Carlo method in the parameter reg
covering a wide range of the magnetic field strength,
direction of the photon propagation and the photon ene
below the threshold of the pair creation. In limiting case
i.e., both in the large and smallB limits, in advance we also
calculated thex is analytically. Comparing with the analytica
esimations, we can check the validities in the numerical
sults.

In Fig. 2 we plot2x0 as a function ofL (5B/Bc) in a
low energy limit (v251026me

2). From the plot, we find that
the magnitude ofx0 increases asL increases. Thus the con
tribution fromx0 to the refractive indices in Eqs.~20! would
not be negligible in an extremely strong magnetic field.1 This
behavior agrees with our analytical estimation thatx0}
2 log(L) in a strong magnetic field limit (L→`) and contra-
dicts the statement by Melrose and Stoneham@13# that x0
}exp@2L# for this limit. This difference, however, is sub
stantial only for extremely large magnetic fields. Noneth
less, we did not drop this term in estimating the correct
fractive indices. In Fig. 2 we also plotx1 and x2 as a
function of L. x1 approaches the limit value (;7.731024)
for L@1. This feature is consistent with our analytical es
mation and again disagrees with Melrose and Stoneham@13#

1Here we assume the one-loop approximation. Since the de
dence of the polarization tensor on the strength of the magnetic
is complicated even in this approximation after taking full accou
of the external magnetic field by Schwinger’s proper time meth
it is a nontrivial issue whether the higher-loop corrections domin
over the one-loop contribution in the strong magnetic field limit a
above what strength of the magnetic field even if they do beco
dominant.

FIG. 2. Plots of2x0 , x1, andx2 as a function ofB/Bc . Here
we adaptv251026 me

2 and cos2u50.5. We find that the magnitude
of x0 increases asB/Bc increases@} log(B/Bc)#, x1 reaches the limit
value (;7.731024), andx2.(e2/3p)B/Bc for B/Bc@1.
6-3
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who claimed thatx1}exp@2L# for this limit. As for x2, it is
found thatx2 is linearly proportional toL in the strong mag-
netic field and the weak energy limit. It agrees exactly w
our analytical estimation thatx2.(e2/3p)L under the con-
dition thatL@1, v22ki

2!4me
2 , andk'

2 !2me
2L @13#.

In addition, in the case of weak magnetic-field and lo
energy limits, i.e.,L!1 andv!me , the numerical result of
the behaviors ofx0 ,x1, andx2 also agrees with the analyt
cal estimations,

2x0→
2e2

45p
L2.1.0331024L2, ~25!

x1→
4e2

45p
L2.2.0731024L2, ~26!

x2→
7e2

45p
L2.3.6131024L2. ~27!

In Fig. 3 we plot the obtained refractive indices as a fun
tion of L. The solid and dashed lines representm1

2 and m2
2,

respectively. It is easy for us to understand the behavio
m2’s in a strong magnetic field. From Eqs.~20! and~21!, we
find that

m1
2.117.731024sin2u, ~28!

m2
2.1/cos2u, ~29!

for L@3p/a in the case of the weak energy and as long
x0 is much smaller than unity. The photon-energy dep
dence ofm2 is shown in Fig. 4. In this plot we find that nea
the threshold (v2;4me

2) the energy dependence ofm2
2 be-

comes important. Note that this behavior has not been s
ied so far. The result suggests that the refractive index
the polarization tensor as well will have a nontrivial featu

FIG. 3. Plot of the refractive indices as a function ofB/Bc . The
solid line representsm1

2 and the dashed line representsm2
2. The left

~right! dashed line is the case forv254me
2(1026me

2). Here we
adaptv251026me

2 and cos2u50.5. We find thatm2
2 reaches the

limit value (1/cos2u52) in the strongB limit.
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above the threshold energy and that their numerical eva
tions are required there also.m1

2 is insensitive to the photon
energy, which justifies the neglect of its energy depende
in the analyses so far. In Fig. 5 we plotm2 as a function of
cos2u in a strong magnetic field (L5108). It is clear thatm2

2

is proportional to 1/cos2u which is analytically expected in
Eq. ~29!.

