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Hartle-Hawking state is a maximum of entanglement entropy
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It is shown that the Hartle-Hawking state of a scalar field is a maximum of entanglement entropy in the
space of pure quantum states satisfying the condition that the back reaction be finite. In other words, the
Hartle-Hawking state is a curved-space analogue of the EPR state, which is also a maximum of entanglement
entropy.

PACS numbegs): 04.70.Dy

Entanglement entropl,2] is one of the strongest candi- 1
dates for the origin of black hole entrop$,4]. It originates Kko=5f"(ro). &)
from a direct-sum structure of a Hilbert space of a quantum
system: for an elemeni) of the Hilbert space” of the form e quantize the system of the scalar field with respect to the
_ Killing time t in a Kruskal-like extension of the black hole
F=hReH, (1) spacetime. The corresponding ground state is called the
Boulware state and its energy density is known to diverge
near the horizon. Although we shall only consider states with
Seni=—Tri[p1Inp;] bounded energy density, it is convenient to express these
ent e states as excited states above the Boulware ground state for
pr="Trul ). ) technical reasons. _Henqe, we would like to introduce an ul-
traviolet cutoff & with dimension of length to control the
divergence. Off course, we shall take the limit~0 in the
end. The cutoff parameter is implemented so that we only
spectively. consider two regions satisfying>r; (shaded regions | and

In Ref.[5], a new interpretation of the entanglement en-!! in Fig. 1), wherer; (>ro) is determined by
tropy was proposed based on its relation to the so-called

the entanglement entrof,; is defined by

Here ® denotes a tensor product followed by a suitable
completion and Tr, denotes a partial trace ovef |, re-

conditional entropy and a well-known meaning of the latter. . J'rl dr . ©
It was conjectured that the entanglement entropy for a pure ro V(1)

state is an amount of information, which can be transmitted

through F,, and F, from a system interacting wittf;, to (Strictly speaking, we also have to introduce outer bound-
another system interacting with; by using quantum en- aries, say at=L(>r), to control the infinite volume of the
tanglement. Thus, it is important to seek quantum states hagonstant: surface. However, even if there are outer bound-
ing maximal entanglement entropy and to investigate proparies, the following arguments still hold and we can take the
erties of the states. In fact, it was shown that a state havintimit L—c in the end) Evidently, the limit«—0 corre-
maximal entanglement entropy plays an important role insponds to the limitr;—r,. Thus, in this limit, the whole
quantum teleportatiofb]. region in whichd/dt is timelike is considered.

In this paper, we show that the Hartle-Hawking sti@g In this situation, there is a natural choice for division of
of a scalar field is a maximum of entanglement entropy in théhe system of the scalar field: Iét, be the space of mode
space of pure states satisfying a consistency condition.  functions with supports in the region | arfid, be the space

For simplicity, we consider a minimally coupled, real sca-of mode functions with supports in the region Il. Thence, the
lar field described by the action

s=-5 [ axdg s enetmtel, @

in the spherically symmetric, static black-hole spacetime

ds’=—f(r)dt? dr® 2d0?
=—1f(r) t+f(—r)+l’ . (4)

We denote the area radius of the horizonrlgyand the sur-
face gravity byxy (#0): FIG. 1. The Kruskal-like extension of the static, spherically
symmetric black-hole spacetime. We consider only the regions sat-
f(rg)=0, isfying r>r, (the shaded regions | and.ll
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spaceF of all states are of the forrfl), whereF; and.F,, are Note that the right hand side of SBQ1) is independent
defined as symmetric Fock spaces constructed fijnand ~ Of the state[¢). Thus, SBC implies that the entanglement
H,, , respectively: energy should be fixed when we maximize the entanglement
entropy. In statistical thermodynamics, it is well known in
F=CoH,o(H, (ng)Syn@ . what situation we should fix the average energy: we have to

fix it when we know the observed value of the energy. How-
ever, the corresponding situation seems not to have been
essentially known forlquantum or thermalexcitations of
Here ( - -)oym denotes the symmetrization fields ona blgck hole background. In fact, for the brick wall
Let us investigate what kind of condition should be im- 0d€l in which thermal excitations are considered, Re.
is the first which pointed out that the ground state for the

