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We use the �N formalism to investigate the non-Gaussianity of the primordial curvature perturbation in
the curvaton scenario for the origin of structure. We numerically calculate the full probability distribution
function allowing for the noninstantaneous decay of the curvaton and compare this with analytic results
derived in the sudden-decay approximation. We also present results for the leading-order contribution to
the primordial bispectrum and trispectrum. In the sudden-decay approximation we derive a fully nonlinear
expression relating the primordial perturbation to the initial curvaton perturbation. As an example of how
non-Gaussianity provides additional constraints on model parameters, we show how the primordial
bispectrum on cosmic microwave background scales can be used to constrain variance on much smaller
scales in the curvaton field. Our analytical and numerical results allow for multiple tests of primordial
non-Gaussianity, and thus they can offer consistency tests of the curvaton scenario.
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I. INTRODUCTION

Most inflationary models give rise to a nearly Gaussian
distribution of the primordial curvature perturbation � .
Deviations from an exactly Gaussian distribution are con-
ventionally given in terms of a nonlinearity parameter fNL

[1]. The prediction for the nonlinearity parameter from
single-field models of inflation is related to the tilt of the
power spectrum, fNL � n� 1 [2], which is constrained by
observations to be much less than unity. In principle,
measurement of fNL would give a valuable test of the
inflation, but unfortunately such a tiny non-Gaussianity is
likely to remain unobservable. The current upper bound
from the WMAP three-year data [3] is jfNLj< 114, while
Planck is expected to bring this down to jfNLj & 5 [1]
which is still orders of magnitude larger than the prediction
for single-field inflation.

On the other hand, multifield models of inflation can lead
to an observable non-Gaussianity. One well-motivated ex-
ample is the curvaton model [4–6]: In addition to the
inflaton �, there would be another, weakly coupled, light
scalar field [e.g., the minimally supersymmetric standard
model (MSSM) flat direction [7,8]] curvaton �, which was
completely subdominant during inflation. The potential
could be as simple as [9] V � 1

2M
2�2 � 1

2m
2�2, where

the energy density of � drives inflation. At Hubble exit
during inflation both fields acquire some classical pertur-
bations that freeze in. However, the observed cosmic mi-
crowave background (CMB) and large-scale structure
(LSS) perturbations can result from the curvaton instead
of the inflaton. If the inflaton mass M is much less than
1013 GeV, then perturbations due to the inflaton are much
smaller than 10�5.

After the end of inflation, the inflaton decays into rela-
tivistic particles (‘‘radiation’’), the curvaton energy density
still being subdominant. At this stage, the curvaton carries
an isocurvature (entropy) perturbation. The entropy per-
turbation between radiation and curvaton is given by S� �

3��� � �r�. Observations rule out purely isocurvature pri-
mordial perturbations [10,11], but, so long as the curvaton
decays into radiation before primordial nucleosynthesis,
the entropy perturbation can be converted to an adiabatic
one. This also requires that all the species are in thermal
equilibrium and that the baryon asymmetry is generated
after the curvaton decays. If any of these conditions are not
met, then the curvaton could also leave a residual isocur-
vature perturbation [12]; but, in practice, the amplitudes of
isocurvature modes are severely constrained by current
data [13–15] and for simplicity we will not consider this
possibility in this paper.

As the Hubble rate H decreases with time after inflation,
eventually H2 & m2, and the curvaton starts to oscillate
about the minimum of its potential. Then it behaves like
pressureless dust (with density inversely proportional to
volume, �� / a�3) so that its relative energy density grows
with respect to radiation (�r / a�4). Finally, the curvaton
decays into ultrarelativistic particles leading to the stan-
dard radiation-dominated adiabatic primordial perturba-
tions [16]. However, this curvaton mechanism may, from
the initially Gaussian curvaton field perturbation ���,
create a strongly non-Gaussian primordial curvature per-
turbation � . The non-Gaussianity is large if the energy
density of the curvaton is subdominant when the curvaton
decays. Since the amplitude of the resulting perturbation
depends on the model parameters (such as the curvaton
mass m and decay rate �), the observational bounds on
non-Gaussianity provide important constraints on model
parameters.*Electronic address: jussi.valiviita@port.ac.uk
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The objective of this paper is to calculate the probability
density function (pdf) of the primordial curvature pertur-
bation in the curvaton model. Since, in the early universe,
all today’s observable scales are super-Hubble scales after
inflation, we take advantage of the separate universe as-
sumption [19,20] throughout the calculations and employ
the so-called �N formalism [21–23]. This allows us to
determine the pdf fully nonlinearly (not just up to second
or third order in the initial field perturbations) so that it will
carry all the information about non-Gaussianity.

Generally, we can expand any field

 ’ � �’�
X1
n�1

1

n!
�n’: (1)

We take the background field to be spatially homogeneous,
�’�t�, and we will further assume that the first-order pertur-
bation �1’�t; x� is a Gaussian random field, consistent with
what we expect from the linear evolution of initial vacuum
fluctuations. Thus the higher-order perturbations, �n’ for
n > 1, will describe non-Gaussian perturbations of any
field.

The primordial perturbation can be described in terms of
the nonlinear curvature perturbation on uniform-density
hypersurfaces [24],

 ��t;x� � �N�t;x� �
1

3

Z ��t;x�

���t�

d~�

~�� ~P
; (2)

where �N is the perturbed expansion, ~� the local density
and ~P the local pressure. We expand the curvature pertur-
bation as

 ��t;x� � �1�t;x� �
X1
n�2

1

n!
�n�t;x�; (3)

where the pdf of �1 is Gaussian as it is directly proportional
to the initial Gaussian field perturbation, but the higher-
order terms give rise to a non-Gaussian pdf of the full � .
The nonlinearity parameters fNL and gNL are defined by

 � � �1 �
3
5fNL�2

1 �
9
25gNL�

3
1 �O��4

1 �; (4)

or, equivalently,

 �2 �
6
5fNL�

2
1 ; (5)

 �3 �
54
25gNL�3

1 : (6)

The numerical factors 6=5 and 54=25 arise because in
linear theory the primordial curvature perturbation � is
related to the Bardeen potential on large scales (in the
matter-dominated era, md), �Hmd � �3=5��1, which im-
plies [1,25,26]

 

3
5 � � �H md � fNL�2

H md � gNL�3
H md: (7)

We are specifically interested in nonlinear quantities and,
as it is � not �H that is nonlinearly conserved for adiabatic

perturbation on large scales [24,27–30], we will take
Eqs. (5) and (6) as our fundamental definition of the
primordial parameters fNL and gNL, respectively.

If we write the primordial power spectrum as

 h��k1���k2�i � �2��
3P�k1��

3�k1 � k2�; (8)

then the leading-order contributions to the bispectrum and
(connected part of the) trispectrum are given by

 h��k1���k2���k3�i � �2��
3B�k1;k2��

3�k1 � k2 � k3�;

(9)

 

h��k1���k2���k3���k4�i � �2��3T�k1;k2;k3�

	 �3�k1 � k2 � k3 � k4�;

(10)

where

 B�k1;k2� � �6=5�fNL
P�k1�P�k2� � 2 perms�; (11)

 

T�k1;k2;k3� � �18=25�f2
NL
P�k1�P�k2�P�jk1 � k2j�

� 23 perms�

� �54=25�gNL
P�k1�P�k2�P�k3�

� 3 perms�: (12)

The first term appearing in Eq. (12), which gives the
dependence of the trispectrum on second-order perturba-
tions, and hence fNL, was given in [31]. But there is also a
term dependent upon the third-order perturbation, and
hence gNL, which appears at the same order, and has a
different dependence upon the four wave vectors.

