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Hartle-Hawking state is a maximum of entanglement entropy
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It is shown that the Hartle-Hawking state of a scalar field is a maximum of entanglement entropy in the
space of pure quantum states satisfying the condition that the back reaction be finite. In other words, the
Hartle-Hawking state is a curved-space analogue of the EPR state, which is also a maximum of entanglement
entropy.

PACS number~s!: 04.70.Dy
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Entanglement entropy@1,2# is one of the strongest cand
dates for the origin of black hole entropy@3,4#. It originates
from a direct-sum structure of a Hilbert space of a quant
system: for an elementuc& of the Hilbert spaceF of the form

F5FI ^̄ FII , ~1!

the entanglement entropySent is defined by

Sent52TrI@r I ln r I #,

r I5TrII uc&^cu. ~2!

Here ^̄ denotes a tensor product followed by a suita
completion and TrI ,II denotes a partial trace overFI ,II , re-
spectively.

In Ref. @5#, a new interpretation of the entanglement e
tropy was proposed based on its relation to the so-ca
conditional entropy and a well-known meaning of the latt
It was conjectured that the entanglement entropy for a p
state is an amount of information, which can be transmit
through FII and FI from a system interacting withFII to
another system interacting withFI by using quantum en
tanglement. Thus, it is important to seek quantum states
ing maximal entanglement entropy and to investigate pr
erties of the states. In fact, it was shown that a state ha
maximal entanglement entropy plays an important role
quantum teleportation@5#.

In this paper, we show that the Hartle-Hawking state@6#
of a scalar field is a maximum of entanglement entropy in
space of pure states satisfying a consistency condition.

For simplicity, we consider a minimally coupled, real sc
lar field described by the action

S52
1

2E d4xA2g@gmn]mf]nf1m2f2#, ~3!

in the spherically symmetric, static black-hole spacetime

ds252 f ~r !dt21
dr2

f ~r !
1r 2dV2. ~4!

We denote the area radius of the horizon byr 0 and the sur-
face gravity byk0 (Þ0):

f ~r 0!50,
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f 8~r 0!. ~5!

We quantize the system of the scalar field with respect to
Killing time t in a Kruskal-like extension of the black hol
spacetime. The corresponding ground state is called
Boulware state and its energy density is known to dive
near the horizon. Although we shall only consider states w
bounded energy density, it is convenient to express th
states as excited states above the Boulware ground stat
technical reasons. Hence, we would like to introduce an
traviolet cutoff a with dimension of length to control the
divergence. Off course, we shall take the limita→0 in the
end. The cutoff parametera is implemented so that we onl
consider two regions satisfyingr .r 1 ~shaded regions I and
II in Fig. 1!, wherer 1 (.r 0) is determined by

a5E
r 0

r 1 dr

Af ~r !
. ~6!

~Strictly speaking, we also have to introduce outer bou
aries, say atr 5L(@r 0), to control the infinite volume of the
constant-t surface. However, even if there are outer boun
aries, the following arguments still hold and we can take
limit L→` in the end.! Evidently, the limit a→0 corre-
sponds to the limitr 1→r 0. Thus, in this limit, the whole
region in which]/]t is timelike is considered.

In this situation, there is a natural choice for division
the system of the scalar field: letHI be the space of mode
functions with supports in the region I andHII be the space
of mode functions with supports in the region II. Thence, t

FIG. 1. The Kruskal-like extension of the static, spherica
symmetric black-hole spacetime. We consider only the regions
isfying r .r 1 ~the shaded regions I and II!.
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spaceF of all states are of the form~1!, whereFI andFII are
defined as symmetric Fock spaces constructed fromHI and
HII , respectively:

FI[C% HI % ~HI ^̄ HI !sym% •••,

FII [C% HII % ~HII ^̄ HII !sym% •••. ~7!

Here (•••)sym denotes the symmetrization.
Let us investigate what kind of condition should be im

posed for our arguments to be self-consistent. A clear co
tion is that the back reaction of the scalar field to the ba
ground geometry should be finite. Thus, the contributionDM
of the subsystemFI to the mass of the background geome
should be bounded in the limita→0. Although this condition
is not a sufficient condition in order to make the back re
tion finite, what is surprising is that we can obtain the Hart
Hawking state without using any other conditions stron
than this. In this sense, our strategy of maximizing entan
ment entropy seems as strong as the maximum entropy
ciple in the statistical thermodynamics.

