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Composite fermion pairing theory in single-layer systems
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 3 August 1999; revised manuscript received 27 June 2000!

We study the pairing state of composite fermions~CF’s! at even denominator Landau level fillings. We
introduce the composite fermion operators by the Rajaraman-Sondhi nonunitary transformation. The resulting
Hamiltonian has a non-Hermitian term. We show that this non-Hermitian term has the effect of destabilizing
composite fermions. However, composite fermions are stabilized when the short-range Coulomb interaction is
strong enough. Projecting into the Hilbert space where composite fermions are stabilized, we derive the
effective Hamiltonian for CF’s. Based on this Hamiltonian we discuss the condition for pairing of composite
fermions within mean-field theory. We show that the pairing condition is satisfied atn55/2 for GaAs/AlGaAs
heterojunctions because of the screening effect of the long-range Coulomb interaction induced by the filled
Landau levels. We also consider the condition for the pairing state atn53/2 andn51/2. The absence of the
pairing state at half filled high Landau levels is understood as the breakdown of composite fermions because
of the reduction of the short-range Coulomb interaction. The instability of then55/2 state against an in-plane
magnetic field is also understood as the breakdown of composite fermions. Comparison of the ground state
energy reveals the polarization of spins.
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I. INTRODUCTION

Two-dimensional electron systems have attracted m
theoretical and experimental studies. The fractional quan
Hall system is a typical example.1 Several years of intensiv
study reveal that it has very rich structures. The quant
Hall effect is observed in two-dimensional electron syste
under a strong magnetic field. It is usually divided into tw
categories. One is the integral quantum Hall effect and
other is the fractional quantum Hall effect. For the latter,
Coulomb interaction is essential for its occurrence. The
ture of the ground state of the fractional quantum Hall st
is well captured by the Laughlin wave function.2 At the Lan-
dau level filling fractionn51/m, wherem is an odd integer,
it is given by

C~z1 ,z2 , . . . ,zN!5)
i , j

~zi2zj !
m expS 2

1

4l B
2 (

j
uzj u2D ,

~1!

where the setzj ( j 51,2, . . . ,N) are the coordinates of theN
electrons in complex notationz5x1 iy and l B5Ac\/eB is
the magnetic length. The Laughlin wave function shows t
there exists a strong repulsion between electrons bec
(zi2zj )

m→0 for zi→zj . This strong repulsion comes from
the Coulomb interaction and this fact tells us that the C
lomb interaction is important for the fractional quantum H
effect. We can get some insight into the nature of this C
lomb interaction when we describe it by Haldane
pseudopotential.3 Haldane decomposed the Coulomb intera
tion into components according to the relative angular m
mentum of electron pairs:

V5(
i , j

(
m50

`

VmPm
i j , ~2!
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wherePm
i j is the projection operator on states with the re

tive angular momentum of thei th and j th electrons equal to
m andVm are the energies of pairs of particles with relati
angular momentumm. For the fractional quantum Hall stat
with n51/m, the componentsVj with j 51,3, . . . ,m22,
contribute a strong repulsion between electrons, and o
components may lead to some unimportant modification
the Laughlin wave function. In fact, the ground state of t
Hamiltonian with VjÞ0 ( j 51,3, . . . ,m22) and Vj50
( j 5m,m12, . . . ) is exactly the Laughlin wave function.3

Therefore, the componentVj with j <m22, which is the
short-range part of the Coulomb interaction, is essential
the fractional quantum Hall effect.

As an effective theory of the fractional quantum Hall e
fect, there is the Chern-Simons gauge field theory.4,5 Since
the system is two dimensional, we can transform the elec
system into a boson system by a flux attachment. For
case ofn51/m, we map electrons into composite particl
with attachedmf0 (f05ch/e) flux. The Aharonov-Bohm
phase arising from this fictitious flux ismp for an inter-
change of the positions of two composite particles. To rep
duce the Fermi statistics of electrons, the particle should b
boson, which we call a composite boson, form odd and a
fermion, which we call a composite fermion~CF!, for m
even. At mean-field level, the fictitious fluxes complete
cancel the external magnetic fluxes and the Bose conde
tion is to be expected.4,5 After including the phase fluctuation
of the bose field, we reproduce the Laughlin wave functio5

Thus, the fractional quantum Hall effect at odd denomina
fillings is understood as the Bose condensation of compo
bosons.