Previous estimates of non-Gaussianity in the curvaton
scenario have been based on expansions up to second order
in the curvature perturbation. We will go beyond previous
analyses and calculate the contribution of the third-order
term in Eq. (4) to the trispectrum. We compare our analytic
expressions for fNL and gNL in the sudden-decay approxi-
mation [23,32] with numerical results where we include
the gradual decay of the curvaton, transferring energy from
the curvaton to the radiation. Indeed, using our numerical
code we are able for the first time to give the full proba-
bility distribution for the primordial curvature perturbation
in both the sudden-decay and the noninstantaneous decay
cases. We will calculate the skewness (third moment of the
pdf) and kurtosis (fourth moment of the pdf) as well as
higher moments of the fully nonlinear probability distri-
bution function.

This paper is organized as follows. In Sec. II we relate
the curvaton curvature perturbation �� to the initial field
perturbation �1� at the beginning of the curvaton oscilla-
tion. Then, in Sec. III, we derive in the sudden-decay
approximation a nonlinear equation that relates the primor-
dial curvature perturbation � (when the curvaton has de-
cayed) to the curvaton curvature perturbation at the
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beginning of curvaton oscillation �� (or to the Gaussian
curvaton field perturbation ��� at the horizon exit). We
write down the full solution of this equation in the
Appendix. In Sec. III we continue solving this equation
order by order, and deriving the nonlinearity parameters
fNL and gNL in the sudden-decay approximation. In
Sec. IV we describe our fully nonlinear numerical ap-
proach. We compare the numerical noninstantaneous de-
cay results for fNL and gNL to the sudden-decay approxi-
mation. In Sec. V we calculate the pdf of � both in the
sudden-decay approximation and in the noninstantaneous
decay case. We show the skewness and kurtosis of the pdf
as a function of curvaton-model parameters. In Sec. VI we
add one possible complication to the analysis. Namely, the
variance of curvaton field perturbations h����2= ��2i on
smaller than observable scales is not directly constrained.
However, the large variance leads to large non-Gaussianity
(see e.g. [33,34]) so that the observational bounds on non-
Gaussianity set an upper limit to this small-scale variance.
We derive a quantitative equation that relates fNL and
the variance, and use this equation with WMAP third-
year bounds. Finally, in Sec. VII we present concluding
remarks.

II. NONLINEARITY OF THE CURVATON
PERTURBATION

When the curvaton starts to oscillate about the minimum
of its potential, but before it decays, the nonlinear curva-
ture perturbation on uniform-curvaton density hypersurfa-
ces is given by [24]

 ���t;x� � �N�t;x� �
Z ���t;x�

����t�

d~��
3~��

: (13)

Hence, the curvaton density on spatially flat hypersurfaces
is

 ��j�N�0 � e3�� ���: (14)

Assuming the curvaton potential is described by a qua-
dratic potential about its minimum, the energy density is
given in terms of the amplitude of the curvaton field
oscillations,

 �� �
1
2m

2�2: (15)

We expect the quantum fluctuations in a weakly coupled
field such as the curvaton at Hubble exit during inflation,
���, to be well described by a Gaussian random field (see
e.g. [35–37]). Hence we will write

 �� � ��� � �1��; (16)

with no higher-order, non-Gaussian terms.
Nonlinear evolution on large scales is possible if the

curvaton potential deviates from a purely quadratic poten-
tial away from its minimum [38,39]. Thus, in general, the
initial amplitude of curvaton oscillations � is some func-

tion of the field value at the Hubble exit: � � g����. (The
curvaton potential is, in any case, virtually quadratic suffi-
ciently close to the minimum.) Thus we have during the
curvaton oscillation

 �� � �
1
2m

2 �g2; (17)

 �� �
1

2
m2

�
�g�

X1
n�1

1

n!
g�n�

�
�g
g0
�1�

��

�
n
�

2
; (18)

where we used the relation �1� � g0�1�� and wrote

�g�
def
g� ���� and g�n��

def
@ng���=@�nj�� ��� .

Substituting (17) and (18) into (14) we obtain

 e3�� �
1

�g2

�
�g�

X1
n�1

1

n!
g�n�

�
�g
g0
�1�

��

�
n
�

2
: (19)

Order by order, we have from (18)

 �1�� � m2g�1�; (20)

 �2�� � m2

�
1�

gg00

g02

�
��1��

2; (21)

 �3�� � m2

�
3
g00

g02
�
gg000

g03

�
��1��

3; (22)

and from (19)

 ��1 �
2

3

�1�
��
; (23)

 ��2 � �
3

2

�
1�

gg00

g02

�
�2
�1 (24)

 ��3 �
9

2

�
1�

3

2

gg00

g02
�

1

2

g2g000

g03

�
�3
�1: (25)

Here and in what follows, we omit the bar from �g and
simply denote it by g.

Using (23) and (24), we can express the second-order
skewness in terms of the effective nonlinearity parameter
for the curvaton perturbation, analogous to Eq. (5),

 f�NL � �
5

4

�
1�

gg00

g02

�
: (26)

Hence we find f�NL � �5=4 for the curvaton �� in the
absence of any nonlinear evolution (g00 � 0). If the curva-
ton comes to dominate the total energy density in the
universe before it decays, so that � � ��, then this is the
generic prediction for the primordial fNL in the curvaton
model, as emphasized by [23].

From the third-order term (25) we obtain a contribution
to the trispectrum of the curvaton perturbation, described
by a nonlinearity parameter analogous to Eq. (6),
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 g�NL �
25

12

�
1�

3

2

gg00

g02
�

1

2

g2g000

g03

�
: (27)

III. SUDDEN-DECAY APPROXIMATION

Most analytic expressions for the primordial density
perturbation in the curvaton scenario assume the instanta-
neous decay of the curvaton particles. In this section we
will derive an equation for the nonlinear curvature pertur-
bation, and then use it to find the nonlinearity parameters
fNL and gNL in this sudden-decay approximation.

In the absence of interactions, fluids with a barotropic
equation of state, such as radiation (Pr � �r=3) or the
nonrelativistic curvaton (P� � 0), have a conserved curva-
ture perturbation [24],

 �i � �N �
1

3

Z �i

��i

d~�i
~�i � Pi�~�i�

: (28)

We assume that the curvaton decays on a uniform-total
density hypersurface corresponding to H � �, i.e., when
the local Hubble rate equals the decay rate for the curvaton
(assumed constant). Thus on this hypersurface we have

 �r�tdec;x� � ���tdec;x� � ���tdec�; (29)

where we use a bar to denote the homogeneous, unper-
turbed quantity. Note that from Eq. (2) we have � � �N on
the decay surface, and we can interpret � as the perturbed
expansion, or ‘‘�N.’’ Assuming all the curvaton decay
products are relativistic, we have that � is conserved after
the curvaton decay since the total pressure is simply P �
�=3.