As shown in Ref.@7#, DM is given by

DM[2E
xPI

Tt
t4pr 2dr5HI , ~8!

whereHI is the Hamiltonian of the subsystemFI with re-
spect to the Killing timet. Hence, the expectation value o
DM with respect to a stateuc& of the scalar field is decom
posed into the contribution of excitations and the contrib
tion from the zero-point energy:

^cuDM uc&5Eent1DMB , ~9!

whereEent is the entanglement energy1 defined by

Eent[^cu:HI :uc&, ~10!

and DMB is the zero-point energy of the Boulware sta
Here, the colons denote the usual normal ordering.

Since the Boulware energyDMB diverges asDMB.
2cATHa22 in the limit a→0, we should impose the cond
tion

Eent.uDMBu ~11!

in the lowest order ina, whereA54pr 0
2 is the area of the

horizon,TH5k0/2p is the Hawking temperature andc is a
positive constant of order unity. We call this conditionthe
small back reaction condition (SBC).2

1This definition corresponds toEent
(I 8) in Ref. @8# and^:H2 :& in Ref.

@9#.
2Off course, finite energy can be added to the entanglement

ergy without generating a divergent back reaction. However,
finite energy is higher order in thea expansion. Thus, effects of th
finite energy are higher order ina.
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Note that the right hand side of SBC~11! is independent
of the stateuc&. Thus, SBC implies that the entangleme
energy should be fixed when we maximize the entanglem
entropy. In statistical thermodynamics, it is well known
what situation we should fix the average energy: we have
fix it when we know the observed value of the energy. Ho
ever, the corresponding situation seems not to have b
essentially known for~quantum or thermal! excitations of
fields on a black hole background. In fact, for the brick w
model, in which thermal excitations are considered, Ref.@7#
is the first which pointed out that the ground state for t
brick wall model is the Boulware state and that the Boulwa
~negative, divergent! energy should be added to thermal e
ergy.~See Refs.@10–12# for the complete confusion reignin
in this subject.! For our system in this paper, it is the Bou
ware ~negative, divergent! energy that makes us fix the en
tanglement energy.

Now, we shall show that the Hartle-Hawking state is
maximum of the entanglement entropy in the space of p
quantum states satisfying SBC. For this purpose, we prov
more general statement for a quantum system with a s
space of the form~1!: a state of the form

uc&5N(
n

e2En/2Tun& I ^ un& II ~12!

is a maximum of the entanglement entropy in the space
pure states with fixed expectation value of the operatorI
defined by

EI5S (
n

Enun& I• I^nu D ^ S (
m

um& II • II ^mu D , ~13!

provided that the real constant T is determined so that
expectation value of EI is actually a fixed value. Here,FI
and FII are assumed to be isomorphic to each other,$un& I%
and$un& II % (n51,2, . . . )are bases of the subspacesFI and
FII , respectively, and En are assumed to be real and pos
tive. Note that this statement looks almost the same as
following statement in statistical thermodynamics: a cano
cal state is a maximum of statistical entropy in the space
states with fixed energy, provided that the temperature of
canonical state is determined so that the energy is actu
the fixed value. Thus, it might be expected that the ab
general statement might be directly derived from the st
dard Jaynes method@13# as this statement in statistical the
modynamics can be derived. However, the Jaynes me
cannot be applied directly to our system since the Jay
method treats entropy of not a subsystem but a total sys
Thus, in the proof given below, we seek a corresponde
between our variational principle and the standard variatio
principle in statistical thermodynamics.@See Eq.~23!.#

Note that the expectation value ofEI is equal to the en-
tanglement energy~10!, provided thatun& I and En are an
eigenstate and an eigenvalue of the normal-ordered Ha
tonian :HI : of the subsystemFI . Hence, for the system o
the scalar field, the above general statement insists tha
state~12! is a maximum of the entanglement entropy in t
space of pure states satisfying the SBC, which correspo
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to fixing the entanglement energy. Of course, in this case,
constantT should be determined so that SBC~11! is satis-
fied.

Returning to the subject, let us prove the general st
ment.~The following proof is almost the same as that giv
in the Appendix of Ref.@5# for a slightly different statement
However, for completeness, we shall give the proof.!

