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Is the brick-wall model unstable for a rotating background?
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The stability of the brick-wall model is analyzed in a rotating background. It is shown that, in the Kerr
background without an horizon but with an inner boundary, a scalar field has complex-frequency modes and
that, however, the imaginary part of the complex frequency can be small enough compared with the Hawking
temperature if the inner boundary is sufficiently close to the horizon, say at a proper altitude of Planck scale.
Hence the time scale of the instability due to the complex frequencies is much longer than the relaxation time
scale of the thermal state with the Hawking temperature. Since ambient fields should settle in the thermal state
in the latter time scale, the instability is not so catastrophic. Thus the brick-wall model is well defined even in
a rotating background if the inner boundary is sufficiently close to the horizon.

PACS numbes): 04.70.Dy

[. INTRODUCTION in the thermal state. Thus, the brick-wall model is well de-
fined even in a rotating background.
Understanding the origin of black hole entropy is one of In Sec. Il we summarize a quantum field theory of a real
the most interesting problems in black hole physics. Thescalar field in ann-dimensional axisymmetric stationary
black hole entropy is given by the Bekenstein-Hawking for-spacetime to show how the appearance of complex-

mula[1,2] as frequency modes alters the structure of the quantum field
theory. In Sec. Il we consider a scalar field in the
4-dimensional Kerr spacetime without horizon but with an

SBH:ZAH’ (1.9 inner boundary to show the existence and a property of the

complex frequency. Section IV is devoted to summarizing

whereA,, is area of the horizon. this paper.

It seems that a full understanding of black hole entropy
requires a theory of quantum gravity, which we do not know  Il. SCALAR FIELD IN ROTATING BACKGROUND

yet. However, we believe that the general features of black Let us consider a genemaidimensional axisvmmetric sta-
hole entropy can be understood by semiclassical theoryI . 9 h o g’

namely, quantum field theory in a fixed gravitational back-tonary spacetime\, whose metric is given by

ground. In fact, the brick-wall model proposed by 't Hooft —  N2A2 4 20 2 aq b

[3] succeeded in deriving the proportionality of black hole ds’ N*dt+ p™(de— wadh)™+ apdx'dx’, (2.1
entropy to the horizon area by identifying the black holeywherea,b=1,2, ...,f1—2). Here, the lapse functioN, the
entropy with the thermal entropy of ambient quantum fieldsgardeen angular velocit§or minus thep-component of the
raised to the Hawking temperature. It was recently clarifiecshift vecto) wg, (¢¢)-componentp? of the metric and the
that il’l thIS m0de| baCk reaCtion iS Sma|| enough and that th|%n_ 2)_dimensiona| metri(qab are assumed to depend On'y
model is actually a self-consistent model as a semiclassicgjp the (1—2)-dimensional coordinatei?®}. On this back-

theo_ry[4]. Moreover, it was shown that t_his model seeks theground spacetime we consider a real scalar figldescribed
maximal value of entanglement entropy in the space of state1§y the action

whose back reaction is small enoud.
Originally, the brick-wall model is proposed in the spheri- 1 . , 5o
cally symmetric, static background, say, the Schwarzschild I=- EfMd x\=9(9""9,$0,0+ u?¢?), (2.2
background. Hence, it seems interesting to see how this
model is extended to a rotating background, say, the Kerjhere the masg of the field can depend only on the (

background[6—9]. However, it is known that in a rapidly —2)-dimensional coordinatds®}. We impose the boundary
rotating spacetime without horizon a field has complex-;ondition

frequency mode$10,11] and that there is the so called er-

goregion instability{12]. Thus, it might be expected that the Np¢n#d,¢=0 on JM, (2.3
brick-wall model in rotating background might be unstable
and unsuitable for the origin of black hole entropy. where the boundary M of the spacetimeéM is supposed to

