
PHYSICAL REVIEW D, VOLUME 61, 124021
Is the brick-wall model unstable for a rotating background?
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

and Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada V8W 3P6
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The stability of the brick-wall model is analyzed in a rotating background. It is shown that, in the Kerr
background without an horizon but with an inner boundary, a scalar field has complex-frequency modes and
that, however, the imaginary part of the complex frequency can be small enough compared with the Hawking
temperature if the inner boundary is sufficiently close to the horizon, say at a proper altitude of Planck scale.
Hence the time scale of the instability due to the complex frequencies is much longer than the relaxation time
scale of the thermal state with the Hawking temperature. Since ambient fields should settle in the thermal state
in the latter time scale, the instability is not so catastrophic. Thus the brick-wall model is well defined even in
a rotating background if the inner boundary is sufficiently close to the horizon.

PACS number~s!: 04.70.Dy
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I. INTRODUCTION

Understanding the origin of black hole entropy is one
the most interesting problems in black hole physics. T
black hole entropy is given by the Bekenstein-Hawking f
mula @1,2# as

SBH5
1

4
AH , ~1.1!

whereAH is area of the horizon.
It seems that a full understanding of black hole entro

requires a theory of quantum gravity, which we do not kn
yet. However, we believe that the general features of bl
hole entropy can be understood by semiclassical the
namely, quantum field theory in a fixed gravitational bac
ground. In fact, the brick-wall model proposed by ’t Hoo
@3# succeeded in deriving the proportionality of black ho
entropy to the horizon area by identifying the black ho
entropy with the thermal entropy of ambient quantum fie
raised to the Hawking temperature. It was recently clarifi
that in this model back reaction is small enough and that
model is actually a self-consistent model as a semiclass
theory@4#. Moreover, it was shown that this model seeks
maximal value of entanglement entropy in the space of st
whose back reaction is small enough@5#.

Originally, the brick-wall model is proposed in the sphe
cally symmetric, static background, say, the Schwarzsc
background. Hence, it seems interesting to see how
model is extended to a rotating background, say, the K
background@6–9#. However, it is known that in a rapidly
rotating spacetime without horizon a field has comple
frequency modes@10,11# and that there is the so called e
goregion instability@12#. Thus, it might be expected that th
brick-wall model in rotating background might be unstab
and unsuitable for the origin of black hole entropy.

In this paper we analyze the stability of the brick-wa
model in a rotating background. We show that the time sc
of the ergoregion instability is much longer than the rela
ation time scale of the thermal state with the Hawking te
perature. In the latter time scale ambient fields should se
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in the thermal state. Thus, the brick-wall model is well d
fined even in a rotating background.

In Sec. II we summarize a quantum field theory of a re
scalar field in ann-dimensional axisymmetric stationar
spacetime to show how the appearance of comp
frequency modes alters the structure of the quantum fi
theory. In Sec. III we consider a scalar field in th
4-dimensional Kerr spacetime without horizon but with
inner boundary to show the existence and a property of
complex frequency. Section IV is devoted to summarizi
this paper.

II. SCALAR FIELD IN ROTATING BACKGROUND

Let us consider a generaln-dimensional axisymmetric sta
tionary spacetimeM, whose metric is given by

ds252N2dt21r2~dw2vBdt!21qabdxadxb, ~2.1!

wherea,b51,2, . . . ,(n22). Here, the lapse functionN, the
Bardeen angular velocity~or minus thew-component of the
shift vector! vB , (ww)-componentr2 of the metric and the
(n22)-dimensional metricqab are assumed to depend on
on the (n22)-dimensional coordinates$xa%. On this back-
ground spacetime we consider a real scalar fieldf described
by the action

I 52
1

2EM
dnxA2g~gmn]mf]nf1m2f2!, ~2.2!

where the massm of the field can depend only on the (n
22)-dimensional coordinates$xa%. We impose the boundary
condition

Nrfnm]mf50 on ]M, ~2.3!

where the boundary]M of the spacetimeM is supposed to
be invariant under translations generated by Killing vect
] t and]w , andnm is a unit normal to]M. Note that a part
of ]M can be taken at spatial infinity.