By contrast, the local curvaton and radiation densities on
this decay surface may be inhomogeneous and we have
from Eq. (28)

 �r � � �
1

4
ln
�
�r
��r

�
; (30)

 �� � � �
1

3
ln
���

���

�
; (31)

or, equivalently,

 �r � ��re
4��r���; (32)

 �� � ���e
3������: (33)

Requiring that the total density is uniform on the decay
surface, Eq. (29) then gives the relation

 �1���;dec�e
4��r��� ���;dece

3������ � 1; (34)

where ��;dec � ���=� ��r � ���� is the dimensionless den-
sity parameter for the curvaton at the decay time. This
simple equation is one of the main results of this paper. It
gives a fully nonlinear relation between the primordial
curvature perturbation � , which remains constant on large

scales in the radiation-dominated era after the curvaton
decays, and the curvaton perturbation �� described in
Sec. II, in the sudden-decay approximation. In the limiting
case where ��;dec ! 1 (i.e., the energy density of the
curvaton comes to dominate before it decays), we have
� ! ��, but, in general, Eq. (34) gives a nonlinear relation
between � and ��.

For simplicity, we will restrict the following analysis to
the simplest curvaton scenario in which the curvature
perturbation in the radiation fluid before the curvaton
decays is negligible, i.e., �r � 0. After the curvaton de-
cays, the universe is dominated by radiation, with equation
of state P � �=3, and hence the curvature perturbation � is
nonlinearly conserved on large scales. With �r � 0,
Eq. (34) reads

 e4� � 
��;dece
3���e� � 
��;dec � 1� � 0; (35)

which is a fourth degree equation for X � e� . In the
Appendix we give the solution of this equation. Since we
already know e3�� as a function of the initial field pertur-
bation ���, we have now found a full nonlinear mapping of
the Gaussian perturbation ��� to the primordial (non-
Gaussian) curvature perturbation � . We can Taylor expand
the solution (A2) to find first-, second-, and third-order
expressions or we can (re)solve Eq. (35) order by order as
we do in the following subsections.

A. First order

At first order Eq. (34) gives

 4�1���;dec��1 � 3��;dec���1 � �1�; (36)

and hence we can write

 �1 � r��1; (37)

where [4]

 r �
3��;dec

4���;dec
�

3 ���
3 ��� � 4 ��r

��������tdec

: (38)

B. Second order

At second order Eq. (34) gives

 4�1���;dec��2 � 16�1���;dec��
2
1

� 3��;dec���2 � �2� � 9��;dec���1 � �1�
2; (39)

and hence, using Eqs. (24), (37), and (38),

 �2 �

�
3

2r

�
1�

gg00

g02

�
� 2� r

�
�2

1 : (40)

This gives the nonlinearity parameter (5) in the sudden-
decay approximation [23,32],

 fNL �
5

4r

�
1�

gg00

g02

�
�

5

3
�

5r
6
: (41)
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In the limit r! 1, when the curvaton dominates the total
energy density before it decays, we recover the nonlinear-
ity parameter (26) of the curvaton,

 fNL ! �
5

4

�
1�

gg00

g02

�
: (42)

On the other hand, we may get a large non-Gaussianity
(jfNLj � 1) in the limit r! 0 [40], where we have

 fNL !
5

4r

�
1�

gg00

g02

�
: (43)

C. Third order

At third order we obtain from Eq. (35)
 

�3 �

�
9

4r2

�
g2g000

g03
� 3

gg00

g02

�
�

9

r

�
1�

gg00

g02

�

�
1

2

�
1� 9

gg00

g02

�
� 10r� 3r2

�
�3

1 : (44)

The nonlinearity parameter gNL from Eq. (6) will thus be
25=54 times the expression in the square brackets. [As a
consistency check, we note that in the limit r! 1 this
result agrees with (27).]

If there is nonlinear evolution of the curvaton field �
between the Hubble exit and the start of the curvaton
oscillation, such that gg00=g02 ’ �1, then from (41) we
see that fNL can be small even when r! 0; see also
[38,39]. However, in this case gNL will be very large unless
in (44) the g2g000=g03 term also cancels the 3gg00=g02 term.
Indeed, assuming that the g000 term is small, we find �3 !
�
27=�4r2���3

1 , i.e., gNL ! �25=�8r2�, when r! 0 if
gg00=g02 ’ �1. In this situation �3 would be of the same
order as �1 � 10�5, if r & 10�5. Hence, even if the non-
linear evolution of the � field was such that the leading-
order non-Gaussianity fNL was cancelled, the higher-order
terms could still lead to large non-Gaussianity which could
be ruled out by observations.

In the absence of any nonlinear evolution of the � field
between the Hubble exit and the start of curvaton oscilla-
tion (as in the case of truly quadratic potential), we would
have g00 � g000 � 0, so the third-order result would be
simply

 �3 �

�
�

9

r
�

1

2
� 10r� 3r2

�
�3

1 ; (45)

 gNL �
25

54

�
�

9

r
�

1

2
� 10r� 3r2

�
: (46)

It should be noted that now there is no 1=r2 term in this
gNL. Thus it is only at most of the same order as fNL.
Indeed, in the limit r! 0 we have fNL ! 5=�4r� and
gNL ! �25=�6r�, i.e., gNL=fNL ! �10=3. As �1 ’ 10�5

this means that, in this case, the third-order term �3 is about

5 orders of magnitude smaller than the second-order term
�2 even when r! 0.

IV. NUMERICAL CALCULATION

Although the sudden-decay approximation gives a good
intuitive derivation of both the linear curvature perturba-
tion and the nonlinearity parameters arising from second-
and third-order effects, it is only approximate since it
assumes the curvaton is not interacting with the radiation,
and hence �� remains constant on large scales, right up
until the curvaton decays. In practice, the curvaton energy
density is continually decaying once the curvaton begins
oscillating until finally (when �>H) its density becomes
negligible, and during this decay process �� does not
remain constant [41,42].

Another problem with results derived from the sudden-
decay approximation is that the final amplitude of the
primordial curvature perturbation, and its nonlinearity, is
given in terms of the density of the curvaton at the decay
time which is not simply related to the initial curvaton
density, especially as the precise decay time, H � �, is
ambiguous.

In fact, a more careful treatment of the continuous decay
of the curvaton [41,42] shows that the transfer coefficient
at first order, r in Eq. (37), is a function solely of the
parameter

 p �
�

��

�����
H
�

s �
osc
; (47)

where the right-hand side is to be evaluated when the
curvaton begins to oscillate, long before it decays, and
hence can be written as

 p �
8��2

osc

3M2
Pl

�
m
�

�
1=2
: (48)

In Refs. [41,42] the resulting primordial curvature per-
turbation in the radiation-dominated era after the curvaton
has completely decayed was calculated using linear cos-
mological perturbations on large scales, to give

 �1 � r�p���1; (49)

where an analytic approximation to the numerical results
gives [42]

 r�p� 
 1�
�
1�

0:924

1:24
p
�
�1:24

: (50)

We find that this not only gives a good approximation to the
amplitude of linear perturbations, but as we will show it
can also be used to give a surprisingly accurate estimate for
the nonlinearity parameter fNL.

