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Decay process accelerated by tunneling in its very early stage
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We examine a fast decay process that arises in the transition period between the Gaussian and exponential
decay processes in quantum decay systems. It is usually expected that the decay is decelerated by a confine-
ment potential barrier. However, we find a case where the decay in the transition period is accelerated by
tunneling through a confinement potential barrier. We show that the acceleration gives rise to an appreciable
effect on the time evolution of the nonescape probability of the decay system.
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Quantum decay processes such as the nuclear alpha decay 0 for 0<x<1
are usually well described by means of the exponential decay
law; see, for example, Ref§l—-3]. Theoretically, however,
deviations from the exponential law are expected in the be- 0 for 1+w<x,

inning and also toward the end of a decay pro¢ésslt is ) . .
gndergtood that the quantum decay procesg in general prw_hereh. andw are the height and width of the potential,
ceeds through three different stages; initial, intermediate, angFSPECtively. . o .
final. The initial stage is characterized by the Gaussian law, V& assume that a particle of massss initially confined
the intermediate stage by the exponential law, and the finayithin the potential barrier and it leaks out in time. The time

stage by the power law. The decay speeds in the initial angvolution of the system is determined by the time-dependent

final stages are smaller than that in the intermediate stage. RCr@inger equation
particular, the slow decay process in the Gaussian period
leads to the possibility of the quantum Zeno effe4}, in i
which the decay process is decelerated by repeated measure- ot
ments.

Many years ago, in his one-dimensional model analysis ofvhere the units are such thlat1 and 2n=1. We solve Eq.
a decaying system, Winter found that the speed of the decai2) numerically using the implicit solution meth¢d0], with
process exhibits an irregular behavior in the transition periodhe unitary time-evolution operatotJ=(1—iH 6t/2)/(1
between the Gaussian and exponential per[@isVery re-  +iH 6t/2), whereét is the time mesh. For the rangexfwe
cently Dicuset al. reexamined the same system, which con-take[0,500. In order to suppress reflection of the wave func-
sists of a particle which is initially confined in a region and tion at the boundaryx=500) of the model space, we as-
leaks out by tunneling through &function potential barrier  sume an imaginary potential at490.
[6]. In the irregular decay process, the decay speed can be For the initial wave function of the particle which is con-
larger than that in the exponential region. Such a fast decafined in the region of &ex<1, we assume
in the transition period is interesting in the sense that it may

V(x)={ h for 1<x<l+w 1)

2
AASSUNTTNY H=—%+V(X)’ @
X

give rise to acceleration of the decay process by repeated $(x,0)= V2 sinmx. 3
measurements, which is the so-called afitiverse)y Zeno
effect[7,8]. It is understood tha#(x,0)=0 for x>1. The wave function

The purpose of this report is to investigate the details ofeaks out in time by tunneling through the potential barrier
the fast decay process in the transition period between thé(x). The energy expectation valy#l) att=0 is 7. In
Gaussian and exponential peridd. In particular, we ex- nhumerical illustrations we choose the height of the potential
plore how the decay process in the transition period dependarrier such thah> 2. In this sense we regard the process
on the strength of the confinement potential barrier with aas a tunneling decay process.
finite potential width It is usually expected that the decay is ~ We define probability?(a,t) for the particle being in the
suppressed as the confinement becomes stronger becauseitierval O<x<a att by
potential barrier suppresses the time evolution of the wave R
function. However, we will illustrate a case where the decay _ 2
in the transition period is accelerated by tunneling through a Plat)= fo dx| (x| @
confinement potential barrier. Further, we show that the ac-
celeration gives rise to an appreciable effect on the time evof we seta=1+w, P(1+w,t) represents the probability
lution of the nonescape probability of the decay system. that the particle is confined by the potential barrier. Wave

We consider a model in one dimension with a potentialconsider a few different values. In order to compare the re-
that consists of an infinite repulsive wall a=0 and a re- sults for different values ofv, we seta such thata>1
pulsive square barrier at<Ix<<1-+w, +Wnax- Throughout this paper, we take=4. TheP(a,t) is
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FIG. 1. The time evolution of the nonescape probabif/,t) FIG. 2. The time evolution of(4,t) for a fixed widthw=0.6.
for w=0.6 andh=10. The units are such that=1 and 2n=1. The solid, dashed, and dot-dashed lines sig¢#t) for the heights

h=10, 20, and 30, respectively. The units are such thatl and
a kind of the nonescape probability, which is the probability2m=1.
that the particle has not escaped from the potential by time

[11,12. interval. On the other hand, the anti-Zeno effect is possible
Next we introduce functiog(a,t) defined by by repeated measurements only when the net decay rate of
the fast decay process in the transition period is large com-
glat) = dP(a,t)/dt (5) pared to that of the slow decay process in the Gaussian pe-
' P(a,t) riod (see, footnote Ref.13]).

