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We study the pairing state of composite fermidi@¥='s) at even denominator Landau level fillings. We
introduce the composite fermion operators by the Rajaraman-Sondhi nonunitary transformation. The resulting
Hamiltonian has a non-Hermitian term. We show that this non-Hermitian term has the effect of destabilizing
composite fermions. However, composite fermions are stabilized when the short-range Coulomb interaction is
strong enough. Projecting into the Hilbert space where composite fermions are stabilized, we derive the
effective Hamiltonian for CF’s. Based on this Hamiltonian we discuss the condition for pairing of composite
fermions within mean-field theory. We show that the pairing condition is satisfieer &2 for GaAs/AlGaAs
heterojunctions because of the screening effect of the long-range Coulomb interaction induced by the filled
Landau levels. We also consider the condition for the pairing state=&/2 andv=1/2. The absence of the
pairing state at half filled high Landau levels is understood as the breakdown of composite fermions because
of the reduction of the short-range Coulomb interaction. The instability ofth&/2 state against an in-plane
magnetic field is also understood as the breakdown of composite fermions. Comparison of the ground state
energy reveals the polarization of spins.

[. INTRODUCTION where P}, is the projection operator on states with the rela-
tive angular momentum of thieh andjth electrons equal to
Two-dimensional electron systems have attracted manyh andV,, are the energies of pairs of particles with relative
theoretical and experimental studies. The fractional quanturangular momenturm. For the fractional quantum Hall state
Hall system is a typical exampleSeveral years of intensive with »=1/m, the components/; with j=1.3,... m—-2,
study reveal that it has very rich structures. The quantungontribute a strong repulsion between electrons and other
Hall effect is observed in two-dimensional electron systemsomponents may lead to some unimportant modification to
under a strong magnetic field. It is usually divided into twothe Laughlin wave function. In fact, the ground state of the
categories. One is the integral quantum Hall effect and thefamiltonian with V;#0 (j=1,3,...m—2) and V;=0
other is the fractional quantum Hall effect. For the latter, the(j=mm+2,...) is exactly the Laughlm wave functich.
Coulomb interaction is essential for its occurrence. The naTherefore, the component; with j<m-—2, which is the
ture of the ground state of the fractional quantum Hall stateshort-range part of the Coulomb interaction, is essential for
is well captured by the Laughlin wave functiét the Lan-  the fractional quantum Hall effect.
dau level filling fractiony=1/m, wheremis an odd integer, As an effective theory of the fractional quantum Hall ef-
it is given by fect, there is the Chern-Simons gauge field théorince
the system is two dimensional, we can transform the electron
1 system into a boson system by a flux attachment. For the
W(zy,2,, ... ,ZN):H (zi—z)" exp( -— E |Zj|2), case ofr=1/m, we map electrons into composite particles
i< j with attachedmg, (¢po=ch/e) flux. The Aharonov-Bohm
(1)  phase arising from this fictitious flux imz for an inter-
change of the positions of two composite particles. To repro-
where the set; (j=1,2, ... N) are the coordinates of tié¢  duce the Fermi statistics of electrons, the particle should be a
electrons in complex notat|on= x+iy andlg=+chl/eBis  boson, which we call a composite boson, farodd and a
the magnetic length. The Laughlin wave function shows thatermion, which we call a composite fermio(€F), for m
there exists a strong repulsion between electrons becauseen. At mean-field level, the fictitious fluxes completely
(zi—2))™—0 for z—z; . This strong repulsion comes from cancel the external magnetic fluxes and the Bose condensa-
the Coulomb mteractlon and this fact tells us that the Coution is to be expectedl® After including the phase fluctuation
lomb interaction is important for the fractional quantum Hall of the bose field, we reproduce the Laughlin wave function.
effect. We can get some insight into the nature of this CouThus, the fractional quantum Hall effect at odd denominator
lomb interaction when we describe it by Haldane'sfillings is understood as the Bose condensation of composite
pseudopotential Haldane decomposed the Coulomb interac-bosons.
tion into components according to the relative angular mo- However, the importance of the short-range Coulomb in-
mentum of electron pairs: teraction is not clear in this composite boson theory. We
meet the same situation when we consider a system of com-
o posite fermiongCF’s), because in that case the ground state
V=Z 2 VmPH]v (2) wave function may contain a fect.or like the Laughli_n wave
i<j m=o0 function Eq.(1) with m even. This is one of the most impor-
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tant points that we need to take care of when we study a Il. COMPOSITE FERMION OPERATORS
system of composite particles.