Here we give the fitting formula ofm2
2,

m2
25C1$tanh@C2~x2C3!#11%11, ~30!

with

x5 log10~B/Bc!, ~31!

and

C15tan2u/2,

FIG. 4. Plot of the refractive indices as a function ofv2/me
2 .

The solid line representsm1
2 and the dashed line representsm2

2. Here
we adaptB/Bc5102 and cos2u50.5.

FIG. 5. Plot of the refractive indices as a function of cos2u. The
solid line representsm1

2 and the dashed line representsm2
2. Here we

adaptB/Bc5108 andv251026me
2 . We find thatm2

2 scales 1/cos2u
in such a strongB limit.
6-4
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POLARIZATION TENSORS IN STRONG MAGNETIC FIELDS PHYSICAL REVIEW D65 043006
C251.1527.0731023~v2/me
2!1.60/Acos2u,

C353.112 log10~cos2u!21.8431022~v2/me
2!/Acos2u.

~32!

This fitting formula reproduces the numerical results with
the error of less than 10% for a wide parameter range
<cos2u<1, v2/me

2&4, and 0<B/Bc&1010). In the largeL
limit especially, Eq.~30! approaches the value of the analy
cal estimation (.1/cos2u). Of course, the smallL limit re-
producesm2

251 exactly. In addition, the low energy limit o
the fitting formula (v2→0) agrees with the numerical est
mations very well within less than 1%.

Because it seems that concrete values of the polariza
tensor near the threshold energy of the pair creation h
never been given in the literature, we hope that the ab
results would serve as a bridge between the analytic form
given for the low energy limit@11#. Although our results are
confined only below the threshold energy of pair creatio
we think those still contain interesting parameter regio
from the point of view of astrophysics, e.g., x-ray observ
tions (E5a few keV2100 keV). After the discovery of the
magnetars, it is not unimaginable that astrophysical obje
with yet stronger magnetic fields will be found. In fact, th
magnetic field in the core of a rapidly rotating superno
might reach;1017G or more. In such superstrong magne
fields, we expect that there would exist non-trivial lensi
effects in x rays due to the modifications of the refract
indices. Therefore, we think that astrophysicists might h
to consider such lensing effects there for x-ray observati
@18#.

In addition, as mentioned above, our results suggest
there will be nontrivial features in the polarization tens
above the threshold energy. The numerical study not onl
the real part but also of the imaginary part of the polarizat
tensor above the threshold will be studied in a separate p
@19#.

IV. RETARDED POLARIZATION TENSOR IN FINITE
TEMPERATURE PLASMAS

In the previous sections we have considered the vacu
polarization tensor. It is also our concern to calculate
polarization tensor for plasmas with finite temperatures.
will extend the previous formulation to the finite density a
temperature case. We will rely on the real time formalism
the finite density and temperature field theory and obtain
expression for the retarded polarization tensor. One adv
tage of the formulation employed for the vacuum polariz
tion Sec. III is the fact that it avoids the summation over t
Landau levels. This can be achieved also for the finite d
sity and temperature case as shown below. Recently, s
authors@20,21# gave the expression of the chronological p
larization tensor on a similar footing. Their main concern
the behavior of the polarization tensor in the weak magn
field limit and the final formula is a five-dimensional integr
tion. Although two polarizations are related to each other,
retarded one allows more direct physical interpretati
Moreover, the retarded polarization tensor should be
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tained by analytical extension of the imaginary time pol
ization tensor which has been given by the authors@22–24#.

Since the spectral density is unchanged by the introd
tion of the heat bath, the polarization tensor for the fin
density and temperature can be obtained from the vacu
polarization tensor under the same approximation. It
known from the finite density and temperature field theo
that the retarded polarization tensor is expressed as

iP r
mn~x,x8!5

e2

2
Tr @gmGc~x,x8!gnGa~x8,x!

1gmGr~x,x8!gnGc~x8,x!#. ~33!

