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Polarization tensors in strong magnetic fields

Kazunori Kohri
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan

Shoichi Yamada
Institute of Laser Engineering (ILE), Osaka University, Osaka 565-0871, Japan
(Received 14 February 2001; revised manuscript received 9 November 2001; published 23 Januyary 2002

The vacuum polarization tensor in strong external magnetic fields has been evaluated numerically for
various strengths of magnetic fields and momenta of photons under the thresholcedfiag creation. The
fitting formula has been obtained which reproduces the calculated results within 10% of error. The proper time
method is employed further to obtain the retarded polarization tensor for finite temperature plasmas.
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[. INTRODUCTION and the photon splitting rate as well as some useful analytic
expressions for limit casdsee alsd2,12—14 and the refer-

The strong magnetic field is attracting the attention ofences therein for many other contributipn&strophysicists
astrophysicists these days. It has been known that the mafjave used these approximate formulas for their model build-
netized vacuum shows interesting features as the magnetied [15,16. _ _ _
field strength exceeds a critical valuB.=mZ/e~4 Those analytic expressions are approximate ones, though,
% 1013G [1,2]. Since this value is so large even in the uni- valid for some limit cases such as the strong or weak mag-
verse compared, for example, with the canonical magnetigetic field limits and the zero photon energy limit. It appears
field of 10" G for a pulsar, it was supposed that this was athat we are _Iacklng the complem_entary nu_merlcal evaluations
subject of academic interest only. This has been changin@f the polarlzatlon tensor for the intermediate value;s of mag-
drastically recently. netic field strength and/or photon energy. In pgmcula_r, the

Some observationf3] suggest the existence of neutron €nergy dependence near the threshold of the pair creation has
stars with a magnetic field far greater (0*5 G) than the nqt been studu_ad in deFall. Itis the purpose of the paper to f_|II
canonical one for the observed pulsars, and they are calledtfis 9ap and give the interpolation formula based on the fit-
magnetar, as dubbed by Duncun and ThomggdnAs the  ting to'the numerical integrations. Ou.r interest is, hovyever,
reality of very large magnetic fields looms, some researcherdlso directed to the dispersion relation of photons in the
speculated further that some other peculiar extraterrestrigtrongly magnetized plasma. In Sec. IV we will extend the
phenomena might also involve very strong magnetic fieldsSchwinger formulation and give the expression for the re-
Among them are gamma ray bursts and hypern¢&adit is tarded polanzgtlon tensor for finite temperature plasmas.
supposed for the latter that a jet is somehow produced in 1he paper is organized as follows. In Sec. Il we formulate
these objects and the dipolar magnetic field is playing athe vacuum polarlzat_lon _ten_sors ina s_trong _magnetlc field.
essential role. On the other hand, some models for th¥ve study the refractive indices numerically in Sec. Ill. In
gamma ray bursts are employing the magnetic fields to exSeC- IV we gxtend thg formulgtion to the retarded polariza—_
tract the enormous energy of the phenomenon if§3lfFur-  tion tensors in the finite density and temperature cases. Fi-
thermore, evidence of generic asymmetry for collapse-driveR@lly, Sec. V' is devoted to the conclusion.
supernovae has been accumuldtélj and the strong mag-
netic field might have some implications for the ordinary
supernova if the magnetar as observed is the end product 0'* VACUUM POLARZATI?:'T‘EIFDA STRONG MAGNETIC
the supernova explosion and the observed asymmetry is a
dynamical consequence involving the strong magnetic field This section is devoted to giving the formula of the
[8]. The fast proper motion of young pulsars might be ex-vacuum polarization tensor which we employ from the pre-
plained by the combination of the strong magnetic fields andiious paperd12,13 for the numerical calculations. Using
some processes such as neutrino oscillations, for exampBchwinger’s proper-time methdd7], as was shown in Ref.
[9]. The explosion mechanism of the supernova will be[13], the vacuum polarization tensor in a strong magnetic
changed substantially as well as nucleosynthesis therein. field (see Fig. 1is expanded as

It is, therefore, not only of academic interest to consider
the features of the strongly magnetized vacuum. In particu-
lar, the quantum electrodynamical processes are most impor-
tant, since those objects quoted above are mostly observed
by electromagnetic waves, though the weak interactions are
no less importanf9,10]. The study of the strongly magne-
tized vacuum has a long history, though. Adigt], for ex- ~ wherek=(w,k, ,0k) is the energy-momentum 4-vector of
ample, gave detailed formulations for the polarization tensor photon,o the photon energyk, = w sin 6, k= o cos6, ¢