The fractional quantum Hall effect is not limited to the
odd denominator fillings. The fractional quantum Hall effect

We consider a two-dimensional system of spinless elec-
trons with no impurities and subjected to a magnetic field

, . 6 i that is perpendicular to the plane of electrons. For the Lan-
at v=>5/2 was observed by Willet al. in 1987 Immedi- . . ~
. _ S dau level filling we consider the case ofn+ 1/¢ with nan
ately after the discovery of the=5/2 state, a spin-singlet . ~ . .
d-wave pairing wave function was proposedhis spin- integer andp an even integer. The second quantized form of

singlet wave function seemed to explain naturally the faclthe Hamiltonian for electrons is given by

that the v=5/2 state is unstable in the presence of an in- H=K+VC &)
plane magnetic fiell.However, recent numerical work sup- ’
ports a spin-polarized pairing stat&/hen we map the sys- whereK is the kinetic energy operator
tem into that of composite particles, they obey Fermi
statistics because we should attach an even number of fluxes
to particles according to the denominatoroflf we apply

the condensation scenario to this CF system, we need some /¢ is th tor for the Coulomb interaction bet
pairing mechanism between CF’s. Such a pairing interactiof! IS the operator for the Loulomb Interaction between

was derived by Greiter, Wen, and Wilcz€k A Chern- ele(_:trons. Here the magnetic field ¥xA=—B (B>0),
Simons gauge field fluctuation leadspavave pairing. How- m, is the band mass of the electrons, and the opewltcr)

ever, recently Bonesteel showed that other Chern—Simon%%(r)] is the creatior(annihilatior) operator for an electron

gauge field fluctuations lead to a pair-breaking eftédtur- at pointr.

ther, the fractional quantum Hall effect at even denominato We assume that we can neglect the mixing effect between
o) q . . ?illed Landau levels and first treat the filled Landau levels
is observed only ab=5/2. At v=1/2 the Hall resistance is

i : tic field and the lonaitudinal istivity Yf=N and the partially filled Landau Ieve}p_z 1/ sepa-
slﬂisvrs '2 (?eé?,aggz:f mliiimjlr%an deatfz%l /; ;Ezvfillsléw y rately. We concentrate on the latter for a while. We take into

anisotrooy in the lonaitudinal resistivity is observdd account the effect of the former in Sec. IIl. In order to de-
Py g Y ' scribe the partially filled Landau level, we introduce ex-

In this paper we study a CF system using the Rajaramaq—ended CF operators by Rajaraman and Sondhi’s non-unitary

Sondhi nonun_ltary transformanon_, which fully takes into aC-transformation*1® which is given by
count the basic electron correlation for CF's. We show that

2
he(r) (4

K—J'dz e | 17+ A
- r lpe(r)Zmb I c

the Hamiltonian for CF’s contains a term that destabilizes Pp(r)=e 2y (r),
CF’s as well as the attractive interaction term that leads to
the p-wave pairing of CF’'s. The former appears in the m(r)=yl(r)e’®, (5)

Hamiltonian as a non-Hermitian term. We clarify under what

condition CF’s are stabilized and derive the effective Hamil-where the functiord(r) is defined by

tonian for CF’s. The importance of the short-range Coulomb

interaction is stressed. The effect of filled Landau levels is ~ o , 1 .,

taken into account as the screening of the Coulomb interac- J(r):¢f dor'p(r’)in(z—2") - P|Z| : (6)
tion between CF’s. Based on this Hamiltonian, we show B

within mean-field theory that the pairing condition is satis- Here p(r): wl(r)lpe(r):ﬂ-(r)w(r) is the density of par-
fied at v=>5/2 for GaAs/AlGaAs heterojunctions. We also ticles at pointr andz=x+iy is the complex coordinate in
consider the condition for the pairing stateist 1/2 andv  the plane. If we retain only the imaginary partd) in Eq.

=3/2. On the effect of an in-plane magnetic field, we show(g), the transformation Eq5) gives the usual singular gauge
that SUCh a f|e|d destablhzes CF's because Of the reduct|0n Qfansformatioﬁl_vs Operatorsw(r) and W(r) Satisfy the fol-

the pseudopotential between electrons. The polarization Qbwing anticommutation relations:
spins is understood from calculation of the condensation en-

ergy combined with the fact that the experimentally observed Pr)m(r')+a(r)g(r)=62(r—r’),
state atv=1/2 is spin polarized.
The paper is organized as follows. In Sec. Il we introduce P g(r')+(r'")ip(r)=0, (7)
the CF operators using the Rajaraman-Sondhi nonunitary
transformation. In Sec. Il we investigate the nature of the a(r)a(r")+am(r')mw(r)=0.

non-Hermitian term and show that this term has the effect of B
destabilizing CF’s. After clarifying the condition for the sta- In deriving these equations we have used1()?=1. In
bility of CF’s, we derive the effective Hamiltonian for CF’s. terms of these operators, we may write the kinetic energy
In Sec. IV we derive the equations for the mean-field theoryoperatorK in the form
In Sec. V we examine the condition for the pairing state at

v=n+3 (n=0,1,2). In Sec. VI we consider the effect of an ) 1 , e -

in-plane magnetic field. In Sec. VII we discuss the spin po- K:J dr ”(r)z_mb —ihV+ - (satiexsa)| ¢(r),
larization of the pairing state. Section VIII is devoted to the )
conclusions. In Appendix A we give the relation between the R

wave functions of electrons and CF's. In Appendix B wewhereeg, is a unit vector normal to the layer anih is the
give an analysis of the pairing state in the simplest case. fluctuation of the Chern-Simons gauge field:

