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We analyze the inelastic scattering of α particles on 12C exciting the 0+
2 state at incident energies of Eα =

139–240 MeV using α-condensate model wave functions, and investigate the effect of the nuclear radius of
12C(0+

2 ) on the inelastic angular distribution. It is found that the oscillation pattern in inelastic angular distribution
is sensitive to the extension of the transition density rather than the nuclear radius of the excited state, although
the absolute value of the inelastic differential cross section is sensitive to the nuclear radius of 12C(0+

2 ).
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I. INTRODUCTION

The α-cluster correlation is known to be a fundamental
feature of light nuclear systems, and the α-cluster structure
of nuclei has been studied by many authors using various
approaches [1]. A typical example is the three-α structure in
12C, which has been studied using microscopic three-α-cluster
models [2–5]. The results of these studies indicate that the 0+

2
state in 12C has a well-developed three-α-cluster structure,
and the constituent α particles are moving freely as in a gas
state.

Recently, it was proposed [6,7] that the 0+
2 state in 12C

could be interpreted as an α-particle condensate state. The
authors proposed a new type of α-cluster model describing an
α-particle Bose-condensate state (α-condensate model, ACM).
It was shown that this wave function reproduced well the
experimental data on 12C as well as the predictions of the
microscopic three-α-cluster model by Kamimura et al. [3,4].
In that paper, it was also mentioned that 16O probably had this
kind of four-α-particle condensed state in the vicinity of the 4α

threshold energy, and it was conjectured that such condensed
α-cluster states might also occur in heavier 4n self-conjugate
nuclei as excited states.

One of the remarkable features of the α condensed state
is the dilute density distribution, resulting in a large nuclear
radius of the state. Therefore, if the large nuclear radius of
the candidate state is experimentally confirmed, it will be
strong evidence of the formation of the α condensed state.
However, the direct measurement of the nuclear radius or
nucleon density distribution of excited states is not available
at the moment. Therefore, an indirect procedure is necessary
to prove the dilute density distribution of excited states. Very
recently, Funaki et al. [8] analyzed the charge form factor of
inelastic electron scattering to the 0+

2 state of 12C to discuss
the spatial extension of this state using ACM. They studied the
sensitivity of the form factor with respect to the nuclear size of
the 0+

2 state by varying the parameter β corresponding to the
spatial extension of the α condensate. They found that only
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the peak height of the form factor is sensitive to the size, while
the positions of the peak and valley are almost unchanged. It
was shown that the radius of excited states like the 0+

2 state
in 12C could be deduced from the peak height of the inelastic
charge form factor via their model wave function, although
it is not a direct measurement of the nucleon density of the
excited state.

Another idea for confirming the dilute density distribution
of the 0+

2 state was proposed by Ohkubo and Hirabayashi
[9]. They analyzed the nuclear rainbow phenomenon in
α+12C elastic and inelastic scattering angular distributions
by the microscopic coupled-channels (MCC) approach. The
calculation includes coupling to the 2+

1 and 3−
1 states, which

have normal shell-model-like density distributions, in addition
to the ground and 0+

2 states. Since they used the double-folding
model interaction based on the resonating-group-method
(RGM) wave function [4], the diluteness of the 0+

2 state was
properly taken into account. They showed that the volume
integral of the folding-model potential in the α+12C(0+

2 )
channel was much larger than those of α+12C(g.s., 2+

1 , 3−
1 )

channels due to the density dependence of the effective
interaction in the nuclear medium, and they argued that this
large volume integral increased the number of minima in the
Airy oscillation (Airy minima) in the angular distribution
of the α+12C(0+

2 ) channel: only one Airy minimum was
observed in the angular distributions of elastic scattering
and inelastic scattering to the 2+

1 and 3−
1 states, while two

Airy minima were observed in that of inelastic scattering to
the 0+

2 state. They concluded that the enhancement of Airy
oscillation was evidence of the diluteness of the 0+

2 density
distribution.