2
1#"(k,B)= >, Gf!, (1)
i=0
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FIG. 1. Vacuum polarization in a strong magnetic field. The
double solid line denotes the electron propagator which includes alfvit
contributions of the vertices from the magnetic field.
bf=F*k,, by =F*#k,, 9
the direction of 3-momentum with respect to the magnetic
field, andB is the magnetic fieldG; is given by the follow- b4 =K?FH7F ko= kHKF 5F °k, (10)
ing equations:
) B . b =k*, (11
G= L dfd E(a,B,k,L), 2 .
' (2m)? fo “ 0 BriElap ) @ whereF*” denotes the Maxwell stress 4-tensor and its dual
. tensor is defined bfF*#'=—1e*"7F ;.
with As was carefully discussed in R¢i.3], only G, contrib-
h utes to the vacuum polarization tensor if the magnetic field is
yo=k2 COS.KLﬂa)(l_ tan (L,Ba)] (3  very weak,L<1.In such a week field limit, we know the
2sinf(La) tanh(La) |’ form of I1#*(k) in familiar QED as
,| cosiLBa)—coshLa) I1#7(k,00=Golg=o f§", (12
[E sink?(La)
where
coshL tanh L
* 2si:r(f§))(l_ tar:(r(LﬁaO;)] @ Y A L
Golg=0= k f d f d
ols=0 2me Lo | B,
_p2
yz=(w2—k2){ coth(La) 1- 8% K?
| 2 xXex —a+¥—2 . (13)
cosf(L,Ba){l tanr(L,Ba)] ) Me
2sinh(La) tanh(La) | |’ In Eq. (13) we should get rid of the divergence at=0 and
q regularize it. Then we obtain the regularized form of the
an vacuum polarization tensor at=0,
1-8%) Kk? 1-p5° v v
Ea Bk L) —ex] —a+ TP K [ad=F) red1#(k,0)=A(K)f£”, (14)
4 mg 4
with
coshLBa)—coshLa)) k? 6
2L sinh(La) mz|’ ©) A(k)=regGo|g-o
2 _ 2 2
where e denotes the electron charge in MKS unite? ( _ e 2 1_(1 hk))(4mg+2k%) (15)
=1/137), m, is the electron mass, ard=B/B,) is a di- 2m)? |9 3k? ’
mensionless magnetic field normalized by the critical mag-
netic field (Bczmgle). f#¥ is expressed as where
|
4m? 4m?
A /E—lcot‘l( me_l) (for 0=<k’<4m3?),
k? k?
h(k)= (16)
2 4m2
1- ecothl( 1— e) (for k*<0).
k? k?
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Thus, to obtain the regularized form of the polarization ten- 10° u g 10°
sor in a strong magnetic field.&1), we have only to sub- 18‘; F ©*=10m? L7 ig:
stitute Go with r 20—
0 102 |- cos?0=0.5 . 102
10F — X L7 10
regGo=Go— Golg=o+A(K). 17 s 1F X 7 1
Lo T v 0.1
As we mentioned in the previous sections, the refractive ’: 001 ---Xe - 0.01
. . . . . -3 L -3
indices of photon would deviate from unity in a strong mag- x 18_4 S 18_4
netic field because the vacuum polarization is influenced by 105 4 10-5
. . . . . . -
the magnetic field and the dispersion relation is changed. The 105 b 10-8
refractive indices are defined from the dispersion relation as 10-7 B 10-7
10-¢ & 10-¢
|k|2 -9 C 10-°
2_ (18) 1020-1 1 10 102 10 104 105 10® 107 108
w?’ B/B
[

wherek is a spatial 3-vector ok. To obtain the dispersion

relation in a strong magnetic field, we consider the wav

equation of the photon,
[k?gH"—ktk"+4mredl**(k)]A,(k)=0. (19

In this equation the prefactor &f#”(k), “4 #r,” originates in

FIG. 2. Plots of— xq, x1, andx, as a function oB/B,. Here

Qe adaptw®=10"° m2 and co46=0.5. We find that the magnitude

of yo increases aB/B. increase$log(B/B.)], x1 reaches the limit
value (~7.7X10™ %), and y,=(e?/37)B/B, for B/B.>1.