In principle, one could use the second-order perturbed
field equations on large scales [43] to evaluate �2 as a
function of ��2 and hence fNL. Indeed this has recently
been done in Ref. [44]. However, a simple shortcut to the

NON-GAUSSIANITY OF THE PRIMORDIAL . . . PHYSICAL REVIEW D 74, 103003 (2006)

103003-5



same result is provided by the �N formalism [23]. The
advantage of the �N formalism is that it gives immediately
the results to any order one wants. Thus it is not necessary
to repeat the calculation with more and more complicated
perturbed field equations, if one wants results at higher
order in perturbations. Indeed, once calculated, �N enco-
des all orders in perturbations, i.e., it gives the fully non-
linear � .

A. Practical implementation

We use the evolution equations for a homogeneous
Friedmann-Robertson-Walker (FRW) universe to describe
the fully nonlinear evolution in the long-wavelength limit,
adopting the separate universes approach [19,20]. The
resulting primordial curvature perturbation � corresponds
to the perturbation in the local integrated expansion, �N,
on a final uniform-density hypersurface in the radiation-
dominated universe after the curvaton has completely de-
cayed. We use the fully nonlinear equations for the evolu-
tion of the homogeneous curvaton and radiation densities,
including the gradual decay of the curvaton into radiation.

Hence, our set of equations is the Friedmann equation
and the continuity equations for curvaton and radiation
densities. These can be written in the form [42]

 

dHinv

dN
�

3��r

2
Hinv; (51)

 

d��

dN
� ���r � ���Hinv; (52)

 

d�r

dN
� ���Hinv ��r��r � 1�; (53)

which is particularly suitable for numerical calculation.

Here Hinv�
def

1=H, �� � ��=�tot, and �r � �r=�tot with
�tot � �� � �r.

Since the end result does not depend on a particular
choice of � and m, as long as we integrate far enough so
that the curvaton has completely decayed at the end of
calculation, we fix these to the values m � 10�5MPl and
� � 10�7m. The initial value ofHinv is 1=m, since we start
the calculation at the beginning of the curvaton oscillation.
After specifying the value of p, we calculate the initial
values of �� and �r. They are ��i � ��Hinv�

1=2p and
�ri � 1���i. The initial value for our integration vari-
able N can be set to zero because in the absence of any
initial perturbation in the radiation (�r � 0) the initial
surface is both spatially flat and has uniform energy density
and Hubble rate H � Hi � m (recall that from the
Friedmann equation �tot / H2). We are interested in the
integrated expansion between this initial unperturbed hy-
persurface and some final uniform-density surface H �
Hf � �. Then the (local) integrated expansion between
these surfaces will be just the final value of N � Nf.

We find that �� is practically zero when N * 11. From
this we deduce that a suitable ending condition (the curva-
ton has completely decayed) is H � Hf � �=500. We use
our modified version of an adaptive step-size ordinary
differential equation integrator [45] and the accuracy pa-
rameter eps � 10�21. We start integration with a suffi-
ciently small step size as demanded for our required
accuracy. Finally, when N starts to be of the order 11, the
step trial would lead to Hinv > 1=Hf. As soon as this
happens we divide the step trial by 2. We repeat this
procedure until Hinv obeys �1–10�20�=Hf < Hinv <
1=Hf. Then we save p and the final Nf. To find N�p� we
repeat this process for 50 000 logarithmically spaced val-
ues of p in the range 
10�8; 104�.

B. Comparison of sudden-decay approximation with
numerical results

Previous studies of non-Gaussianity in the curvaton
model have been based on the sudden-decay approxima-
tion. In [46] we extended the calculation of the nonlinearity
parameter fNL to the noninstantaneous decay case and
found that the sudden-decay approximation is indeed
very accurate. Recently, a similar numerical comparison
was made in [44] using second-order perturbation theory.
Our results obtained using �N formalism agree with those
of Ref. [44]. In this subsection we describe our calculation
of fNL [46] in more detail and for the first time perform
similar studies for gNL.

Expanding �N we have

 � � N0��� �
1
2N
00�����

2 � 1
6N
000�����

3 � � � � : (54)

Comparing this with Eq. (2) we can read off �n �
@nN=@�n� . Substituting this into (5) gives [23]

 fNL �
5

6

N00

N02
; (55)

and substituting into (6) we find

 gNL �
25

54

N000

N03
: (56)

As we will specify the initial conditions for our numeri-
cal solutions by giving the value of p, defined in Eq. (47),
the differentiations of N with respect to �� need to be
converted into differentiations with respect to p. From (48)
we have

 

@
@��

� 2p
g0

g
@
@p

: (57)

Using this we find

 N0 � 2p
g0

g
dN
dp

; (58)
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 N00 � 4p2

�
g0

g

�
2 d2N

dp2 � 2p
��
g0

g

�
2
�
g00

g

�
dN
dp

; (59)

 N000 � 8p3

�
g0

g

�
3 d3N

dp3 � 12p2

�
g0g00

g2 �

�
g0

g

�
3
�
d2N

dp2

� 2p
�
g000

g
� 3

g0g00

g2

�
dN
dp

: (60)

Recalling the definition (49) of the curvature perturbation
transfer efficiency at linear order, r, we find, from Eqs. (23)
and (58),

 r � 3p
dN
dp

: (61)

Once we have numerically calculated N as a function of
p in the noninstantaneous decay case, we can calculate
fNL�r� and gNL�r� by substituting (58)–(61) into (55) and
(56). For example, for fNL we find

 fNL �
5

4r

�
1�

gg00

g02

�
�

5

6

d2N=dp2

�dN=dp�2
: (62)

Comparing to the sudden-decay result (41) we see that the
first term is exactly the same. Numerical calculation of the
derivatives of N with respect to p shows that the second
term approaches a constant value �2:27 as r! 0. In the
sudden-decay case it approaches a constant �5=3 �
�1:67; see (41). Thus in both cases

 fNL !
5

4r

�
1�

gg00

g02

�
(63)

when r! 0. In the opposite limit, r! 1, both results give
fNL ! �5=4. So any difference between the sudden-decay
approximation and the noninstantaneous decay calculation
appears only at intermediate values of r, i.e., when the
radiation energy density from the inflaton decay products
and the curvaton energy density are of the same order when
the curvaton decays, �r;dec � ��;dec.

The second term in (62) can also be written in terms of r.
Using (57) and (61) the result (62) reads

 fNL �
5

4r

�
1�

gg00

g02

�
�

5

4

�g=g0�r0 � 2r

r2 ; (64)

where we have used

 r0 � 2
g0

g

�
r� 3p2 d

2N

dp2

�
: (65)

Comparing (64) to (41) we find that in the sudden-decay
case

 

g
g0
r0SD � 2rSD �

4

3
r2

SD �
2

3
r3

SD; (66)

whereas in the noninstantaneous case r0 must be deter-
mined numerically. Thus, one way to characterize the
accuracy of the sudden-decay approximation is to calculate

r0 numerically, employing (61) and (65), and compare it
to the above expression (66) in the sudden-decay
approximation.

As mentioned in the beginning of this section, the rela-
tion between r and p in the sudden-decay approximation is
nontrivial. In the noninstantaneous decay case r�p� is easy
to find numerically from (61). In the sudden-decay case we
can only determine rSD�p� from (38) if we know ��;dec�p�.

Fortunately, a shortcut to the same result is provided by
the differential equation (66). Using (57) we find from (66)

 

Z dp
p
�
Z 3drSD

3rSD � 2r2
SD � r

3
SD

; (67)

and hence

 p / rSD�rSD � 3��1=4�1� rSD�
�3=4: (68)

The constant of proportionality is not uniquely determined
by the sudden-decay approximation, and corresponds to
the arbitrariness in the definition of the decay time Hdec �
�.