In this paper we analyze the stability of the brick-wall be invariant under translations generated by Killing vectors
model in a rotating background. We show that the time scal@; andd,,, andn* is a unit normal taM. Note that a part
of the ergoregion instability is much longer than the relax-of 9 M can be taken at spatial infinity.
ation time scale of the thermal state with the Hawking tem- In this paper we quantize the system of the scalar field
perature. In the latter time scale ambient fields should settlaith respect to the time evolution vectdbr defined by
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t,x&

whereQ(x?) is an arbitrary function ofx?} such thatD is =0, (2.10
timelike in M. For this choice of the time evolution vector,

it is convenient to use a new coordinate Systemwp (x?)
defined by Npf i, fuim=0 on M, (2.12

with the boundary condition

o=p—Q(x)t (2.5)  Wheren” denotes a unit normal to the boundary1. (A
part of 9M can be taken at spatial infinijyHere note that,
because of the invariance of E.10 under (,m)«

since for this coordinate system
(= w,—m), we can assume that

D_a
ot

*

(2.6) oim=T %1, —m- (2.12

. xa
o We can choose the quantum numbeao that

Following the usual quantization procedure, it turns out that Ja

the canonical momentunw conjugate to¢ and, thus, the f dn*ZXU(w_me)f mfe, =0 unless I=1".

equal-time commutation relations are independent of the N vmertm

choice of ) (x?): (213
With this choice of the quantum numbér the following

_aL p\q property holds.

~ 8(D¢) N

_r\a (@) . (%)
- at @,x& e de t,x&

N
where the Lagrangiah is defined byl = [dtL. Therefore,
the quantization procedure we follow is independent of th

90/ a

w

(\I}wlm 7\I,w’|’m’)KG:0

2.7) unless

w*=w', I=1" and m=m’, (2.14

eWhere the Klein-Gordon normd{, V) is given by

choice of the time evolution vectd®. In this sense there is Ja
no ambiguity in the quantization. (D, W)yg= _if dnflxu(q)qu* —V*D®). (2.15
Off course, there is much freedom in selecting a ground N

state: we have freedom in the choice of a set of positive- . . .

frequency mode functions. In the following, we give oneNOW the setP, over which the summation is taken in Eq.

example of the choice of the set of positive-frequency modd2-8). is defined as

functions by using a separation of variables. Other choices

give different ground states. However, the Hilbert space of

all quantum state is independent of the choice of the set. For_ .

example, one ground state can be expressed as excited staté3§_{(w|m)|“’ is real(¥ yim, ¥ uim)ke>0}, 2.16

above other ground states. :
To quantize the system of the scalar field we raise the |, _ ~

field ¢ to an operator and decompose it by mode functions: Pe={(wlm)[Jw>0}.

P:PRU Pc,

The mode function§® .} in the expansior(2.8) are de-

fined b
$= > (Vyndumt Phmal,), 8 o0
(wlm)e P
1
where the seP and the mode functiongb .} will be de- Poim= ‘/Cwlmq}‘”'m for  (wlm)ePg,

fined below by Eq(2.16) and Eq.(2.17), respectively.
In order to define the mode functiof® .} in the above
expansion, let us seek solutiof¥® ,,,} of the field equation & =

(¥ mt+emP ) for (wlm)ePg¢,
by the following separation of variables: V2C yim

(2.17

_ —iwtai
W oim=Fom(x?) e~ 'eme. (2.9 \yhere the real constan®,,,(>0) anda,,, are defined by

The functionf ,;,(x?) is a solution of the equation (¥ oim ¥ rim) k= Cim€ “eim. (2.18
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For the above definition oP and {® .}, the following
property can be easily derived:

((I)wlm7q)w’|’m’)KG:6ww’5ll’5mm’7 (219
((lequ):,qrmr)KG:O. (2.20
(P P k6=~ Cwwr St Sy (2.2

for V(wlm)eP andV(w'l’'m’) e P. It is these properties
that lead us to the above definition &f and {®,}. In

Appendix A, it is shown that the local integrability of Eq.

(2.24) below requires Eq(2.20 and that the normalizability

of the ground state0) requires the left hand side of Eq.

(2.19 to be positive definite as a matrix with arguments
=(wlm) and\'=(w’l'm’). [Equation(2.2]) is an imme-
diate consequence of E(.19.]
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(2.26) by a Bogoliubov transformationSee Appendix B.
Thus, if there is a comple® then there is no stable ground
state inF. Hence, existence of complex-frequency modes
imply a kind of instability in quantum field theory. This con-
clusion is consistent with the results of Ref43,12 that
spectrum of the Hamiltonian becomes continuous and that
eigenstates are not normalizable if there is a complex-
frequency mode.

Off course, there is a corresponding instability in classical
theory: if there is a complex frequency with positive imagi-
nary part then a solution expressed as @) grows expo-
nentially in time. On the other hand, if imaginary part of
frequency is negative then the corresponding solution decays
in time but grows exponentially in inverse time.

