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Analytic continuations of de Sitter thick domain wall solutions
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| perform some analytic continuations of the de Sitter thick domain wall solutions obtained in my previous
paper in the system of gravity and a scalar field with an axionlike potential. The obtained new solutions
represent anti—de Sitter thick domain walls and cosmology. The anti—de Sitter domain wall solutions are
periodic, and correspondingly the cosmological solutions represent cyclic universes. | parametrize the axion-
like scalar field potential and determine the parameter regions of each type of solutions.
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[. INTRODUCTION performed for the system of gravity and a scalar field in
[14,15. The constructions of analytic de Sitter thick domain
The solitonic objects in string theory play major roles in wall solutions with horizons were done i, 16].
the understanding of its nonperturbative properties such as In my previous papef1], the scalar field potential takes
dualities. In string theory the solitons couple necessarily witran axionlike form and its two parameters are restricted to a
gravity. In view of the universality of the gravitational inter- certain region for the analytic solutions to exist. The motiva-
action, the understanding of the gravitational aspects of solition of this paper is to find analytical solutions for the outside
tons may provide a deeper understanding of the variety of this region of these parameters. It is a well known trick
the dynamics contained in string theory. that, starting from a domain wall solution, analytic continu-
The simplest system of solitons and gravity would be do-ations generate domain wall solutions with flipped curvatures
main walls of scalar field theory interacting with gravity. In and cosmological solutiongl7]. I will show that the new
field theory, domain walls appear when there are more thagolutions cover the missing parameter regions. They are
one vacua in a scalar field potential, and it is a straightforanti—de Sitter domain walls, finite lifetime universes with a
ward matter to obtain static domain wall configurations. Onbig-bang and a big-crunch, and cyclic universes.
the other hand, with gravitational interactions, their nonlin-
earity and instability make it a nontrivial issue to study the
dynamics of domain walls. As for a supersymmetric domain

wall configuration, it can be analyzed by Bogomolnyi- |n my previous papefl], | obtained a class of analytic
Prasad-Sommerfiel@BPS first order differential equations selutions of thick domain walls with de Sitter expansions in
[2]. These solutions are static and it was shown that a generige system of five-dimensional gravity and a scalar field with
static and flat domain wall configuration can be analyzed iman axion-like potential. Let me start my discussions by ex-
the same manndB—6]. The procedure to obtain such a so- tending my previous results to a general space-time dimen-
lution is mathematically well defined, but an obtained solu-sjonn.

tion is not necessarily physically meaningful. In fact, the  The action of my system is given by

scalar field potential must be fine-tuned to avoid naked cur-

vature singularitieg1,6—8. This situation is quite unsatis- 1

factory, since a scalar field potential will change its form :f -2 _ ( iy _ )

from a supersymmetric one by possible low energy dynamics S dtdx’"*dyy—g| R 29 udvd=V(S) .

such as supersymmetry breaking and instanton corrections, (1)
even if | assume some high energy supersymmetries. The

nonsupersymmetric string theories also suffer from a similafrne metric ansatz | use is the warped geometry
pathological behavior that the background solutions have na-
ked singularities where the dilaton field diverd&s10].

One of the possible resolutions to these singularities is to B ) 2. oht -
introduce time dependences of domain walls. The use of a de ds’=a(y)?| —dt*+e ;1 (dx')
Sitter expansion to turn a curvature singularity of a static
soliton into a horizon has appeared in the context of global
U(1) vortex solutiong11] and in a codimension two nonsu- Where H denotes the Hubble constant of the
persymmetric soliton solution in type 1IB string thedi2].  (n—1)-dimensional de Sitter space-time. Under the assump-
This is also used in constructing background solutions ofion that the scalar field depends only on the coordigatee
nonsupersymmetric string theoriegl3]. As for time-  Einstein equations are
dependent domain walls, perturbative analyses have been

Il. de SITTER DOMAIN WALL SOLUTIONS

n-2
+dy?, (2
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FIG. 1. The shapes of the de Sitter domain walls withk 1 and3=0.001 and3=1000.
(n—2)[—aa’—(n—2)(a")?+(n—2)H?] H2(n—2)%(1-87?)
V(¢)= > qE) V(¢)= 5
a
2n(n— -2
where the prime denotes the derivation with respegt fthe + H'n(n-2)(1+8 )cos( A/ 2 ¢> @)
equation of motion of the scalar field is automatically satis- 2 n—-2")"