posed for our arguments to be seli-consistent. A clear CondlBrick wall model is the Boulware state and that the Boulware

tion is that the back reaction of the scalar field to the back- : :
- - (negative, divergentenergy should be added to thermal en-
ground geometry should be finite. Thus, the contributidv ergy. (See Refs[10—17 for the complete confusion reigning
of the subsystert, to the mass of the backgrognd geometry;, s subjecd. For our system in this paper, it is the Boul-
.ShOU|d be bqgnded n th? "”.““—’0- Although this condition ware (negative, divergentenergy that makes us fix the en-
is not a sufficient condition in order to make the back reac'tanglement energy
tion finite, what is surprising is that we can obtain the Hartle- :

Hawki tate without usi h diti N Now, we shall show that the Hartle-Hawking state is a
awking state without using any other conditions Strongel., o m of the entanglement entropy in the space of pure
than this. In this sense, our strategy of maximizing entangle

t ent " th . 0 “quantum states satisfying SBC. For this purpose, we prove a
ment entropy seems as strong as the maximum entropy prifg, e general statement for a quantum system with a state
ciple in the statistical thermodynamics.

As shown in Ref[7], AM is given by space of the forn{l): a state of the form

}—IIEC@HIIEB(HllgHII)Sym@'"- (7)

_ —Eq /2T
AME—J Tidmr2dr=H,, ® =N e Sy, 12
xel

is a maximum of the entanglement entropy in the space of

whereH, is the Hamiltonian of the subsysteffy with re- e states with fixed expectation value of the operator E
spect to the Killing timet. Hence, the expectation value of gefined by

AM with respect to a statgy) of the scalar field is decom-

posed into the contribution of excitations and the contribu-
tion from the zero-point energy: E/= En: Enln)-(n| |® %‘4 My -n(ml ], (13
($|AM] ) =Eenit AMg, C)

provided that the real constant T is determined so that the
expectation value of Eis actually a fixed value. HereF,
and 7, are assumed to be isomorphic to each otHémy,}
/ol - and{|n),} (n=1,2,...)are bases of the subspacgsand
Ben=(1:Hi:19), (10 Ful s reépectively, and Eare assumed to be real and posi-
tive. Note that this statement looks almost the same as the
following statement in statistical thermodynamics: a canoni-
cal state is a maximum of statistical entropy in the space of
states with fixed energy, provided that the temperature of the
canonical state is determined so that the energy is actually
the fixed value. Thus, it might be expected that the above
Een=|AMg| (12) general statement might be directly derived from the stan-
dard Jaynes methdd 3] as this statement in statistical ther-
in the lowest order iny, whereA=47rr§ is the area of the Modynamics can be'derived. However, the. Jaynes method
horizon, Ty, = ko/27 is the Hawking temperature ardis a cannot be applied directly to our system since the Jaynes

positive constant of order unity. We call this conditigre =~ Method treats entropy of not a subsystem but a total system.
small back reaction condition (SBE) Thus, in the proof given below, we seek a correspondence

between our variational principle and the standard variational
principle in statistical thermodynamidsSee Eq.(23).]
Note that the expectation value Bf is equal to the en-
'This definition corresponds @} in Ref.[8] and(:H,:) in Ref.  tanglement energy10), provided that/n), and E,, are an
[9]. eigenstate and an eigenvalue of the normal-ordered Hamil-
20ff course, finite energy can be added to the entanglement efonian H, : of the subsystenf; . Hence, for the system of
ergy without generating a divergent back reaction. However, thédhe scalar field, the above general statement insists that the
finite energy is higher order in the expansion. Thus, effects of the state(12) is a maximum of the entanglement entropy in the
finite energy are higher order ia. space of pure states satisfying the SBC, which corresponds

whereE,,, is the entanglement energglefined by

and AMg is the zero-point energy of the Boulware state.
Here, the colons denote the usual normal ordering.