In the above equation, the subscriptsr, a, c denote the re-
tarded, advanced, and correlation components of the G
function, respectively@25#. For the stationary system, we ca
in general assume that the vector potential is time indep
dent. In this case the polarization tensorP r(x,x8) is a func-
tion of the time differencet2t8 alone. It is possible that it
depends on the spatial coordinatesx andx8 separately. Fou-
rier transforming the polarization tensor with respect tot
2t8, we obtain

i P̃ r~p0!5
e2

2 E dq0

2p
Tr @gmG̃c~q01p0!gnG̃a~q0!

1gmG̃r~q01p0!gnG̃c~q0!#. ~34!

In the above equation, the tilde means the Fourier compon
and the spatial coordinates are dropped for simplicity. T
correlation component of the Green function in the therm
equilibrium can be expressed by the retarded and advan
Green functions and the distribution function by the follow
ing relation:

G̃c~p0!5G̃r~p0!@122 f ~p0!#2@122 f ~p0!#G̃a~p0!.
~35!

Noting that the retarded and advanced Green functions
the ideal electrons of finite density and temperature are id
tical to the counterparts for vacuum, we obtain

G̃r~q0!5Q~q0!G̃F~q0!2Q~2q0!G̃F̃~q0! ~36!

G̃a~q0!5Q~2q0!G̃F~q0!2Q~q0!G̃F̃~q0!.
~37!

The subscriptsF and F̃ stand for the chronological and an
tichronological Green functions, respectively, for magnetiz
vacuum, which are calculated by the Schwinger’s pro
time method as shown in the previous sections.

Setting Eqs.~35!–~37! into Eq.~34!, we finally obtain the
retarded Green function in terms of the chronological a
antichronological Green functions for vacuum as
6-5
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i P̃ r~p0!5
e2

2 E dq0

2p
@122 f ~q01p0!#Tr @Q~2q0!gmG̃F~q01p0!gnG̃F~q0!1Q~2q0!gmG̃F̃~q01p0!gnG̃F~q0!

2Q~q0!gmG̃F~q01p0!gnG̃F̃~q0!2Q~q0!gmG̃F̃~q01p0!gnG̃F̃~q0!#@Q~q01p0!2Q~2q02p0!#

1
e2

2 E dq0

2p
@122 f ~q02p0!#Tr @Q~q0!gmG̃F~q0!gnG̃F~q02p0!1Q~q0!gmG̃F~q0!gnG̃F̃~q02p0!

2Q~2q0!gmG̃F̃~q0!gnG̃F~q02p0!2Q~2q0!gmG̃F̃~q0!gnG̃F̃~q02p0!#@Q~q02p0!2Q~2q01p0!#.

~38!
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One easily recognizes that the structure of the integran
quite similar to the vacuum polarization tensor apart from
integration overq0 and the various combinations ofG̃F and
G̃F̃ . This enables us to simplify the integrand along the sa
line as for the vacuum case. Note that there is no summa
over the Landau levels.

Denoting asFFP r the contribution from the terms con
taining the productGFGF and similarly for the other contri-
butions, we calculate separately those terms. The antichr
logical Green functionGF̃ is obtained by taking the
integration region@2`,0# instead of@0,̀ # in the Schwinger
proper time formalism:

GF̃~x,x8!5
1

i E2`

0

dsexp$2 i @m22~gmPm!2#s%

3~gmPm1m!. ~39!

Following Melrose and Stoneham@13#, we can simplify this
equation. Assuming that the vector potential is time indep
dent andA050, we can Fourier transformGF andGF̃ with
respect tot2t8. Plugging them into the definition of th
polarization tensor, one sees that the gauge-dependent t
cancel out just like the vacuum case and the polariza
tensor becomes the function of the difference of the spa
coordinates, which then makes it possible for us to take
Fourier transformation with respect to the spatial coor
nates. We finally obtain, for the contribution from the term
with the productGFGF ,

FFP r
mn~p!