N . o In order to see how the decay process in the transition
If probability P(a,t) decays exponentially, that is, if period depends on the strength of the potential barrier, we

P(a,t)xe ", theng(a,t) is independent of time, examineg(4.) for various potential heights and widths. The
_ dashed and dot-dashed lines in Fig. 2 show dét) for
g@at=—y. h=20 andh=30, respectively with a fixed widthv=0.6.

The decay process in the Gaussian perisd £ 0.3 does not

2 ) , depend strongly on the potential height. This is because in
«e "7, g(a;t) is proportional to, the initial stage the higher-energy components of the initial

wave function relative to the potential height contribute

g(a,)=—2t/r. 6) mainly to the decay of the system. On the other hand, the
decay speed in the exponential period becomes much smaller
as the confinement becomes stronger. The fast decay in the
transition period depends strongly on the potential height. It
) . . tends to be suppressed as the confinement becomes stronger.
the potential height and width are taken las 10 andw In Fig. 3, we showg(41) for various potential widths and

= <

is oé?(’tr:aemsgﬁ/dglg:}\/f I'r;rtze;gglr;gljpiﬂggﬁtEgr.r?;st;oengefsythea f|_xed heighth=15. The decay process in the Gaussian
. ' : . period 0<t=<0.3 does not seem to depend strongly on the

Gaussian decay process. In the period=»®, the system is

subject to the exponential decay law. Between the two

stages, there is a period (63=<2) in which the decay pro-

cess is neither Gaussian nor exponential. This is the transi-

tion period. In the period the decay of the nonescape prob-

ability seems to be much faster than that in the exponential

period.

The functiong(4t) calculated fromP(4t) of Fig. 1 is
shown by the solid line in Fig. 2. In the period &2,
g(4t) is almost constant, which means that the decay pro-
cess is exponential. In the period o&@=<0.3, g(4t) is not
exactly proportional td, i.e., the decay process in the initial
stage slightly deviates from the Gaussian decay law. How- -1
ever, the decay speed in this period is still smaller than that
in the exponential period. Corresponding to the rapid decay
process seen iR(t) of Fig. 1, the maximum ofg(4.)| is FIG. 3. The time evolution ofy(4t) with a fixed heighth
obtained in the transition period+0.6). Theg(4t) starts =15 The solid, dashed and dot-dashed lines areg(det) for w
from zero at=0. Thus, the quantum Zeno effect is possible=0.6, 0.8, and 1.8, respectively. The units are such#hkal and
when we repeat measurements with a sufficiently small timem=1.

If P(a,t) obeys the Gaussian decay law, that is, Af

Thus, from thet dependence aj(a,t) we can see how well
P(a,t) obeys the exponential law or the Gaussian law.
Figure 1 shows the nonescape probabiktia,t), where

05

a(4n)
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FIG. 4. The time evolution o§(4.) for a fixed widthw=0.2. FIG. 5. The time evolution of the nonescape probabilities

The dashed, dot-dashed, and dotted lines areglHet) for the  p(4t). The solid and dashed lines are tR¢4t) for no potential
widths h=10, 20, and 30, respectively. The solid line shows theparrier and for the potential barrier with=0.2 andh= 10, respec-
g(4t) for no potential barrier. The units are such tiiat1 and  tively. The units are such thdt=1 and In=1.
2m=1.

nential period eventually, the exponential decay has no im-
potential width. On the other hand, the decay rate of theyortance in this case. The stability of quantum system is
exponential period becomes much smaller as the potentiasually characterized by the magnitude of the imaginary part
width becomes broader. This is due to the increase of thef the pole that gives the inverse of the lifetime in the expo-
confinement strength. The decay speed in the transition perential period4—6]. The result that we have shown implies
riod becomes larger as the potential width becomes narrowethat such a pole analysis may not be effective for highly