Since the Boulware energgMg diverges asAMg=
—CcATya 2 in the limit @—0, we should impose the condi-
tion
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to fixing the entanglement energy. Of course, in this case, the _

constantT should be determined so that SBCI) is satis- E:nEm EnbPrmlVam %, (21

fied. ’
Returning to the subject, let us prove the general state-

ment.(The following proof is almost the same as that given

in the Appendix of Ref[5] for a slightly different statement. Trp=1 andV'V=1 are restated as

However, for completeness, we shall give the proof.

where p, is the diagonal elements d®. The constraints

First, we decompose an elemégt of F as > po=1,
[)=2, Comln)i @My, 14 _
o 2 VinVim= - (22

where the coefficient<,,, (n m=1,2,...) arecomplex

numbers satisfying , mlCnml?=1 and can be considered as  From these and those expressions, the following corre-
matrix elements of a matri€. SinceC'C is a non- negative spondence is easily seen:

Hermitian matrix, it can be diagonalized as

Sent— S,
cfc=vipy, (15)
Een—E,
where P is a diagonal matrix with diagonal elemengs,
(=0) andV is a unitary matrix. For this decomposition and ctcoPp. (23
diagonalization, the entanglement entropy and the expecta-
tion value of the operatdg, are written as follows: Hence, a maximum dBin the space of statistical states with

a fixed value of gives a set of maxima &,,,;in a space of
guantum states with a fixed value Bf,;. (All of them are
related by unitary transformations in the subspage.)

Thus, since the thermal stae,,=e En'T5,,, is a maximum

of Sin a space of statistical states with a fixed value of
' 17 g, c,n=e E?75,, is a maximum ofS, in a space of
pure quantum states with a fixed value Bf,,;. Here the
temperaturdl should be determined so th&at(or E,,)) has a

fixed value. This completes the proof of the general state-

Sent= 2 palnpy, (16)

Eene= E Enpmlvnm 2
n,m

where V,, is matrix elements ofV. The constraints
S0 mlCaml?=1 andV'V=1 are equivalent to

ment.
Therefore, for the system of the scalar field, a state of the
> ph=1, form (12) is a maximum of the entanglement entropy in a
n

space of pure quantum states satisfying the SBC, provided
that the constant is determined so that the SBC is satisfied.
E VAV = (18) The value ofT is easily determined a&= T, by using the
m- well-known fact that the negative divergence in the Boul-
ware energy density can be canceled by thermal excitations
Next, we shall show that these expressions are equivalefftand only if temperature with respect to the tirnis equal
to those appearing in statistical mechanicsjn Let us con- tO the Hawking tgmperat.uﬁe .
sider a density operatq_ron o Finally, by taking the limita—0, we obtain the statement
that the Hartle-Hawking state is a maximum of entanglement
_ _ entropy in a space of pure quantum states satisfying the
=, Poln)-(ml, (19 SBC!In other words, the Hartle-Hawking state is a curved-
nm space analogue of the Einstein-Podolsky-Ro$€PR state,
- which is also a maximum of entanglement entr¢py:
where P,y is a non-negative Hermitian matrix with unit  From this result we can say that the brick wall model of 't

trace. By diagonalizing the matri® as Hooft [10] seeks the maximal value of entanglement entropy
[15]. Thus, the maximal entanglement entropy is equal to the
P=ViPV, (200  black hole entropy if the cutoff length is set to be of the

order of the Planck length. Although in our arguments we
we obtain the following expressions for entrofyand an
expectation valu& of the operatoE, =3 ,E,[n);-(n|:
3See e.g., Ref7].

_z H |na “The Hartle-Hawking state is actually of the for(h2) with T
neeEn =Ty, [14], provided thata—0.
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have taken the limie—0, it will be valuable to investigate [5,8,9,14. Moreover, from the interpretation of entangle-
possibilities that quantum fluctuations of geometries mayment entropy proposed in Ref5], it is expected that the
preventa from being zero and that the fluctuations of the Hartle-Hawking state may play an important role in transmit-
horizon may be effectively represented as a Planck-ordeind |nfor_mat|qn _by using quantum e_ntanglement_ to restore
value of . Note that the effect of a non-zero valuebn  €Mporarily missing information. It will be interesting to in-
our arguments should be small enough if the mass of a backestigate such a possibility in detail.

ground black hole is sufficiently large in Planck units. The author would like to thank Professor H. Kodama and
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