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xplicit solutions of the classical Calogero and Sutherland
ystems for any root system
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Explicit solutions of the classical Calogero �rational with/without harmonic confin-
ing potential� and Sutherland �trigonometric potential� systems is obtained by
diagonalization of certain matrices of simple time evolution. The method works for
Calogero & Sutherland systems based on any root system. It generalizes the well-
known results by Olshanetsky and Perelomov for the A type root systems. Explicit
solutions of the �rational and trigonometric� higher Hamiltonian flows of the inte-
grable hierarchy can be readily obtained in a similar way for those based on the
classical root systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2162334�

. INTRODUCTION

The classical and quantum integrability/solvability of Calogero-Moser systems1–5 manifests
tself in many guises; the existence of Lax pairs and/or Dunkl operators, algebraic linearization,
uadratic algebras, associated integrable spin chains, “quantized” classical spectra, etc. Among
hem, a most intuitive understanding of solvability/integrability is provided by the fact that explicit
olutions of the classical equations of motion are obtained by diagonalization of certain matrices
aving trivial time evolution, as shown by Olshanetsky and Perelomov6 for the rational and
rigonometric potential cases.7 Their results are for the systems based on the A-type roots. Here we
ill show that the same results hold universally for systems based on any root system. To be more
recise, for the rational potential �without/with harmonic confining potential� cases, the diagonal-
zation method works for any root system, including the noncrystallographic ones. For the trigo-
ometric and hyperbolic potential cases, we show that the explicit diagonalization method holds
or any crystallographic root system based on the universal Lax pair.8 A simpler form of explicit
iagonalization is provided by the minimal Lax pair,9,8 which exists only for those based on the A,
, E6, and E7 root systems. The basic idea of the explicit solution method is very closely related

o the notion of algebraic linearization, proved universally for any root system by
aseiro–Françoise–Sasaki.10 We will follow the notation of Ref. 10 throughout this paper and Eq.

a.b� of this paper will be cited as �Ia.b�. Explicit solutions in terms of diagonalization is readily
btained for the higher �rational and trigonometric� Hamiltonian flows belonging to the integrable
ierarchy. This works, however, only for those based on the classical root systems, A, B, C, and D.
he conventional Lax pair in terms of the set of vector weights �A, C, and D� or the set of short

oots �B� is indispensable.
This paper is organized as follows. In Sec. II, the historical background and the logical

tructure of the Calogero–Moser systems necessary for the present paper are briefly reviewed. The
amiltonian and the universal Lax pair with rational potential are introduced. The explicit inte-
ration in terms of diagonalization is achieved by relating the Lax pair matrices L and M to a

atrix W of the same size with trivial time evolution, Ẅ=0. Section III is devoted to the explicit

olution of the systems with rational plus the harmonic confining potential. In Sec. IV, we show
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he explicit solutions of the Sutherland systems, which have trigonometric/hyperbolic potentials.
n Sec. IV A a simple form of explicit diagonalization is obtained by reinterpreting the formulas of
he algebraic linearization method developed by Caseiro–Françoise–Sasaki.10 This is based on the
inimal Lax pair, which exists for those based on A, D, E6, and E7 root systems. A general

reatment of explicit integration of the Sutherland systems in terms of the universal Lax pair is
rovided in Sec. IV B. This applies to any crystallographic root system. Sections V and VI are
evoted to the problem of explicit integration of the higher Hamiltonian flows of the integrable
ierarchy. The rational potential case is discussed in Sec. V and the trigonometric case in Sec. VI.
he final section is for a summary and comments.

I. RATIONAL POTENTIAL

The integrability of the Calogero–Moser systems has a long history. First, various types of the
ntegrable potentials are recognized; starting from the Calogero model1 with rational �1/q2� plus a
armonic confining �q2� potential followed by the Sutherland model2 with a trigonometric
1 /sin2 q� potential. Then the pure rational potential �1/q2�3 and the hyperbolic �1/sinh2 q�4 and
he elliptic ���q�� potentials5 are added to the list of the integrable potentials. As seen in many
ther subjects in mathematical physics, the quantum groups, the integrable spin chains, Yang–
axter equations, etc., the elliptic case is the generic one, giving all the rest in various degenera-