Ill. NUMERICAL RESULTS FOR THE VACUUM
POLARIZATION TENSOR IN A STRONG MAGNETIC
FIELD

MKS unit. The determinant of the matrix should be zero so

that Eq. (19) could have a nontrivial solution. When we
choose the radiation gauge,=(0,A), we get a quadratic
equation and we obtain two solutions,

1+
W= (20)
1+ xo—sinfly,
1+ xo+
M%Z Xo™T X2 , (21)
where
4mredGy
Xo=—""5 (22
k
4’7TG1
X1= 7 5 (23
kJ_
47TG2
X2= k2 . (24)
[

Here u3 corresponds to the eigen vectd,1,0 and u3 to
((1+ xo+ x2)cos6,0,—(1+ xg)sind). Since eachy; de-
pends onu? throughk andG;, Egs.(20) and (21) are im-
plicit equations foru?. In the literature, e.g.[13], the au-
thors gave only the integral form and some limit cases.

To wrap up, we numerically integrate E() and then
regularize the results according to Efj7). Using this result,
we solve the implicit Eqs(20) and(21) to obtain the refrac-
tive indices.

We show here the main results for the magnetized
vacuum. The numerical integrations of E@) have been
done with the Monte Carlo method in the parameter region
covering a wide range of the magnetic field strength, the
direction of the photon propagation and the photon energy
below the threshold of the pair creation. In limiting cases,
i.e., both in the large and smal limits, in advance we also
calculated the;s analytically. Comparing with the analytical
esimations, we can check the validities in the numerical re-
sults.

In Fig. 2 we plot— xo as a function ol (=B/B) in a
low energy limit (w?=10"5m32). From the plot, we find that
the magnitude ofy, increases ak increases. Thus the con-
tribution from y to the refractive indices in Eq§20) would
not be negligible in an extremely strong magnetic fielhis
behavior agrees with our analytical estimation thgt:
—log(L) in a strong magnetic field limitl(—oc) and contra-
dicts the statement by Melrose and StoneHd3| that y,
«exd —L] for this limit. This difference, however, is sub-
stantial only for extremely large magnetic fields. Nonethe-
less, we did not drop this term in estimating the correct re-
fractive indices. In Fig. 2 we also plaot; and y, as a
function of L. y; approaches the limit value~(7.7x 10 %)
for L>1. This feature is consistent with our analytical esti-
mation and again disagrees with Melrose and Stondi&in

IHere we assume the one-loop approximation. Since the depen-
dence of the polarization tensor on the strength of the magnetic field
is complicated even in this approximation after taking full account
of the external magnetic field by Schwinger’s proper time method,
it is a nontrivial issue whether the higher-loop corrections dominate
over the one-loop contribution in the strong magnetic field limit and
above what strength of the magnetic field even if they do become
dominant.
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FIG. 3. Plot of the refractive indices as a functionBIB.. The
solid line representaf and the dashed line represept% The left
(right) dashed line is the case fas?=4mZ(10 °m2). Here we
adaptw?=10"°mZ and co%6=0.5. We find thatu3 reaches the
limit value (1/cog6=2) in the strongB limit.

who claimed thajy;cexd —L] for this limit. As for y,, it is
found thaty, is linearly proportional td. in the strong mag-
netic field and the weak energy limit. It agrees exactly with
our analytical estimation thag,= (€?/3)L under the con-
dition thatL>1, w?—kf<4m;, andk? <2miL [13].

In addition, in the case of weak magnetic-field and low
energy limits, i.e.L. <1 andw<<m,, the numerical result of
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FIG. 4. Plot of the refractive indices as a function @f/m2.
The solid line represenﬁsf and the dashed line represepl% Here
we adaptB/B.=10? and cod¢=0.5.

above the threshold energy and that their numerical evalua-
tions are required there alspﬁ is insensitive to the photon
energy, which justifies the neglect of its energy dependence
in the analyses so far. In Fig. 5 we plaf as a function of
cogd in a strong magnetic field(=10°). It is clear thatu3
is proportional to 1/cd® which is analytically expected in
Eqg. (29.

Here we give the fitting formula o;&%,

2
=C{tanh[ Cx(x—C3)]+1}+1, 30
the behaviors ojq, x1, and y, also agrees with the analyti- #2=Cal [Cal I+ 30
cal estimations, with
2e? _
— Xo— ELZ:LOSX 1074L2, (25) x=log;o(B/B), (32)
7T
and
4’ L2=2.07x 10 4L2 26
ST ’ (26) C,=tarfd/2,
7e2 2~ 74 2 10 | T \ T I T T T I T T T I T T T I T T T ] 10
XzHEL =3.61X 10 “L~. (27 i \l B/B,=10° |
| _ . sl | wr=10mz g
In Fig. 3 we plot the obtained refractive indices as a func- Lo .
tion of L. The solid and dashed lines represgitand 3, L ]
respectively. It is easy for us to understand the behavior of 6 - \\ - M -6
#?’s in a strong magnetic field. From E¢g0) and(21), we % L \ —w i
find that 4 r N h 4
p2=1+7.7x10 %sirko, (29) I ]
) 2 TNl 2
u5=1/cogé, (29 - e
for L>3m/« in the case of the weak energy and as long as 00 = '0'2' : '0'4' : '0'6' ! '0'8' — 10
Xo IS much smaller than unity. The photon-energy depen- ) ’ 2 )
dence ofu? is shown in Fig. 4. In this plot we find that near cos®¢