To examine the effect of the diluteness of the 0+
2 state on

the angular distribution of inelastic scattering, it is important
to investigate how the inelastic angular distribution is varied
when the nuclear radius of the 0+

2 state is changed. In the
present study, we perform an MCC calculation for the α+12C
inelastic scattering using the ACM wave functions obtained
in Ref. [8], where the nuclear radius of the 0+

2 state can be
artificially changed, and investigate how the spatial extension
of the 0+

2 state is reflected in the details of the angular
distribution of inelastic α scattering.
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II. FORMALISM

We adopt the same formalism as that described in Ref. [9]:
the MCC method based on the double-folding model using the
DDM3Y interaction [10] for the effective nucleon-nucleon
interaction. The density distribution of 12C is given by the
ACM calculations [7,8]. We refer to the ACM wave function
originally obtained [7] as original ACM, and to those for which
the spatial extension of the 0+

2 state is artificially modified [8]
as modified ACM. We use four types of modified ACM wave
functions (i)–(iv), the root-mean-square (rms) radii 〈r2〉1/2

of which are (i) 2.97 fm, (ii) 3.55 fm, (iii) 4.38 fm, and
(iv) 5.65 fm, while that of the original ACM wave function is
3.81 fm [8]. It should be noted that the orthogonality of the 0+

2
state and the 0+

1 ground state wave functions is satisfied also in
the modified ACM calculation. The transition density between
the ground and 0+

2 states is calculated from the ground state
wave function and each of these wave functions for the 0+

2 state.
The ground state wave function is not modified throughout the
present analysis.

The normalization factor NR of the real folded potential and
the parameters for the Woods-Saxon type imaginary potential
are taken to be the same as those used in Ref. [9]. The volume
integral per nucleon pair, Jv , and the rms radius 〈R2〉1/2 of
the folded potential for each ACM wave function at each
incident energy are listed in Table I. The folded potentials of
α+12C(0+

2 ) for Eα = 240 MeV with the DDM3Y interaction
are shown in Fig. 1. The thick solid curve represents the folded
potential using the original ACM wave function, while the
other thick curves represent those with the modified ACM
wave functions (i)–(iv). The folded potential of α+12C(g.s.)
is also shown by the thin solid curve for comparison. All the
folded potentials are multiplied by a common normalization
factor NR taken from Ref. [9]. It is found that as the nuclear
radius of the 0+

2 state increases, the potential at short distances
becomes shallower. On the other hand, the potential around
the surface region becomes stronger with the increase of the
nuclear radius (due to the density dependence of the effective
nucleon-nucleon interaction), which leads to the increase of
the volume integral of the potential, as shown in Table I.

TABLE I. Volume integral per nucleon pair Jv and rms radius
〈R2〉1/2 of the α+12C(0+

2 ) diagonal folded potential calculated from
the original and modified ACM wave functions and the DDM3Y
interaction.

Eα Original (i) (ii) (iii) (iv)
(MeV)

Jv (MeV fm3)

139.0 362 329 358 380 394
166.0 349 317 345 365 378
172.5 342 311 338 358 371
240.0 330 301 327 345 357

〈R2〉1/2 (fm)
139.0 4.60 3.92 4.36 5.05 6.18
166.0 4.60 3.92 4.37 5.05 6.18
172.5 4.61 3.93 4.37 5.06 6.18
240.0 4.62 3.95 4.39 5.07 6.19
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FIG. 1. (Color online) Folded potential of α+12C(0+
2 ) for Eα =

240 MeV with the DDM3Y interaction. The thick solid curve
represents the folded potential with the original ACM wave function,
while the other thick curves represent those with the modified ACM
wave functions (i)–(iv). The thin solid curve represents the folded
potential of α+12C(g.s.). All the folded potentials are multiplied by
the normalization factor from Ref. [9].

III. RESULTS AND DISCUSSIONS

Before showing the results of the MCC calculation using
the ACM wave functions, we first perform an MCC calculation
using the RGM wave functions [4] for 12C, which were used
in the previous MCC work [9], in order to confirm that our
MCC calculation reproduces the results of Ref. [9]. Figures 2
and 3 show the angular distributions of α+12C elastic
scattering and the inelastic one to the 0+

2 state of 12C at
incident energies of Eα = 139, 166, 172.5, and 240 MeV. In
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FIG. 2. (Color online) Angular distributions of the elastic and
α+12C(0+

2 ) channels at the incident energies of Eα = 139 and
166 MeV. In (a) and (c), dashed curves represent the result of the
four-channel MCC calculation including the ground, 2+

1 , 3−
1 , and 0+

2

states; solid curves represent the result of the two-channel calculation
including the ground and 0+

2 states. In both calculations, the DDM3Y
interaction and the RGM wave function are used. Dots are the
experimental data. In (b) and (d), the results are shown of the MCC
calculations using the original ACM wave function (solid curve) and
modified ACM wave functions (i)–(iv).
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FIG. 3. (Color online) Same as Fig. 2, but for Eα = 172.5 and
240 MeV.