In this paper we quantize the system of the scalar fi
with respect to the time evolution vectorD defined by
©2000 The American Physical Society21-1
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D5S ]

]t D
w,xa

1V~xa!S ]

]w D
t,xa

, ~2.4!

whereV(xa) is an arbitrary function of$xa% such thatD is
timelike in M. For this choice of the time evolution vecto
it is convenient to use a new coordinate system (t,w̃,xa)
defined by

w̃5w2V~xa!t ~2.5!

since for this coordinate system

D5S ]

]t D
w̃,xa

. ~2.6!

Following the usual quantization procedure, it turns out t
the canonical momentump conjugate tof and, thus, the
equal-time commutation relations are independent of
choice ofV(xa):

p[
dL

d~Df!
5

rAq

N FDf1~vB2V!S ]f

]w̃
D

t,xa
G

5
rAq

N F S ]f

]t D
w,xa

1vBS ]f

]w D
t,xa

G , ~2.7!

where the LagrangianL is defined byI 5*dtL. Therefore,
the quantization procedure we follow is independent of
choice of the time evolution vectorD. In this sense there is
no ambiguity in the quantization.

Off course, there is much freedom in selecting a grou
state: we have freedom in the choice of a set of positi
frequency mode functions. In the following, we give o
example of the choice of the set of positive-frequency mo
functions by using a separation of variables. Other choi
give different ground states. However, the Hilbert space
all quantum state is independent of the choice of the set.
example, one ground state can be expressed as excited
above other ground states.

To quantize the system of the scalar field we raise
field f to an operator and decompose it by mode functio

f5 (
(v lm)PP

~Fv lmav lm1Fv lm* av lm
† !, ~2.8!

where the setP and the mode functions$Fv lm% will be de-
fined below by Eq.~2.16! and Eq.~2.17!, respectively.

In order to define the mode functions$Fv lm% in the above
expansion, let us seek solutions$Cv lm% of the field equation
by the following separation of variables:

Cv lm5 f v lm~xa!e2 ivteimw. ~2.9!

The functionf v lm(xa) is a solution of the equation
12402
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NrAq
]a~NrAqqab]bf v lm!1F ~v2vBm!2

N2
2

m2

r2
2m2G f v lm

50, ~2.10!

with the boundary condition

Nr f v lmnm]m f v8 lm50 on ]M, ~2.11!

where nm denotes a unit normal to the boundary]M. ~A
part of ]M can be taken at spatial infinity.! Here note that,
because of the invariance of Eq.~2.10! under (v,m)↔
(2v,2m), we can assume that

f v lm* 5 f 2v* ,l ,2m . ~2.12!

We can choose the quantum numberl so that

E dn22x
rAq

N
~v2vBm! f v lmf v* l 8m

* 50 unless l 5 l 8.

~2.13!

With this choice of the quantum numberl, the following
property holds.

~Cv lm ,Cv8 l 8m8!KG50

unless

v* 5v8, l 5 l 8 and m5m8, ~2.14!

where the Klein-Gordon norm (F,C)KG is given by

~F,C!KG52 i E dn21x
rAq

N
~FDC* 2C* DF!. ~2.15!

Now the setP, over which the summation is taken in E
~2.8!, is defined as

P5PRøPC ,

PR5$~v lm!uv is real,~Cv lm ,Cv lm!KG.0%,
~2.16!

PC5$~v lm!uIv.0%.

The mode functions$Fv lm% in the expansion~2.8! are de-
fined by

Fv lm5
1

ACv lm

Cv lm for ~v lm!PPR ,

Fv lm5
1

A2Cv lm

~Cv lm1eiav lmCv* lm! for ~v lm!PPC ,

~2.17!

where the real constantsCv lm(.0) andav lm are defined by

~Cv lm ,Cv* lm!KG5Cv lmeiav lm. ~2.18!
1-2
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For the above definition ofP and $Fv lm%, the following
property can be easily derived:

~Fv lm ,Fv8 l 8m8!KG5dvv8d l l 8dmm8 , ~2.19!

~Fv lm ,Fv8 l 8m8
* !KG50, ~2.20!

