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Decay process accelerated by tunneling in its very early stage
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We examine a fast decay process that arises in the transition period between the Gaussian and exponential
decay processes in quantum decay systems. It is usually expected that the decay is decelerated by a confine-
ment potential barrier. However, we find a case where the decay in the transition period is accelerated by
tunneling through a confinement potential barrier. We show that the acceleration gives rise to an appreciable
effect on the time evolution of the nonescape probability of the decay system.
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Quantum decay processes such as the nuclear alpha d
are usually well described by means of the exponential de
law; see, for example, Refs.@1–3#. Theoretically, however,
deviations from the exponential law are expected in the
ginning and also toward the end of a decay process@4#. It is
understood that the quantum decay process in general
ceeds through three different stages; initial, intermediate,
final. The initial stage is characterized by the Gaussian l
the intermediate stage by the exponential law, and the fi
stage by the power law. The decay speeds in the initial
final stages are smaller than that in the intermediate stag
particular, the slow decay process in the Gaussian pe
leads to the possibility of the quantum Zeno effect@4#, in
which the decay process is decelerated by repeated mea
ments.

Many years ago, in his one-dimensional model analysi
a decaying system, Winter found that the speed of the de
process exhibits an irregular behavior in the transition per
between the Gaussian and exponential periods@5#. Very re-
cently Dicuset al. reexamined the same system, which co
sists of a particle which is initially confined in a region an
leaks out by tunneling through ad-function potential barrier
@6#. In the irregular decay process, the decay speed ca
larger than that in the exponential region. Such a fast de
in the transition period is interesting in the sense that it m
give rise to acceleration of the decay process by repe
measurements, which is the so-called anti-~inverse-! Zeno
effect @7,8#.

The purpose of this report is to investigate the details
the fast decay process in the transition period between
Gaussian and exponential periods@9#. In particular, we ex-
plore how the decay process in the transition period depe
on the strength of the confinement potential barrier with
finite potential width. It is usually expected that the decay
suppressed as the confinement becomes stronger becau
potential barrier suppresses the time evolution of the w
function. However, we will illustrate a case where the dec
in the transition period is accelerated by tunneling throug
confinement potential barrier. Further, we show that the
celeration gives rise to an appreciable effect on the time e
lution of the nonescape probability of the decay system.

We consider a model in one dimension with a poten
that consists of an infinite repulsive wall atx50 and a re-
pulsive square barrier at 1,x,11w,
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V~x!5H 0 for 0,x,1

h for 1,x,11w

0 for 11w,x,

~1!

where h and w are the height and width of the potentia
respectively.

We assume that a particle of massm is initially confined
within the potential barrier and it leaks out in time. The tim
evolution of the system is determined by the time-depend
Schrödinger equation

i
]f~x,t !

]t
5Hf~x,t !, H52

]2

]x2
1V~x!, ~2!

where the units are such that\51 and 2m51. We solve Eq.
~2! numerically using the implicit solution method@10#, with
the unitary time-evolution operatorU[(12 iHdt/2)/(1
1 iHdt/2), wheredt is the time mesh. For the range ofx, we
take@0,500#. In order to suppress reflection of the wave fun
tion at the boundary (x5500) of the model space, we as
sume an imaginary potential atx>490.

For the initial wave function of the particle which is con
fined in the region of 0<x<1, we assume

f~x,0!5A2 sinpx. ~3!

It is understood thatf(x,0)50 for x.1. The wave function
leaks out in time by tunneling through the potential barr
V(x). The energy expectation value^H& at t50 is p2. In
numerical illustrations we choose the height of the poten
barrier such thath.p2. In this sense we regard the proce
as a tunneling decay process.

We define probabilityP(a,t) for the particle being in the
interval 0<x<a at t by

P~a,t !5E
0

a

dxuf~x,t !u2. ~4!

If we set a511w, P(11w,t) represents the probability
that the particle is confined by the potential barrier. Forw we
consider a few different values. In order to compare the
sults for different values ofw, we set a such thata.1
1wmax. Throughout this paper, we takea54. TheP(a,t) is
©2002 The American Physical Society02-1
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a kind of the nonescape probability, which is the probabi
that the particle has not escaped from the potential by timt
@11,12#.