ions. However, each degenerate case, the rational, trigonometric, and the hyperbolic, has its own
pecial properties and merits not shared by the more generic ones; for example, the algebraic
inearization10 of the degenerate Calogero–Moser systems and the quadratic algebras11 for the
uantum systems with the superintegrable rational �1/q2� potential. In the present article we deal
ith one of such properties of the degenerate Calogero–Moser systems and it is in fact very

losely related to the algebraic linearization.10 Second, the nature of the multiparticle interactions
f the Calogero–Moser systems is recognized to be governed by the root systems associated with
nite reflection �Coxeter/Weyl� groups.12,13 The original models1–5are all based on the A-type root
ystem related to the symmetric group SN, with N being the number of the particles. The SN is also
he Weyl group of the special unitary group SU�N�. The integrability �the Lax pair� of the systems
ased on the classical root systems �A, B, C, and D� is noticed immediately by Olshanetsky and
erelomov,12,13 but the actual demonstration of the integrability of the Calogero–Moser systems
ased on the exceptional9,14 and noncrystallographic root systems8 took more years. The classical
niversal Lax pair applicable for all types of potentials and for any root system8 and the quantum
niversal Lax pair applicable for all degenerate potentials and for any root system15 have been
nown for some years.

Let us denote by � a root system of rank r. It is a finite set of Rr vectors that is invariant under
eflections in the hyperplane perpendicular to each vector in �. A reflection s� in terms of a root

is defined by

s��x� = x − ���∨ · x�, x � Rr, �2.1�

n which �∨=2� /�2. Thus � is characterized by

s���� � �, ∀ �,� � � . �2.2�

The dynamical variables are the coordinates qi�R, i=1, . . . ,r and their canonically conjugate
omenta pi�R, i=1, . . . ,r, except for the Ar case in the ordinary embedding, in which the

umber of particles is r+1. The Hamiltonian for the classical Calogero–Moser system with the
ational potential but without the harmonic confining potential is

H =
1

2
p2 +

1

2 �
���

g���
2 ���2

�� · q�2 , �2.3�

+
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n which the real and positive coupling constants g��� are defined on orbits of the corresponding
oxeter group. That is, for the simple Lie algebra cases g���=g for all roots in simply laced models
nd g���=gL for long roots and g���=gS for short roots in nonsimply laced models. In order to define
ax pair matrices L and M, let us choose a set of Rr vectors R= �� ,� , . . . , �, #R=D, permuting
nder the action of the reflection group:

s���� � R, ∀ � � R, ∀ � � � . �2.4�

e demand that it consists of a single orbit of the Coxeter group, for irreducibility. Then we define
�D matrices indexed by the elements of R:

p · Ĥ: �p · Ĥ��� = �p · �����, �2.5�

ŝ�: �ŝ���� = ��,s����. �2.6�

Introduce next the D�D matrices X, L, and M:9,8

X = i �
���+

g����� · Ĥ�
1

�� · q�
ŝ�, �2.7�

L = p · Ĥ + X , �2.8�

M = −
i

2 �
���+

g���
���2

�� · q�2 ŝ�, �2.9�

nd a diagonal matrix:

Q = q · Ĥ: �Q��� = �q · �����. �2.10�

ere L and Q are Hermitian L†=L, Q†=Q, and M is anti-Hermitian M†=−M.
As shown in Ref. 10, Eqs. �I2.7a�, �I2.7b� the time evolution of the matrix L along the flow of

he Hamiltonian �2.3� displays the following equations:

�L

�t
= �L,M� , �2.11�

�Q

�t
= �Q,M� + L . �2.12�

Next let us define another D�D unitary matrix U�t� by the linear equation and the initial
ondition:

�U

�t
= UM, U�0� = 1D, �2.13�

n which 1D is the D�D unit matrix. The final step is the introduction of W�t�:

W�t� 	 U�t�Q�t�U−1�t� , �2.14�
hich has a simple time evolution
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Ẇ = U�Q̇ − �Q,M��U−1 = ULU−1, �2.15�

Ẅ = U�L̇ − �L,M��U−1 = 0. �2.16�

he solution is

W�t� = W�0� + t Ẇ�0� , �2.17�

ith the initial values

W�0� = Q�0�, Ẇ�0� = L�0� , �2.18�

hich are determined by the initial values of the canonical variables qj�0�, pj�0�, j=1, . . . ,r. Due
o the defining relation of W�t� in terms of the diagonal matrix Q�t� �2.14�, the solution �q�t�� of
he canonical equations of motion,

�qj

�t
=

�H
�pj

,
�pj

�t
= −

�H
�qj

, j = 1, . . . ,r , �2.19�

ith the above Hamiltonian �2.3�, is simply obtained by diagonalizing the above matrix solution
2.17�. The conjugate momenta �p�t�� are obtained by differentiation pj�t�=�qj�t� /�t.