~Fv lm* ,Fv8 l 8m8
* !KG52dvv8d l l 8dmm8 , ~2.21!

for ;(v lm)PP and ;(v8l 8m8)PP. It is these properties
that lead us to the above definition ofP and $Fv lm%. In
Appendix A, it is shown that the local integrability of Eq
~2.24! below requires Eq.~2.20! and that the normalizability
of the ground stateu0& requires the left hand side of Eq
~2.19! to be positive definite as a matrix with argumentsl
5(v lm) and l85(v8l 8m8). @Equation~2.21! is an imme-
diate consequence of Eq.~2.19!.#

Since the above orthonormality of the mode functio
imply

@al ,al8
†

#5dll8 , @al ,al8#50, ~2.22!

the Hilbert spaceF of all quantum states can be construct
as a symmetric Fock space spanned by the statesu$Nl%&
defined by

u$Nl%&5 )
lPP

~al
†!Nl

ANl!
u0&, ~2.23!

where the ground stateu0& is defined by

alu0&50 for ;lPP. ~2.24!

Hereafter,l denotes (v lm) and l̄ denotes (2v* ,l ,2m).
The canonical HamiltonianH@D# with respect to the time

evolution vectorD is given by

H@D#5
i

2
~Df,f!KG . ~2.25!

Hence, if V is a constant,1 then H@D# is a conserved
quantity and can be expressed as

H@D#5
1

2 (
lPP

@~Rv2Vm!~alal
†1al

†al!

1 iIv~al
†al̄

†
2alal̄ !#. ~2.26!

Note that any states of the form~2.23! are not eigenstates o
this Hamiltonian unless allv are real.@Off course, if there is
no complexv then all states of the form~2.23! are eigen-
states of this Hamiltonian.# Moreover, in Appendix B it is
shown that there is no ground state suitable for this Ham
tonian unless allv are real. To be precise, it is always im
possible to eliminate terms includingal

†al̄
† or alal̄ in Eq.

1If V is not a constant thenH@D# is not a conserved quantity in
general sinceVf does not satisfy the equation of motion.
12402
s

l-

~2.26! by a Bogoliubov transformation.~See Appendix B.!
Thus, if there is a complexv then there is no stable groun
state inF. Hence, existence of complex-frequency mod
imply a kind of instability in quantum field theory. This con
clusion is consistent with the results of Refs.@13,12# that
spectrum of the Hamiltonian becomes continuous and
eigenstates are not normalizable if there is a compl
frequency mode.

Off course, there is a corresponding instability in classi
theory: if there is a complex frequency with positive imag
nary part then a solution expressed as Eq.~2.9! grows expo-
nentially in time. On the other hand, if imaginary part
frequency is negative then the corresponding solution dec
in time but grows exponentially in inverse time.

Therefore, in both classical and quantum senses, app
ance of complex-frequency modes implies instability of t
system. In the next section, we show that in the brick-w
model a scalar field has complex-frequency modes. Henc
might be expected that the brick wall model might be u
stable and that it might be an unsuitable model to seek
tropy for an equilibrium state. However, it turns out that t
imaginary part of the complex frequency can be made a
trarily small by making the inner boundary close enough
the horizon. In fact, in the next section, we show that t
imaginary part is small enough compared with the Hawk
temperature if the inner boundary is sufficiently close to
horizon, say at a proper altitude of Planck scale.

III. COMPLEX FREQUENCY MODES AND STABILITY
OF THE BRICK-WALL MODEL

For simplicity, let us consider the (4-dimensional! Kerr
spacetime as a background and suppose that the massm is a
nonzero constant. The metric is given by

ds252S 12
2Mr

S Ddt21
S

D
dr21Sdu21R2sin2udw2

2
4Mar

S
sin2udwdt, ~3.1!

where

S5r 21a2cos2u,

D5r 21a222Mr ,

SR25~r 21a2!22a2Dsin2u. ~3.2!

This is of the form~2.1! with
1-3
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N25
D

R2
,

vB5
2Mar

SR2
,

r25R2sin2u,

qabdxadxb5
S

D
dr21Sdu2. ~3.3!