Figs. 2(a), 2(c) and Figs. 3(a), 3(c), the dots show experimental
data [11–16], while the dashed curves are the results of four-
channel MCC calculations including the ground, 2+

1 , 3−
1 , and

0+
2 states of the 12C nucleus where the RGM wave functions [4]

are used to calculate the diagonal and coupling potentials. The
calculations completely reproduce the results shown in Fig. 2
of Ref. [9]. The solid curves show the results of the two-channel
MCC calculation in which only the ground and 0+

2 states
are included. It is seen that the effect of coupling to the 2+

1
and 3−

1 states is almost negligible. Therefore, the two-channel
calculation is enough to discuss the angular distribution of the
α+12C(0+

2 ) channel for these energies.
Next, we perform the two-channel MCC calculation using

the original and modified ACM wave functions (i)–(iv)
[7,8]. The result for the α+12C(0+

2 ) channel is shown in
Figs. 2(b), 2(d) and Figs. 3(b), 3(d). The solid curve in
each figure represents the result with the original ACM wave
function used. Since the original ACM wave function is almost
equivalent to the RGM one as shown in Ref. [7], the solid
curves in Figs. 2(b), 2(d) and Figs. 3(b), 3(d) are almost
the same as those in Figs. 2(a), 2(c) and Figs. 3(a), 3(c),
respectively. The other curves are the results of two-channel
MCC calculations in which the modified ACM wave functions
(i)–(iv) are used, where we use the same Woods-Saxon type
imaginary potential as that used in the calculations for the solid
curves. It is found that the oscillation pattern of the angular
distribution is hardly changed for any of the incident energies
even when the density distribution of the 0+

2 state is artificially
shrunk or extended, although the absolute value changes. This
is because the change of the nuclear radius of the excited 0+

2
state has little effect on the shape of the transition density
between the ground state and the 0+

2 one; it only changes the
magnitude of the transition density, as shown in Fig. 4.

We also perform the same coupled-channel calculation for
Eα = 240 MeV using another interaction model. We adopt
the single-folding model based on the nucleon-α interaction,
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FIG. 4. (Color online) Transition density between the ground
state and the 0+

2 one of 12C calculated from the original and modified
ACM wave functions (i)–(iv).

in which an empirical nucleon-α complex potential [17] is
folded with the nucleon density of 12C leading to a complex
α-12C potential. The nucleon-α potential parameters are taken
from Ref. [17] except for the strength of the imaginary part W ,
which is set to 8.0 MeV in the present work so as to reproduce
the α-12C elastic scattering angular distribution. The real part
of the diagonal and coupling potentials calculated in this
single-folding model are found to be almost identical to those
calculated in the double-folding model with the DDM3Y
interaction. Using the single-folding interaction, we obtain
the imaginary potential as well as the real one, and the shape
of the imaginary potential also reflects the difference in the
density distribution of the 0+

2 excited state through the folding
procedure. The result using the original ACM wave function
is shown in Fig. 5(a). It is found that the angular distribution
of the α+12C(0+

2 ) channel is well reproduced. The results
for the modified ACM wave functions (i)–(iv) are shown in
Fig. 5(b). The solid curve is the same as that in Fig. 5(a) for the
0+

2 state. The obtained results are very similar to the previous
calculation shown in Figs. 2 and 3 where the DDM3Y real
folding interaction and a fixed Woods-Saxon type imaginary
potential were used. The result implies that the qualitative
conclusion drawn from the results seen in Figs. 2 and 3 is not
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FIG. 5. (Color online) Angular distribution of the elastic and
α+12C(0+