2
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bo~ [ whereH} describes the relative motion of two CF’s,
5a(r)=E¢Jd r'Sp(r')Vimin(z—2z'), 9

- o , h?_ hee (MG 1 ,
with 8p(r)=m(r)y(r)— p the fluctuation of the densityp( Hy=— m_bV Tt 2 2 wc(L,=ir-p).
is the average particle densityfFrom Eq.(8), we obtain (18)

K=K+ VH+VNH (100 The term proportional th,= —i%d, (#=tan ‘y/x), is Her-

g H .
whereK? is the kinetic energy operator for CF's antf and mitian and corresponds t¥". The term proportional to

VNH describe interactions between the CF fields and thd', P IS non-Hermitian(anti-Hermitian) and corresponds to
Chern-Simons gauge fields: VNH. Since the operatar- p may have small matrix elements

for motion with nonzero angular momentum, we expect that
. ) n? VNH is unimportant for such motion.
K =f dr a(r)| = 5 V7 (), (13) In order to reveal the effect afN" on CF’s, we describe
b it by the operators foelectrons We introduce the creation
and annihilation operators for the Landau level by

e
VH=J d?r S fajcr, (12
1
al=-—(m—im), (19
e . filg
1 .
Here we have introduced the current operator for CF’s, a= WB(WXHWV)’ (20
3 and those for the relative angular momentum by
jer= 5 [NV ~[Va(D]p(n]. (14
b 1
VM has the form of minimal coupling between CF'’s and the b= TB(IX+Y)' (21)
Chern-Simons gauge field fluctuation and it leads to the
p-wave pairing of CF's(see Appendix B VN describes - ,
the minimal coupling between CF’s and an imaginary vector b _TB —iX+Y). (22
potentialie,x sa. This term is non-Hermitian. In the next 9n ) _
section we study the effect of it. Here (X,Y)=r—2lge,X /% is the operator for the coordi-

By Rajaraman-Sondhi’s nonunitary transformation Wenate of the center of mass. In terms of these Operators we
can fully take into account the Laughlin type correlation be-obtain
tween electrons. This is clearly understood from the relation

— At t
between the wave function for CF’s and that for electrons, L./h=—-a'a+b'b, (23
which is derived in Appendix A. .
PP ir.-p/h=a'b—ab'. (24)
[ll. STABILITY OF COMPOSITE FERMIONS AND THE Note that the former does not affect the relative angular mo-
EFFECTIVE HAMILTONIAN mentumm of electrons Meanwhile, the latter changes the

. alue ofmto m=1. Sincem is related to the electron cor-
NL” order to _understand the quantum mechamcal effect o elation which gives rise to CF’s, we may say that the non-
VT, we consde_r a t\_/vo-electron problem. Since the CeNteIermitian term has the effect of destabilizing CF's.
of-mass mo.t|on |s.un|mp<.)rtant for our purpose, we concen- - rpq presence of the term that destroys CF’s can be under-
trate on their relative motion. The Hamiltonian is given by stood by a simple argument. Even if we consider a system
1 that completely lacks the Coulomb interaction, there is no
Hy=—m?, (15 obstruction to performing the transformation from the elec-
M tron system into the CF system. However, in this case CF'’s
with would not be stable quasiparticles because of the absence of
the short-range Coulomb interaction, which stabilizes com-
. B. posite fermions. Therefore, the Hamiltonian for CF's must
m=—ihV— Rezx r. (16) contain a term that destroy CF’s. Such a term is the counter-
term to the short-range Coulomb interaction because it sta-
Herer is the relative coordinate for two electrons. We ne-pijlizes CF'’s.
glect the Coulomb interaction for a while. The problem is In fact, if we take into account the Coulomb interaction,
solved exactly and the wave function with relative angularthe energy becomem dependent and decrease mf in-
momentumm in the lowest Landau level is given by,(z)  creases the short-range part of the Coulomb energy. In
=7z"exp(—|Z%8l3). The first quantized form of the Haldane’s pseudopotential description, the decreagsa isf
Rajaraman-Sondhi transformation for two electrons is giverprevented by the gay,,_,—V,,. On the other hand, in-
by crease ofm has the gaphw, for the density fluctuation
(Kohn's theorent). Therefore, we can say that the change of
Hy=[¢m(2)] *Hothm(2), (170 m has the gap\ cp=min{fiw,,Vi_»— V. Recalling the fact
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that the correlation, which is described by Et) with even — (7_, . .oy o) are absent. We consider an equilibrium

m, between electrons consists of the two-body correlatiorgt —n : ;
' ate and sefj=0 in these mean-fields. Introducing the ga
only and the number of fluxes attached to each CF corre;: e g gap