We only consider the regionr>r 0 in this spacetime: we
impose the Dirichlet boundary condition on the fieldf at r
5r 0. Hereafter we assume thatr 0.M1AM22a2: there is
no horizon in the regionr>r 0.

It is well known that in this background Eq.~2.10! be-
comes separable. In fact, we can find a solution of Eq.~2.10!
of the form

f 5
u~r !

Ar 21a2
S~u!, ~3.4!

whereS satisfies

1

sinu

d

du S sinu
dS

du D1Fl2a2m2~y221!sin2u2
m2

sin2u
GS50,

~3.5!

and the equation foru can be written as

d2u

dx2
1~y2V1!~y2V2!u50 ~3.6!

by introducing the nondimensional tortoise coordinatex by

m21
dx

dr
5

r 21a2

D
, ~3.7!

or

m21x5r 1
M

AM22a2 F r 1lnS r 2r 1

r 12r 2
D2r 2lnS r 2r 2

r 12r 2
D G .
~3.8!

Here r 65M6AM22a2, y[v/m andV6 are defined by
12402
mV65
2maMr

~r 21a2!2
6A Dm̃2

r 21a2
,

m̃25m21
l

~r 21a2!
2

m2a2~r 21a212Mr !

~r 21a2!3

1
2Mr 1a2

~r 21a2!2
2

6Ma2r

~r 21a2!3
. ~3.9!

Note that in the horizon limitr→r 1 ~or x→2`) both ofV6

approach the same value

V6→ ma

2mMr 1
, ~3.10!

and thatV6 approaches61, respectively, in the limitr
→` ~or x→`). ~See Fig. 1.!

Now let us seek complex frequency modes by examin
a scattering amplitude for real-frequency waves. The met
we shall use here is based on the following expected form
the scattering amplitudeSnear a poley5yR1 iy I , providing
that uyRu@uyI u: @11#:

S5e2id03
y2yR1 iy I

y2yR2 iy I
, ~3.11!

whered0 is a constant phase. Hence, if we can obtain t
form of a scattering amplitude by analyzing real-frequen
waves then we find an outgoing normal mode correspond
to y5yR1 iy I and an incoming normal mode correspondi
to y5yR2 iy I . After that we should confirm whether thes
normal modes converge or diverge in the limit ofx→`. If
these normal modes converge then they give comp
frequency mode functions.

We first consider the case in whichma.2mMr 1 and
examine the following five regime separately:~i! 1,y
,V2(x0); ~ii ! y.V1(x0); ~iii ! y,21; ~iv! V2(x0)<y
<V1(x0); ~v! 21<y<1.

~i! 1,y,V2(x0)

FIG. 1. The typical form of the graphsz5V6(x,y) is written on
a fixedy plane. Note thatV6 depend ony as well asx through the
eigenvaluel of Eq. ~3.5!. However, asymptotic behavior ofV6 in
the limit x→6` does not depend ony.
1-4
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In this regime, let the solution ofy5V2 and that ofy
5V1 be x5x1(y) andx5x2(y), respectively.~See Fig. 1.!
In each region separated byx1 andx2, the WKB solution is
given by

u5
C1

uTu1/4
sinS E

x0

x
AuTudxD for x0,x,x1 ,

u5
C2

uTu1/4
expS E

x1

x
AuTudxD 1

C3

uTu1/4
expS 2E

x1

x
AuTudxD

for x1,x,x2 ,

u5
C4

uTu1/4
expS i E

x2

x
AuTudxD 1

C5

uTu1/4
expS 2 i E

x2

x
AuTudxD

for x2,x, ~3.12!

where

T5~y2V1!~y2V2!. ~3.13!

Hence, the standard connection formula for WKB solutio
gives

S5
C4

C5
52 i 3

4e2hcosz1 isinz

4e2hcosz2 isinz
, ~3.14!

where

z5E
x0

x1AuTudx2
p

4
,

h5E
x1

x2AuTudx. ~3.15!

