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Analytic continuations of de Sitter thick domain wall solutions

Naoki Sasakura*
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 12 March 2002; published 20 September 2002!

I perform some analytic continuations of the de Sitter thick domain wall solutions obtained in my previous
paper in the system of gravity and a scalar field with an axionlike potential. The obtained new solutions
represent anti–de Sitter thick domain walls and cosmology. The anti–de Sitter domain wall solutions are
periodic, and correspondingly the cosmological solutions represent cyclic universes. I parametrize the axion-
like scalar field potential and determine the parameter regions of each type of solutions.
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I. INTRODUCTION

The solitonic objects in string theory play major roles
the understanding of its nonperturbative properties such
dualities. In string theory the solitons couple necessarily w
gravity. In view of the universality of the gravitational inte
action, the understanding of the gravitational aspects of s
tons may provide a deeper understanding of the variety
the dynamics contained in string theory.

The simplest system of solitons and gravity would be d
main walls of scalar field theory interacting with gravity.
field theory, domain walls appear when there are more t
one vacua in a scalar field potential, and it is a straight
ward matter to obtain static domain wall configurations.
the other hand, with gravitational interactions, their nonl
earity and instability make it a nontrivial issue to study t
dynamics of domain walls. As for a supersymmetric dom
wall configuration, it can be analyzed by Bogomol’ny
Prasad-Sommerfield~BPS! first order differential equations
@2#. These solutions are static and it was shown that a gen
static and flat domain wall configuration can be analyzed
the same manner@3–6#. The procedure to obtain such a s
lution is mathematically well defined, but an obtained so
tion is not necessarily physically meaningful. In fact, t
scalar field potential must be fine-tuned to avoid naked c
vature singularities@1,6–8#. This situation is quite unsatis
factory, since a scalar field potential will change its for
from a supersymmetric one by possible low energy dynam
such as supersymmetry breaking and instanton correcti
even if I assume some high energy supersymmetries.
nonsupersymmetric string theories also suffer from a sim
pathological behavior that the background solutions have
ked singularities where the dilaton field diverges@9,10#.

One of the possible resolutions to these singularities i
introduce time dependences of domain walls. The use of
Sitter expansion to turn a curvature singularity of a sta
soliton into a horizon has appeared in the context of glo
U(1) vortex solutions@11# and in a codimension two nonsu
persymmetric soliton solution in type IIB string theory@12#.
This is also used in constructing background solutions
nonsupersymmetric string theories@13#. As for time-
dependent domain walls, perturbative analyses have b
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performed for the system of gravity and a scalar field
@14,15#. The constructions of analytic de Sitter thick doma
wall solutions with horizons were done in@1,16#.

In my previous paper@1#, the scalar field potential take
an axionlike form and its two parameters are restricted t
certain region for the analytic solutions to exist. The motiv
tion of this paper is to find analytical solutions for the outsi
of this region of these parameters. It is a well known tri
that, starting from a domain wall solution, analytic contin
ations generate domain wall solutions with flipped curvatu
and cosmological solutions@17#. I will show that the new
solutions cover the missing parameter regions. They
anti–de Sitter domain walls, finite lifetime universes with
big-bang and a big-crunch, and cyclic universes.

II. de SITTER DOMAIN WALL SOLUTIONS

In my previous paper@1#, I obtained a class of analytic
solutions of thick domain walls with de Sitter expansions
the system of five-dimensional gravity and a scalar field w
an axion-like potential. Let me start my discussions by e
tending my previous results to a general space-time dim
sion n.

The action of my system is given by

S5E dtdxn22dyA2gS R2
1

2
gmn]mf]nf2V~f! D .

~1!

The metric ansatz I use is the warped geometry

ds25a~y!2S 2dt21e2Ht (
i 51

n22

~dxi !2D 1dy2, ~2!

where H denotes the Hubble constant of th
(n21)-dimensional de Sitter space-time. Under the assu
tion that the scalar field depends only on the coordinatey, the
Einstein equations are

~f8!25
2~n22!@~a8!22aa92H2#

a2
,
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FIG. 1. The shapes of the de Sitter domain walls withH51 andb50.001 andb51000.
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V~f!5
~n22!@2aa92~n22!~a8!21~n22!H2#

a2
, ~3!

where the prime denotes the derivation with respect toy. The
equation of motion of the scalar field is automatically sa
fied by the solutions of Eq.~3! because of a Bianchi identity
By repeating the same procedure as done in my prev
paper@1#, I find that the first equation of Eq.~3! is satisfied
by the solution

a~y!5sn~Hy,ib21!,

f~y!5A2~n22!arctanS cn~Hy,ib21!