As promised, this is the universal proof applicable for any root system including the noncrys-
allographic one. The spectrum of W�t� �2.17� is highly constrained, since its dimension D is
sually much greater than the degree of freedom r. The high symmetry of the spectrum is guar-
nteed by the Coxeter invariance of the theory:

H„s��p�,s��q�… = H�p,q�, ∀ � � � , �2.20�

L„s��p�,s��q�… = ŝ�L�p,q�ŝ�, M„s��q�… = ŝ�M�q�ŝ�. �2.21�

he original proof of the explicit integration of the A type systems by Olshanetsky and
erelomov6 is the very special case in which the spectrum of W�t� �2.17� is not constrained. Our
roof reduces to that of Ref. 6 when �=Ar and the set of vector weights is chosen as R=V,
R=D=r+1.

II. RATIONAL WITH HARMONIC CONFINING POTENTIAL

The Hamiltonian is now

H� =
1

2
p2 +

1

2
�2q2 +

1

2 �
���+

g���
2 ���2

�� · q�2 . �3.1�

ith the same matrices introduced above in the preceding section, the time evolution displays
I3.2a�, �I3.2b�:

L̇ = �L,M� − �2Q , �3.2�

Q̇ = �Q,M� + L . �3.3�

With the same definition of the unitary matrix U�t� as above �2.13�, the matrix

W�t� 	 U�t�Q�t�U−1�t� , �3.4�
volves harmonically in time:
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Ẇ = U�Q̇ − �Q,M��U−1 = ULU−1 �3.5�

Ẅ = U�L̇ − �L,M��U−1 = − �2W . �3.6�

he solution is

W�t� = cos �tW�0� + �−1 sin �tẆ�0� , �3.7�

ith the initial values

W�0� = Q�0�, Ẇ�0� = L�0� . �3.8�

gain the explicit solution �q�t�� is obtained by diagonalizing the above matrix W�t� �3.7� with the
armonic time dependence.

V. TRIGONOMETRIC POTENTIAL

The Hamiltonian of the trigonometric �Sutherland� model2 is written as:

H =
1

2
p2 +

1

2 �
���+

g���
2 ���2

sin2�� · q�
. �4.1�

n order to get the hyperbolic case, it suffices to change sin into sinh. In the following, we only
emonstrate the explicit integration of the trigonometric case. The hyperbolic case can be deduced
asily by the above replacement.

Two types of Lax pairs are known9,8 for the trigonometric cases: the minimal and the universal
ax pairs. While the latter, the universal lax pair, applies to any crystallographic root system, the

ormer, the minimal Lax pair, requires R to be the set of minimal weights, which exists only for
he A, D, E6, and E7 root systems. Let us start with the minimal Lax pair, which has a simpler
tructure thanks to the restriction to the minimal weights, satisfying the condition

	: minimal weight ⇔ �∨ · 	 = 0, ± 1, ∀ � � � . �4.2�

. Minimal Lax pair

We consider the matrices9,8

L = p · Ĥ + X , �4.3�

X = i �
���+

g����� · Ĥ�
1

sin�� · q�
ŝ�, �4.4�

M = −
i

2 �
���+

g���
���2 cos�� · q�

sin2�� · q�
�ŝ� − 1D� + i �

���+

g���
�� · Ĥ�2

sin2�� · q�
, �4.5�

nd diagonal matrices:

Q = q · Ĥ: �Q��� = �q · �����, �4.6�

R = e2iQ. �4.7�
† † †
gain L and Q are Hermitian L =L, Q =Q and M is anti-Hermitian M =−M. Thus R is unitary.