In the limit eh→`, S approaches to2 i unless cosz50, in
which caseS51 i . Hence, a resonance will occur near
frequency corresponding to cosz50. We denote the value o
y at which

z5S n1
1

2Dp ~3.16!

by yn . Thence, we expandS neary5yn :

S52 i 3
y2yn1 ie22h/4an

y2yn2 ie22h/4an

1O~y2yn!2, ~3.17!

where

an52
d

dy F E
x0

x1AuTudxGU
y5yn

. ~3.18!
12402
s

Because of the behavior~3.10!, the asymptotic behavior o
an in the limit of x0→2` can be obtained:2

an;2x0;
mMr 1

AM22a2 U lnS r 02r 1

r 12r 2
D U5 m

2k U lnS r 02r 1

r 12r 2
D U,

~3.19!

wherek is ‘‘the surface gravity of the horizon.’’3 This im-
plies thatan.0. Hence, from Eq.~3.17! and the last of Eq.
~3.12!, we can conclude that there are two regular solutio
whose asymptotic forms in the limitx→` are

u;expF S 6 iyn2
1

4an
e22hD xG . ~3.20!

Here the plus sign corresponds toS2150 and the minus sign
corresponds toS50. Thus, we have obtained a set
complex-frequency modes corresponding to

v5mS yn6
i

4an
e22hD . ~3.21!

However, from the asymptotic behavior~3.19! we can con-
clude that

TBH
21Iv;6pe22hU lnS r 02r 1

r 12r 2
D U21

→0 ~r 0→r 1!,

~3.22!

whereTBH5k/2p is the Hawking temperature of the Ke
background.

~ii ! y.V1(x0)
In this regime, analysis depend on how many solutio

y5V1 has. Ify5V1 has no solution or only one degenera
solution then there is no complex frequency modes si
whole region, x0<x, is classically allowed region. Ify
5V1 has two solutions then we can repeat the above pro
dure for the regime~i!. However, obtained WKB solutions
have the asymptotic form~3.20! with negativean in this
case. Thus, there is no regular solutions which correspon
complex-frequency modes.

~iii ! y,21
Also in this regime, we can repeat the above procedure

y5V2 has no solution or only one degenerate solution th
there is no complex frequency mode. For the case in wh
y5V2 has two solutions, obtained WKB solutionu has the
asymptotic form

u;expF S 6 iyn1
1

4an
e22hD xG ~3.23!

2Althoughl in V6 depends ony through the eigenequation~3.5!,
this asymptotic behavior ofan is correct since the right hand side o
Eq. ~3.10! is independent ofl.

3Strictly speaking, in our background there is no horizon by
sumption. However, redshifted local acceleration is bounded fr
above by the surface gravity of the horizon in the extended sp
time which has a horizon.
1-5
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with positive an . Thus, there is no regular solution whic
corresponds to complex-frequency modes.

~iv! V2(x0)<y<V1(x0)
In this regime, let the solution ofy5V1 be x5x2(y). In

each region separated byx2, the WKB solution is given by

u5
C1

uTu1/4
sinhS E

x0

x
AuTudxD for x0,x,x2 ,

u5
C4

uTu1/4
expS i E

x2

x
AuTudxD 1

C5

uTu1/4
expS 2 i E

x2

x
AuTudxD

for x2,x, ~3.24!

hence the standard connection formula for WKB solutio
gives

S5
C4

C5
52 i 3

2e2h2 i

2e2h1 i
, ~3.25!

where

h5E
x0

x2AuTudx. ~3.26!

From this expression ofS, it is evident that there is no
complex-frequency mode near the real axis.

~v! 21<y<1
In this regime, the region with largex is classically for-

bidden region. Thus, there is no complex-frequency mod
Next, let us consider the case in whichma,22mMr 1 .

The above analysis can be applied to this case by sim
replacingy with 2y, V1 with 2V2 , andV2 with 2V1 .
Complex frequency modes arise only in the regimeV1(x0)
,y,21 and

TBH
21Iv;6pe22hU lnS r 02r 1

r 12r 2
D U21

→0 ~r 0→r 1!. ~3.27!

Finally, let us consider the case in which22mMr 1

<ma<2mMr 1 . From the above analysis for other cases
is evident that there arise no complex-frequency mode fu
tions since neither the regime 1,y,V2(x0) nor the regime
V1(x0),y,21 exist in this case.