bdn~Hy,ib21!
D , ~4!

where the elliptic functions are defined by

sn21~z,k!5E
0

z dx

A~12x2!~12k2x2!
, ~5!

cn(u,k)5@12sn2(u,k)#1/2 and dn(u,k)5@1
2k2sn2(u,k)#1/2. Here the parameterb is a free real param
eter. In the expression~4!, the normalization of the scal
factora(y) merely defines the unit of length scale and I ha
normalized it by imposinga51 at the domain wall peak
defined bya850, and the constant shift ambiguity off(y)
is fixed by imposingf50 at the domain wall peak. A pecu
liar property of the solution~3! is that the scale factor be
haves near its vanishing pointy50 as

a~y!5Hy1O~y3!. ~6!

As discussed in my previous paper@1#, this behavior is re-
quired for the vanishing point to be regular. The factorH of
the linear term can be also understood from the phys
consistency of the geometry that the temperature assoc
to the Rindler space-time neary50 should agree with that o
the de Sitter domain wall space-timeH/2p ~see Fig. 1!. I
will show in Sec. III that the vanishing point is actually
horizon and that a regular extended space-time can be
tained by taking an appropriate coordinate system.

The scalar field potential is determined by the seco
equation of Eq.~3!, and we obtain
06500
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V~f!5
H2~n22!2~12b22!

2

1
H2n~n22!~11b22!

2
cosSA 2

n22
f D , ~7!

which is similar to that of an axion with an instanton corre
tion. In this paper I consider the two-dimensional parame
space (v0 ,v1) of the scalar field potential,

V~f!5v01v1cosSA 2

n22
f D . ~8!

I may assumev1 to be a positive parameter by shiftingf,
appropriately. In this parametrization the result~7! shows
that the parameter region for the existence of a regular
Sitter domain wall solution is given by

2~n22!v1,nv0,~n22!v1 . ~9!

III. EXTENSION OF THE de SITTER DOMAIN WALL
SPACE-TIME

The vanishing pointsa50 are actually horizons. To show
this I will extend the solutions~4!. The extended space-tim
is essentially equivalent to then51/2 case of@16#, and I will
follow their discussions. I first change to a conformal co
dinatedz5dy/a. Integrating the solution~4!, I obtain

z2z05
1

H
lnS sn~Hy,ib21!

dn~Hy,ib21!1cn~Hy,ib21!
D , ~10!

wherez0 is an integration constant. Using Eq.~10! and tak-
ing a proper value ofz0, the metric for a de Sitter domai
wall solution becomes

ds25
2

~11b22!cosh~2Hz!112b22
„2dt21dz2

1H22cosh2~Ht!dVn22
…, ~11!

where I have changed to a global coordinate of a de S
space-time instead of a flat one appearing in Eq.~2!, and
6-2
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dVn22 denotes the metric on an (n22)-dimensional unit
sphere. By a further transformation ofu5exp@H(t2z)# and
v5exp@2H(t1z)#, I obtain

ds25
4H22

~11b22!~11u2v2!12~12b22!uv
S dudv

1S u1v
2 D 2

dVn22D . ~12!

Note that the allover factor of the metric~12! is nonsingular
for all the real values ofu andv. After the change of vari-
ablesu5T1R, v52T1R, the metric in the parenthese
becomes2dT21dR21R2dVn22 and is free of a conica
singularity. As pointed out in@16#, the domain wall peak a
2T21R25uv51 is a bubble with a constant acceleration
the coordinate (T,R,V) ~see Fig. 2!.

As for the scalar field, I obtain

f5A2~n22!arctanS uv21

b~uv11! D , ~13!

which is also well defined for any real values ofu andv.

IV. ANTI –de SITTER DOMAIN WALL SOLUTIONS

In the following I will study the other parameter region
of the potential~8! rather than~9!. Looking at the expression
~7!, one notices that all the other parameter regions ofv0 and
v1 can be covered by the analytic continuations of the
rametersb andH to pure imaginary values. However, und
an analytic continuation of only one ofb or H to a pure
imaginary value, one off(y) or a(y) becomes imaginary
and physically meaningless. This cannot be resolved eve
using the constant shift ambiguity ofy of the solution. To
obtain a physically meaningful expression from Eq.~4!, both
b andH must be analytically continued to imaginary value
and, after some trials, it turns out that the analytic contin

FIG. 2. The Penrose diagram of the de Sitter domain wall spa
time. The two edges of each oval should be identified. The s
ones depict the peaks of the domain walls, while the dashed
the bottoms.
06500
-

by

,
-

tion should contain a simultaneous shift ofy as1

1/b→2 id,

H→ ih,

Hy→ ihy1K~d!, ~14!

where d and h are real constants andK(d) is the elliptic
integral of the first kind,

K~d!5E
0

1 dx

A~12x2!~12d2x2!
. ~15!