What we can do is use the limiting form of the analytic
approximation to the numerical solution (50) for small p to
provide an overall normalization for the sudden-decay
approximation. This yields

 p �
31=4rSD

0:924�rSD � 3�1=4�1� rSD�
3=4
: (69)

The above equation thus determines the value of p that
corresponds to a given value of the linear transfer function,
rSD, in the sudden-decay approximation, and hence ��;dec

from Eq. (38). In Fig. 1 we show p as a function of rSD in
the sudden-decay approximation and compare this with the
numerical noninstantaneous decay result for p�r�.

Our form for rSD�p� is quite different from that adopted
by Malik and Lyth in their recent work [44]. They used a
much simpler, but less accurate, estimate for r�p� in the
sudden-decay approximation:

 

0.01 0.1 1
r

0.01

0.1

1

10

100

p

Numerical noninstantaneous
Sudden decay

FIG. 1 (color online). To achieve the same curvature perturba-
tion transfer efficiency r, one needs to start from a slightly
different initial value of p in the sudden-decay case (red dashed
line) than in the noninstantaneous decay case (black solid line).
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 rML �
p

1� p
: (70)

Although rML ! 1 as p! 1, it fails to reproduce the
correct linear coefficient as for p! 0. The apparent error
in the sudden-decay approximation for fNL reported by
Malik and Lyth [44] (see, for instance, Figure 9 in that
paper) is primarily due to this inaccuracy in the rML�p�.

In what follows we have chosen to do all our compari-
sons of the sudden-decay approximation and numerical
noninstantaneous decay results at common values of r. In
other words, we have presented our results as a function of
r instead of p. After taking into account this fundamental
difference in thinking, the results of [44] agree with ours.

Now we are ready for the final comparison of fNLSD�r�,
derived in the sudden-decay approximation with fNL�r�
calculated numerically, allowing for noninstantaneous de-
cay. Figure 2 shows that, if fNL > 60 (r < 0:02) or fNL <
�1:16 (r > 0:95), the sudden-decay result differs from the
noninstantaneous decay result by less than 1%. Hence,
when constraining the curvaton model with the current
observational constraints on fNL, there is no need for an
exact numerical calculation; using the sudden-decay ap-
proximation is sufficient. However, in the future, experi-
ments are expected to bring down the upper bound on
jfNLj, and then constraining the curvaton model does
require the numerical calculation presented here (or in
[44,46]).

In Fig. 3 we compare gNL in the sudden-decay approxi-
mation with the noninstantaneous decay result. The
sudden-decay result for gNL is much more inaccurate
than for fNL. However, the present observational con-
straints on gNL are so weak that again the sudden-decay
approximation may be sufficient.

Let us end this subsection with a comment on numerical
accuracy. Since the derivatives of N�p� in (58)–(61) in-
volve subtraction of nearly equal numbers, the calculation
must be carried out carefully. The first requirement is that

the integration step size in N is small enough compared to
�p that the two initial values pi and pi�1 � pi � �p really
lead to numerically different values for Ni � N�pi� and
Ni�1 � N�pi�1�. The accuracy of N must be good enough
to maintain enough significant figures in �N � Ni�1 � Ni.
The smaller the steps in �p that we want to take, the higher
the accuracy in N that we need. We calculate the first
derivative at p � pi as an average of two nearby gradients,

 

dN
dp

��������p�pi

�
1

2

�
Ni � Ni�1

pi � pi�i
�
Ni�1 � Ni
pi�1 � pi

�
: (71)

We use the same algorithm for the second derivative (with
N replaced by the result of the calculation of dN=dp) and
for the third derivative (with N replaced by the result of the
calculation of d2N=dp2). As a result, the first derivative
picks up contributions from 3 nearby points, the second
derivative picks up weighted contributions from 5 nearby
points and the third derivative from 7 nearby points. This
procedure smooths out any residual numerical noise.

C. An analytic approximation to the numerical result

The analytic approximation of r�p�, Eq. (50), with the
help of (57) gives

 r0 
 2	 1:24�1� r�
1� �1� r�1=1:24�
g0

g
: (72)

Hence, from (64) we find an analytic approximation to the
nonlinearity parameter,

 

fNLfit
�

5

4

1

r

�
1�

gg00

g02

�
�

5

4

1

r2 f�2r� 2	 1:24�1� r�

	 
1� �1� r�1=1:24�g: (73)

The difference from the numerical result is non-negligible
only when fNL is extremely close to zero. Indeed, we find

 

0 0.25 0.5 0.75 1
r

0.01

0.1

1

10

100

| f
   

  |
N

L

Numerical noninstantaneous
Sudden decay

FIG. 2 (color online). The nonlinearity parameter fNL as a
function of curvature perturbation transfer efficiency r �
�1=��1. The analytical approximative, i.e., sudden-decay result
(red dashed line), crosses zero at r � 0:58 and is negative for
r > 0:58. The exact numerical result (black solid line) is nega-
tive for r > 0:53. Here we assume that g���� is linear.

 

0 0.25 0.5 0.75 1
r

0.01

0.1

1

10

100

1000

| g
   

  |
N

L

Numerical noninstantaneous
Sudden decay

FIG. 3 (color online). The nonlinearity parameter gNL as a
function of curvature perturbation transfer efficiency r �
�1=��1. The analytical approximative, i.e., sudden-decay result
(red dashed line), crosses zero at r � 0:83 and is positive for r >
0:83. The exact numerical result (black solid line) is positive for
r > 0:79. Here we assume that g���� is linear.
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��������fNLfit
� fNL

fNL

��������<1% (74)

if r < 0:501 or r > 0:542. The difference is larger than 5%
only when r 2 
0:528; 0:534�.

V. PROBABILITY DENSITY FUNCTION

Thus far we have calculated the second- and third-order
corrections to the curvature perturbation produced by the
curvaton decay from which the leading-order terms to the
bispectrum and trispectrum can be calculated. However,
the �N formalism allows us to describe the full nonlinear
probability density function on large scales for the non-
linear primordial curvature perturbation defined in Eq. (2).

Assume we have two random variables y and z, and the
pdf of y is f�y�. Furthermore, assume that the functional
dependence of z on y is known, z � z�y�, and this mapping
is a bijection. Then the probability of z being in the interval
�z1; z2� is given by

 P�z1 < z< z2� �
Z z2

z1

��������dydz
��������f�y�dz; (75)

where the absolute value is needed in the case that y�z�
happens to be a decreasing function. Hence the pdf of the
random variable z is

 

~f�z� �
��������dy�z�dz

��������f
y�z��: (76)

In the multivariable case the derivative would be replaced
by the Jacobian determinant. For a Gaussian random vari-
able, y, with mean �y and variance �2

y we have

 f�y� �
1������������

2��2
y

q e��y��y�
2=�2�2

y�: (77)

Since the first-order primordial curvature perturbation �1

depends linearly on the initial Gaussian field perturbation
���, we can take �1 as our Gaussian ‘‘reference’’ variable
with mean ��1

� 0 and variance

 ��1
�

2

3
r
g0

g
���� : (78)

With this goal in mind we have already written all our
nonlinear expressions for � as a function of �1. In the
sudden-decay approximation we found an analytic func-
tional dependence � � ���1�, and in the noninstantaneous
decay case this function was found numerically. The map-
ping from �1 to � is not actually a bijection, as there can be
several values of �1 which are mapped onto the same value
of � . See the Appendix for the sudden-decay case. Calling
these values �1j, it is now easy to calculate the pdf of the
nonlinear primordial curvature perturbation,

 

~f��� �
X
j

��������d�1

d�

���������1��1j

fg��1j�; (79)

where fg��1� is the Gaussian pdf with� � 0 and � � ��1
.