the threshold 2~ 4m?) the energy dependence pf be-

FIG. 5. Plot of the refractive indices as a function of @& he

comes important. Note that this behavior has not been studolid line represents? and the dashed line represepts Here we
ied so far. The result suggests that the refractive index anddaptB/B.=10° andw?=10"°m2. We find thatu3 scales 1/cd#
the polarization tensor as well will have a nontrivial featurein such a strong limit.
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C,=1.15-7.07X 10" 3(?/m2)1%% Jcos, tained by analytical extension of the imaginary time polar-
ization tensor which has been given by the authags-24.
Ca=3.11—log,y coL6) — 1.84x 10‘2(w2/m2)/\/F329 Since the spectral density is unchanged by the introduc-
. . < .

(32 tion of the heat bath, the polarization tensor for the finite
density and temperature can be obtained from the vacuum
This fitting formula reproduces the numerical results withinpolarization tensor under the same approximation. It is
the error of less than 10% for a wide parameter range (0.¢nown from the finite density and temperature field theory
<coo<1, w2/m§s4, and 0<B/B,=10"). In the largeL that the retarded polarization tensor is expressed as

limit especially, Eq(30) approaches the value of the analyti-

cal estimation £1/cog6). Of course, the small limit re- _ e?

producesus=1 exactly. In addition, the low energy limit of T (x,x") = ETr[VHGc(X-X,)VVGa(X/'X)

the fitting formula @?—0) agrees with the numerical esti-

mations very well within less than 1%. +YHG (X, X") ¥'Ge(X",X) ]. (33

Because it seems that concrete values of the polarization

tensor near the threshold energy of the pair creation havg, the above equation, the subscriptsa, ¢ denote the re-
never been given in the literature, we hope that the abovgyrded, advanced, and correlation components of the Green
results would serve as a bridge between the analytic formulagnction, respectively25]. For the stationary system, we can
given for the low energy limif11]. Although our results are jn general assume that the vector potential is time indepen-
confined only below the threshold energy of pair creationsgent. In this case the polarization tengby(x,x’) is a func-

we think those still contain interesting parameter regionSjon of the time differenceé—t’ alone. It is possible that it
from the point of view of astrophysics, e.g., x-ray observa-yepends on the spatial coordinateandx’ separately. Fou-

tions (E=a few keV—100 keV). After the discovery of the jer transforming the polarization tensor with respectt to
magnetars, it is not unimaginable that astrophysical objects ' e obtain

with yet stronger magnetic fields will be found. In fact, the

magnetic field in the core of a rapidly rotating supernova & ( dg

might reach~ 10" G or more. In such superstrong magnetic ifI _ _f e Y e n e
fields, we expect that there would exist non-trivial lensing (Po)= 5 | 57 TTLY*Geldot Po) ¥"Gal o)
effects in x rays due to the modifications of the refractive

indices. Therefore, we think that astrophysicists might have +7"G;(do+ Po) ¥ Ge(do)]. (34)
to consider such lensing effects there for x-ray observations
[18]. In the above equation, the tilde means the Fourier component

In addition, as mentioned above, our results suggest thaind the spatial coordinates are dropped for simplicity. The
there will be nontrivial features in the polarization tensorcorrelation component of the Green function in the thermal
above the threshold energy. The numerical study not only ogquilibrium can be expressed by the retarded and advanced
the real part but also of the imaginary part of the polarizationGreen functions and the distribution function by the follow-
tensor above the threshold will be studied in a separate papgig relation:

[19].