Substituting the analytic continuation~14! into the de Sitter
solution ~4!, I obtain new solutions

a~y!5
1

dn~hy,A12d2!
,

f~y!5A2~n22!arctanS d sn~hy,A12d2!

cn~hy,A12d2!
D , ~16!

and

V~f!52
h2~n22!2~11d2!

2

2
h2n~n22!~12d2!

2
cosSA 2

n22
f D . ~17!

By the parametrization~8!, the scalar potential~17! is in the
region

nv0,2~n22!v1 . ~18!

To make the warped metric~2! meaningful under the ana
lytic continuation~14!, I perform a simultaneous continua
tion t→ ir and x1→ ix0. Then Eq.~2! becomes an anti–de
Sitter domain wall metric

ds25a~y!2S dr21e22hrS 2~dx0!21 (
i 52

n22

~dxi !2D D
1dy2. ~19!

Thus in the region~18!, there exist regular AdS domain wa
solutions, which are given by Eqs.~16! and~17! ~see Fig. 3!.

The stability of the AdS solutions can be checked as f
lows. I restrict my attention to the five-dimensional casen
55). Presumably the extension to a general dimension
be straightforward. As discussed in@6,7,18,19#, the problem
of obtaining the mass spectra of the linear perturbati
around a solution boils down to solving Schro¨dinger equa-
tions. As for the tensor perturbation,

1The other available choices of the shift ofy do not give any other
independent solutions.
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NAOKI SASAKURA PHYSICAL REVIEW D 66, 065006 ~2002!
ds25a2@~gmn1hmn!dxmdxn1dz2#,

hm
m5hmn

un 50, ~20!

the Schro¨dinger equation has a supersymmetric form

Q†Qw5m2w, ~21!

where

Q5
d

dz
2

3

2a

da

dz
. ~22!

Thus the eigenvaluem2 is non-negative, and hence the st
bility under the tensor perturbations is satisfied. As for
scalar perturbation,

ds25a2@~11c1!gmndxmdxn1~11c2!dz2#, ~23!

the Schro¨dinger equation becomes@18,19,1#

S Q̃†Q̃1
a2~f8!2

3
14h2Dw5m2w, ~24!

where

Q̃5
d

dz
1

d ln~a3/2f8!

dz
. ~25!

This Schro¨dinger equation is obtained by the substitutionH
→ ih in the corresponding expression in@1#. The m2 is ob-
viously positive, and the AdS solutions are stable under
scalar perturbations. However, there remains one thing
check before this conclusion. If there existed points w
f850, the operatorQ̃ would become singular at thes
points and the above naive discussion of the positivity wo
be in danger. Moreover, in the derivation of the Schro¨dinger
equation for the scalar perturbations in@19#, the linear per-
turbation is redefined by a multiplication of a factor which
singular if f850. But, in the solution~16!, f8 is always
nonzero, and the above discussion is safe.

V. THE REGION WITHOUT REGULAR SOLUTIONS

I cannot find a physically meaningful analytic continu
tion to the parameter region

~n22!v1,nv0 . ~26!

FIG. 3. The shape of the anti–de Sitter domain wall withh
51 andd50.1.
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Thus it is suspected that there are no regular domain w
solutions of the form of the warped metric~2! in this param-
eter region. To see whether this is the case, I will use
numerical computation.

Since, in this parameter region, the constant partv0 of the
scalar potential is larger than that of the parameter region
de Sitter analytic solutions~9!, I may assume the solution t
be a de Sitter domain wall rather than an anti–de Sitter o
As generally discussed in my previous paper@1#, a regular de
Sitter domain wall solution is sandwiched between two h
rizons. The initial values of the differential equations~3! can
be provided by the three valuesa, a8, and f at a certain
initial location of y. For the solution to be regular at a hor
zon, the scale factor must behave in the form~6!, and there-
fore the freedom to choose the initial values is reduced to
only free parameterf5fc at the horizon. Thus, to search fo
a regular solution, I take one of the horizons as the ini
location and integrate numerically the differential equatio
~3! for each value offc at the horizon. Then the question o
the existence of a regular solution is translated to whet
there exists an initial valuefc for which the numerical so-
lution of the differential equations is regular between t
initial horizon and the other horizon of a domain wall.