Therefore, in both classical and quantum senses, appear-
ance of complex-frequency modes implies instability of the

Since the above orthonormality of the mode functionsSystem. In the next section, we show that in the brick-wall

imply
(2.22

+
[ay,ay ]= 6w, [ay,a]=0,

model a scalar field has complex-frequency modes. Hence, it
might be expected that the brick wall model might be un-
stable and that it might be an unsuitable model to seek en-
tropy for an equilibrium state. However, it turns out that the

the Hilbert spacef of all quantum states can be constructedimaginary part of the complex frequency can be made arbi-

as a symmetric Fock space spanned by the stdfes})
defined by

op=T1 2% (223
{ )\}>_>\eP \/N_)\' >! '
where the ground stal®) is defined by

a,|0)=0 for VAeP. (2.24

Hereafter \ denotes gIm) and\ denotes ¢ w*,1,—m).
The canonical HamiltoniaR[ D] with respect to the time
evolution vectoD is given by

HID]= (D, d)xc. (2.29

Hence, if Q is a constant,then H[D] is a conserved
guantity and can be expressed as

1
H[D]=> ép [(Ro—Qm)(ayal +ala,)

(2.26

+iJw(alal—ayay)].

Note that any states of the for(R.23 are not eigenstates of

this Hamiltonian unless alb are real[Off course, if there is
no complexw then all states of the forn2.23 are eigen-
states of this Hamiltoniah.Moreover, in Appendix B it is

shown that there is no ground state suitable for this Hamil-
tonian unless allv are real. To be precise, it is always im-

possible to eliminate terms includirgfa% or a,a, in Eq.

4 Q is not a constant theH[D] is not a conserved quantity in

general sincd) ¢ does not satisfy the equation of motion.

trarily small by making the inner boundary close enough to
the horizon. In fact, in the next section, we show that the
imaginary part is small enough compared with the Hawking
temperature if the inner boundary is sufficiently close to the
horizon, say at a proper altitude of Planck scale.

Ill. COMPLEX FREQUENCY MODES AND STABILITY
OF THE BRICK-WALL MODEL

For simplicity, let us consider the (4-dimension&lerr
spacetime as a background and suppose that the misa
nonzero constant. The metric is given by

2Mr p3
dSzZ—(l—T dt>+ Kdr2+2d02+RZSin20d<P2
4Mar
S sirfédedt, (R
where
S =r?+a’cog,
A=r’+a%-2Mr,
SR?=(r2+a?)2— a2Asirfe. (3.2

This is of the form(2.1) with

124021-3
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2Mar
wg=

SR?

p?=R2sirfo,

p
q?Pdx@dxP= —dr?+3d6>.

A (3.3

We only consider the region=r in this spacetime: we
impose the Dirichlet boundary condition on the fietdat r
=r,. Hereafter we assume theg>M +M?—a?: there is
no horizon in the regiom=r .

It is well known that in this background E¢2.10 be-
comes separable. In fact, we can find a solution of(Ed.0
of the form

u(r)
f= S(9), (3.9
re+a
whereS satisfies
L9 ing D)+ [ n- a2y 1)si? 2s—o
sing do Slnﬂd—a + au(y )sin‘o s =0,
(3.9
and the equation fou can be written as
d?u
(3.6

§+(y—v+)(y—V7)U=0

by introducing the nondimensional tortoise coordinatay

dx r?+a?

-1-7_
gy A (3.7

or

M

YMZ2—a?

,u‘1x=r+

r—r, r—r_
r.in —r_In .
ry—r_ ry—r_

(3.9

Herer . =M= M?—a? y=w/u andV. are defined by
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Vi (X,y)

Xo Xy X,

V. (X,y)

FIG. 1. The typical form of the graphs=V_.(X,y) is written on
a fixedy plane. Note thaV.. depend ory as well asx through the
eigenvaluex of Eq. (3.5. However, asymptotic behavior &f. in
the limit x— = does not depend on

2maMr Au?
MV = * )
(r’+a?)? r’+a?
~o 2, A m?a?(r?+a%+2Mr)
M= M0 -
(r’+a?) (r’+a?)?3
2Mr+a? 6Ma?r

+(r2+a2)2_(r2+a2)3' 39

Note that in the horizon limit—r , (or x— — o) both ofV ..
approach the same value

Y ma
= 2uMr,

(3.10

and thatV. approachest1, respectively, in the limitr
—oo (or x—). (See Fig. 1.