5E
2`

` dk0

8pm
FF~k0 ,p0!

e2m2

~2p!2
~12 i !A2p

L E
0

` da

Aa

3E
2a

a

dbexpF2 i
a

L GexpF2 i
a22b2

4aL

kz
2

m2G
3expF2 i

cosb2cosa

2Lsina

k'
2

m2G
3expF i H a1b

2L

~k01p0!2

m2
1

a2b

2L

k0
2

m2J G3dmn.

~40!
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Here FF(k0 ,p0) is an abbreviation for the following func
tion:

FF~k0 ,p0!5Q~2k0!@Q~k01p0!2Q~2k02p0!#

3@122 f ~k01p0!#1Q~k01p0!@Q~k0!

2Q~2k0!#@122 f ~k0!#, ~41!

5Q~k01p0! Q~k0! @122 f e~k0!#1Q~2k0

2p0! Q~2k0! @122 f e1~ uk01p0u!#

1Q~k01p0! Q~2k0! $@122 f e~k01p0!#

1@122 f e1~ uk0u!#%, ~42!

where f e and f e1 are Fermi-Dirac distribution functions fo
electron and positron, respectively. Except for the integ
over the distribution functions, the resemblance of Eq.~40!
to the vacuum counterpart is clear. The remaining factordmn,
which is symmetric with respect to the superscripts, is giv
as

d0152
1

2

cosb2cosa

sina H FcotS a2b

2 D2cota G
3

k01p0

m FcotS a1b

2 D px

mG1FcotS a1b

2 D2cotaG
3

k0

m FcotS a2b

2 D px

mG J , ~43!

d0252
1

2

cosb2cosa

sina H 2FcotS a2b

2 D2cotaG
3

k01p0

m

px

m
1FcotS a1b

2 D2cotaGk0

m

px

mJ , ~44!

d0352
1

2
cota

pz

m F2
k01p0

m
2

p0

m S 12
b

a D G , ~45!

d1352
1

2

cosb

sina F12
b

a

tanb

tanaGpx

m

pz

m
, ~46!
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d0052cotaF k01p0

m

k0

m
211

L

2a
i 1

a22b2

4a2

pz
2

m2G
1

L

sin2a
i 2

1

2

cosb2cosa

sin3a

px
2

m2
, ~47!

d1152
cosb

sina F k01p0

m

k0

m
112

L

2a
i 2

a22b2

4a2

pz
2

m2G
2

1

2

cosb2cosa

sin3a

px
2

m2
, ~48!

d2252
cosb

sina F k01p0

m

k0

m
112

L

2a
i 2

a22b2

4a2

pz
2

m2G
1

1

2

cosb2cosa

sin3a

px
2

m2
, ~49!

d3352cotaF k01p0

m

k0

m
111

L

2a
i 1

a22b2

4a2

pz
2

m2G
2

L

sin2a
i 1

1

2

cosb2cosa

sin3a

px
2

m2
. ~50!

In deriving the above equation, we assumedpm

5(p0 ,px ,0,pz) and used the relation

pm P̃ r
mn~p!5P̃ r

mn~p!pn50, ~51!

which is guaranteed for the current approximation@26#.
The other contributions toP r with different combinations

of GF andGF̃ are obtained in the same way. It turns out th
the resultant equations are obtained from Eq.~40! with
changes of the integral region and replacements of the
tribution functions as shown below:

FF̃P r
mn:FF~k0 ,p0!→FF̃~k0 ,p0!,

integral region→E
2`

`

daE
a

`

db, ~52!

F̃FP r
mn:FF~k0 ,p0!→F̃F~k0 ,p0!,

integral region→E
2`

`

daE
2`

2a

db, ~53!

F̃F̃P r
mn:FF~k0 ,p0!→F̃F̃~k0 ,p0!,

integral region→E
2`

0

daE
2a

a

db. ~54!

In the above equations, the phase should be taken asA2a
52 iAuau, and the factors involving distribution function
are given as
04300
t

is-

FF̃~k0 ,p0!52Q~k0! @Q~k01p0!2Q~2k02p0!#

3@122 f ~k01p0!#1Q~k01p0! @Q~k0!2Q

~2k0!#@122 f ~k0!#, ~55!