IV. RETARDED POLARIZATION TENSOR IN FINITE

Ge(Po) =G (po)[1—2f(po)]1—[1—2f(P) 1Ga(Po).-
TEMPERATURE PLASMAS (35

In the previous sections we have considered the vacuuroting that the retarded and advanced Green functions for
polarization tensor. It is also our concern to calculate thehe ideal electrons of finite density and temperature are iden-
polarization tensor for plasmas with finite temperatures. Weical to the counterparts for vacuum, we obtain
will extend the previous formulation to the finite density and
temperature case. We will rely on the real time formalism of ~ ~ ~
the finite density and temperature field theory and obtain the Gi(0o) =0 (do)Gr(do) —O(—0o)GE(ao)  (36)
expression for the retarded polarization tensor. One advan-
tage of the formulation employed for the vacuum polariza-
tion Sec. Il is the fact that it avoids the summation over the
Landau levels. This can be achieved also for the finite den-
sity and temperature case as shown below. Recently, some 5
authorg[20,21] gave the expression of the chronological po-The subscript$ andF stand for the chronological and an-
larization tensor on a similar footing. Their main concern istichronological Green functions, respectively, for magnetized
the behavior of the polarization tensor in the weak magnetizacuum, which are calculated by the Schwinger’s proper
field limit and the final formula is a five-dimensional integra- time method as shown in the previous sections.
tion. Although two polarizations are related to each other, the Setting Eqs(35—(37) into Eq.(34), we finally obtain the
retarded one allows more direct physical interpretationretarded Green function in terms of the chronological and
Moreover, the retarded polarization tensor should be obantichronological Green functions for vacuum as

Ga(do)=0(—do)Gr(do) — O(q0) GE(do)-
(37)
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- e? [ dq - - - -
i (po) =% 2_7:[1_2f(CI0+ Po) ITr[O(— o) ¥*Gr(do+ Po) ¥"Gr(do) + O (— o) Y*GE(Ao+ Po) ¥'Gr(o)

—0(do) ¥*Gr(do+ Po) ¥'GE(do) — O (do) Y“G(do+ Po) ¥'Gr(do) 11O (do+ Po) — O (—do— Po)]
e?(rd - - - -
+ > 2_?:[1_ 2f(do—Po) ITr[®(do) ¥*Ge(do) ¥"Ge(do— Po) + O (do) ¥*Ge(do) ¥’ GE(do— Po)

—0(—0o) Y*GE(do) ¥"G(do— Po) — O (—do) Y“GE (o) ' GE(do— Po) 11O (do— Po) — O (— o+ Po) 1.
(38

One easily recognizes that the structure of the integrand islere FF(kq,po) is an abbreviation for the following func-
quite similar to the vacuum polarization tensor apart from thetion:

integration over, and the various combinations & and

Gg . This enables us to simplify the integrand along the same FF(Ko,Po) = (—=ko)[®(ko+po) = O(—=Ko—Po) ]
line as for the vacuum case. Note that there is no summation _ .
over the Landau levels. X[1=2f(ko+ po) 1+ O (Ko+ Po)[ O (ko)

Denoting asFII, the contribution from the terms con- —0O(—ko)[1—2f(ko)], (41)
taining the producGGg and similarly for the other contri-
butions, we calculate separately those terms. The antichrono- _ _ B
logical Green functionGg is obtained by taking the O (ko tpo) O(ko) [1=2fe(ko) 1+ O(—ko
integration regiorn —,0] instead of 0] in the Schwinger —Po) O(—kg) [1—2f o+ (|ko+ Pol)]
proper time formalism:

+0 (Kot po) O(—ko) {[1—2fe(ko+ Po)]

1 (o
Ge0xx') =7 | dsexp(—ilm?— (y#11,)%]s) 1= 2 ko)) 2

X (yHII,+m). (39  wheref, andf.+ are Fermi-Dirac distribution functions for

_ o ) electron and positron, respectively. Except for the integral
Following Melrose and Stonehaf3], we can simplify this  gyer the distribution functions, the resemblance of @)
equation. Assuming that the vector potential is time indepengg the vacuum counterpart is clear. The remaining fagtdy

dent andA,=0, we can Fourier transfor@g andGg with  \yhich is symmetric with respect to the superscripts, is given
respect tot—t’. Plugging them into the definition of the gq
a—p
cot ——| —cota

polarization tensor, one sees that the gauge-dependent terms
cancel out just like the vacuum case and the polarization

tensor becomes the function of the difference of the spatial {o1— _ i
coordinates, which then makes it possible for us to take the 2 Sina
Fourier transformation with respect to the spatial coordi-