As we have shown, the speed of the fast decay processstable systemid4].
becomes smaller as the potential barrier becomes stronger. In Fig. 4, we have seen that the acceleration by tunneling
Thus, we might guess that the fastest decay will be obtainedan be obtained foh=10. Next, we investigate the accel-
in the decay process with no potential barrier. However, agration with a fixed height. We examine the time evolution of
we will show in the following, potential barriers with appro- g(4t) for h=10 [15]. The dashed, dot-dashed, and dotted
priate widths and heights can accelerate the decay processines in Fig. 6 exhibity(4,t) calculated for the potential bar-

In Fig. 4, the solid line showg(4.t) calculated with no  riers withw=0.2, 0.4, and 0.6 and fixed height=10, re-
potential barrier. The dashed, dot-dashed, and dotted linespectively. One can see that the decay rate becomes larger for
exhibit g(4t) calculated with the potential barriers with  thinner potential widths. Fow=0.2, the maximum decay
=10, 20, and 30 and fixed widttv=0.2, respectively. It speed exceeds that for no potential barrier. Thus, one sees
should be noted that=0.2 is much thinner than those used that the acceleration of the decay speed by tunneling can be
in Figs. 2 and 3, and therefore, in this case, the confinemerdbtained when the strength of the confinement by the poten-
is very weak compared to that in Figs. 2 and 3. In the Gaussial barrier is sufficiently weak. In our illustrations, fdr
ian period, the potential dependence of the decay speed is net10 andw=0.2, the accelerations are remarkable.
very appreciable. However, in the transition region, the de- Finally, we mention that thg(4t) represented by dotted

cay speed becomes faster as the potential height becomgse in Fig. 4 (w=0.2 andh=10) takes positive values
lower. Forh=10, the maximum decay speedtat1.8 ex-

ceeds that for no potential barriertat0.7.
As shown in Fig. 5, such an acceleration of the decay 2r
speed by tunneling gives rise to an appreciable difference in
the time evolution ofP(41t). The solid and dashed lines are
the P(4) for no potential barrier and for the potential bar-
rier with w=0.2 andh=10, respectively. The nonescape
probability forh=10 becomes smaller than that for no po-
tential barrier at~1.5. At this time the residual nonescape

probability is still about 10%. In this sense, the effect of this 4r ~ 7
acceleration cannot be ignored. On the other hand,hfor )
=20, at the time region in which the nonescape probability -6 . ' . . . . .
becomes smaller than that for no potential barrier, the re- 0 05 1 15 2 25 3 35 4
sidual nonescape probability is negligibly small. t

The fluctuations in the behaviors g{4) indicate that FIG. 6. The time evolution ofy(4t) with a fixed heighth

the decay processes are still in the transition period from the-10. The dashed, dot-dashed, and dotted lines arge) for
Gaussian to exponential period. However, as shown in Fig. &he heightav=0.2, 0.4, and 0.6, respectively. The solid line shows
the decay process has been almost completed befode  theg(4.) for no potential barrier. The units are such that1 and
Therefore, even if the decay process proceeds to the expam=1.
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aroundt~ 3.5. Recall that the probability currepfa,t) is  speed becomes smaller as the potential barrier becomes
related to the nonescape probabili(a,t) by j(a,t) stronger. As a special case, we have found that the fast decay
=—dP(a,t)/dt=—g(a,t)P(a,t). This means that, if process can be remarkably accelerated by tunneling through
g(a,t) is positive, j(a,t) is negative. However, in Refs. potential barriers with appropriately small widths and
[5,16] the negative currents were obtained at very late timeheights. A detailed analysis of the acceleration of the fast
region after the exponential decay period. Our result impliegiecay process by tunneling is a future project.
that in a highly unstable quantum system the negative current
can occur even at the initial stage after the Gaussian period. We would like to thank Professor Y. Nogami for useful
We have investigated the fast decay process in the transiliscussions and comments. This work was supported in part
tion period between the Gaussian and exponential decay prowy the Ministry of Education, Culture, Science, Sports and
cesses. In most cases of the tunneling process, the decagchnology of Japan.
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