Now let us seek complex frequency modes by examining
a scattering amplitude for real-frequency waves. The method
we shall use here is based on the following expected form of
the scattering amplitud®near a poley=ygr+iy,, providing
that|yg|>y|: [11]:

y—yrtiy|

S=e?2%x .
Y=YrTIY

(3.11

where &, is a constant phase. Hence, if we can obtain this
form of a scattering amplitude by analyzing real-frequency
waves then we find an outgoing normal mode corresponding
to y=yr+iy, and an incoming normal mode corresponding
to y=ygr—iy,. After that we should confirm whether these
normal modes converge or diverge in the limityofso. If
these normal modes converge then they give complex-
frequency mode functions.

We first consider the case in whigha>2uMr . and
examine the following five regime separatelgi) 1<y
<V_(Xo); (i) y>V(xo); (iii) y<—=1; (iv) V_(xg)sy
<V, (Xp); (v) —1l=sy=1.

(i) 1<y<V_(Xp)

124021-4



IS THE BRICK-WALL MODEL UNSTABLE FOR A . ..
In this regime, let the solution of=V_ and that ofy
=V, bex=x,(y) andx=x,(y), respectively(See Fig. 1.

In each region separated By andx,, the WKB solution is
given by

C X
u= sm(J ﬁdx) for Xo<X<Xi,
Xo

|T|1/4
Cs jx
+——exp — Tldx
T o~ [ e

"~ x| [Tl
U= —eX X
|T|l/4 X1

for x;<x<Xx,,
|T|1/4eXp< f VI Tldx | + |1/4exp{—|f \/_dx>
for x,<x, (3.12
where
T=(y=V)(y=V_). (3.13

Hence, the standard connection formula for WKB solutions

gives
C 4e2"cos{+isin
S=—=-— # (3.19
Cs 4e?"cos{—isin{
where
X1 w
o= [TTax-3,
Xo
X2
n= f VI Tldx. (3.15
X1

In the limit e7—o0, S approaches te-i unless co&=0, in
which caseS= +i.
frequency corresponding to ¢ps0. We denote the value of
y at which

1
{= n+§ m (316)
by y,. Thence, we expan8 neary=y,:
—ynt+ie 274
S=—ix I oy —y,)?, (347)
y—Yo—ie 7,
where
d X
- flﬁdx (3.18
dy[Jx y=y

Hence, a resonance will occur near a

PHYSICAL REVIEW D61 124021

Because of the behavi@B.10, the asymptotic behavior of
a,, in the limit of x,— —% can be obtained:

e uMr In o=+ _ & In Fo—r+
%n O UmZ=a2| \re—r_)| 2k \ro—r_)|
(3.19

where k is “the surface gravity of the horizon®This im-
plies thata,>0. Hence, from Eq(3.17) and the last of Eq.
(3.12, we can conclude that there are two regular solutions,
whose asymptotic forms in the limit—co are

) 1
u~exg | *iyn—
n

Here the plus sign corresponds3ot=0 and the minus sign
corresponds toS=0. Thus, we have obtained a set of
complex-frequency modes corresponding to

e 27

X|.

(3.20

i
= +——e 27
w M(yn 4an

. (3.29

However, from the asymptotic behavi8.19 we can con-
clude that

ro—ry

Tepdo~+me ?7|In
ro—r_

-1
)‘ =0 (ro—ry),
(3.22

where Tgy= «/27 is the Hawking temperature of the Kerr
background.

(i) y>V..(xo)

In this regime, analysis depend on how many solutions
y=V, has. Ify=V, has no solution or only one degenerate
solution then there is no complex frequency modes since
whole region,Xy,<Xx, is classically allowed region. lfy
=V, has two solutions then we can repeat the above proce-
dure for the regimei). However, obtained WKB solutions
have the asymptotic forni3.20 with negative«, in this
case. Thus, there is no regular solutions which correspond to
complex-frequency modes.

(i) y<—1

Also in this regime, we can repeat the above procedure. If

=V_ has no solution or only one degenerate solution then
there is no complex frequency mode. For the case in which
y=V_ has two solutions, obtained WKB solutianhas the
asymptotic form

u~exg | *iy,+ ! e 27|x
N 4,

2Although \ in V. depends oty through the eigenequatidB.5),
this asymptotic behavior af,, is correct since the right hand side of
Eq. (3.10 is independent ok.