In summary, in this section we have shown that in t
Kerr background without horizon but with an inner bounda
a scalar field has complex-frequency modes and that
imaginary part of the complex frequency is small enou
compared with the Hawking temperature if the inner bou
ary is sufficiently close to the horizon, say at a proper a
tude of Planck scale.

IV. SUMMARY AND DISCUSSION

We had analyzed the stability of the brick-wall model in
rotating background. We had shown that in the Kerr ba
ground without horizon but with an inner boundary a sca
field has complex-frequency modes and that, however,
12402
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imaginary part of the complex frequency can be sm
enough compared with the Hawking temperature if the in
boundary is sufficiently close to the horizon, say at a pro
altitude of Planck scale. Hence, the time scale of the erg
gion instability is much longer than the relaxation time sc
of the thermal state with the Hawking temperature. In t
latter time scale ambient fields should settle in the therm
state. In this sense ergoregion instability is not so ca
strophic. Thus, the brick-wall model is well defined if th
inner boundary is sufficiently close to the horizon.

Now, let us discuss physical interpretation of the ex
tence of complex-frequency modes. First, for a rotating bla
hole background, there is no complex frequency mode@14#.
However, it is well known that superradiant modes of fiel
are amplified by scattering. On the other hand, for the bri
wall ~or a rapidly rotating star! background, the amplification
of superradiant modes can be suppressed by a boundary
dition say, the Dirichlet boundary condition at the inn
boundary@15#. Instead of the amplification of superradia
modes, as shown in this paper, for this background th
appear complex frequency modes. These complex freque
modes are outgoing and incoming normal modes of the fi
and may be understood intuitively as ‘‘quasibound states’
the ergoregion.@See Eq.~3.16!.# This interpretation is con-
sistent with the fact that for a black hole background there
no complex frequency mode since there is no ‘‘quasibou
state’’ in the ergoregion: any excitations with negative e
ergy with respect to observers at infinity will fall into th
hole. Based on this observation, thus, it is expected tha
the brick-wall background the imaginary part of the compl
frequency should become arbitrarily small in the limit th
the inner boundary becomes close enough to the hor
since in this limit there appears a large room for the exc
tions with negative energy with respect to observers at in
ity to escape to. This consideration is, of course, consis
with our result in this paper: we have shown that the ima
nary part of the complex frequency can be small enou
compared with the time scale determined by the Hawk
temperature if the inner boundary is sufficiently close to
horizon, say at a proper altitude of Planck scale.

Next, let us discuss a relation to the so-called Sch
Snyder-Weinberg effect@16#. In Ref. @17# the relation be-
tween the Klein paradox@18# and superradiance in a rotatin
black hole background was discussed in detail by usin
rectilinear model of the Kerr spacetime. Since the situat
in the Klein paradox can be understood as a limit~the so-
called Klein limit! of the Schiff-Snyder-Weinberg effec
@17#, the situation in a rotating black hole background sho
be understood as a limit of our situation, i.e., the brick-w
model. This is actually the case: in thex0→2` limit the
complex frequencies in the brick-wall background disapp
as in the Kerr black hole or in the rectilinear spacetime c
sidered in Ref.@17#.

Finally, we would like to mention a possibility to stabiliz
the quantum field theory in a rotating background by int
ducing a nonlinear interaction. In Refs.@19,20# it was sug-
gested that a nonlinear interaction will prevent the vacu
from being unstable even if there are complex-frequen
modes. It will be interesting to investigate such a possibi
1-6
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in the case of quantum field theory in a rotating backgrou
Physics in a rapidly rotating background spacetime will be
interesting as physics of strong fields@21#.
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APPENDIX A: KLEIN-GORDON NORM AND
INTEGRABILITY

In Sec. II we have expanded the field operatorf as Eq.
~2.8! by mode functions$Fv lm% satisfying Eqs.~2.19!–
~2.21!. In other words, we have required that coefficients
annihilation operators should have positive Klein-Gord
norm instead of requiring positivity of the frequencyv with
respect to the Killing timet.