 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



a
�

w

I

s

T

B
S
u
r
t



�
T
r
i

B

012701-6 R. Sasaki and K. Takasaki J. Math. Phys. 47, 012701 �2006�

Downloaded 06
As shown in Ref. 10 �I5.3a�, �I5.3b�, when the root system admits a minimal representation,
nd R being the set of minimal weights, the time evolution along the flow of the Hamiltonian
4.1� displays

�L

�t
= �L,M� , �4.8�

�R

�t
= �R,M� + i�RL + LR� . �4.9�

With the same definition of the unitary matrix U�t� as above �2.13�,

�U

�t
= UM, U�0� = 1D, �4.10�

e introduce a matrix

W�t� = U�t�R�t�U�t�−1 = U�t�e2iQ�t�U�t�−1. �4.11�

t satisfies a simple first-order linear differential equation,

�W
�t

= U��R/�t − �R,M��U−1 = iU�RL + LR�U−1 �4.12�

=i�WULU−1 + ULU−1W� , �4.13�

ince as in �2.15�, �2.16�, ULU−1 is a constant matrix:

�

�t
�ULU−1� = U��L/�t − �L,M��U−1 = 0, �4.14�

U�t�L�t�U�t�−1 = L�0� . �4.15�

he solution is

W�t� = eitL�0�e2iQ�0�eitL�0�. �4.16�

y diagonalizing the above matrix solution, we obtain the explicit solution �q�t�� of the classical
utherland model �4.1�. One might naturally wonder if the coordinates �q�t�� could be determined
niquely from the unitary matrix �4.16�. The answer is affirmative since the motion is always
estricted to one of the Weyl alcoves due to the periodicity and singularity of the potential. Near
he boundary of a Weyl alcove, for example, at � ·q=0, ���, the singularity of the potential

1 / �� ·q�2 can never be surpassed classically. Therefore if �q�0�� is in the principal Weyl alcove,

PWT = �q � Rr�� · q
0, � � �, �h · q � � , �4.17�

q�t�� will always remain there. Here � is the set of the simple roots and �h is the highest weight.
his removes any ambiguity in determining �q�t�� from the eigenvalues of �4.16�. As in the

ational potential cases, the spectrum of W�t� is highly constrained as a consequence of the Weyl
nvariance �2.20�, �2.21�.

. Universal Lax pair

The universal Lax pair has cot�� ·q� function in L instead of 1/sin�� ·q� in �4.4�,

ˆ
L = p · H + X , �4.18�
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X = i �
���+

g����� · Ĥ�cot�� · q�ŝ�, �4.19�

M = −
i

2 �
���+

g���
���2

sin2�� · q�
�ŝ� − 1D� , �4.20�

hich satisfy �L /�t= �L ,M� for the Hamiltonian flow, but the additional equation �4.9� takes a
ifferent form.

For R being the set of minimal weights, it reads as

�R

�t
= �R,M� + i„R�L + K� + �L − K�R… , �4.21�

n which K is a non-negative constant matrix commuting with M:

K 	 �
���+

g����� · Ĥ���∨ · Ĥ�ŝ�, �K,M� = 0. �4.22�

t is a very important quantity in Calogero–Moser systems appearing in many contexts. For
xample, it is a commutator of Q �2.10� and the rational Lax matrix L �2.8�, �2.7� �see �4.36� of
ef. 15 and �2.40� of Ref. 16�:

�Q,L� = iK . �4.23�

t should be noted that if K is defined as above, the expression �4.22� is universal, which is valid
or any root system � and any choice of R. Various properties of the K matrix, whose eigenvalues
re all “integers,” are discussed in detail by Corrigan-Sasaki, in the Appendix of Ref. 16.

For R being the set of all roots � �for the simply laced root systems� or the set of short roots

S �for nonsimply laced root systems� and also the set of vector weights �V� for the C, the relation
orresponding to �4.9� and �4.21� reads as

�R

�t
= �R,M� + i„R�L + K̃� + �L − K̃�R… , �4.24�

n which K̃ is another constant matrix commuting with M,

K̃ = �
���+

g����� · Ĥ�ŝ�, �K̃,M� = 0, �4.25�

ntroduced by Corrigan-Sasaki, as �5.32� of Ref. 16.
Now the explicit solution of the Sutherland system is achieved for any crystallographic root

ystem, since one can choose at least one Lax pair satisfying �4.24�. We proceed as before by
efining the unitary matrix U�t� by �4.10� and introduce a matrix

W�t� = U�t�R�t�U�t�−1 = U�t�e2iQ�t�U�t�−1. �4.26�

t satisfies a simple first-order linear differential equation,

�W
�t

= U��R/�t − �R,M��U−1 = iU„R�L + K̃� + �L − K̃�R…U−1, �4.27�

=i„WU�L + K̃�U−1 + U�L − K̃�U−1W… , �4.28�

˜ −1
ince as in �2.15�, �2.16�, U�L±K�U is a constant matrix:
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d

dt
„U�L ± K̃�U−1

… = U��L/�t − �L,M��U−1 = 0, �4.29�

U�t�„L�t� ± K̃…U�t�−1 = L�0� ± K̃ . �4.30�

he solution is

W�t� = eit„L�0�−K̃…e2iQ�0�eit„L�0�+K̃…. �4.31�

y diagonalizing the above matrix solution, we obtain the explicit solution �q�t�� of the classical
utherland system �4.1� for any root system.