However, the importance of the short-range Coulomb
teraction is not clear in this composite boson theory. W
meet the same situation when we consider a system of c
posite fermions~CF’s!, because in that case the ground st
wave function may contain a factor like the Laughlin wa
function Eq.~1! with m even. This is one of the most impor
15 903 ©2000 The American Physical Society
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15 904 PRB 62TAKAO MORINARI
tant points that we need to take care of when we stud
system of composite particles.

The fractional quantum Hall effect is not limited to th
odd denominator fillings. The fractional quantum Hall effe
at n55/2 was observed by Willettet al. in 1987.6 Immedi-
ately after the discovery of then55/2 state, a spin-single
d-wave pairing wave function was proposed.7 This spin-
singlet wave function seemed to explain naturally the f
that then55/2 state is unstable in the presence of an
plane magnetic field.8 However, recent numerical work sup
ports a spin-polarized pairing state.9 When we map the sys
tem into that of composite particles, they obey Fer
statistics because we should attach an even number of fl
to particles according to the denominator ofn. If we apply
the condensation scenario to this CF system, we need s
pairing mechanism between CF’s. Such a pairing interac
was derived by Greiter, Wen, and Wilczek.10 A Chern-
Simons gauge field fluctuation leads top-wave pairing. How-
ever, recently Bonesteel showed that other Chern-Sim
gauge field fluctuations lead to a pair-breaking effect.11 Fur-
ther, the fractional quantum Hall effect at even denomina
is observed only atn55/2. At n51/2 the Hall resistance is
linear in a magnetic field and the longitudinal resistiv
shows a deep broad minimum,12 and atn59/2 andn511/2
anisotropy in the longitudinal resistivity is observed.13

In this paper we study a CF system using the Rajaram
Sondhi nonunitary transformation, which fully takes into a
count the basic electron correlation for CF’s. We show t
the Hamiltonian for CF’s contains a term that destabiliz
CF’s as well as the attractive interaction term that leads
the p-wave pairing of CF’s. The former appears in th
Hamiltonian as a non-Hermitian term. We clarify under wh
condition CF’s are stabilized and derive the effective Ham
tonian for CF’s. The importance of the short-range Coulo
interaction is stressed. The effect of filled Landau levels
taken into account as the screening of the Coulomb inte
tion between CF’s. Based on this Hamiltonian, we sh
within mean-field theory that the pairing condition is sat
fied at n55/2 for GaAs/AlGaAs heterojunctions. We als
consider the condition for the pairing state atn51/2 andn
53/2. On the effect of an in-plane magnetic field, we sh
that such a field destabilizes CF’s because of the reductio
the pseudopotential between electrons. The polarization
spins is understood from calculation of the condensation
ergy combined with the fact that the experimentally obser
state atn51/2 is spin polarized.

The paper is organized as follows. In Sec. II we introdu
the CF operators using the Rajaraman-Sondhi nonuni
transformation. In Sec. III we investigate the nature of
non-Hermitian term and show that this term has the effec
destabilizing CF’s. After clarifying the condition for the sta
bility of CF’s, we derive the effective Hamiltonian for CF’s
In Sec. IV we derive the equations for the mean-field theo
In Sec. V we examine the condition for the pairing state
n5n1 1

2 (n50,1,2). In Sec. VI we consider the effect of a
in-plane magnetic field. In Sec. VII we discuss the spin p
larization of the pairing state. Section VIII is devoted to t
conclusions. In Appendix A we give the relation between
wave functions of electrons and CF’s. In Appendix B w
give an analysis of the pairing state in the simplest case
a
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II. COMPOSITE FERMION OPERATORS

We consider a two-dimensional system of spinless e
trons with no impurities and subjected to a magnetic fi
that is perpendicular to the plane of electrons. For the L
dau level filling we consider the case ofn5n11/f̃ with n an
integer andf̃ an even integer. The second quantized form
the Hamiltonian for electrons is given by

H5K1VC, ~3!

whereK is the kinetic energy operator

K5E d2r ce
†~r !