sponds to the relative angular momentum of the electrorgunCtIonSAk andAy,

pair, we may say that the mode to destroy CF’s has the gap 1

Acr A=—q > Vi o), (29
However, if we are concerned with an energy scale much k' (#k)

lower thanAcg, we can make the projection into the sub-

) : : _ 1
space whereNCHF s are stable quaS|part'|cIes_. In that c:atsg, we =-5 s Vi e i) (30)
can neglectv™" and the effective Hamiltonian for CF’s is K’ (%K)
given by the mean-field Hamiltonian reads
1
—H0 1 —
H=H%+ 20 klz,kz zq: Vicq ko Ty + 02T kg + /2 Hue= > & meth— > ; (T _ A+ Agib_ by ) + const,
Xy, g2y +qiz2» (25) (31)

_ . LC with & the renormalized kinetic energy,
with Q) the area of the system. HeX8 «,= Vi k, T Vik,

where from Eqgs(9) and(12) VY, is given b 1
as(9) (12) Vigk, 1s 9 y =& Q > Vik—ky2k -k e ). (32)
k' (#Kk)
v = A kixkp 26) Note that bothvH and VN have no contribution t@} be-
Kk my Tk, — k|2 causeV{"\=0. Only the Coulomb interaction term con-
tributes to&; . Introducing the two-component description

andV[;lck2 denotes the long-range part of the Coulomb inter-

action. As long as we fix the filling fraction, we do not need t Kk K 2
the short-range part of it. We need it when we consider quan- m=lmcpid, = a | (33
tum Hall systems of CF'’s. In the presence of filled Landau K
levels, we takeVi$ as the form given by Aleiner and EQ.(3D) reads
Glazman, which takes into account the screening effect by
electrons in filled Landau levelé They derived the effective Hyue=>,  tmkeXy*+const, (34)
interaction in a partially filled Landau level by integrating k
out electron fields in filled Landau levels. The static dielec- ,
tric function of filled Landau levels is given by whereZy denotesSy ok, and
4o\ 22 q2|é) K f: _Ak
= a a2 =/ _ .

e, (q)=1+ ge e f( 5| (27 £ A - (35
wheref (z) = [§dx(e*—1)/x and we setr=1 for v=3/2and  We define quasiparticle field operatarg andpy,
o=2 for v=>5/2 because there is one=1 filled Landau
level in the case ofv=23/2 and there are twa=1 filled k_ Ak — UKy (36)
Landau levels fort spin and| spin in the case of=5/218 q P v

Here N is given by \=(e% elg)/hw.=38(m,/my)/\B, B
wherea is the cyclotron frequencyn, is the electron mass tpk=[pPx q-k]="m UK, (37
in the vacuum, and the applied external magnetic fielid
measured in units of teslas. Using H@7), the long-range Where
part of the Coulomb interaction is given by

1 —SE_EK Ay
c [ ] S — _ . (38
e VKK VE(Et+&)| A E+E,

kiko ™ Z (Il — k.’ (28)
2 e(|kyi—kal) In terms of these quasiparticle fields, the Hamiltonian is di-

whereV§ =2me?/eq is the bare Coulomb interaction in the agonalized as

absence of screening by electrons in filled Landau levels. [Ek 0

k
+ )
0 -E g“+ const (39

IV. MEAN-FIELD THEORY

We study the possibility of the pairing of CF’s based onHereE,= V& 2+ A A is the quasiparticle energy. Sinpg
the Hamiltonian(25) within mean-field theory. We take as andq satisfy the anticommutation relations, we obtain
the mean field§mmy ), (b ), and{m ). Because of
the constraintk;#k, for the summation in the inter-

action term, the mean fields(my qoti,+q2) and <Ioqu>:exp(,BEk)Jrl’ (40
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<q7kp7k>:W' (41)

with 8= 1/kgT.

In the following analysis we concentrate on the ground-

state properties. From Eg&R9) and(30), we obtain the gap
equations

l Ak/
A=—5= > Vo —, (42)
20 3 Ey
_ 1 Ay
== 50 > Vi (43
20 K (2K) =N
From Eq.(32), we obtain
1 &
G=b— 50 > Vi (1——). (44)
20 /2, kK K2 Ev.
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v=1/2
v=3/2
v=5/2

FIG. 1. The Coulomb energy [=(e?/ elg)/er] dependence of
the gapA. In evaluating the screening effect, we &et 1.2, which
is the value aB=5 T.

V. POSSIBILITY OF THE PAIRING STATE

In this section we investigate the possibility of pairing at
v=n+ 3 with n integer. Since/" leads to thep-wave pair-
ing staté® as we show in Appendix B, and the long-range
part of the Coulomb interactiod© has a pair-breaking ef-

Within the mean-field approximation, the ground-state eNngect \ye consider the stability of thewave pairing state in

ergy Eg is given by

AAy
Ey -

1

&
1= E—)

>

D> (45)

1
Egszi ; f:(

the presence o¥/'C. We take the same form of the gap
function A, as in Appendix B[Egs. (B1) and (B8) with |
=1].