The very fact that K̃ �K� commutes with M simply means that a spectral parameter � can be
ntroduced trivially into the Lax pair for degenerate potentials:8

L� 	 L + �K̃, L̇� = �L�,M� . �4.32�

. RATIONAL HIGHER FLOWS

The integrable hierarchy of the Calogero–Sutherland systems consists of Hamiltonians gen-
rated by higher conserved quantities, which are constructed, for example, from the trace of the
igher powers of the L matrix, Hn�Tr�L2n�. The method of explicit integration as described in the
receding sections applies also to these higher Hamiltonian flows, as shown by Suris7 for the
-type root systems with the conventional Lax pair, R=V. However, in contrast to the basic
alogero–Sutherland flows, it works only for those systems based on the classical root systems,

he A, B, C, and D. Let us denote by R the set of vector weights V, for the A, C, and D root
ystems and the set of short roots �S for the B root system. These particular sets R have a unique
rthogonality property,

if 	 � ± �, 	 · � = 0, ∀ 	,� � R , �5.1�

hich endows a very special structure to the Lax pair represented on R. The dimensions of the
orresponding Lax matrices are D=r+1 for the Ar and D=2r for the Br, Cr, and Dr. It is through
hese special Lax matrices that the explicit integration of the higher rational and trigonometric
ows is realized.

Let us start with the explicit forms of the rational L matrices:

�A�: L, Ljk = pj� jk + ig�1 − � jk�/�qj − qk� , �5.2�

�B�: L = � A B

− B − A
�, Ajk = pj� jk + igL�1 − � jk�/�qj − qk� ,

Bjk = i�gS/qj�� jk + igL�1 − � jk�/�qj + qk� . �5.3�

he rational C system will not be discussed since it is equivalent to the rational B system. The
ational D system is obtained by constraining gS=0 in the rational B system.

The higher Hamiltonians are

�A�: Hn = Tr�Ln+1�/�n + 1�, n � 1, �5.4�

�B,D�: Hn = Tr�L2n�/�4n�, n � 1. �5.5�
he lowest H1 is the original Hamiltonian �2.3�. The basic idea is to rewrite the Hamiltonian flow,
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�qj

�tn
=

�Hn

�pj
,

�pj

�tn
= −

�Hn

�qj
, �5.6�

nto equivalent matrix forms,

�L

�tn
= �L,Mn� , �5.7�

�Q

�tn
= �Q,Mn� + Ln �L2n−1� , �5.8�

s in the lowest flow �2.11�, �2.12�.
In contrast to the lowest flow case in which the explicit form of M is given �2.9�, we can

nterpret part of �5.7� and �5.8� as determining Mn. The diagonal part of the Q equation �5.8� is
quivalent to the first half of the canonical equations �5.6�. The off-diagonal part of the Q equation
5.8� determines the off-diagonal part of Mn completely:

�Mn�	� = − �Ln�	�/q · �	 − ��, „− �L2n−1�	�/q · �	 − ��…, 	 � � . �5.9�

hereas the diagonal part of Mn does not enter the Q equation �5.8�, it can be determined from the
ff-diagonal part of the Lax equation. The result is very simple:

�Mn�		 = − �
��	

�Mn��	 = − �
��	

�Mn�	�, Mn
† = − Mn. �5.10�

he proof that the diagonal part of the higher flow Lax equation �5.7� is equivalent to the second
alf of the canonical equations �5.6� goes almost parallel to that of the lowest flow.