For simplicity, we will assume in the rest of this section
that there is no nonlinear evolution of the curvaton field
before it begins to oscillate, so that g / ��, i.e., g�n� � 0
for n � 2. In principle, one could also carry through the
nonlinear evolution of the curvaton field into the full
numerical calculation of the pdf for the primordial curva-
ture perturbation.

At the end of the Appendix we derive ~f��� in the sudden-
decay approximation; see Eq. (A14). Here we continue by
demonstrating the calculation of ~f��� up to second order,
which we will call ~f2���. From (4) we have � �
�1 �

3
5 fNL�

2
1 up to second order, i.e.,

 �1� �
5

6fNL
��1�

������������������������������
1� 12fNL�=5

q
�: (80)

Substituting this into (79) we find
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Gaussian f
g
(ζ

1
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Sudden decay, fully nonlinear f
SD

(ζ)

Numerical, fully nonlinear f(ζ)

FIG. 4 (color online). (a) Pdfs at r � 0:000 28 (p � 0:000 30,
fNL � 4432). The red dashed line is for the sudden decay
~fSD���, and the black solid line is for the noninstantaneous
decay, ~f���. The green/grey solid line is the Gaussian reference
fg��1�. (b) The ratio of non-Gaussian pdfs to the Gaussian one.
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~f 2��� �
1������������������������������

1� 12fNL�=5
p
	

1��������������
2��2

�1

q X
�

e�
�5=6fNL���1�
��������������������
1�12fNL�=5
p

��2=�2�2
�1
�;

(81)

if � >�5=�12fNL�, and ~f2��� � 0 otherwise. If we want
to evaluate ~f2��� for a particular value of the parameter r,
we can substitute fNL from (41) into (81) in the sudden-
decay case, or use fNL�r� as shown in Fig. 2 in the non-
instantaneous decay case.

In Fig. 4(a) we compare the fully nonlinear pdf ~f���
(noninstantaneous decay) and ~fSD��� (sudden decay) to the
Gaussian fg��1� in the case when there is large non-
Gaussianity (r � 0:000 28, p � 0:000 30, fNL � 4432).
In Fig. 5(a) we plot the pdfs in the case when fNL has
exactly the WMAP3 upper limit value (r � 0:010 758,
p � 0:011 560, fNL � 114). When the nonlinearity pa-
rameter is very large, this kind of visual comparison re-

veals the non-Gaussianity, but already with fNL � 114 the
~f is virtually indistinguishable from the Gaussian fg.
However, in Figs. 4(b) and 5(b) we plot ~f=fg which reveals
the non-Gaussianity even when fNL � 114.

Moments of the distribution

The non-Gaussianity can be described quantitatively by
calculating the moments of the pdf. Any pdf f�z� should
give a unit total probability

 

Z
f�z�dz � 1: (82)

The mean can be calculated as

 �z �
Z
zf�z�dz (83)

and the ith moment mz�i� is defined as

 mz�i� �
Z
�z���if�z�dz: (84)

The second moment is the variance (�2
z), the third moment

is called skewness, and the fourth moment kurtosis. As
these moments can be extracted from the CMB maps, it is
enlightening to calculate the curvaton-model prediction for
them.

For Gaussian pdfs any odd moment (with i � 3) is zero,
since the probability density is symmetric around the
mean. The even moments of a Gaussian distribution are
easy to calculate employing partial integration to give
m�4� � 3�4, m�6� � 15�6, m�8� � 105�8, m�10� �
945�10, m�12� � 10 395�12, etc. Any departure from
these values indicates that the pdf is non-Gaussian. If odd
moments differ from zero, there is an asymmetric deviation
from Gaussianity. If even moments are smaller than in the
Gaussian case, the pdf is more sharply peaked than the
Gaussian. If even moments are larger, the pdf is wider. The
set of moments f�;m�i�ji � 2 . . .1g encodes the same
information of non-Gaussianity as our fully nonlinear
���1� (or the expansion � �

P
1
n�1 �n=n!). However, it

should be noted that giving the value, for example, for
m� �3� is not simply equivalent to giving the value for fNL,
because the moment picks up contributions from the fully
nonlinear � , not just from �1 �

3
5 fNL�

2
1 .

It turns out that the moments can be calculated very
accurately using the �N formalism, even in the noninstan-
taneous decay case, since we need not calculate the deriva-
tives of the local expansion, N, as was done in calculating
fNL or gNL. At first it seems that we would need ~f���,
which includes a numerical derivative d�1=d� :

 m� �i� �
Z
�� ���i ~f���d�; (85)

but substituting ~f from Eq. (79) we end up with
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FIG. 5 (color online). (a) Pdfs as in Fig. 4 but now at r �
0:010 758 (p � 0:011560, fNL � 114). In this figure the
Gaussian reference (green/grey solid line) is completely indis-
tinguishable from the fully nonlinear (‘‘non-Gaussian’’) pdfs.
(b) The ratio of non-Gaussian pdfs to the Gaussian one.
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 m� �i� �
X
j

Z
�� ���ifg��1j�d�1j: (86)

Here the only numerically calculated quantity is � (and�).
Calculating the moments in the second-order expansion

and comparing to the results of fully nonlinear calculation
(86), we can address the question of whether

P
1
n�3 �n=n!

gives an important contribution to � and hence to the non-
Gaussianity or whether the second-order expansion � 
P2
n�1 �n=n! is indeed accurate enough. To this end, let us

calculate in the second-order expansion the mean

 �2 �
Z
�fg��1�d�1 �

Z �
�1 �

3

5
fNL�

2
1

�
fg��1�d�1

�
3

5
fNL�

2
�1
; (87)

the variance

 �2
2 �

Z �
�1 �

3

5
fNL�

2
1 �

3

5
fNL�

2
�1

�
2
fg��1�d�1

� �2
�1
� 2

�
3

5
fNL

�
2
�4
�1
; (88)

the skewness

 m2�3� � 6�35fNL��4
�1
� 8�35fNL�

3�6
�1
; (89)

and the kurtosis

 m2�4� � 3�4
�1
� 60�35fNL�

2�6
�1
� 60�35fNL�

4�8
�1
: (90)

For higher moments in the second-order expansion we find

 m2�5� � 60�35fNL��6
�1
� 680�35fNL�

3�8
�1
� 544�35fNL�

5�10
�1

(91)

and
 

m2�6� � 15�6
�1
� 1170�35fNL�

2�8
�1
� 9060�35fNL�

4�10
�1

� 6040�35fNL�
6�12

�1
: (92)

From Eqs. (89) and (91) we find the leading-order predic-
tion

 

m2�5�=�5

m2�3�=�3
� 10; (93)

and from Eqs. (90) and (92) we expect

 

m2�6�=�6 � 15

m2�4�=�4 � 3



1170

60
� 19:5; (94)

at least when fNL is small.
In Fig. 6 we plot the moments from the third up to the

sixth one as a function of r. (For each value of r, it takes a

couple of hours to calculate the moments in the noninstan-
taneous decay case with our code on a typical PC. This
comes about because we want to findN with a relative error
of less than 10�20 in order to have a sufficiently accurate
result near the peak of the pdf where � � �N is extremely
close to zero. We need about 2	 105 steps integrating N
from the Friedmann equation, and we calculate � for 6001
equally spaced values of �1 in the range 
�6	 10�3; 6	
10�3�. Thus to produce a pdf for a fixed value of r we need
109 integration steps.) We compare the fully nonlinear
noninstantaneous decay result to the second-order results
and to the fully nonlinear sudden-decay result.