fied by the solutions of Eq3) because of a Bianchi identity.
By repeating the same procedure as done in my previoughich is similar to that of an axion with an instanton correc-
paper[1], | find that the first equation of Eq3) is satisfied tion. In this paper | consider the two-dimensional parameter

by the solution space (q,v4) of the scalar field potential,
a(y)=snHy,ig™"), 2
V(¢):U0+Ulco m(ﬁ . (8)
cn(Hy,iB™Y)
b(y)= V2(n—2)arctar( Bdn(Hy iﬁl))’ (4) | may assume; to be a positive parameter by shifting

appropriately. In this parametrization the res( shows
that the parameter region for the existence of a regular de

where the elliptic functions are defined by Sitter domain wall solution is given by

z dx
s (2K :J ' 5 —(N=2)v;<Nue<(n—2)v;. (9)
(zk) 0 J(1—x%)(1—k?x?) ®
Cn(u,k)Z[l—Sl’?(u,k)]llz and dn@,k)=[1 IIl. EXTENSION OF THE de SITTER DOMAIN WALL

—k?srt(u,k)]¥2. Here the parametgs is a free real param- SPACE-TIME

eter. In the expressiofd), the normalization of the scale  The vanishing pointa=0 are actually horizons. To show
factora(y) merely defines the unit of length scale and | havethis | will extend the solution$4). The extended space-time
normalized it by imposinga=1 at the domain wall peak is essentially equivalent to thre= 1/2 case of16], and | will
defined bya’=0, and the constant shift ambiguity &fy) follow their discussions. | first change to a conformal coor-
is fixed by imposingp=0 at the domain wall peak. A pecu- dinatedz=dy/a. Integrating the solutioi§4), | obtain
liar property of the solutior(3) is that the scale factor be-
haves near its vanishing poipt=0 as 1 sn(Hy,iB™ 1)
z—zozﬁln — — |
a(y)=Hy+0(y®. (6) dn(Hy,ig~h+en(Hy,ig ™)

(10

As discussed in my previous papdi, this behavior is re- Wherezo is an integration constant. Using Ed.0) and tak-
quired for the vanishing point to be regular. The fadtbof ~ INg & proper value of,, the metric for a de Sitter domain
the linear term can be also understood from the physicaivall solution becomes

consistency of the geometry that the temperature associated

to the Rindler space-time neg+0 should agree with that of 2 2 —d2+d2

the de Sitter domain wall space-tint¢/27 (see Fig. L1 | _(1+ﬁ*2)cosk(2Hz)+1—B*2( T

will show in Sec. lll that the vanishing point is actually a

horizon and that a regular extended space-time can be ob- +H ™ 2cosif(H7)dQ""?), (12)

tained by taking an appropriate coordinate system.
The scalar field potential is determined by the secondvhere | have changed to a global coordinate of a de Sitter
equation of Eq(3), and we obtain space-time instead of a flat one appearing in &), and
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tion should contain a simultaneous shiftyofs
1/B— —1i4,

H—ih,

a Hy—ihy+K(9), (14)
e where § and h are real constants anki(d) is the elliptic

integral of the first kind,

K(8 _fl dx
(9)= 0 J(1—x2)(1—6%3)

(15

FIG. 2. The Penrose diagram of the de Sitter domain wall space- _ . . . . .
time. The two edges of each oval should be identified. The solioSUbSt'tUtIng the analytic continuatidd4) into the de Sitter

ones depict the peaks of the domain walls, while the dashed one%omtion (4), | obtain new solutions
the bottoms.

1
ay)=———m—-,
dQ""2 denotes the metric on am{ 2)-dimensional unit ) dn(hy,V1— 6%
sphere. By a further transformation ot exgH(7—2)] and

v=exd —H(r+2)], | obtain 5 snhy, /—1_52))
=V2(n—-2
2 ¢(y)=v2(n )arctar( by =) | (16)
4H™
= dud
(1+8 (102 +2(1-B Dup | " and
2 h*(n—2)%(1+ 6%
(“Z”) dm—Z). (12 V(g)=- 5

h?n(n—2)(1— &%) [ 2
Note that the allover factor of the metri&2) is nonsingular - 2 COS( n—2¢)' 17
for all the real values ofi andv. After the change of vari-
ablesu=T+R, v=—T+R, the metric in the parentheses py the parametrizatiof8), the scalar potentigll7) is in the
becomes—dT?+dR*+R*d()" "2 and is free of a conical region
singularity. As pointed out ifi16], the domain wall peak at

—T2+R?=uv=1 is a bubble with a constant acceleration in Nve< —(N—2)v;. (18)
the coordlnate'(,R,Q') (see F'g: 2 To make the warped metri@) meaningful under the ana-
As for the scalar field, | obtain lytic continuation(14), | perform a simultaneous continua-
tion t—ir andx*—ix%. Then Eq.(2) becomes an anti—de
uv—1 Sitter domain wall metric
b= VZ(n—Z)arctarG m), (13

n-2
dr2+e-2hf< —(o|x°)2+22 (dx‘)2)>

+dy2. (19

ds?>=a(y)?
which is also well defined for any real valueswanduv.