After the equivalence of the canonical equations �5.6� with the two matrix equations �5.7� and
5.8� is established, the explicit integration by diagonalization is straightforward. Let us define a

�D unitary matrix Un�tn� by the linear equation and the initial condition:

�Un

�tn
= UnMn, Un�0� = 1D. �5.11�

hen a matrix function Wn�tn�, defined by

Wn�tn� 	 Un�tn�Q�tn�Un
−1�tn� , �5.12�

as a simple time evolution,

�Wn

�tn
= Un��Q/�tn − �Q,Mn��Un

−1 = �UnLUn
−1�n

„�UnLUn
−1�2n−1

… , �5.13�

�

�tn
�UnLUn

−1� = Un��L/�tn − �L,Mn��Un
−1 = 0, �5.14�

⇒Un�tn�L�tn�Un�tn�−1 = L�0� . �5.15�

he solution is

Wn�tn� = Wn�0� + tn � Wn�0�/�tn, �5.16�

ith the initial values

Wn�0� = Q�0�, � Wn�0�/�tn = L�0�n �L�0�2n−1� , �5.17�
hich are determined by the initial values of the canonical variables qj�0�, pj�0�, j=1, . . . ,r. Due
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o the defining relation of Wn�tn� in terms of the diagonal matrix Q�tn� �5.12�, the solution �q�tn��
f the canonical equations of motion �5.6� with the above Hamiltonian �5.4� or �5.5�, is simply
btained by diagonalizing the above matrix solution �5.16�. Determination of the conjugate mo-
enta �p�tn�� requires a solution of the second half of the canonical equations of motion �5.6�,
hich are now algebraic since ��q /�tn� are now known functions of time. An extension to the
eneric higher flows of the hierarchy

H = �
n

cnHn, cn: const, �5.18�

s straightforward since the matrix equations �5.7� and �5.8� are linear in Mn. However, some
igher flows cannot be treated this way. For example, in the Dr �r :odd� theory, there exists another
onserved quantity �Hamiltonian� of the form p1p2¯pr+¯, which cannot be written as �5.18�.

I. TRIGONOMETRIC HIGHER FLOWS

The basic logics of the explicit integration of the trigonometric higher flows is almost the
ame as that of the rational higher flows, except that we have to consider two different types of
ax pairs; the minimal and the universal. So we just write down the key formulas without a
etailed derivation.

. Minimal Lax pair

We discuss the explicit integration of the trigonometric higher flows of the A and D theory in
erms of the minimal Lax pair, although the formulation in terms of the universal Lax pair works
ell for them, too.

The explicit forms of the trigonometric minimal L matrices are

�A�: L, Ljk = pj� jk + ig�1 − � jk�/sin�qj − qk� , �6.1�

�D�: L = � A B

− B − A
�, Ajk = pj� jk + ig�1 − � jk�/sin�qj − qk� ,

Bjk = ig�1 − � jk�/sin�qj + qk� . �6.2�

he higher Hamiltonians take exactly the same form as �5.4� and �5.5�. The lowest H1 is the
riginal Hamiltonian �4.1�. We rewrite the higher Hamiltonian flow �5.6� into equivalent matrix
orms,

�L

�tn
= �L,Mn� , �6.3�

�R

�tn
= �R,Mn� + i�RLn + LnR� „i�RL2n−1 + L2n−1R�… , �6.4�

s in the lowest flow �4.8�, �4.9�. The off-diagonal part of Mn is

�Mn�	� = − �Ln�	� cot�q · �	 − ��� „− �L2n−1�	� cot�q · �	 − ���…, 	 � � . �6.5�

he diagonal part is

�Mn�		 = �
��	

�Ln��	/sin�q · �� − 	�� = �
��	

�Ln�	� /sin�q · �	 − ���, Mn
† = − Mn. �6.6�
he D�D matrix Wn�tn� obeys a simple time evolution:
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Wn�tn� = Un�t�R�tn�Un�tn�−1 = Un�tn�e2iQ�tn�Un�tn�−1, �6.7�

=eitnL�0�n
e2iQ�0�eitnL�0�n

�eitnL�0�2n−1
e2iQ�0�eitnL�0�2n−1

� . �6.8�

y diagonalizing the above matrix solution �6.8�, we obtain the explicit solution �q�tn�� of the
igher flows of the Sutherland system �5.4� and �5.5� for the A and D root systems.

. Universal Lax pair

The explicit integration of the higher flows of the B and C Sutherland systems is achieved in
erms of the universal Lax pairs based on the set of short roots �R=�S� for B and the set of vector
eights �R=V� for C. For the rank r system, both have D=2r.