In Fig. 1, we show ther=(e?/ elg)/ e dependence of the
gapA. At each filling, the qualitative behavior df is almost

Next we derive the ground-state wave function of CF's. Iniha same. The gah goes to zero around a critical valdg .

the ground-state there are no quasiparticles. Therefore, t
ground-stategs) satisfiesg,|gs)=0 andqg_,|g9=0. Using
the CF operators, these equations become

(& TEQ g9 =Acm_|99), (46)

Ay |99 =— (& +E) _i/99. (47)

Since m, and ¢, satisfy the anticommutation relations, we
can replacej, by d/ 9 .*° Applying this replacement, Egs.
(46) and (47) become differential equations with respect to
. Solving these equations, we obtain

lg9)= ex;{

The real space form of the ground stége) is given by®

Werry,ra, - Fon) =(0]gh(ron) - - - (ra) ¢(ry)| g9
= Pfon(ri — I )s (49

Where PM” :A(M 12M 34" " MZN*l,ZN) Wlth A the anti'
symmetrization operator of the entire function, and the or
bital wave functione,(r) is given by

Ay
Ext &k

2/

k

|0). (48

T T — K

1 Ay .
¢0rb(r)—5; Y explik-r). (50)

Rfhen o< a is satisfied, pairing occurs. The behavior near

A~0 is not important. It may arise from the failure of the
approximation Eq(B8) in solving the gap equation because
of the presence of-C. Extrapolating the behavior df from
the region where\ is a monotonically decreasing function
with respect tow, we roughly estimate the critical value, .
From Fig. 1, we estimater, for each filling, and obtain
al"=Y2~1.3, a{"=¥9~2 2, anda("=5?~3.0. Note that the
critical value of @ increases with additional filled Landau
levels. Therefore, the pairing state &t 5/2 is more stable
than that atv=1/2 or v=3/2.

To find whether pairing occurs or not, we estimate the
value of @ for GaAs/AlGaAs heterojunctions. By definition,
we obtaina=75.6(m*/m,)/\/B, wherem* is the effective
mass of CF’sB is measured in units of teslas, and we have
set e=13. Since we assume the irrelevance \8t", m*
approachesn,=0.07m, in the limit A— +0. In that caseg
is given by «=5.3/\/B. SubstitutingB=5 T into this, we
obtain = 2.4. This value ofx is lower thana!"=5? . Since
the magnetic field used by Willegt al® was ~5 T, the
condition for the pairing of CF’s was satisfied there. Thus,
we can understand the existence of the pairing state at

=5/2.

For the case ofvr=3/2, the pairing conditiona
<al"=%? is satisfied when the applied magnetic field is
larger than 6 T. For the electron charge densityhis con-
dition corresponds ta>2.2x 10! cm2. A large magnetic
field is a more plausible cause for the pairing state of CF's.

In Appendix B we give an analysis of the pairing state for therefore, the pairing state at=3/2 may be realized at

the case o‘i/klk2=VE1k2 . In that case we find that the ground

state is thep-wave pairing state of CF¥ and the ground-
state wave function is the so-called Pfaffian sfatee Eq.
(B13)].

sufficiently large but still realistic magnetic field.

Now we discuss the possibility of a pairing state at
=1/2. We solve Eqs42) and(44) self-consistently. In order
to setéy_,_=0, we change Eq(44) to
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ful. In a weak magnetic field, the short-range part of the
Coulomb interaction is not strong enough to stabilize CF’s.
At these fillings states based on CF’'s may not be stabilized
by the effect of the non-Hermitian term. A charge density
wave state or a Wigner crystal may be more plauéttiean

states based on CF's.
0.85

VI. EFFECT OF IN-PLANE MAGNETIC FIELD
0.4r

Now we discuss the effect of tilting the magnetic field.
L R Panet al. observed that at="5/2 an in-plane magnetic field
0 100 200 300 400 500 induces a strong electrical anisotropy, which is similar to the
BITI behavior at half-filled high Landau level$Since we expect
CF’s not to be stable objects at half-filled high Landau lev-
els, the collapse of the=5/2 quantum Hall state may be
understood as the breakdown of CF’s rather than pair break-
& = &~ (Fk—Fy=i), (51 ing of the pairing state of CF’s. When we denote Haldane’s
pseudopotential a¥;, for the nth Landau level, the gap
Vi _o—Vm_,= 4, stabilizes CF’s for short-range correla-

FIG. 2. The magnetic field dependence of the daat v=1/2.

whereF, is given by

1 £ £ tion. With increasingn, &, decreases as,/(e?/elp)

Fee > VE (1_i)_(1_i) =0.5539, 5, /(e/ €l g) =0.1592, ands,/(e?/ el g) =0.1330.