3Strictly speaking, in our background there is no horizon by as-
sumption. However, redshifted local acceleration is bounded from
above by the surface gravity of the horizon in the extended space-
time which has a horizon.

(3.23
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with positive «,,. Thus, there is no regular solution which imaginary part of the complex frequency can be small
corresponds to complex-frequency modes. enough compared with the Hawking temperature if the inner
(iv) V_(xg)=<y=V.(Xp) boundary is sufficiently close to the horizon, say at a proper
In this regime, let the solution of=V . bex=x,(y). In  altitude of Planck scale. Hence, the time scale of the ergore-
each region separated By, the WKB solution is given by  gion instability is much longer than the relaxation time scale
of the thermal state with the Hawking temperature. In the
U= &sinr( f" \/mdx) fOr Xa< X< X latter time scale ambient fields should settle in the thermal
|4 . 0 2 state. In this sense ergoregion instability is not so cata-
strophic. Thus, the brick-wall model is well defined if the
C, X
u |T|l/4exp<|jx2\/mdx

C " inner boundary is sufficiently close to the horizon.
5 .
r{—lj \/|T|dx)
X2

X

+ ——ex Now, let us discuss physical interpretation of the exis-
|T|H tence of complex-frequency modes. First, for a rotating black
hole background, there is no complex frequency middg.
for x,<x, (3.29 However, it is well known that superradiant modes of fields
) . are amplified by scattering. On the other hand, for the brick-
hgnce the standard connection formula for WKB solutions 4| (or a rapidly rotating stambackground, the amplification
gives of superradiant modes can be suppressed by a boundary con-
on dition say, the Dirichlet boundary condition at the inner
S= &: —i><2e - (3.25 boundary[15]. Instead of the amplification of superradiant
Cs 2e2n4j’ ' modes, as shown in this paper, for this background there
appear complex frequency modes. These complex frequency
where modes are outgoing and incoming normal modes of the field
and may be understood intuitively as “quasibound states” in
_[* the ergoregion[See Eq.(3.16.] This interpretation is con-
= J'Xo VITldx. (3.2 sistent with the fact that for a black hole background there is
no complex frequency mode since there is no “quasibound
From this expression o, it is evident that there is no sState” in the ergoregion: any excitations with negative en-
complex-frequency mode near the real axis. ergy with respect to observers at infinity will fall into the
(V) —1sy=<1 hole. Based on this observation, thus, it is expected that in
In this regime, the region with largeis classically for-  the brick-wall background the imaginary part of the complex
bidden region. Thus, there is no complex-frequency mode. frequency should become arbitrarily small in the limit that

Next, let us consider the case in whigla<—2uMr | . the inner boundary becomes close enough to the horizon
The above analysis can be applied to this case by simplgince in this limit there appears a large room for the excita-
replacingy with —y, V, with —V_, andV_ with =V, . tions with negative energy with respect to observers at infin-
Complex frequency modes arise only in the regivheg(x,) ity to escape to. This consideration is, of course, consistent
<y<-1 and with our result in this paper: we have shown that the imagi-

nary part of the complex frequency can be small enough
o— I+ compared with the time scale determined by the Hawking
'“( r+—r_) —0 (ro—r+). (329 temperature if the inner boundary is sufficiently close to the
horizon, say at a proper altitude of Planck scale.
Finally, let us consider the case in which2uMr ., Next, let us discuss a relation to the so-called Schiff-
<ma=2uMr , . From the above analysis for other cases, itSnyder-Weinberg effedt16]. In Ref. [17] the relation be-
is evident that there arise no complex-frequency mode functween the Klein paradoil8] and superradiance in a rotating
tions since neither the regime<ly<V_(x,) nor the regime  black hole background was discussed in detail by using a
V., (X)<y<—1 exist in this case. rectilinear model of the Kerr spacetime. Since the situation
In summary, in this section we have shown that in thein the Klein paradox can be understood as a litttie so-
Kerr background without horizon but with an inner boundarycalled Klein limit) of the Schiff-Snyder-Weinberg effect
a scalar field has Comp|ex-frequency modes and that thEL7], the situation in a rotating black hole background should
imaginary part of the Comp|ex frequency is small enoughbe understood as a limit of our situation, i.e., the brick-wall
compared with the Hawking temperature if the inner bound-model. This is actually the case: in thg— —< limit the
ary is sufficiently close to the horizon, say at a proper alti-complex frequencies in the brick-wall background disappear