Next we introduce functiong(a,t) defined by

g~a,t !5
dP~a,t !/dt

P~a,t !
. ~5!

If probability P(a,t) decays exponentially, that is,
P(a,t)}e2gt, theng(a,t) is independent of time,

g~a,t !52g.

If P(a,t) obeys the Gaussian decay law, that is, ifP

}e2t2/t, g(a,t) is proportional tot,

g~a,t !522t/t. ~6!

Thus, from thet dependence ofg(a,t) we can see how wel
P(a,t) obeys the exponential law or the Gaussian law.

Figure 1 shows the nonescape probabilityP(a,t), where
the potential height and width are taken ash510 andw
50.6, respectively. In the initial period 0<t&0.3, the decay
is extremely slow. The period should correspond to
Gaussian decay process. In the period oft*2, the system is
subject to the exponential decay law. Between the t
stages, there is a period (0.3&t&2) in which the decay pro-
cess is neither Gaussian nor exponential. This is the tra
tion period. In the period the decay of the nonescape pr
ability seems to be much faster than that in the exponen
period.

The functiong(4,t) calculated fromP(4,t) of Fig. 1 is
shown by the solid line in Fig. 2. In the period oft*2,
g(4,t) is almost constant, which means that the decay p
cess is exponential. In the period of 0<t&0.3, g(4,t) is not
exactly proportional tot, i.e., the decay process in the initi
stage slightly deviates from the Gaussian decay law. H
ever, the decay speed in this period is still smaller than
in the exponential period. Corresponding to the rapid de
process seen inP(t) of Fig. 1, the maximum ofug(4,t)u is
obtained in the transition period (t;0.6). Theg(4,t) starts
from zero att50. Thus, the quantum Zeno effect is possib
when we repeat measurements with a sufficiently small t

FIG. 1. The time evolution of the nonescape probabilityP(4,t)
for w50.6 andh510. The units are such that\51 and 2m51.
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interval. On the other hand, the anti-Zeno effect is poss
by repeated measurements only when the net decay ra
the fast decay process in the transition period is large c
pared to that of the slow decay process in the Gaussian
riod ~see, footnote Ref.@13#!.

In order to see how the decay process in the transi
period depends on the strength of the potential barrier,
examineg(4,t) for various potential heights and widths. Th
dashed and dot-dashed lines in Fig. 2 show theg(4,t) for
h520 andh530, respectively with a fixed widthw50.6.
The decay process in the Gaussian period 0<t&0.3 does not
depend strongly on the potential height. This is because
the initial stage the higher-energy components of the ini
wave function relative to the potential height contribu
mainly to the decay of the system. On the other hand,
decay speed in the exponential period becomes much sm
as the confinement becomes stronger. The fast decay in
transition period depends strongly on the potential heigh
tends to be suppressed as the confinement becomes stro

In Fig. 3, we showg(4,t) for various potential widths and
a fixed heighth515. The decay process in the Gaussi
period 0<t&0.3 does not seem to depend strongly on

FIG. 2. The time evolution ofg(4,t) for a fixed widthw50.6.
The solid, dashed, and dot-dashed lines showg(4,t) for the heights
h510, 20, and 30, respectively. The units are such that\51 and
2m51.

FIG. 3. The time evolution ofg(4,t) with a fixed heighth
515. The solid, dashed and dot-dashed lines are theg(4,t) for w
50.6, 0.8, and 1.8, respectively. The units are such that\51 and
2m51.
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potential width. On the other hand, the decay rate of
exponential period becomes much smaller as the pote
width becomes broader. This is due to the increase of
confinement strength. The decay speed in the transition
riod becomes larger as the potential width becomes narro

As we have shown, the speed of the fast decay proc
becomes smaller as the potential barrier becomes stron
Thus, we might guess that the fastest decay will be obtai
in the decay process with no potential barrier. However,
we will show in the following, potential barriers with appro
priate widths and heights can accelerate the decay proc

In Fig. 4, the solid line showsg(4,t) calculated with no
potential barrier. The dashed, dot-dashed, and dotted l
exhibit g(4,t) calculated with the potential barriers withh
510, 20, and 30 and fixed widthw50.2, respectively. It
should be noted thatw50.2 is much thinner than those use
in Figs. 2 and 3, and therefore, in this case, the confinem
is very weak compared to that in Figs. 2 and 3. In the Gau
ian period, the potential dependence of the decay speed i
very appreciable. However, in the transition region, the
cay speed becomes faster as the potential height beco
lower. Forh510, the maximum decay speed att;1.8 ex-
ceeds that for no potential barrier att;0.7.