Q2 K’ Ev/ 3 a—0 When we apply an in-plane magnetic field, the valué,pf
k'K’

(52) decreases because the energy of an electron pairmwit2
is larger than that of an electron pair with= 0 in the pres-

Here we define E¢62) as the difference between the pairing ence of the in-plane magnetic field. Let us calculate the
state and the no-pairing state because the mass renormalizarange ofs,,. For simplicity we assume a harmonic potential
tion effect, which comes from the exchange interaction termyz) — 1m, Q222 for the confining potential and that the an-
of the Coulomb interaction, has already been included in the,jar momentum of the relative motion of electron pairs is
band massn, . Equation(S1) is a nonlinear equation with aajlel to the direction of the total magnetic field. In a tilted
respect togi . To solve this nonlinear equation, we assumemagnetic field with the axis of tilting parallel to theaxis,
that&} has the formgg = (k?—kZ)/2m*. We evaluaten* on  electron pairs experience the potentiaV/(y,z, )
the Fermi surface of the CF's: =1myQZ%(zcosh+ysing)>. When we sete,(6) as the en-
ergy of the electron pair with relative angular momentom
under a tilted magnetic field with tilting angk® calculation
of the first order perturbation with respect\dy, z, 6) yields
em(0)=(M+1)/2(Q./ w)h Q¢ sir?(6/2). The point of col-
Given the value ofA, we obtain the value of from the gap lapse of the CF’'s may be determined by solving the equation
equation Eq.42) and the value oim*/my from Eq. (53). 8,— 81=€p(0) — €5(6). For GaAs/AlGaAs heterojunctions
Setting the former tax(A) the condition for the pairing #%w.~8.5 meV ande® elg~10 meV atB~5 T and the

1 1 1

mt My ke

dF
d—kk . (53)
k=Kg

state with a gap larger thaA is written asa.(A)>«,, energy gap for the motion of ttedirection is of the order of
where «, is the value ofa for a real sample. For GaAs/ 10 meV. Substituting these values into the above equation
AlGaAs heterojunctions, we obtain and settingQ2,~10 meV, we obtaing~10°. Although the

estimation is crude the order of magnitude of this value
o seems reasonable. Thus, we may understand the collapse of
“_5'3m_bB ' (54) the spin-polarized pairing state as the breakdown of CF's.
Substituting Eq(53) into Eq. (54) and after some algebra,
we see thaB is a monotonically decreasing function with
respect toa. Therefore, there is a critical value of the mag-  |n this section we discuss the effect of the real spin de-
netic field above which a pairing state with a gap larger thamyrees of freedom and the Zeeman energy. To begin with, we
A occurs. This value of the magnetic field is calculated bydiscuss the former in the absence of the latter. There is the
settinga= a(A) in Eq. (54). In Fig. 2, we show the gap  possibility of a spin-unpolarized pairing state. For electrons
versus the magnetic field at=1/2. Within our approxima- with spin, we can also perform the Rajaraman-Sondhi
tion, it seems that pairing occurs when the magnetic field isransformatiort® In that casev™ becomes
larger thanB.~200 T. It seems that the quantum Hall effect
at v=1/2 might not be impossible but hard to realize for 1
GaAs/AlGaAs heterojunctiorfs. VH=E
Here we remark on the weak magnetic field limit. At half- kKitke a
filled high Landau levels, such as=9/2 andv=11/2, the
fractional quantum Hall effect is not observEdTo deal
with these states, the Hamiltonian E5) may not be use- (55

VIl. REAL SPIN DEGREES OF FREEDOM

H
XKapVi, k,Tiy+ a2 kg + a2~k + a2y +ai2
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where & and 3, which take values or |, are indices for <dE®<0, we may conclude that if a pairing state is realized
spins and the matrix is given by at the half-filled Landau level then it is the spin-polarized
L pairing state. The above scenario is also applicable for the
b1 o case of the half-filled Landau level with filled Landau levels.
~ o~ The pairing state at=5/2 may be thg@-wave spin-polarized
b2 b1 pairing state. For spin-polarized pairing states the effect of
with &, and ', the number of fluxes attached to compositethe Zeeman energy is just to shift the chem?cal_ potential of
. ~ . . . CF’s. Such an effect may not cause any qualitative change to
particles. The flux numbeg, is for particles with the same

] ~ ) ) } the pairing state.
spin and the flux numbed, is for particles with opposite
spin. The Landau level filling fractiom is related tog, and
b, asv=2/(¢,+ $,) up to filled Landau levels.