Tapdo~*+me 27

tude of Planck scale. as in the Kerr black hole or in the rectilinear spacetime con-
sidered in Ref[17].
IV. SUMMARY AND DISCUSSION Finally, we would like to mention a possibility to stabilize

the quantum field theory in a rotating background by intro-

We had analyzed the stability of the brick-wall model in aducing a nonlinear interaction. In Refd.9,2Q it was sug-
rotating background. We had shown that in the Kerr backgested that a nonlinear interaction will prevent the vacuum
ground without horizon but with an inner boundary a scalarfrom being unstable even if there are complex-frequency
field has complex-frequency modes and that, however, thenodes. It will be interesting to investigate such a possibility

124021-6
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in the case of quantum field theory in a rotating background. \/; o
Physics in a rapidly rotating background spacetime will be as J d“fle((?@)Z@GAngA(ﬁB,
interesting as physics of strong fielpl].
Bla,p=teeC,
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APPENDIX A: KLEIN-GORDON NORM AND (Gapd®— Gapfed®) + Gpcfrd®+ (Vapg— Gepfp) #°
INTEGRABILITY o (A5)

In Sec. Il we have expanded the field operatoas Eq.
(2.8 by mode functions{® .} satisfying Egs.(2.19- and
(2.21). In other words, we have required that coefficients of A . A A -
annihilation operators should have positive Klein-Gordon [ msl=i65. [¢"¢al=[n"me]=0, (AB)

norm instead of requiring positivity of the frequeneywith  \yhere the momentunr, conjugate togp” is defined by
respect to the Killing time.

In this appendix we show that the positivity of the Klein- L ) 5
Gordon norm is required by integrability of equations for the A= > =Gap(¢°— 26°). (A7)
ground state, say, Eq42.24). I

Let us consider a scalar field described by the action
(2.2 in a generaln-dimensional globally-hyperbolic space-
time:

Now let us expand the field operator by “mode func-
tions” {®A,®A*} (n=1,2,...),i.e. solutions of the equa-
tion of motion:

ds?=— N2dt?+ y (dx + gidt) (dx*+ gkdt), (A1)
ik '

| ¢A:; (a,Ph+aldp*), (A8)
where the lapse functiorN, the shift vector g!, the

(n—1)-dimensional metricy; and the masg can depend \here we assume thatb2,dA*} forms a complete set of
on botht and the (1—1)-dimensional coordinate'}. linearly independent solutions of the equation of motion.

To make our arguments definite, let us discretize the sys- e would like to define the corresponding ground state
tem of the scalar field. Since the Lagranglamefined byl by

= [dtL can be written as
a,/0)=0, for Vn. (A9)
_1 n-1 \/; j 2 i i i i i i
L= Ef d""*x W(&td)—ﬁjo?j ) This is the discretized version of E(R.24). However, this
equation is not integrable in general. Hence, in this appendix
we would like to seek the necessary and sufficient condition
—NVy( Y0, pap+ ,u,2¢2)}, (A2)  for the integrability of this equation.
First, it is easily shown that a certain linear combination

) o of ¢* and m, is written as a linear combination @, as
we can discretize it to obtdin follows:

1 : . 1
L= 5Gpa(¢"~ 184 ($°~ fE°) — 5 Vagd" o, TA=10ppd°= —1 2 2, 0R(Q+0%)sp,  (ALD)

(A3)
where the matriX2,g is defined by

provided that we suppose the following correspondence: )
Qag=—iGac (P HFFdT*—f5]. (AL

4 . , Thus, in order for Eq(A9) to be integrable, it is necessary
Although explicit forms of the matriceS,f andV depend on the

way of discretization, all we need to take the continuous limit in the

following arguments is the corresponden@et) only. Thus, the [(WA_iQAc¢C)-(WB_iQBD¢D)]|O>:(QAB_QBA)|0>
result in this appendix is independent of an explicit way of discreti-

zation. =0, (A12)
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which is equivalent to
(@,W)KG:—ifd“‘lx yut(®g,v* —v*g,d),

q’ﬁ*(QAB_QBA)‘I’Eq*:_iGAB[q’ﬁ*(‘i’Ef_ch:(DEq*) (A22)

H A AgC Bx1_ 1 .
_((Dn*—fc(l)n*)q)m*]_O_ u#aﬂzﬁ(at_lBJaj),
(A13)

Next, by using the relatiopA10), the solution of Eq(A9) which reduces to Eq2.15 for a spacetime metric of the

is obtained at least locally as follows, provided that the locaform _(2'1)' . . . -
integrability condition(A13) is satisfied: It is als_o evident Fhat the_ln.tegrablhty condlqom&lﬁ)
and (A19) in the continuous limit for the expansid@.8) is
that Egs. (2.20 and (2.19 for V(wlm)eP and
: (Ald)  VY(w'I'm’)eP.