2 ) channels at the incident energy of Eα = 240 MeV.
(a) Solid curves are the result of the MCC calculation using the
nucleon-α single-folding model interaction. Dots are experimental
data. (b) Solid curve is the same as in (a); other curves show results
of the MCC calculations with the modified ACM wave functions
(i)–(iv).
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FIG. 6. (Color online) Angular distribution of α+12C(0+
2 ) elastic

scattering at Eα = 240 MeV, obtained with original (solid curves) and
modified (other curves) ACM wave functions. (a) DDM3Y interaction
and (b) nucleon-α single-folding interaction.

affected by the change of the imaginary potentials due to the
change of the spatial extension of the 0+

2 state.
To see the distortion effect of the final channel, we perform

the single-channel calculation, where α+12C(0+
2 ) is virtually

set to the incident channel (Fig. 6). For the DDM3Y case,
shown in Fig. 6(a), it is found that the minimum positions are
not shifted even when the nuclear radius of 12C(0+

2 ) becomes
large. This is because the parameters of the imaginary potential
are the same in all calculations. Figure 6(b) shows the result
where the nucleon-α single-folding model interaction is used.
Although the oscillation in the backward angle region is found
to be smeared, the variation of the elastic angular distributions
due to the modification of nuclear radius of 12C(0+

2 ) is clearly
seen. Nevertheless, this variation seems not to be inherited by
the inelastic scattering case as shown in Fig. 5(b). This result
indicates that the inelastic angular distribution is insensitive to
the distortion effects in the final channel.

From the results above, we can say that the number of
minima and the minimum positions in the inelastic angular
distribution are almost unchanged by the modification of the
nuclear radius of the 0+

2 state. This result may be due to
the nature of the transition density: the nodal position and
the point where the transition density drops approximately to
zero do not depend on the nuclear radius of the 0+

2 state as
shown in Fig. 4. In other words, the transition density does not
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FIG. 7. (Color online) Transition density modified by Eq. (1),
where the scaling factor f is varied from 0.6 to 1.4. Modified
transition densities are normalized to keep the r2 expectation value
evaluated from the original transition density (solid curve).
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FIG. 8. (Color online) Angular distribution of α+12C(0+
2 )

channel at Eα = 240 MeV, obtained with the original ACM wave
function and with the modified transition densities as in Eq. (1).
(a) DDM3Y interaction case. (b) Nucleon-α single-folding model
interaction case.

sensitively reflect the size of the 0+
2 state. To investigate the

sensitivity of the inelastic angular distribution to the extension
of the transition density, we perform MCC calculations using
a transition density, whose range is artificially modified as

ρ ′
tr(r) = Nρtr(f r) , (1)

where ρtr(r) is the original ACM transition density, and f

and N are scaling and normalization factors, respectively. N

is determined so as to keep the r2 moment of the transition
density to the value evaluated from the original transition
density. The modified transition densities are shown in Fig. 7
along with the original one (solid curve). Using these transition
densities, we perform MCC calculations in which we fix the
diagonal density of 0+

2 state to the original one. The results of
the calculations are shown in Fig. 8. The differential cross sec-
tions in Fig. 8(a) are calculated with DDM3Y double-folding
model interaction, while those in Fig. 8(b) are calculated with
the nucleon-α single-folding model interaction. In both cases,
the minimum positions in the angular distribution are very
sensitive to the range of the transition density. Inversely, the
extension of the transition density can be probed by the the
shape of the oscillation in the inelastic angular distribution.

IV. CONCLUSION

In the present paper, we conclude that one can determine
the extension of the transition density from the oscillation
pattern of the inelastic angular distribution rather than the
nuclear radius of the excited state. However, the nuclear
radius of the excited state can be deduced from the absolute
value of the inelastic differential cross sections through the
amplitude of the transition density calculated in a microscopic
nuclear structure model such as ACM, as shown in Ref. [8].
Therefore, it is very interesting to analyze the α-particle
inelastic scattering on 16O exciting the 0+ state at Ex =
13.5 MeV, recently measured [18], by the MCC calculation
using the wave function of 16O(0+) obtained by the ACM
calculation at Ex = 14.1 MeV [8], which is predicted as a
four-α condensed state.
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