For the case o=1/2, there are several choices fég In this paper, we have investigated the condition for a

~ . , ~ ~ pairing state of CF’'s. We have introduced the CF operator by
and¢,. We consider a system of CF's and gtand ¢ as performing the Rajaraman-Sondhi nonunitary transforma-

even integers. The case @f;=0 should be excluded be- tjon The Hamiltonian for CF’s contains not only the attrac-
cause the pairing state with this flux attachment is two indetjye interaction that leads to thwave pairing state but also
pendentv=1/4 pairing states. Also, the case ¢f;=0 a term that destabilizes CF’s. The latter appears in the
should be excluded because the cost in Coulomb energy igamiltonian as a non-Hermitian term. When the short-range
larger than for other flux attachments. From these arguments;oulomb interaction is strong enough, CF’s may be stable
we setg,=p,=22° and we can project the system into the subspace of states
Essentially the pairing interaction is the same as in théased on CF’s.
case of spinless CF’s. Therefore, we may apply the discus- For the long-range Coulomb interaction, this gives rise to
sion of the spinless CF’s to multicomponent CF’s. Energeti-2 pair-breaking effect. In the presence of filled Landau lev-
cally, thep-wave pairing state is also the most plausible oneels, the long-range Coulomb interaction is screenedyAt
for multicomponent CF’s. The-wave pairing is impossible =5/2, this screening effect is enough to satisfy the pairing
for CF’s because/™ has no effect on the-wave pairing.  condition within the analysis of mean-field theory. At

Since we consider the case f= $», the pairing state that =3/2, the necessary condition for pairingBs>6 T. At v

VIIl. CONCLUSIONS

has the lowest ground-state energy is ®Be=0 pairing =1/2, there is a critical magnetic field above which pairing
state?® For that pairing state the energy difference betweerPCCUrS. This cri_tical .magnetic fielpllis about 200 T for_GaAs/
the pairing state and the no-pairing state is given by AlGaAs heterojunctions. The pairing state at 1/2 might

not be impossible but will be hard to realize for GaAs/

o) AlGaAs heterojunctions. At=9/2, v=11/2, and other half-
SE@)=— - kiG(A), (56) filled high Landau levels, CFs may not be stabilized because
gmm of the reduction of the short-range Coulomb interaction.
whereG(A) is a function ofA. For the spin-polarized pair- ~ The instability of they=5/2 state against an in-plane
ing state Eq(56) changes to magnetic field is understood as a breakdown of CF’s because

it decreases the gap produced by the short-range Coulomb
QO interaction. The resulting state may be a similar state to that
SEM=— - KEG(A). (57)  observed av=9/2 andv=11/2.
16mm On the spin polarization of the pairing state we have com-
Comparing Eq.(56) with Eq. (57), SE() is half of SE(?),  pared the ground-state energy of the spin-unpolarized pairing
However, the Fermi wave numbés is different for the State with that of the spin-polarized pairing state. Since the
spin-unpolarized pairing state and the spin-polarized pairinge™Mer is larger than the latter and an experimentally ob-
state. The former hak(F2)=(\El )"t and the latter has sefyed compressible I|q_U|d aﬂt=.1/2 is spin polarized, the
kM =151 Substituting these equations into EqS6) and ~ PaNNG state may be spin polarized.
(57), respectively, we obtain
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APPENDIX A: WAVE FUNCTION

Sincelg is the same for both the spin-unpolarized case and FOR COMPOSITE FERMIONS

the spin-polarized caséfE (") is twice SE?). Therefore, for
the spin-polarized pairing state the energy gain of being the In this Appendix we derive the relation between the elec-
pairing state is larger than that for the spin-unpolarized pairtron wave function and the CF wave function. Suppose a
ing state. Meanwhile, it is observed that a compressible ligstate ofN particles and denote it a9 ) . If we use the field
uid of »=1/2 haske=15".2* From this fact andsE®Y)  operators of electron$¥ ), is described by
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APPENDIX B: ANALYSIS OF V"

1
v =—fd2r d2ry- - d2r We(ry,Fp,- - - F
In=R e nWelrar2 v In this Appendix, we solve the mean-field equations de-

+ T + rived in Sec. IV for the case of, ., =V, , and show that

X Pe(r)de(r2) - ge(r)|0), (AL it leads to thep-wave pairing stzal(ft: follg\’/\i;ing the analysis of

whereW(rq,r,, ... ry) is the first quantized wave func- Ref. 10. In order to solve the gap equations we set

tion of electrons and0) is the vacuum state. If we use the .

field operators of extended CF's, th )y is described by A=Ay exp(—il b, (B1)
for thel-wave pairing state. Hellemust be chosen as an odd