We find that results obtained using the fully nonlinear
sudden-decay approximation agree well with those ob-
tained from the full noninstantaneous decay. The sudden-
decay approximation accurately predicts the moments of
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FIG. 6 (color online). Third, fourth, fifth and sixth (from top to
bottom) moments of the probability density function of the
primordial curvature perturbation � as a function of the linear
transfer parameter, r. The predictions using the fully nonlinear
sudden-decay approximation are shown by the dashed red line
(dot-dashed for negative values), and the second-order results are
shown by the solid blue line (dotted for negative values). The
fully nonlinear numerical results are indicated by black crosses
(stars for negative values).
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the distribution for small values of r where the non-
Gaussianity is largest, and only fails to give the precise
values of r where the moments cross zero, very similar to
what was seen previously when evaluating the nonlinear
parameters fNL and gNL in Sec. IV.

The expressions for the moments, given in Eqs. (87)–
(92), calculated using only terms up to second order in
perturbation theory [but using the full numerical value for
fNL�r�] are an excellent description of the odd moments of
the distribution for all r. For even moments, the second-
order expressions give the correct order magnitude, but
cannot always reproduce the correct sign of the moments
for r > 0:1. In particular, we see that the even moments of
the distribution predicted at second order are always larger
than the Gaussian value (setting fNL � 0), whereas the full
numerical results show that the even moments can be less
than the Gaussian value. To describe the deviations from
Gaussianity in the even moments we need to include third-
order terms. For example, the variance, to third order, is
given by

 �2
3 � �2

�1
� 
2�35fNL�

2 � 6� 9
25gNL���4

�1
� 15� 9

25gNL�
2�6

�1
;

(95)

where the expression in square brackets gives the leading-
order correction to the Gaussian result. This correction can
be negative due to negative gNL when fNL is small. On the
contrary, the skewness up to third order is
 

m3�3� � 6�35fNL��4
�1
� 
8�35fNL�

3 � 72�35fNL��
9
25gNL���6

�1

� 270�35fNL��
9
25gNL�

2�8
�1
; (96)

where the first term is the leading-order correction to the
Gaussian result [m�3� � 0]. As seen, this correction does
not have a gNL term so that already the second-order
expansion leads to approximately correct results.

Although not shown in Fig. 6, we have verified that the
third-order perturbation theory (using the numerical results
for fNL and gNL) accurately reproduces all the moments of
the distribution as a function of r at least up to and includ-
ing the sixth moment.

The results (see Fig. 6) obey the predictions of Eqs. (93)
and (94). In particular, the fully nonlinear numerical cal-
culation also reproduces the predicted ratios of the
moments.

VI. VARIANCE ON SMALL SCALES

We now consider the effect of a (possibly) large contri-
bution to the curvaton density from smaller scale modes,
compared with the cosmological scales probed directly, for
instance, by the CMB anisotropies. This situation was
recently discussed by Linde and Mukhanov [34] (see also
[33,47]). Such smaller scale modes might contribute sig-
nificantly to the average curvaton energy density on larger
scales if the curvaton field power spectrum rises on smaller
scales, or if some of the fraction (even if it is a small

fraction) of the energy from the inflaton decay at the end
of inflation is transferred to the curvaton [34]. In either case
we will describe this by a small-scale variance in the
curvaton field up to some averaging scale

 �2
s �
h��2is

��2 : (97)

The key observation is that these small-scale field fluctua-
tions on spatially flat hypersurfaces are uncorrelated with
the field perturbations on larger scales. Thus there is an
additional contribution to the average curvaton energy
density,

 �� � �
1
2m

2�1� �2
s� ��2; (98)

which is homogeneous on large scales. In effect, the cur-
vaton density can be split into two parts: one that is
perturbed on large scales, and one that is not.

We can include the contribution from this small-scale
variance in our nonlinear expression (34) for the curvature
perturbation, � , in the sudden-decay approximation where
the curvaton decays on a uniform-density hypersurface, to
give the equation
 

�1���;dec�e
�4� �

1

1��2
s

��;dece
3������

�
�2
s

1��2
s

��;dece�3� � 1; (99)

where we have set to zero any preexisting perturbation in
the radiation, �r � 0.

At first order this shows how the resulting curvature
perturbation on large scales is suppressed by the small-
scale variance:

 �1 �
r

1��2
s
��1; (100)

where r is given by Eq. (38) in the sudden-decay approxi-
mation, and we use ��1 to denote the fractional field
perturbation on large scales, given in Eq. (23).

However, small-scale variance also affects the non-
Gaussianity at second and higher orders. At second order
we find

 �2 �

�
3�1��2

s�

2r

�
1�

gg00

g02

�
� 2� r

�
�2

1 ; (101)

and thus we have

 fNL � �1� �2
s�

5

4r

�
1�

gg00

g02

�
�

5

3
�

5r
6
: (102)

Note that the small-scale variance, although homogeneous,
is not equivalent to additional homogeneous radiation due
to its nonrelativistic equation of state.
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If we allow for noninstantaneous curvaton decay we find

 fNL � �1� �2
s�

5

4r

�
1�

gg00

g02

�
�

5

6

d2N=dp2

�dN=dp�2
; (103)

where any �2
s dependence in the second term on the right-

hand side cancels out so that we can use the numerical
results presented in Sec. IV to evaluate this term.

A. Observational constraints on small-scale variance

The fact that the nonlinearity parameter grows with the
small-scale variance means that we can constrain the
small-scale variance from constraints on the nonlinearity
parameter fNL on larger scales.

In practice, the nonlinearity at each successive order still
depends on the nonlinear evolution function for the curva-
ton field, g����. Hence we cannot rule out models where
the small-scale variance is large, but its effect is precisely
cancelled by the nonlinear evolution. For simplicity, we
assume in the following that the nonlinear evolution is
negligible so that g00 and higher derivatives can be set to
zero.