1
({¢"}]0) =NeXF{ - EQAB¢A¢B

In order for this wave function to be well-defined, i.e., nor- APPENDIX B: HAMILTONIAN EOR A COMPLEX

malizable, it is necessary and sufficient that the Hermite ma- FREQUENCY MODE
trix (Q+QM g be positive definite. This condition is re- ) ) . ) )
stated that the matrix,,,, defined as follows should be  In this appendix, we Sh0V¥ that it is always impossible to
positive definite: eliminate terms includingala; or a,a, in Eq. (2.26 by a
A . B Bogoliubov transformation.
Xnm=P(Q2+ Q") 2Py In general, a Bogoliubov transformation can be written in
. : : terms of two matricegx and 8 satisfying
= —iG e[ PP —FROLF) — (P~ FEPR) P ].
(A15) aa’-ppT=1, (B1)
In summary, in order for EqA9) to be integrable, it is aBT—BaT=0

necessary and sufficient that the condit{@l3) is satisfied
and that the matrixX,,, defined by Eq.(A15) is positive

as
definite. These two conditions can be restated as follows:
(q): ®)=0, for Vn,m, (A16) (I)nﬂg (anmq)m_{'ﬂnm(brn), (B2
(®,,P,) is positive definite, (A17)

) ] where {®.} (n=1,2,...) is a set ofpositive frequency
where the norm @, V) is defined by mode functions. Let us consider a Hamiltonian of the form
(O, V)=—iGpg[ PA(PE* — FEWCH) — (DA- FAPC)WB*], N 1 R

(A18) H= EE (anam,tanam) + EA anam+ EA a,an,
It is easy to show by using the equation of motidtb) that (B3)
this norm is constant in time if bottb and ¥ satisfy the ) ) . . ) )
equation of motion. whereE is a Hermite matrix and\ is a symmetric matrix.
Provided that the conditiofA17) is satisfied, it is pos- Under the Bogoliubov transformation, the coefficient-

sible to take linear transformation ¢} so that matricesE and A are transformed as

(Pr,Pm)=Snm, (A19) E—(aEa'+BE* BT+ (aAB~BA* '),
preser\(ing the conditiofA16). In this normalization, it can A—(ahaT— BA* BT)+(aEBT+ BE* aT).
be easily shown that (B4)

1= —rata 1=
[an.8m' 1=, [an.am]=[an",am']=0. (A20) Returning to the problem, the contribution of a pair of

Thus, we can construct the Hilbert space of all quantunfomplex-frequency modesand\ to the Hamiltoniar(2.26

states spanned by can be written as
(a;)N” 1 Tt T, ot
[{Nah) =TT <5 ]10)- (A21) h= 5 (Re-Qm)[(aya, +aa,) — (aa,+aay)]
n n-
. t _
Now let us take a continuous limit. From the correspon- +1J w(aIa)\—— aay). (BS)
dence(A4), it is evident that the normiA18) is a discretized
version of the Klein-Gordon norm This is of the form(B3) with
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IS THE BRICK-WALL MODEL UNSTABLE FORA.. .. PHYSICAL REVIEW D61 124021

01 _ 01 0 1) .
1 0/ 'Jelly o 1 07

1 0 0
Hence, what we shall show now is that there is no choice of :(mw—ﬂm)[ ( 0 _1) YT+ 7( 0 — 1) ] , (B8
2X 2 matricesa and g satisfying Eq.(B1) and

E=(Ro—0Om) +y

1 0 N
0o -1/ =—lJw

(ahaT—BA* BT)+(aEBT+ BE*aT)=0. (B7) Wherey= a~1B. These equation are easy to solve with re-

spect toy. The result giveddety|=1. However, from the

This statement is easy to show. First, since the first of Edfirst of Eq. (B1) it is derived that{dety| <1, which contra-
(B1) implies thata has the inverse, the second of EB1) dicts with the above result. Therefore, there is no choice of

and Eq.(B7) are written asy=y' and 2X 2 matricese and B satisfying Eqs(B1) and(B7).
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