IV. ANTI —de SITTER DOMAIN WALL SOLUTIONS . . . .
Thus in the regior{18), there exist regular AdS domain wall

In the following | will study the other parameter regions solutions, which are given by Eq&.6) and(17) (see Fig. 3.
of the potential8) rather than9). Looking at the expression The stability of the AdS solutions can be checked as fol-
(7), one notices that all the other parameter regionsyaind  lows. | restrict my attention to the five-dimensional case (
v, can be covered by the analytic continuations of the pa=5). Presumably the extension to a general dimension will
rametersB andH to pure imaginary values. However, under be straightforward. As discussed|i6,7,18,19, the problem
an analytic continuation of only one @ or H to a pure of obtaining the mass spectra of the linear perturbations
imaginary value, one of(y) or a(y) becomes imaginary around a solution boils down to solving ScHimger equa-
and physically meaningless. This cannot be resolved even yons. As for the tensor perturbation,
using the constant shift ambiguity gfof the solution. To
obtain a physically meaningful expression from &), both
B andH must be analytically continued to imaginary values, The other available choices of the shiftyoflo not give any other
and, after some trials, it turns out that the analytic continuaindependent solutions.
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2 Thus it is suspected that there are no regular domain wall
10 . N .
solutions of the form of the warped metii2) in this param-
8 eter region. To see whether this is the case, | will use a
6 numerical computation.

Since, in this parameter region, the constant pauf the
scalar potential is larger than that of the parameter region of
de Sitter analytic solution®), | may assume the solution to

3 5 75 55— ¥ be a de Sitter domain wall rather than an anti—de Sitter one.
As generally discussed in my previous pajdgr a regular de
Sitter domain wall solution is sandwiched between two ho-
rizons. The initial values of the differential equatidi3$ can
be provided by the three values a’, and ¢ at a certain
initial location ofy. For the solution to be regular at a hori-
zon, the scale factor must behave in the fd6)) and there-
fore the freedom to choose the initial values is reduced to the
only free parametesp = ¢, at the horizon. Thus, to search for
a regular solution, | take one of the horizons as the initial
Q'Qe=m?¢p, (21) location and integrate numerically the differential equations
(3) for each value ofp. at the horizon. Then the question of
where the existence of a regular solution is translated to whether
there exists an initial valué. for which the numerical so-
:i_id_a (22) lution of the differential equations is regular between the
dz 2adz’ initial horizon and the other horizon of a domain wall.

) 5. ] This search procedure gives a numerical regular solution
Thus the eigenvaluen” is non-negative, and hence the sta-fy; each choice of €o,01,H). Studying in this three-

bility under the tensor perturbations is satisfied. As for thedimensional space would be too much, and in fact, | can
scalar perturbation, reduce the dimension to one by rescaling the differential

d=a[(1+ ;) ¥, XX+ (1+ W)dZ], (23 equations(3). By 'Fhe rescaling ofy anda, | can normalize
the scalar potential and the Hubble constant so thatl

FIG. 3. The shape of the anti—de Sitter domain wall wlith
=1 and§=0.1.

ds?=a?(y,,+h,,)dx“dx’+dZ],
h#=hl" =0, (20)

the Schrdinger equation has a supersymmetric form

the Schrdinger equation becom¢$8,19,] andH=1. Thus it is enough to check the question for each
) ) choice ofv.
~.= a%(¢') It would be a reasonable assumption that a domain wall
) 2 —m2
QO+ 3 +ahTle=mTe, (24 contains the peak of the potential eneigy 0. Then, since

the potential8) is Z, invariant? it is enough for me to solve
where the equations in the regiop>0. | take an initial valuep
4 din(a®2e’ = ¢.>0 and solve the differential equatiod) taking the
0=—+ M_ (25) branch¢’ <0 until the solution reaches the valg¢e=0. By
dz dz sweeping the initial valueb., | obtain the range o&’/a at

. . L . . ¢=0. If the obtained range af'/al,_, contains both posi-
This Schralinger equation is obtained by the substitutidn tive and negative values, one can construct a regular solution