1

2mb
S 2 i\“1

e

c
AD 2

ce~r ! ~4!

andVC is the operator for the Coulomb interaction betwe
electrons. Here the magnetic field is“3A52B (B.0),
mb is the band mass of the electrons, and the operatorce

†(r )
@ce(r )# is the creation~annihilation! operator for an electron
at point r .

We assume that we can neglect the mixing effect betw
filled Landau levels and first treat the filled Landau leve
n f5n and the partially filled Landau levelnp51/f̃ sepa-
rately. We concentrate on the latter for a while. We take i
account the effect of the former in Sec. III. In order to d
scribe the partially filled Landau level, we introduce e
tended CF operators by Rajaraman and Sondhi’s non-un
transformation,14,15 which is given by

c~r !5e2J(r )ce~r !,

p~r !5ce
†~r !eJ(r ), ~5!

where the functionJ(r ) is defined by

J~r !5f̃E d2r 8r~r 8!ln~z2z8!2
1

4l B
2

uzu2. ~6!

Here r(r )5ce
†(r )ce(r )5p(r )c(r ) is the density of par-

ticles at pointr and z5x1 iy is the complex coordinate in
the plane. If we retain only the imaginary part ofJ(r ) in Eq.
~6!, the transformation Eq.~5! gives the usual singular gaug
transformation.4,5 Operatorsc(r ) and p(r ) satisfy the fol-
lowing anticommutation relations:

c~r !p~r 8!1p~r 8!c~r !5d (2)~r2r 8!,

c~r !c~r 8!1c~r 8!c~r !50, ~7!

p~r !p~r 8!1p~r 8!p~r !50.

In deriving these equations we have used (21)f̃51. In
terms of these operators, we may write the kinetic ene
operatorK in the form

K5E d2r p~r !
1

2mb
F2 i\“1

e

c
~da1 i êz3da!G2

c~r !,

~8!

where êz is a unit vector normal to the layer andda is the
fluctuation of the Chern-Simons gauge field:
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da~r !5
f0

2p
f̃E d2r 8dr~r 8!“ Im ln~z2z8!, ~9!

with dr(r )5p(r )c(r )2 r̄ the fluctuation of the density (r̄
is the average particle density!. From Eq.~8!, we obtain

K5K01VH1VNH, ~10!

whereK0 is the kinetic energy operator for CF’s andVH and
VNH describe interactions between the CF fields and
Chern-Simons gauge fields:

K05E d2r p~r !S 2
\2

2mb
“

2Dc~r !, ~11!

VH5E d2r
e

c
da• jCF, ~12!

VNH5E d2r
e

c
~ i êz3da!• jCF. ~13!

Here we have introduced the current operator for CF’s,

jCF5
\

2mbi
@p~r !“c~r !2@“p~r !#c~r !#. ~14!

VH has the form of minimal coupling between CF’s and t
Chern-Simons gauge field fluctuation and it leads to
p-wave pairing of CF’s~see Appendix B!.10 VNH describes
the minimal coupling between CF’s and an imaginary vec
potential i êz3da. This term is non-Hermitian. In the nex
section we study the effect of it.

By Rajaraman-Sondhi’s nonunitary transformation
can fully take into account the Laughlin type correlation b
tween electrons. This is clearly understood from the relat
between the wave function for CF’s and that for electro
which is derived in Appendix A.