1 cosB—cosa

nates. We finally obtain, for the contribution from the terms Kot Po cot( atp &} +[cot( atp —cota
with the productGgGg, m 2 /m 2
FF v K B
7 (p) X co[(azﬂ) %H 43
J’“’ dkg FE(k )ezmz (1-1) /277J’°°da
= _— y _— —1 —_— f—
_8mm 0-Po (27)2 L JoJa w1 COS,B—COSa[ t(a—,B)
d=—-——{ —|co —cota
3 N az—,Bz 2 2 Sina 2
xf dBexp{—i—exr{—i——z Kot n K
—a L 4ol m? x—omp0&+[cot(a2'8 —cota EO%] (44)
_cospB—cosa K
S B T 1 p,[ kKotpo P B
m d°3=—zcotaﬁ[2 . 0—50(1—;) , (45)
+B (ko+po)?  a—B K
xex%i[ aZL'B (ko EO) + CYZLﬂ —02] X dH?,
m m 15 LCOSB[, B ang]py p. s
(40 2 sina a tana|m m’
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Ko+ Po K L a?-p2p?
d90= — cota| P00 P g
2a 4a? m?
L 1 cosB—cosa p>
et } (@7
sife 2 sirfa m?
2_ n2 R
d11:_C(_)S'8 ko+Po@+l_L._a B Pz
Ssina| m m 2a A4a? m?
1 cosB—cosa p2
 Loospcoma i -
2 sifPe m
2_ n2 R
g2 _ 0B kotPoko L. "B P
sina m m 2a 4a? m>?
1 cosB—cosa p>
—ﬂ.——x, (49
2 site m?
Ko+ Po K L a?-p2p?
N Ll o I
m 2a 4o m?
L 1 cosB— cosa p>
-—itz '8 & (50
sife 2 sirfa m?
In deriving the above equation, we assumeat”

=(pg.Px.0,p,) and used the relation
p, I (p)=T1¢"(p)p,=0,

which is guaranteed for the current approximatjiaa].
The other contributions tbl, with different combinations

(51)

PHYSICAL REVIEW B5 043006

FF(Ko,po)=—0(Ko) [O(Ko+pPo)—O(—ko—po)]
X[1—2f(Ko+ po) ]+ O (Kg+po) [O(ko) — O
(—ko)l[1—-2f(ko)], (55

FF(Ko,Po) =0 (—ko) [O(Ko+ po) — O (—ko—po)]
X[1—=2f(Ko+po) 1= O(—ko—po) [O (ko)
—0O(—ko)[1-2f(ko)], (56)

FF (Ko, Po)=—0 (ko) [O(Ko+ po) — O (—Ko—Po)]
X[1—=2f(Ko+ Po) ] —O(—Ko—Po) [O(Kp)
—0(—kp)[1—2f(kp)]. (57

Thus the polarization tensor is given by the sum of these
terms
ﬁ'/‘J.V:FFH,FLV_,’_FFH'/‘.LV_’_FFH,FLV_,’_FFH'}‘LV. (58)

In the above equation, the “retardedness” of the polarization
function is expressed by the combinations of the distribution
functions of electron and positron. The analogous equation
can be obtained for the advanced polarization tensor, which
has different combinations of the distributions functions. It is
noteworthy that the expression is symmetric with respect to
the tensor indices unlike the imaginary time formalism
where the antisymmetric terms arise as an imaginary part of
the polarization tensor. This feature is taken over by the
chronological polarization tensor in the real time formalism
[20,21.

It can be shown that the above formulas reduce to the
vacuum polarization tensor employed in Sec. Ill in the limit
of T—0, u.—0. Herepu, is the chemical potential of the

of Gg andGg are obtained in the same way. It turns out thatelectron. In fact, the chronological polarization tensor in this

the resultant equations are obtained from E40) with

limit is obtained from

changes of the integral region and replacements of the dis-

tribution functions as shown below:

FFTT#":FF (Ko, Po)— FF (Ko, Po),

integral region—>f daf dg, (52
EFHﬁw:FF(koypo)—ﬁ':(ko,po),
integral region—>f dafﬁadﬂ, (53
PRI FF (Ko, Po)— FF (Ko, Po),
0 @
integral regiomf daf dg. (54)

In the above equations, the phase should be takeyi-as

=—iy|al, and the factors involving distribution functions

are given as

T12(po)=©(po) I1?+O(—po) 1. (59
The superscript “0” means the polarization tensors for
vacuum. Inserting E33) and the corresponding expression
for the advanced polarization tensor

2
iIIA7(x,x")= eETr[ YHG(X,X")Y'G, (X ,X)
T YHGa(X,X") ¥"Gc(X",X)], (60)
and using the fact that the combinations IBeG, andG,G,
vanish after integration over energy, we can show that only
the right combinatiorGGg remains.
It is more convenient to take a projection of the above
result onto the basis tensors constructed frbpy,, Fj,,
p., andu,. Here F:‘w is the dual tensor oF ,, andu,, is
the four velocity of the plasma. Following Rojas and Shabad
[23,24], we take as the basis tensors