- . . - 2 . _
—ih in the corresponding expression ifi. The m* is ob by gluing a numerical solution with a certain value pf

viously positive, and the AdS solutions are stable under the* 'Tal t0 the Z, i £ 1h luti itta’/a|
scalar perturbations. However, there remains one thing tg & /@lg=o l0 ez, Image of the solution wi alg=0
—p. If the range does not contain both signs, one cannot

check before this conclusion. If there existed points with ™ )
¢'=0, the operatorQ would become singular at these construct a regular solution.
ointsyand thepabove naive discussion of theg ositivity woul | performed the above procedure in five space-time di-
poir . o POSItivIty dmensions 1=5). From Eq.(9), the maximum value for the
be in danger. Moreover, in the derivation of the Sclinger X . o
. : . ! existence of an analytic solution ig=3/5=9/15. In fact,
equation for the scalar perturbations[it9], the linear per-

turbation is redefined by a multiplication of a factor which is ?sz% 15'0'33%'”6@ / a|¢t:,0“|0-00§3t'h_ 0'0.151 for g f
singular if ¢’ =0. But, in the solution(16), ¢’ is always - ™ m, respectively, and the existence ot a

nonzero. and the above discussion is safe regular solution is numerically supported. Fog=11/15,
' ' however, the plotted values @f'/a| 4, in Fig. 4 indicate

V. THE REGION WITHOUT REGULAR SOLUTIONS thata’/al,_ takes only negative values. Thus it is numeri-
: cally supported that there do not exist any regular de Sitter

| cannot find a physically meaningful analytic continua- domain wall solutions in the parameter regi@6).
tion to the parameter region

(N=2)v,<nvy. (26) 2Namely, invariant undetp— — ¢.
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FIG. 5. The parameter regions for dS, AdS, and no regular do-

FIG. 4. The values of'/al,— are plotted agains$. for vo  main wall solutions are shown. The two lines of boundaries are
=11/15,v,=1,H=1. The dots are the points where the numerical,, . (n—2)y,=nv,—(n—2)v,=0. On the linenvy+(n—2)v;

computations were performed, and the solid line is the fitting line_ g fjat domain wall solutions exist.
with an assumed form’/a| ,_o=Cq+Cy .+ cz¢§.

-0.07

0.1 0.2 0.3 0.4

n-2
Qualitatively, in this parameter region, the constant part of ds?=—dt?+a(t)? dy2+e—2hy2 (dx)2], (29
the scalar field potential is so large that the expansion rate at =1
the core is too large for a domain wall to keep its shape.
Similar phenomena are discussed in the context of topologiwhich describes a Friedmann-Robertson-WallgRW) cos-
cal inflation in[14,20,21. In [14], a perturbative analysis of mology of an open universe. Hence the new solution repre-
the phase boundary between the existence and nonexistersents a finite lifetime open universe with a big-bang and a
of domain wall solutions for the four-dimensional system of big-crunch.
gravity and a scalar field was performed, including the Under the analytic continuatioi28), the equations of mo-
present case with an axion-like scalar field poteritidc-  tion (3) remain the same with the identification of the prime
cording to the paper, the phase boundary is generally chawith the time derivativéoverdoj andH with h and changing
acterized by the equation the sign of the scalar potential. Under the change of the sign
of the potential, the region of the de Sitter solutid@$ is

3. transformed to the identical region. Thus the parameter re-
§|V (0)[-V(0)=0 (27 gion for the open universe solution is the same as that of the
de Sitter wall solutiong9) (see Fig. 8.
in our present notation fan=4. Substituting the parametri- _ AS for the anti—de Sitter solution, the analytic continua-
zation(8), this becomes 2,—v,=0, which agrees with Eq. tion (28) turns it into a co§molog|cal_ solution of a closed
(26) for n=4 (see Fig. 5. universe. Because of the flip of the sign of the scalar poten-

Thus, in the region26), the rapid expansion will ulti- tidl, the parameter region of the closed universe solution is
mately sweep away the spatial dependence of the scalar fiel@Ptained by flipping Eq(18) into
and the dynamics will be mainly described by its time-
dependence. This will be the subject of Sec. VI. (N=2)v1<nvy. (30)

VI. COSMOLOGICAL SOLUTIONS Thi; agrees Wit_h the region where there are no rggular do-
main wall solutions. The corresponding cosmological solu-
It is well known that, starting from a domain wall solu- tions are obtained by the substitutigpr-t andH—h in the
tion, a cosmological solution can be obtained by an analytiddS domain wall solutiong16). The periodic behavior of
continuation which exchanges the transverse coordinate arile AdS domain wall solutions is now interpreted as repre-
the time coordinat¢17]. An appropriate analytic continua- senting a cyclic universe.