In this appendix we show that the positivity of the Klei
Gordon norm is required by integrability of equations for t
ground state, say, Eq.~2.24!.

Let us consider a scalar fieldf described by the action
~2.2! in a generaln-dimensional globally-hyperbolic space
time:

ds252N2dt21g jk~dxj1b jdt!~dxk1bkdt!, ~A1!

where the lapse functionN, the shift vector b j , the
(n21)-dimensional metricg jk and the massm can depend
on botht and the (n21)-dimensional coordinates$xj%.

To make our arguments definite, let us discretize the s
tem of the scalar field. Since the LagrangianL defined byI
5*dtL can be written as

L5
1

2E dn21xFAg

N
~] tf2b j] jf!2

2NAg~g jk] jf]kf1m2f2!G , ~A2!

we can discretize it to obtain4

L5
1

2
GAB~ḟA2 f C

AfC!~ḟB2 f D
BfD!2

1

2
VABfAfB,

~A3!

provided that we suppose the following correspondence:

4Although explicit forms of the matricesG, f andV depend on the
way of discretization, all we need to take the continuous limit in
following arguments is the correspondence~A4! only. Thus, the
result in this appendix is independent of an explicit way of discr
zation.
12402
.
s

-
k

f

s-

E dn21x
Ag

N
~] tf!2⇔GABḟAḟB,

b j] jf⇔ f C
AfC,

E dn21xNAg~g jk] jf]kf1m2f2!⇔VABfAfB.

~A4!

These relations will be used when we take a continu
limit. The corresponding equation of motion and the comm
tation relations are

~GABḟB2GABf C
BfC!1GBCf A

CḟB1~VAB2 f A
CGCDf B

D!fB

50, ~A5!

and

@fA,pB#5 idB
A , @fA,fB#5@pA,pB#50, ~A6!

where the momentumpA conjugate tofA is defined by

pA[
]L

]ḟA
5GAB~ḟB2 f C

BfC!. ~A7!

Now let us expand the field operator by ‘‘mode fun
tions’’ $Fn

A ,Fn
A* % (n51,2, . . . ), i.e. solutions of the equa

tion of motion:

fA5(
n

~anFn
A1an

†Fn
A* !, ~A8!

where we assume that$Fn
A ,Fn

A* % forms a complete set o
linearly independent solutions of the equation of motion.

We would like to define the corresponding ground st
by

anu0&50, for ;n. ~A9!

This is the discretized version of Eq.~2.24!. However, this
equation is not integrable in general. Hence, in this appen
we would like to seek the necessary and sufficient condit
for the integrability of this equation.

First, it is easily shown that a certain linear combinati
of fA and pA is written as a linear combination ofan as
follows:

pA2 iVABfB52 i(
n

anFn
B~V1V* !AB , ~A10!

where the matrixVAB is defined by

VAB52 iGAC@~F21!B
n* Ḟn

C* 2 f B
C#. ~A11!

Thus, in order for Eq.~A9! to be integrable, it is necessar
that

@~pA2 iVACfC!,~pB2 iVBDfD!#u0&5~VAB2VBA!u0&

50, ~A12!
-

1-7
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which is equivalent to

Fn
A* ~VAB2VBA!Fm

B* 52 iGAB@Fn
A* ~Ḟm

B* 2 f C
BFm

C* !

2~Ḟn
A* 2 f C

AFn
C* !Fm

B* #50.

~A13!

Next, by using the relation~A10!, the solution of Eq.~A9!
is obtained at least locally as follows, provided that the lo
integrability condition~A13! is satisfied:

^$fA%u0&5NexpF2
1

2
VABfAfBG . ~A14!

In order for this wave function to be well-defined, i.e., no
malizable, it is necessary and sufficient that the Hermite m
trix (V1V†)AB be positive definite. This condition is re
stated that the matrixXnm defined as follows should b
positive definite:

Xnm[Fn
A~V1V†!ABFm

B*

52 iGAB@Fn
A~Ḟm

B* 2 f C
BFm

C* !2~Ḟn
A2 f C

AFn
C!Fm

B* #.

~A15!