The Lax matrix L and the constant matrix K̃ �4.25� are

L = � A B

− B − A
�, K̃ = �S T

T S
� , �6.9�

�B�:Ajk = pj� jk + igL�1 − � jk�cot�qj − qk�, Sjk = gL�1 − � jk� , �6.10�

Bjk = igS cot qj� jk + igL�1 − � jk�cot�qj + qk�, Tjk = gS� jk + gL�1 − � jk� , �6.11�

�C�:Ajk = pj� jk + igS�1 − � jk�cot�qj − qk�, Sjk = gS�1 − � jk� , �6.12�

Bjk = 2igL cot 2qj� jk + igS�1 − � jk�cot�qj + qk�, Tjk = 2gL� jk + gS�1 − � jk� . �6.13�

t is easy to see

eiQ�L + K̃�e−iQ = e−iQ�L − K̃�eiQ, �6.14�

⇒Tr�L + K̃�n = Tr�L − K̃�n, �6.15�

hich are conserved quantities of the Sutherland flow �4.1�. It differs from the usual one Tr�Ln� by
linear combination of lower-order conserved quantities. The canonical equations of the higher
ow Hamiltonian,

Hn = Tr„�L ± K̃�2n
…/�4n� �6.16�

re equivalent to the matrix equations

�L

�tn
= �L,Mn� , �6.17�

�R

�tn
= �R,Mn� + i„R�L + K̃�2n−1 + �L − K̃�2n−1R… . �6.18�

he off-diagonal part of Mn is

�Mn�	� = − �eiq·�	−���L + K̃�	�
n + e−iq·�	−���L − K̃�	�

n �/sin�q · �	 − ���, 	 � � . �6.19�
he diagonal part is
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�Mn�		 = − �
��	

�Mn��	 = − �
��	

�Mn�	�, Mn
† = − Mn. �6.20�

he D�D matrix Wn�tn� obeys simple time evolution:

Wn�tn� = Un�t�R�tn�Un�tn�−1 = Un�tn�e2iQ�tn�Un�tn�−1, �6.21�

=eitn�L�0� − K̃�2n−1
e2iQ�0�eitn�L�0� + K̃�2n−1

. �6.22�

y diagonalizing the above matrix solution �6.22�, we obtain the explicit solution �q�tn�� of the
igher flows of the Sutherland system �6.16� for the B and C root systems.

II. SUMMARY AND COMMENTS

Explicit integration of the Calogero and Sutherland systems by means of diagonalization is
emonstrated for any root system, the exceptional as well as the classical and the noncrystallo-
raphic. It is based on the universal Lax pair for the degenerate potentials, which is the rational
ith/without the harmonic confining potential and the trigonometric/hyperbolic potentials. As

mphasized in the text, it is very closely related to the concept of algebraic linearization by
aseiro–Françoise–Sasaki.10 The method is extended to the higher Hamiltonian flows of the ra-

ional and trigonometric/hyperbolic interactions. In contrast to the basic Calogero–Sutherland
ows, the applicability is limited to those systems based on the classical root systems, the A, B, C,
nd D root systems.

The theory of explicit integration of higher Hamiltonian flows is very closely related to the
ynamical r matrix7,17,18 and the Hamiltonian reduction.19,13 In the case of the most classical
ational potential of the A type, the method of Hamiltonian reduction starts from the large phase
pace of the matrix dynamical variable W and its conjugate momentum variable Z, which are both
ssumed to be Hermitian. The Hamiltonians,

Hn = Tr�Zn+1�/�n + 1� , �7.1�

enerate the flows

�W

�tn
= Zn,

�Z

�tn
= 0. �7.2�

his Hamiltonian system is invariant under the action �W ,Z�→ �UWU−1 ,UZU−1� of unitary ma-
rices U. The reduced phase space is obtained by imposing the constraint

�W,Z� = iK �7.3�

nd factoring out the constrained phase space by residual symmetries �i.e., by the group of unitary
atrices that commute with K�. The �Q ,L� pair �4.23� is nothing but a representative of a point of

he reduced phase space, which is connected with the point �W ,Z� of the large phase space by a
t-dependent� unitary matrix U as

Q = U−1WU, L = U−1ZU . �7.4�

he linear flows of �W ,Z� are thereby mapped to the Calogero flows of �Q ,L�. This is the way to
nderstand the rational Calogero system of the A type as a Hamiltonian reduction;19 a similar
nterpretation has been proposed for a few other cases.13 The dynamical r matrix has been con-
tructed in this framework of Hamiltonian reduction.7 We expect that all the cases discussed in this

aper can be treated in the same way.
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