tion is given by It would be interesting to see the behavior of the energy
density and the pressure. In a five-dimensional space-time,
t—iy, they are
y4>|t, Vi

H—ih, (28) Finite open
by which, a de Sitter domain wall solutigd) changes to a
new solution with the substitutiop—t andH— h. This ana-

lytic continuation turns the de Sitter domain wall metf&} CyChc closed universe

into Vo
FIG. 6. The parameter regions for the two types of cosmological
solutions are shown. The two lines of boundaries arg+(n
3Denoted as a sine-Gordon potential ir]. —2)vi=nvg—(nN—2)v,;=0.
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rho P
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FIG. 7. The time evolution of the energy density and the pressure of the cosmological séfivéotimensions corresponding to the
AdS solution of Fig. 3. The energy density takes its maximum at the minimum of the scale factor to initiate the bounce, while the pressure
takes its maximum at the maximum of the scale factor where the contraction begins.

N

N Wb 0

5 10 15 20

1,1 tuations of matters and gravity generate a region with a posi-
p=7()"+35V(e) tive spatial curvature and the bounce of the universe simply
happens from a classical dynamics. In this case, even though
201 2 e the present model seems far from what is the real universe, it
=6h2< 1— °(1-&)srr(ht.y1-6 )) , might provide a simple toy model to study the pre-big bang
dré(ht,y1—6%) scenario.

The inequality(32) also plays an important role in the
dS/conformal field theoryCFT) correspondence. The central
charge is given by an inverse power of the Hubble parameter,
and the inequality32) supports the interpretation of the time

9 evolution as a renormalization group flow to U25,26. In
= h252< —6— ; + m) . (3D the case of a cyclic universe, however, the time flow cannot
(ht, ) be interpreted in this waj27] because reverse process ex-

In Fig. 7 | plotted the time evolution of the energy density iStS- If | take seriously the interpretation §25,26, there
and the pressure for the cyclic universe solution withl ~ Should be akind of mechanism to prevent the above situation
and 5=0.1. At the minimum of the scale factor the energy from happening. From this point, it would be interesting to
density takes its maximum value and the pressure is approxity to consistently embed my simple model into string theory.
mately the minus of the energy density. At this period the
large energy density initiates a bounce and the universe is at
the inflation stage. On the other hand, at the maximum of the VIl. SUMMARY AND DISCUSSIONS
scale factor, the energy density is nearly vanishing and the ) , . )
pressure dominates. The large pressure works as a negative!n this paper | have studied the analytic solutions of the
gravitational energy and initiates a contraction of the uni-SYStem of gravity and a scalar field with an axionlike poten-
verse. t|ql. They cgntam de _S!tter_th|_ck domam walls,_ anu—de Sitter

For a flat FRW universe, if | assume the null energy Con_thlck domain walls, finite lifetime universes with a big-bang

dition, the Hubble parameter satisfies an inequality a}nd a b.ig-crunch, and cyclic universes. These analytic solu-
tions might be useful as toy models for the studies of the

H=<0 (32) more general corresponding cases.
’ An obvious application of the analytic de Sitter domain

and there cannot exist a bounce. This also implies that, sinciall solutions presented in this and previous paplers
our universe is expanding at present days, the universe mueuld be as toy models of our world through the brane world
have started from a singularity. In the papf28.23, some Scenario. According to recent observatigp8], our universe
loopholes of the above discussion are presented from strin§@S in the inflation stage at the big-bang, and moreover, a
theory to support the possibility of the pre-big-bang scenarid!ny cosmological constant might exist even at present. In my
[24]. In our cyclic solution, the existence of the positive M0del, gravity will be confined by the mechanism[ab],

curvature of the space changes the equation of motid# of and it would be interesting to investigate the gravitational
into properties in such an accelerating domain wall universe.

Another interesting direction would be to embed my
h2 »? model into supersymmetric theories or superstring theory.
(33 The potential8) has a simple form of an axion, which would
be easily generated by field theory or string theory instanton
) corrections. According t30], a de Sitter space-time cannot
andH can take both signs. Considering the high energy ahave any supersymmetries, and hence supersymmetries must
the big-bang of the universe, it is plausible that some fluche broken on a de Sitter domain wall. In the identification of

_1 L, 1
p=7($)?=3V(4)

=2 22
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