In summary, in order for Eq.~A9! to be integrable, it is
necessary and sufficient that the condition~A13! is satisfied
and that the matrixXnm defined by Eq.~A15! is positive
definite. These two conditions can be restated as follows

~Fn* ,Fm!50, for ;n,m, ~A16!

~Fn ,Fm! is positive definite, ~A17!

where the norm (F,C) is defined by

~F,C![2 iGAB@FA~ĊB* 2 f C
BCC* !2~ḞA2 f C

AFC!CB* #.
~A18!

It is easy to show by using the equation of motion~A5! that
this norm is constant in time if bothF and C satisfy the
equation of motion.

Provided that the condition~A17! is satisfied, it is pos-
sible to take linear transformation of$Fn% so that

~Fn ,Fm!5dnm , ~A19!

preserving the condition~A16!. In this normalization, it can
be easily shown that

@an ,am
†#5dnm , @an ,am#5@an

†,am
†#50. ~A20!

Thus, we can construct the Hilbert space of all quant
states spanned by

u$Nn%&5S )
n

~an
†!Nn

Nn! D u0&. ~A21!

Now let us take a continuous limit. From the correspo
dence~A4!, it is evident that the norm~A18! is a discretized
version of the Klein-Gordon norm
12402
l

a-

-

~F,C!KG52 i E dn21xAgum~F]mC* 2C* ]mF!,

~A22!

um]m5
1

N
~] t2b j] j !,

which reduces to Eq.~2.15! for a spacetime metric of the
form ~2.1!.

It is also evident that the integrability conditions~A16!
and ~A19! in the continuous limit for the expansion~2.8! is
that Eqs. ~2.20! and ~2.19! for ;(v lm)PP and
;(v8l 8m8)PP.

APPENDIX B: HAMILTONIAN FOR A COMPLEX
FREQUENCY MODE

In this appendix, we show that it is always impossible
eliminate terms includingal

†al̄
† or alal̄ in Eq. ~2.26! by a

Bogoliubov transformation.
In general, a Bogoliubov transformation can be written

terms of two matricesa andb satisfying

aa†2bb†51, ~B1!

abT2baT50

as

Fn→(
m

~anmFm1bnmFm* !, ~B2!

where $Fn% (n51,2, . . . ) is a set ofpositive frequency
mode functions. Let us consider a Hamiltonian of the for

H5
1

2
Enm~anam

† 1an
†am!1

1

2
Lnmanam1

1

2
Lnm* an

†am
† ,

~B3!

whereE is a Hermite matrix andL is a symmetric matrix.
Under the Bogoliubov transformation, the coefficien
matricesE andL are transformed as

E→~aEa†1bE* b†!1~aLb†2bL* a†!,

L→~aLaT2bL* bT!1~aEbT1bE* aT!.
~B4!

Returning to the problem, the contribution of a pair
complex-frequency modesl andl̄ to the Hamiltonian~2.26!
can be written as

h5
1

2
~Rv2Vm!@~alal

†1al
†al!2~al̄al̄

†
1al̄

†
al̄ !#

1 iI v~al
†al̄

†
2alal̄ !. ~B5!

This is of the form~B3! with
1-8
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E5~Rv2Vm!S 1 0

0 21D , L52 iIvS 0 1

1 0D .

~B6!

Hence, what we shall show now is that there is no choice
232 matricesa andb satisfying Eq.~B1! and

~aLaT2bL* bT!1~aEbT1bE* aT!50. ~B7!

This statement is easy to show. First, since the first of
~B1! implies thata has the inverse, the second of Eq.~B1!
and Eq.~B7! are written asg5gT and
in

9

m

12402
f

q.

i I vH S 0 1

1 0D 1gS 0 1

1 0D gTJ
5~Rv2Vm!H S 1 0

0 21D gT1gS 1 0

0 21D J , ~B8!

whereg5a21b. These equation are easy to solve with r
spect tog. The result givesudetgu51. However, from the
first of Eq. ~B1! it is derived thatudetgu,1, which contra-
dicts with the above result. Therefore, there is no choice
232 matricesa andb satisfying Eqs.~B1! and ~B7!.
D
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