F̃F~k0 ,p0!5Q~2k0! @Q~k01p0!2Q~2k02p0!#

3@122 f ~k01p0!#2Q~2k02p0! @Q~k0!

2Q~2k0!#@122 f ~k0!#, ~56!

F̃F̃~k0 ,p0!52Q~k0! @Q~k01p0!2Q~2k02p0!#

3@122 f ~k01p0!#2Q~2k02p0! @Q~k0!

2Q~2k0!#@122 f ~k0!#. ~57!

Thus the polarization tensor is given by the sum of the
terms

P̃ r
mn5FFP r

mn1FF̃P r
mn1 F̃FP r

mn1 F̃F̃P r
mn . ~58!

In the above equation, the ‘‘retardedness’’ of the polarizat
function is expressed by the combinations of the distribut
functions of electron and positron. The analogous equa
can be obtained for the advanced polarization tensor, wh
has different combinations of the distributions functions. It
noteworthy that the expression is symmetric with respec
the tensor indices unlike the imaginary time formalis
where the antisymmetric terms arise as an imaginary par
the polarization tensor. This feature is taken over by
chronological polarization tensor in the real time formalis
@20,21#.

It can be shown that the above formulas reduce to
vacuum polarization tensor employed in Sec. III in the lim
of T→0, me→0. Hereme is the chemical potential of the
electron. In fact, the chronological polarization tensor in t
limit is obtained from

P̃F
0~p0!5Q~p0! P̃ r

01Q~2p0! P̃a
0 . ~59!

The superscript ‘‘0’’ means the polarization tensors f
vacuum. Inserting Eq.~33! and the corresponding expressio
for the advanced polarization tensor

iPa
mn~x,x8!5

e2

2
Tr@gmGc~x,x8!gnGr~x8,x!

1gmGa~x,x8!gnGc~x8,x!#, ~60!

and using the fact that the combinations likeGrGr andGaGa
vanish after integration over energy, we can show that o
the right combinationGFGF remains.

It is more convenient to take a projection of the abo
result onto the basis tensors constructed fromFmn , Fmn* ,
pm , andum . HereFmn* is the dual tensor ofFmn andum is
the four velocity of the plasma. Following Rojas and Shab
@23,24#, we take as the basis tensors

Cmn
(1)5p2gmn2pmpn , ~61!
6-7
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Cmn
(2)5@Fmlpl#@Fnsps#, ~62!

Cmn
(3)52@p2gml2pmpl#F ~F2!ls

p2 G @p2gsn2pspn#,

~63!

Cmn
(4)5$@p2~F2p!m2~pF2p!pm#@Fnl* pl#1@Fms* ps#

3@p2~F2p!n

2~pF2p!pn#%/$@p2~pF2p!#1/2@p~F* !2p#%, ~64!

Cmn
(7)5@p2~F2p!m2~pF2p!pm#@Fnlpl#1@Fmsps#

3@p2~F2p!n2~pF2p!pn#, ~65!

Cmn
(8)5~urpr!F S um2

pm~urpr!

p2 D @Fnlpl#1@Fmsps#

3S um2
pm~urpr!

p2 D G . ~66!

In the above equationsgmn5(1,21,21,21) is the metric,
and p25pmpm, (F2)mn5FmrFn

r . The polarization tensor is
expanded with these basis tensors as

P̃ r
mn~p!5(

i
p iC ( i )mn. ~67!

The coefficients are easily calculated by taking projectio
on the orthogonal basis vectors@23,24# defined as

em
(1)5

p2~F2p!m2~pF2p!pm

@p2~pF2p!~pF* 2p!#1/2
, ~68!

em
(2)5

Fml* pl

@pF* 2p#1/2
, ~69!

em
(3)5

Fmlpl

@pF2p#1/2
, ~70!

em
(4)5

pm

@p2#1/2
. ~71!