¥{D=p?g,,~p.p,. (61)
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PO =[F,,p"I[F,.p"], (62)

FZ \o

W)= —[p°g.n— pMpx][ <

‘|[ng0'1)_ pO'pV]’
(63)
W ={[p%(F?p),,— (PF?P)p, I F 2P +[F2,p7]
X[p%(F?p),
—(pF2p)p, 4 P*(PF?P) 1M p(F*)?p]}, (64)

W) =[p2(F?p),,— (PF?P)P,I[F AP +[F 0P ]

X[pA(F?p),—(pF?p)p,], (65
p
\Ifﬁf’3=(uppp>[(uﬂ—%)[ﬂmmmpﬂ
X ( uﬂ——p“(:gpp)) ] : (66)

In the above equationg,,,=(1,—1,—1,—1) is the metric,
and p*=p,p*, (F?),,=F,,F". The polarization tensor is

up' v
expanded with these basis tensors as

e (p)=2 = whn, (67)

The coefficients are easily calculated by taking projections

on the orthogonal basis vectdi23,24 defined as

e(l): pz(FZp),u._ (szp) pp,

: (68)
" [p*(pF?p)(pF*?p)]*?
F* p}\
@ mE
€. = [pF*Zp]”Z’ (69)
F.p"
(@)=
€. = [szp]llz' (70)
p
(G P
€= [p2]1/2' (72)
We expandd*” in Eq. (40) according to Eq(67) as
der=2, dwiwr, (72)
|

In Eq. (72), it should be understood that only the nonvanish-43_ _

ing part after integration is expanded. Defining further

a;=ePd#relt

PHYSICAL REVIEW D 65 043006

PiPx o1, PO P

— d03
Po(P5— P2) PoP;

2
- pgpx —d13, (73)
p (pO_ pz)

a,=e{2del?)

_ pipx 01+ pg_ p? d03
o 2_ 2
pO( Po— pz) PoP:z
2
_ pgpx . 13 (74
P( Po— pz)
az=e{d-el?)
— @d01_ &dl?:
Px Px
2
COS3—COSa Py
—_— 75
sirfae m? (79
a,=ePd" eV
Jp?
= 2 z[pZdOl_ p0d13]1
pO_ pz
(76)
as=ed# eV
pOpx
=— ———d% (77)
VP?(P5—P3)
ag=ePd""el¥
P,
= ———=d% (78)
V(pg—p2)
we can express the coefficierd5in terms ofa; as
a
dt=-=2, (79
p
- LA (80)
= 3=~ L (ar—ay) |,
B?p} Po—P:
a;—ap
— 5 (81)
B*(pg—p2)
d=a,, (82
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7 1 1 Po 1 G™(do) =Gr(do) — 7e(ao)[ Gr(do) — GE(do)], (89
d’= B 22 2 as+ 3,2 2_ 2 96
PoPx V p“(p5—p3) = B ppyp; V (Po—P3)

0 7e(do) =0 (o) F(do) +O(—ao)[1—f(do)].

(83 (90)
gie — 1 pg— pfn 84 This is exactly the same expression fbi*! derived in
~ Bpopx ¥ p2 ¥ &9 [20,21]. The above manipulation clearly shows tht? in
[20,21] andII,(py) in this paper are related in the same way
Combining the above equations with E¢43)—(50), we fi-  as the exact polarization tensors and that the difference lies
nally obtain7' in Eq. (67). only in their imaginary parts. Hence the results obtained in

Since the medium corrections occur only for on-shell mo{20,21] for the weak magnetic field should hold for our po-
menta, they do not induce extra divergence to regularizearization tensor, since it contains the same physics. Our ex-
Hence we have only to renormalize a vacuum contributionpression is slightly closer to the vacuum polarization tensor
This is simply done by subtracting the unrenormalizedemployed in the previous sections. The main aim of this
vacuum part and then adding the renormalized vacuum pasection is to show that the reduction of the fivefold integra-

larization tensor: tion obtained i 20,21] can be done in quite a similar way to
the vacuum case and that the resulting expression becomes
redI=I1-1II|r_, —o+redl|r-, -o- (85 also similar to the vacuum counterpart.