This search procedure gives a numerical regular solu
for each choice of (v0 ,v1 ,H). Studying in this three-
dimensional space would be too much, and in fact, I c
reduce the dimension to one by rescaling the differen
equations~3!. By the rescaling ofy and a, I can normalize
the scalar potential and the Hubble constant so thatv151
andH51. Thus it is enough to check the question for ea
choice ofv0.

It would be a reasonable assumption that a domain w
contains the peak of the potential energyf50. Then, since
the potential~8! is Z2 invariant,2 it is enough for me to solve
the equations in the regionf.0. I take an initial valuef
5fc.0 and solve the differential equations~3! taking the
branchf8,0 until the solution reaches the valuef50. By
sweeping the initial valuefc , I obtain the range ofa8/a at
f50. If the obtained range ofa8/auf50 contains both posi-
tive and negative values, one can construct a regular solu
by gluing a numerical solution with a certain value ofp
5a8/auf50 to the Z2 image of the solution witha8/auf50

52p. If the range does not contain both signs, one can
construct a regular solution.

I performed the above procedure in five space-time
mensions (n55). From Eq.~9!, the maximum value for the
existence of an analytic solution isv053/559/15. In fact,
for v057/15, I obtaineda8/auf50'0.0023,20.015 forfc

50.2A3/2p, 0.3A3/2p, respectively, and the existence of
regular solution is numerically supported. Forv0511/15,
however, the plotted values ofa8/auf50 in Fig. 4 indicate
that a8/auf50 takes only negative values. Thus it is nume
cally supported that there do not exist any regular de Si
domain wall solutions in the parameter region~26!.

2Namely, invariant underf→2f.
6-4
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ANALYTIC CONTINUATIONS OF de SITTER THICK . . . PHYSICAL REVIEW D66, 065006 ~2002!
Qualitatively, in this parameter region, the constant par
the scalar field potential is so large that the expansion ra
the core is too large for a domain wall to keep its sha
Similar phenomena are discussed in the context of topol
cal inflation in@14,20,21#. In @14#, a perturbative analysis o
the phase boundary between the existence and nonexis
of domain wall solutions for the four-dimensional system
gravity and a scalar field was performed, including t
present case with an axion-like scalar field potential.3 Ac-
cording to the paper, the phase boundary is generally c
acterized by the equation

3

2
uV9~0!u2V~0!50 ~27!

in our present notation forn54. Substituting the parametri
zation~8!, this becomes 2v02v150, which agrees with Eq
~26! for n54 ~see Fig. 5!.

Thus, in the region~26!, the rapid expansion will ulti-
mately sweep away the spatial dependence of the scalar
and the dynamics will be mainly described by its tim
dependence. This will be the subject of Sec. VI.

VI. COSMOLOGICAL SOLUTIONS

It is well known that, starting from a domain wall solu
tion, a cosmological solution can be obtained by an anal
continuation which exchanges the transverse coordinate
the time coordinate@17#. An appropriate analytic continua
tion is given by

t→ iy ,

y→ i t ,

H→ ih, ~28!

by which, a de Sitter domain wall solution~4! changes to a
new solution with the substitutiony→t andH→h. This ana-
lytic continuation turns the de Sitter domain wall metric~2!
into

3Denoted as a sine-Gordon potential in@14#.

FIG. 4. The values ofa8/auf50 are plotted againstfc for v0

511/15,v151, H51. The dots are the points where the numeri
computations were performed, and the solid line is the fitting l
with an assumed forma8/auf505c01c1fc1c2fc

2 .
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ds252dt21a~ t !2S dy21e22hy(
i 51

n22

~dxi !2D , ~29!

which describes a Friedmann-Robertson-Walker~FRW! cos-
mology of an open universe. Hence the new solution rep
sents a finite lifetime open universe with a big-bang an
big-crunch.

Under the analytic continuation~28!, the equations of mo-
tion ~3! remain the same with the identification of the prim
with the time derivative~overdot! andH with h and changing
the sign of the scalar potential. Under the change of the s
of the potential, the region of the de Sitter solutions~9! is
transformed to the identical region. Thus the parameter
gion for the open universe solution is the same as that of
de Sitter wall solutions~9! ~see Fig. 6!.

As for the anti–de Sitter solution, the analytic continu
tion ~28! turns it into a cosmological solution of a close
universe. Because of the flip of the sign of the scalar pot
tial, the parameter region of the closed universe solution
obtained by flipping Eq.~18! into

~n22!v1,nv0 . ~30!

This agrees with the region where there are no regular
main wall solutions. The corresponding cosmological so
tions are obtained by the substitutiony→t andH→h in the
AdS domain wall solutions~16!. The periodic behavior of
the AdS domain wall solutions is now interpreted as rep
senting a cyclic universe.