integer because we consider a system of spinless CF’s. Ob-
W)= mf d?ryd?rp- - dPryWerry,ra, - ry) viougsly, Eg. (B1) is not general. |¥Iowever, gs we will see
below, the attractive interaction arises only in the casé of
Xar(ry)a(ry)- - m(ry)[0), (A2)  >0. Therefore, we neglect the possibility of combinations of
whereWc(r,r,,---,ry) is the first quantized wave func- I>0.comp:|onent's anUﬁO comaoneﬂts..
tion of extended CF's. Let us find the relation between SINC&Vy,, satisfy (Viy.)* =V, Ais the complex con-
We(ry,fa, ... ry) and Wegry,roy, ... ry).* Using the Jugate ofA,. Therefore, it is enough to consider the gap
second equation in Eg¢5), we obtain equation(42) only. Furthermore we need not consider Eq.
(44) because we neglect the Coulomb interaction here.
w(ry)m(ry)- - aw(ry)|0) Therefore, we set* =m, in this Appendix. Substituting Eq.
(B1) into Eq. (42), we obtain
= wg(rl)eJ(rl)l/,g(rz)eJ(rz). .. (//Z(rN)eJ(rN)|O>
f dk ,k Ak,l k?+k'? ©2)
=T<IJ (zi—2)9ilry) A 2m, o\ 2kk )
X l(ry) - - pl(ry) €2 .. | ) where the functiori'(\) is given by
N Hox fZﬂde siné o B3
:L[j (Zi_zj)d’exp( 4|22 |ZJ ) l( ) 0 21 )\—COSQeXFX ! )
+ + In the case ofl >0, we calculatel,”()\) from the contour
XYUr)Pra) - - l(ra)]0), (A3) integral setting exptil §)=z After some algebra, we obtain
where we have used el("el(2)...ed)|0)= exp |
(—1/41531 1|7%)|0). Substituting Eq(A3) into Eq. (A2), HOSES k—< (B4)
we obtain
wherek_ (k=) denotes a smallgfargel value ofk andk’.
1 o ) P Since the right hand side of E¢B4) is larger than zero, an
[W)n= mf d°rydrp---d rNiE[j (zi—7) attractive interaction is induced between CF’s. On the other
hand, forl <0 we obtainl{'(\)=—[If|(\)]*=—1{|(A). In
1N that case a repulsive interaction arises between them.
xexp( - | ,|2) We setl >0 in the following. Substituting Eq(B4) into

Eqg. (B2), we obtain
XUy, . PP WE(ro) - l(ry)]0).

~ |
b K' Ay (k’)' b (> KAk
Ad A= k' —| t5— k' —.
( ) K 2mb Ek’ K 2mb k Ek’ k’
Comparing Eq(A1) with Eq. (A4), we find (BS)
v To solve the nonlinear equatidi5), we introduce an ap-
e(F1.72, - In) proximation forA, .*° From Eq.(B5) we find the asymptotic
form of Ay :
=Il z—7 )Pex 2
.EI, p( 42 5 2 &l ) Ak for k—+0, (B6)
XWHIq,Fp, ... FN). (A5) Ak for k— oo, (B7)

Note that the correlation effect described by the Jastrow fackFrom Eqs.(B6) and(B7), we assume the form df to be
tor is completely factorized out of the wave function of elec-

tronsW(rq, ... ry). Therefore, the wave function of CF'’s eeA(klkg)  for  k<kg

is not blurred by the two-body correlation of the Laughlin K1 ecA(ke/k) for  k>ke. (B8)
wave function. When we perform the usual singular gauge

transformation, we need to include the fluctuation from theThe remaining parameték is determined by the following
ground state of the CF’s to obtain E@5). equation:
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FIG. 4. The condensation energy versus the §a|
FIG. 3. The gapA dependence of the functioR(A) in Eg. 9y 4ap

(B9) for 1=1,3,5. The gap\ is determined from the point where i coss _
the curve crosses the horizontal line given ByA)=1/$. The Where we have used the f(_)rmujgdee' 0059:'_77310()
figure shows the case @f=2. with J;(x) the Bessel function of first order. Equati¢®10)

has a simple form when the conditidn=2 is satisfied and
K2 +1 we take the limitrkgr/lg—. In that case, we obtain
Fi(A)= f dx TEnETd

e’ 1

o) (B11)

. Xl 2l 1 7
+ dx ==. B9
L V3 =1)2+A%"2 ¢ (9

From Eqgs(49) and(B11) the ground-state wave function for
2N CF’s is given by

In Fig. 3, we show the gap dependence of,(A) for the

case ofp=2 (v=1/2). The largest value ok is obtained
for the case of =1. The gaps foi=7 are smaller than the
gap forl=5. For anyé, the largest gap is obtained at
=1. In Fig. 4, we show the gap dependence of the conden- V21,22, - - ’ZZN):Pf(E)- (B12)
sation energyE for | =1,3,5. We see thadE always has a b
negative value and the decrease of the energy is the largest
for |=1. Furthermore, the ground-state energy is a monoFrom Egs.(A5) and (B12) the ground-state wave function
tonically decreasing function with respect sa Therefore, for 2N electrons is given by
the ground state is thg-wave pairing state.

Let us calculate the ground-state wave function for the

pairing state. Substituting E¢B8) into Eqg. (50), we obtain V(21,20 - - Zon) = ( )H (zl—z,)z
’ ’ ZI_ZJ i<
ke kA ex(k/kg)
o b(r)z—e"’r[f dk (kr)
w2 VE+ A2 (KIke) P+ & 4|2 E 1712
* kA ep(ke Tk
+f LU T (B13)
VE+A%eR (ke k)2 + &

(B10)  The wave function(B13) is the so-called Pfaffian stafé.
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