First, we decompose an elementuc& of F as

uc&5(
n,m

Cnmun& I ^ um& II , ~14!

where the coefficientsCnm (n,m51,2, . . . ) arecomplex
numbers satisfying(n,muCnmu251 and can be considered a
matrix elements of a matrixC. SinceC†C is a non-negative
Hermitian matrix, it can be diagonalized as

C†C5V†PV, ~15!

where P is a diagonal matrix with diagonal elementspn
(>0) andV is a unitary matrix. For this decomposition an
diagonalization, the entanglement entropy and the expe
tion value of the operatorEI are written as follows:

Sent52(
n

pn ln pn , ~16!

Eent5(
n,m

EnpmuVnmu2, ~17!

where Vnm is matrix elements ofV. The constraints
(n,muCnmu251 andV†V51 are equivalent to

(
n

pn51,

(
l

Vln* Vlm5dnm . ~18!

Next, we shall show that these expressions are equiva
to those appearing in statistical mechanics inFI . Let us con-
sider a density operatorr̄ on FI :

r̄5(
n,m

P̃nmun& I• I^mu, ~19!

where (P̃nm) is a non-negative Hermitian matrix with un
trace. By diagonalizing the matrixP̃ as

P̃5V̄†P̄V̄, ~20!

we obtain the following expressions for entropyS and an
expectation valueE of the operatorĒI[(nEnun& I• I^nu:

S52(
n

p̄n ln p̄n ,
06401
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E5(
n,m

Enp̄muVnmu2, ~21!

where p̄n is the diagonal elements ofP̄. The constraints
Tr r̄51 andV̄†V̄51 are restated as

(
n

p̄n51,

(
l

V̄ln* V̄lm5dnm . ~22!

From these and those expressions, the following co
spondence is easily seen:

Sent↔S,

Eent↔E,

C†C↔ P̃. ~23!

Hence, a maximum ofS in the space of statistical states wi
a fixed value ofE gives a set of maxima ofSent in a space of
quantum states with a fixed value ofEent . ~All of them are
related by unitary transformations in the subspaceFII .!
Thus, since the thermal stateP̃nm5e2En /Tdnm is a maximum
of S in a space of statistical states with a fixed value
E, Cnm5e2En/2Tdnm is a maximum ofSent in a space of
pure quantum states with a fixed value ofEent . Here the
temperatureT should be determined so thatE ~or Eent! has a
fixed value. This completes the proof of the general sta
ment.

Therefore, for the system of the scalar field, a state of
form ~12! is a maximum of the entanglement entropy in
space of pure quantum states satisfying the SBC, provi
that the constantT is determined so that the SBC is satisfie
The value ofT is easily determined asT5TH by using the
well-known fact that the negative divergence in the Bo
ware energy density can be canceled by thermal excitat
if and only if temperature with respect to the timet is equal
to the Hawking temperature.3

Finally, by taking the limita→0, we obtain the statemen
that the Hartle-Hawking state is a maximum of entanglem
entropy in a space of pure quantum states satisfying
SBC.4 In other words, the Hartle-Hawking state is a curve
space analogue of the Einstein-Podolsky-Rosen~EPR! state,
which is also a maximum of entanglement entropy@5#.

From this result we can say that the brick wall model of
Hooft @10# seeks the maximal value of entanglement entro
@15#. Thus, the maximal entanglement entropy is equal to
black hole entropy if the cutoff lengtha is set to be of the
order of the Planck length. Although in our arguments

3See e.g., Ref.@7#.
4The Hartle-Hawking state is actually of the form~12! with T

5TH @14#, provided thata→0.
5-3
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SHINJI MUKOHYAMA PHYSICAL REVIEW D 61 064015
have taken the limita→0, it will be valuable to investigate
possibilities that quantum fluctuations of geometries m
preventa from being zero and that the fluctuations of t
horizon may be effectively represented as a Planck-o
value ofa. Note that the effect of a non-zero value ofa on
our arguments should be small enough if the mass of a b
ground black hole is sufficiently large in Planck units.

Our arguments suggests a strong connection among t
kinds of thermodynamics: black hole thermodynamics, s
tistical thermodynamics, and entanglement thermodynam
v.
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@5,8,9,16#. Moreover, from the interpretation of entangl
ment entropy proposed in Ref.@5#, it is expected that the
Hartle-Hawking state may play an important role in transm
ting information by using quantum entanglement to rest
temporarily missing information. It will be interesting to in
vestigate such a possibility in detail.

The author would like to thank Professor H. Kodama a
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work was supported partially by a Grant-in-Aid for Scientifi
Research Fund~No. 9809228!.
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