Recalling that r � 1 and �54< fNL < 114 (from
WMAP3 [3]), we find an upper bound

 �2
s < 90: (104)

B. Observational constraints on variance on
CMB scales

On the scales directly probed by CMB observations, the
constraint on the variance will be much tighter, since in
addition to the fNL constraint we observe

 h�2
1 iCMB � A2; (105)

with A2 ’ 6:25	 10�10. Substituting (100) with (23) into
the left-hand side, we get

 

4

9

�2
CMB

�1��2
s�

2 r
2 � A2; (106)

where

 �2
CMB �

h��2iCMB

��2 : (107)

Equation (106) gives

 �2
CMB �

9

4
A2 �1��2

s�
2

r2 ; (108)

and eliminating �1� �2
s�

2=r2 with the help of (103) we
end up with

 �2
CMB �

9

4
A2

�
4

5
fNL �

2

3

d2N=dp2

�dN=dp�2

�
2
: (109)

The maximum of the absolute value of the second term in
the parentheses is numerically found to be always less than
2. Thus, employing the triangle inequality, we find

 �2
CMB <

9
4A

2�j45fNLj � 2�2: (110)

But the WMAP3 upper limit for j 45 fNLj is 91, which
implies

 �2
CMB <

9
4A

2 	 932 � 1:2	 10�5: (111)

VII. CONCLUSIONS

In this paper we have presented for the first time the fully
nonlinear pdf for the primordial curvature perturbation on
large scales in the curvaton scenario using the �N formal-
ism. By solving the nonlinear evolution equations in an
unperturbed (FRW) universe, one can construct the local
expansion up to a final uniform density as a function of the
initial curvaton field value N���. Assuming a Gaussian
form for the initial field distribution on large scales (as
would be expected for a weakly coupled scalar field after
inflation), it is straightforward to construct the probability
density function for �N and hence the nonlinear curvature
perturbation � , defined in Eq. (2). This procedure is par-
ticularly simple in the case where the local expansion is a
function of a single scalar field, such as the curvaton, but it
is also straightforward to apply to multiple fields whose
initial distributions on large scales are known.

In the sudden-decay approximation where it is assumed
that the curvaton decays instantaneously, when H� �, we
have presented a simple nonlinear analytic expression,
Eq. (34), relating the primordial curvature perturbation to
the initial curvaton perturbation. We have compared ana-
lytic results in the sudden-decay approximation with our
results derived from direct numerical integration of the full
coupled equations for the local radiation and curvaton
energy densities and found good quantitative agreement.

In particular, we have calculated the leading-order con-
tributions to the primordial bispectrum and trispectrum,
including for the first time the effect of third-order terms in
the curvature perturbation. In some cases [38,39] nonlinear
evolution of the curvaton field on super-Hubble scales,
after Hubble exit during inflation, but before the curvaton
begins to oscillate about the minimum of its potential,
could lead to a suppression of the leading-order contribu-
tion to the primordial bispectrum. We have shown that in
this case there will instead be a large contribution to the
primordial trispectrum, unless there is an additional can-
cellation in the third-order term.
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We have computed numerically the moments of the pdf
for the primordial curvature perturbation up to and includ-
ing the sixth-order moment for a range of values of the
linear transfer coefficient, r. To accurately reproduce the
even moments of the distribution, we need to go beyond the
second-order terms in the curvature perturbation (de-
scribed by the nonlinearity parameter fNL) and include
higher-order terms.

One example of how non-Gaussianity can be used to
constrain model parameters is the case when the curvaton
field has a large variance on small scales, as recently
proposed by Linde and Mukhanov [34]. In this case the
suppression of the linear curvature perturbation is accom-
panied by an increase in non-Gaussianity. We have shown
that in this case limits on the primordial bispectrum can be
used to place limits on the small-scale variance.

The calculations presented here should enable the cur-
vaton model to be subjected to a range of tests of non-
Gaussianity, going beyond just the bispectrum. In the
simplest models (neglecting nonlinear evolution of the
field before it decays) the non-Gaussianity is a function
of a single parameter, r, which is the linear transfer coef-
ficient relating the first-order primordial curvature pertur-
bation with the curvaton perturbation at Hubble exit during
inflation. Multiple tests of the form of any primordial non-
Gaussianity could offer consistency tests of the curvaton
scenario.
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APPENDIX

In this appendix we solve the primordial curvature per-
turbation � as a function of the initial Gaussian field
perturbation �1� in the sudden-decay approximation. We
also solve the inverse problem, i.e., find �1�= �� (or �1) as a
function of � . Using these results we derive an analytic
expression for the (non-Gaussian) probability density func-
tion of � ; ~f���.

We can rewrite Eq. (35) in the form

 e4� �

�
4r

3� r
e3��

�
e� �

�
3r� 3

3� r

�
� 0; (A1)

where r � 3��;dec=�4���;dec�. This is a fourth degree
equation for X � e� . The solution of this full nonlinear

equation which gives the primordial curvature perturbation
as a function of the initial Gaussian curvaton field ���x� is

 � � ln�X�; (A2)

with

 X � K1=2 1�
���������������������������
ArK�3=2 � 1
p

�3� r�1=3
; (A3)

where

 A�
def
e3�� �

��;osc�x�
���;osc

�

�
g����x��
g� ����

�
2
; (A4)

 K�
def 1

2
P
1=3 � �r� 1��3� r�1=3P�1=3�; (A5)

 P�
def
�Ar�2 � 
�Ar�4 � �3� r��r� 1�3�1=2: (A6)

The inverse problem (solving the initial �= �� as a func-
tion of �) is much simpler. Namely, Eq. (A1) gives imme-
diately

 e3�� �
3� r

4r
e3� �

3r� 3

4r
e�� ; (A7)

and here e3�� � g2
���x��=g2� ���� � �2�x�= ��2.
Assuming that there is no nonlinear evolution between

the Hubble exit and start of curvaton oscillation [g�n� � 0
for n > 1], the left-hand side of (A7) is exactly [see
Eq. (19)]

 e3�� �

�
1�

�1�
��

�
2
� 1� 2

�1�
��
�

�
�1�

��

�
2
: (A8)

Hence (A7) simplifies to a second degree equation for
�1�= ��. The solutions are

 

�
�1�

��

�
�
� �1�

�
3� r

4r
e3� �

3r� 3

4r
e��

�
1=2
; (A9)

where the ‘‘�’’ sign corresponds to a small perturbation
and the ‘‘�’’ sign would give j�1�= ��j � 1. An alternative
Gaussian ‘‘reference variable’’ is the linear end result �1.
From (23) and (37) we have �1 �

2
3 r

�1�
�� . In Sec. V we will

need a derivative of this Gaussian random variable �1 with
respect to � . Using (A9) we easily find
 

d�1�

d�
� �

1

3
r
�

3
3� r

4r
e3� �

3r� 3

4r
e��

�

	

�
3� r

4r
e3� �

3r� 3

4r
e��

�
�1=2

: (A10)

Hence the full non-Gaussian probability density function
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for � is

 

~f��� � ~f���� � ~f����; (A11)

where

 

~f ���� �
��������d�1�

d�

��������fg��1��; (A12)

and

 fg��1�� �
1������������

2��2
g

q e��
2
1�=�2�

2
g� (A13)

with �1� being 2r=3 times the right-hand side of Eq. (A9).
Here fg��1� is the Gaussian pdf for the first-order pertur-
bation �1 with variance �2

g � �2
�1

(� 6:25	 10�10 to
match the observations) and mean � � 0. In practice,
~f���� could be neglected, because fg��1�� is typically of
the order exp��1010�. Substituting all ingredients into
(A11) the pdf reads

 

~fSD��� �
1������������

2��2
g

q 1

2

�3� r�e3� � �1� r�e�� �

�
3� r
r

e3� �
3r� 3

r
e��

�
�1=2

	
X
�

exp
�
�

4

9
r2

�
�1�

�
3� r

4r
e3� �

3r� 3

4r
e��

�
1=2
�

2
�
�2�2

g�

	
; (A14)

where the subscript SD reminds us that this is the sudden-decay result.
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