We expanddmn in Eq. ~40! according to Eq.~67! as

dmn5(
i

diC ( i )mn. ~72!

In Eq. ~72!, it should be understood that only the nonvanis
ing part after integration is expanded. Defining further

a1[em
(1)dmnen

(1)
04300
s

-

5
pz

2px

p0~p0
22pz

2!
d011

p0
22pz

2

p0pz
d03

2
p0

2px

p2~p0
22pz

2!
d13, ~73!

a2[em
(2)dmnen

(2)

5
pz

2px

p0~p0
22pz

2!
d011

p0
22pz

2

p0pz
d03

2
p0

2px

pz~p0
22pz

2!
d13, ~74!

a3[em
(3)dmnen

(3)

5
p0

px
d012

pz

px
d13

1
cosb2cosa

sin3a

px
2

m2
, ~75!

a4[em
(2)dmnen

(1)

5
Ap2

p0
22pz

2 @pzd
012p0d13#,

~76!

a5[em
(3)dmnen

(1)

52
p0px

Ap2~p0
22pz

2!
d02, ~77!

a6[em
(2)dmnen

(3)

5
pz

A~p0
22pz

2!
d02, ~78!

we can express the coefficientsdi in terms ofai as

d152
a2

p2
, ~79!

d25
1

B2p0
2 Fa32a22

p2

p0
22pz

2 ~a12a2!G , ~80!

d352
a12a2

B2~p0
22pz

2!
, ~81!

d45a4 , ~82!
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d75
1

Bp0px
A 1

p2~p0
22pz

2!
a51

p0

B3p2pxpz

A 1

~p0
22pz

2!
a6 ,

~83!

d852
1

Bp0px
Ap0

22pz
2

pz
2

a6 . ~84!

Combining the above equations with Eqs.~43!–~50!, we fi-
nally obtainp i in Eq. ~67!.

Since the medium corrections occur only for on-shell m
menta, they do not induce extra divergence to regular
Hence we have only to renormalize a vacuum contributi
This is simply done by subtracting the unrenormaliz
vacuum part and then adding the renormalized vacuum
larization tensor:

regP5P2PuT5me501regPuT5me50 . ~85!

In the above equation, ‘‘reg’’ implies the regularized tenso
It is noted that regPuT5me50 is nothing but the tensor calcu
lated in the preceding sections. It is also possible to subt
PuT5me5B50 and to add Eq.~14!. Only p1 should be renor-
malized as in the vacuum case.

As mentioned already, our formalism is closely related
that obtained in@20,21#. Both are based on the one-loo
approximation and utilize the chronological and antichron
logical propagators of electron in vacuum. Hence it is ob
ous that they contain essentially the same contents. Th
explicitly shown as follows. It is known that the exact pola
ization tensors are related by

P̃11~p0!5P̃ r~p0! @11n~p0!#2P̃a~p0!n~p0!, ~86!

where P̃11(p0) is the ~11!-component or the chronologica
component of the 232 matrix polarization tensor in the rea
time formalism, andn(p0) is the Bose distribution function
for the electron positron pair. Applying this relation to th
one-loop approximation given by Eq.~34! and the corre-
sponding equation forP̃a(p0) obtained by exchangingG̃r

andG̃a in Eq. ~34!, we obtainP̃11(p0) expressed in terms o
G̃r and G̃a after using the relation Eq.~35!. Inserting the
approximations Eqs.~36! and ~37! valid for the ideal elec-
tron, we getP̃11(p0) expressed in terms ofG̃F andG̃F̃ . It is
easy to show using the relation

f ~q01p0!2 f ~q0!52
1

n~p0!
f ~q01p0!@12 f ~q!#

~87!

that the final expression becomes

i P̃11~p0!5e2E dq0

2p
Tr@gmG̃11~q01p0!gnG̃11~q0!#.

~88!

Here the~11!-component of the electron’s Green function
the ideal magnetic plasma is given in terms ofG̃F andG̃F̃ as
04300
-
e.
.

o-

.

ct

o

-
-
is

G̃11~q0!5G̃F~q0!2hF~q0!@G̃F~q0!2G̃F̃~q0!#, ~89!

hF~q0!5Q~q0! f ~q0!1Q~2q0!@12 f ~q0!#.
~90!