It would be interesting to see the behavior of the ene
density and the pressure. In a five-dimensional space-t
they are

l
e

FIG. 5. The parameter regions for dS, AdS, and no regular
main wall solutions are shown. The two lines of boundaries
nv01(n22)v15nv02(n22)v150. On the linenv01(n22)v1

50, flat domain wall solutions exist.

FIG. 6. The parameter regions for the two types of cosmolog
solutions are shown. The two lines of boundaries arenv01(n
22)v15nv02(n22)v150.
6-5
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FIG. 7. The time evolution of the energy density and the pressure of the cosmological solution~five dimensions! corresponding to the
AdS solution of Fig. 3. The energy density takes its maximum at the minimum of the scale factor to initiate the bounce, while the
takes its maximum at the maximum of the scale factor where the contraction begins.
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1

4
~ḟ !21

1

2
V~f!

56h2S 12
d2~12d2!sn2~ht,A12d2!

dn2~ht,A12d2!
D ,

p5
1

4
~ḟ !22

1

2
V~f!

5h2d2S 262
6

d2
1

9

dn2~ht,A12d2!
D . ~31!

In Fig. 7 I plotted the time evolution of the energy dens
and the pressure for the cyclic universe solution withh51
and d50.1. At the minimum of the scale factor the ener
density takes its maximum value and the pressure is appr
mately the minus of the energy density. At this period t
large energy density initiates a bounce and the universe
the inflation stage. On the other hand, at the maximum of
scale factor, the energy density is nearly vanishing and
pressure dominates. The large pressure works as a neg
gravitational energy and initiates a contraction of the u
verse.

For a flat FRW universe, if I assume the null energy co
dition, the Hubble parameter satisfies an inequality

Ḣ<0, ~32!

and there cannot exist a bounce. This also implies that, s
our universe is expanding at present days, the universe m
have started from a singularity. In the papers@22,23#, some
loopholes of the above discussion are presented from s
theory to support the possibility of the pre-big-bang scena
@24#. In our cyclic solution, the existence of the positiv
curvature of the space changes the equation of motion oH
into

Ḣ5
h2

a2
2

ḟ2

2~n22!
, ~33!

and Ḣ can take both signs. Considering the high energy
the big-bang of the universe, it is plausible that some fl
06500
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e
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e
e

tive
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-

ce
ust
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t
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tuations of matters and gravity generate a region with a p
tive spatial curvature and the bounce of the universe sim
happens from a classical dynamics. In this case, even tho
the present model seems far from what is the real univers
might provide a simple toy model to study the pre-big ba
scenario.

The inequality~32! also plays an important role in th
dS/conformal field theory~CFT! correspondence. The centr
charge is given by an inverse power of the Hubble parame
and the inequality~32! supports the interpretation of the tim
evolution as a renormalization group flow to UV@25,26#. In
the case of a cyclic universe, however, the time flow can
be interpreted in this way@27# because reverse process e
ists. If I take seriously the interpretation of@25,26#, there
should be a kind of mechanism to prevent the above situa
from happening. From this point, it would be interesting
try to consistently embed my simple model into string theo

VII. SUMMARY AND DISCUSSIONS

In this paper I have studied the analytic solutions of t
system of gravity and a scalar field with an axionlike pote
tial. They contain de Sitter thick domain walls, anti–de Sit
thick domain walls, finite lifetime universes with a big-ban
and a big-crunch, and cyclic universes. These analytic s
tions might be useful as toy models for the studies of
more general corresponding cases.

An obvious application of the analytic de Sitter doma
wall solutions presented in this and previous papers@1#
would be as toy models of our world through the brane wo
scenario. According to recent observations@28#, our universe
was in the inflation stage at the big-bang, and moreove
tiny cosmological constant might exist even at present. In
model, gravity will be confined by the mechanism of@29#,
and it would be interesting to investigate the gravitation
properties in such an accelerating domain wall universe.

Another interesting direction would be to embed m
model into supersymmetric theories or superstring theo
The potential~8! has a simple form of an axion, which woul
be easily generated by field theory or string theory instan
corrections. According to@30#, a de Sitter space-time canno
have any supersymmetries, and hence supersymmetries
be broken on a de Sitter domain wall. In the identification
6-6
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our world with the domain wall, it seems challenging to e
plain the large hierarchy between the observed upper bo
of the cosmological constant and the supersymmetry bre
ing scale. Based on a similar motivation, my model may
regarded as a gravity-coupled analogy of the SUSY-break
domain wall solution presented in@31,32#.

My cosmological solutions of cyclic universes might pr
vide toy models for the scenario of@33,34#.
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