] o ) Although the form ofd*” in Egs.(43)—(50) is very simi-
In the above equation, “reg” implies the regularized tensors,5; o the vacuum counterpart, the numerical evaluation of
It is noted that rebj|7_,_—o is nothing but the tensor calcu- them is very difficult. This is so for the same reason as for
lated in the preceding sections. It is also possible to subtrache numerical evaluation of the vacuum polarization tensor
H|T:#e:B:o and to add Eq(14). Only 7! should be renor- above the threshold of the pair creation. This prevents us
malized as in the vacuum case. from performing a Wick rotation for the andg integrations

As mentioned already, our formalism is closely related toin Eq. (40). These should be the next steps.

that obtained in[20,21]. Both are based on the one-loop
approximation and utilize the chronological and antichrono- V. DISCUSSIONS
logical propagators of electron in vacuum. Hence it is obvi-

ous that they contain essentially the same contents. This i[s we rl;ave _num;r;qca_lly co,mputed tthe vacutjhm dpfo Iarlza_tlon
explicitly shown as follows. It is known that the exact polar- ENnsor by using SChwingers proper-timé method for various
ization tensors are related by strengths of the background magnetic field, photon energies,

and angle of propagation below the threshold of the pair
711 _ T T creation. One advantage of the formulation employed here is
I1(po) =1r(Po) [1+N(po) ]~ ITa(Po)N(Po).  (86) the fact that we do not have to perform the summations over
the discrete Landau levels up to infinity but have only to do
the integrations over proper time. We then find that we can
handle the infinite integral by appropriate conversion of vari-
ables. In this paper, one of our main purposes is the numeri-
L : cal evaluations of the polarization tensors and to serve as a
one-lopp appro?qmatlgn given by. Eq34) and the 9O£re- bridge between the analytic formulas given so far for some
sponding equation fofla(po) obtained by exchanginG: |imiting cases. It is noted again that the explicit numerical
andG, in Eq.(34), we obtain[I*'(p,) expressed in terms of values near the threshold energy of the pair creation were
G, and G, after using the relation Eq35). Inserting the absent in the literatures. In addition, we have obtained the
approximations Egqs(36) and (37) valid for the ideal elec- fitting formula which reproduces the numerical results within
tron, we getl1*(p,) expressed in terms @ andGg. Itis ~ 10% of error. In the case of the low energy and strong or
easy to show using the relation weak magnetic-field limits, it exactly agrees with the analyti-
cal estimations. We hope this formula will help astrophysi-
1 cists build the astrophysical models.
f(do+po)—f(go)=— W“(QOJF Po)[1—f(a)] It is true that the current results are confined below the
0 (87) threshold of pair creation and that the behavior above the
threshold is very important. However, this region still con-
that the final expression becomes tains interesting parameter regions from the point of view of
the astrophysics, e.g., x-ray observatiors=(@a few keV
o= 5 Yo ~11 V=1 —100 keV). Provided the discovery of the magnetars, it is
T (po)=e f ﬂTr[ ¥*GT(doFPo) "G (o) ]. not unreasonable to expect other extraterrestrial objects
(880  which have even larger magnetic fields to be found in the
future observations. In such superstrong magnetic fields, we
Here the(11)-component of the electron’s Green function in expect that nontrivial lensing effects in x-rays would occur
the ideal magnetic plasma is given in terms3f andGg as  due to the modifications of the refractive indices. Then, as-

where T1*Y(p,) is the (11)-component or the chronological
component of the 2 matrix polarization tensor in the real
time formalism, anch(py) is the Bose distribution function

for the electron positron pair. Applying this relation to the
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trophysicists should consider such lensing effects there fodone when the numerical evaluations of the expression are
x-ray observations. Therefore, we think our work would beperformed[19]. Our concern, however, is rather directed to
helpful and useful for such observations of x rays. the very strong magnetic field where no analytic evaluation

So far, we have had a foreboding that the polarizationis expected. It is emphasized that the remaining issue for that
tensor would have nontrivial behaviors above the thresholgurpose is common to the numerical evaluations of the
energy. The numerical study above the threshold is certainlyacuum polarization tensor above the threshold energy of
our next step and is indeed currently underWag]. pair creations.

We have also presented the expression of the retarded Our final goal is to calculate not only the polarization
polarization tensor for the finite density and temperature irtensor but also other physical quantities under strong mag-
the one-loop approximation, utilizing the chronological andnetic fields such as the photon splitting rates and equation of
antichronological vacuum Green function in vacuum. It isstates for a wide range of parameters. This paper is the first
shown that the multiple integrations are simplified in anstep of this project.
analogous way to the vacuum case. It is shown the expres-
sion is reduced to 'the vacuum one in the limit of zero tem- ACKNOWLEDGMENTS
perature and density. It is also demonstrated that the present
formulation contains the same contents as that derived in This work is partially supported by the Grants-in-Aid by
[20,21] and, therefore, that their results for weak magneticthe Ministry of Education, Science, Sports and Culture of
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