This is exactly the same expression forP̃11 derived in
@20,21#. The above manipulation clearly shows thatP̃11 in
@20,21# andP̃ r(p0) in this paper are related in the same w
as the exact polarization tensors and that the difference
only in their imaginary parts. Hence the results obtained
@20,21# for the weak magnetic field should hold for our p
larization tensor, since it contains the same physics. Our
pression is slightly closer to the vacuum polarization ten
employed in the previous sections. The main aim of t
section is to show that the reduction of the fivefold integ
tion obtained in@20,21# can be done in quite a similar way t
the vacuum case and that the resulting expression beco
also similar to the vacuum counterpart.

Although the form ofdmn in Eqs.~43!–~50! is very simi-
lar to the vacuum counterpart, the numerical evaluation
them is very difficult. This is so for the same reason as
the numerical evaluation of the vacuum polarization ten
above the threshold of the pair creation. This prevents
from performing a Wick rotation for thea andb integrations
in Eq. ~40!. These should be the next steps.

V. DISCUSSIONS

We have numerically computed the vacuum polarizat
tensor by using Schwinger’s proper-time method for vario
strengths of the background magnetic field, photon energ
and angle of propagation below the threshold of the p
creation. One advantage of the formulation employed her
the fact that we do not have to perform the summations o
the discrete Landau levels up to infinity but have only to
the integrations over proper time. We then find that we c
handle the infinite integral by appropriate conversion of va
ables. In this paper, one of our main purposes is the num
cal evaluations of the polarization tensors and to serve a
bridge between the analytic formulas given so far for so
limiting cases. It is noted again that the explicit numeric
values near the threshold energy of the pair creation w
absent in the literatures. In addition, we have obtained
fitting formula which reproduces the numerical results with
10% of error. In the case of the low energy and strong
weak magnetic-field limits, it exactly agrees with the analy
cal estimations. We hope this formula will help astrophy
cists build the astrophysical models.

It is true that the current results are confined below
threshold of pair creation and that the behavior above
threshold is very important. However, this region still co
tains interesting parameter regions from the point of view
the astrophysics, e.g., x-ray observations (E5a few keV
2100 keV). Provided the discovery of the magnetars, it
not unreasonable to expect other extraterrestrial obj
which have even larger magnetic fields to be found in
future observations. In such superstrong magnetic fields,
expect that nontrivial lensing effects in x-rays would occ
due to the modifications of the refractive indices. Then,
6-9
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trophysicists should consider such lensing effects there
x-ray observations. Therefore, we think our work would
helpful and useful for such observations of x rays.

So far, we have had a foreboding that the polarizat
tensor would have nontrivial behaviors above the thresh
energy. The numerical study above the threshold is certa
our next step and is indeed currently underway@19#.

We have also presented the expression of the reta
polarization tensor for the finite density and temperature
the one-loop approximation, utilizing the chronological a
antichronological vacuum Green function in vacuum. It
shown that the multiple integrations are simplified in
analogous way to the vacuum case. It is shown the exp
sion is reduced to the vacuum one in the limit of zero te
perature and density. It is also demonstrated that the pre
formulation contains the same contents as that derived
@20,21# and, therefore, that their results for weak magne
fields are true for our case. The direct confirmation will
ay

g:

-

c.

g:

-

04300
or

n
ld
ly

ed
n

s-
-
ent
in
c

done when the numerical evaluations of the expression
performed@19#. Our concern, however, is rather directed
the very strong magnetic field where no analytic evaluat
is expected. It is emphasized that the remaining issue for
purpose is common to the numerical evaluations of
vacuum polarization tensor above the threshold energy
pair creations.

Our final goal is to calculate not only the polarizatio
tensor but also other physical quantities under strong m
netic fields such as the photon splitting rates and equatio
states for a wide range of parameters. This paper is the
step of this project.
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