As shown in Fig. 5, such an acceleration of the dec
speed by tunneling gives rise to an appreciable differenc
the time evolution ofP(4,t). The solid and dashed lines a
the P(4,t) for no potential barrier and for the potential ba
rier with w50.2 and h510, respectively. The nonescap
probability for h510 becomes smaller than that for no p
tential barrier att;1.5. At this time the residual nonescap
probability is still about 10%. In this sense, the effect of th
acceleration cannot be ignored. On the other hand, foh
520, at the time region in which the nonescape probabi
becomes smaller than that for no potential barrier, the
sidual nonescape probability is negligibly small.

The fluctuations in the behaviors ofg(4,t) indicate that
the decay processes are still in the transition period from
Gaussian to exponential period. However, as shown in Fig
the decay process has been almost completed beforet54.
Therefore, even if the decay process proceeds to the e

FIG. 4. The time evolution ofg(4,t) for a fixed widthw50.2.
The dashed, dot-dashed, and dotted lines are theg(4,t) for the
widths h510, 20, and 30, respectively. The solid line shows
g(4,t) for no potential barrier. The units are such that\51 and
2m51.
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nential period eventually, the exponential decay has no
portance in this case. The stability of quantum system
usually characterized by the magnitude of the imaginary p
of the pole that gives the inverse of the lifetime in the exp
nential period@4–6#. The result that we have shown implie
that such a pole analysis may not be effective for hig
unstable systems@14#.

In Fig. 4, we have seen that the acceleration by tunne
can be obtained forh&10. Next, we investigate the acce
eration with a fixed height. We examine the time evolution
g(4,t) for h510 @15#. The dashed, dot-dashed, and dott
lines in Fig. 6 exhibitg(4,t) calculated for the potential bar
riers with w50.2, 0.4, and 0.6 and fixed heighth510, re-
spectively. One can see that the decay rate becomes large
thinner potential widths. Forw50.2, the maximum decay
speed exceeds that for no potential barrier. Thus, one
that the acceleration of the decay speed by tunneling ca
obtained when the strength of the confinement by the po
tial barrier is sufficiently weak. In our illustrations, forh
&10 andw&0.2, the accelerations are remarkable.

Finally, we mention that theg(4,t) represented by dotted
line in Fig. 4 (w50.2 and h510) takes positive values

FIG. 5. The time evolution of the nonescape probabilit
P(4,t). The solid and dashed lines are theP(4,t) for no potential
barrier and for the potential barrier withw50.2 andh510, respec-
tively. The units are such that\51 and 2m51.

FIG. 6. The time evolution ofg(4,t) with a fixed heighth
510. The dashed, dot-dashed, and dotted lines are theg(4,t) for
the heightsw50.2, 0.4, and 0.6, respectively. The solid line sho
theg(4,t) for no potential barrier. The units are such that\51 and
2m51.
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aroundt;3.5. Recall that the probability currentj (a,t) is
related to the nonescape probabilityP(a,t) by j (a,t)
52dP(a,t)/dt52g(a,t)P(a,t). This means that, if
g(a,t) is positive, j (a,t) is negative. However, in Refs
@5,16# the negative currents were obtained at very late ti
region after the exponential decay period. Our result imp
that in a highly unstable quantum system the negative cur
can occur even at the initial stage after the Gaussian pe

We have investigated the fast decay process in the tra
tion period between the Gaussian and exponential decay
cesses. In most cases of the tunneling process, the d
A

M

io

s.
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speed becomes smaller as the potential barrier beco
stronger. As a special case, we have found that the fast d
process can be remarkably accelerated by tunneling thro
potential barriers with appropriately small widths an
heights. A detailed analysis of the acceleration of the f
decay process by tunneling is a future project.
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