III. STABILITY OF COMPOSITE FERMIONS AND THE
EFFECTIVE HAMILTONIAN

In order to understand the quantum mechanical effec
VNH, we consider a two-electron problem. Since the cen
of-mass motion is unimportant for our purpose, we conc
trate on their relative motion. The Hamiltonian is given b

H25
1

mb
p2, ~15!

with

p52 i\“2
eB

4c
êz3r . ~16!

Here r is the relative coordinate for two electrons. We n
glect the Coulomb interaction for a while. The problem
solved exactly and the wave function with relative angu
momentumm in the lowest Landau level is given bycm(z)
5zm exp(2uzu2/8l B

2). The first quantized form of the
Rajaraman-Sondhi transformation for two electrons is giv
by

H285@cm~z!#21H2cm~z!, ~17!
e

e

r

-
n
,

f
r-
-

-

r

n

whereH28 describes the relative motion of two CF’s,

H2852
\2

mb
¹21

\vc

2
1S mlB

2

r 2
2

1

4D vc~Lz2 i r•p!.

~18!

The term proportional toLz52 i\]u (u5tan21y/x), is Her-
mitian and corresponds toVH. The term proportional to
i r•p is non-Hermitian~anti-Hermitian! and corresponds to
VNH. Since the operatorr•p may have small matrix element
for motion with nonzero angular momentum, we expect t
VNH is unimportant for such motion.

In order to reveal the effect ofVNH on CF’s, we describe
it by the operators forelectrons. We introduce the creation
and annihilation operators for the Landau level by

a†5
1

\ l B
~px2 ipy!, ~19!

a5
1

\ l B
~px1 ipy!, ~20!

and those for the relative angular momentum by

b5
1

2l B
~ iX1Y!, ~21!

b†5
1

2l B
~2 iX1Y!. ~22!

Here (X,Y)5r22l B
2 êz3p/\ is the operator for the coordi

nate of the center of mass. In terms of these operators
obtain

Lz /\52a†a1b†b, ~23!

i r•p/\5a†b2ab†. ~24!

Note that the former does not affect the relative angular m
mentumm of electrons. Meanwhile, the latter changes th
value of m to m61. Sincem is related to the electron cor
relation which gives rise to CF’s, we may say that the no
Hermitian term has the effect of destabilizing CF’s.

The presence of the term that destroys CF’s can be un
stood by a simple argument. Even if we consider a sys
that completely lacks the Coulomb interaction, there is
obstruction to performing the transformation from the ele
tron system into the CF system. However, in this case C
would not be stable quasiparticles because of the absenc
the short-range Coulomb interaction, which stabilizes co
posite fermions. Therefore, the Hamiltonian for CF’s mu
contain a term that destroy CF’s. Such a term is the coun
term to the short-range Coulomb interaction because it
bilizes CF’s.

In fact, if we take into account the Coulomb interactio
the energy becomesm dependent and decrease ofm in-
creases the short-range part of the Coulomb energy
Haldane’s pseudopotential description, the decrease ofm is
prevented by the gapVm222Vm . On the other hand, in-
crease ofm has the gap\vc for the density fluctuation
~Kohn’s theorem16!. Therefore, we can say that the change
m has the gapDCF[min$\vc ,Vm222Vm%. Recalling the fact



io
rr
ro
g

uc
b-
,
s

er

ed
a
a

b

g
c

e
.

on
s

-

m

p

-

di-

15 906 PRB 62TAKAO MORINARI
that the correlation, which is described by Eq.~1! with even
m, between electrons consists of the two-body correlat
only and the number of fluxes attached to each CF co
sponds to the relative angular momentum of the elect
pair, we may say that the mode to destroy CF’s has the
DCF.

However, if we are concerned with an energy scale m
lower thanDCF, we can make the projection into the su
space where CF’s are stable quasiparticles. In that case
can neglectVNH and the effective Hamiltonian for CF’s i
given by

H5H01
1

2V (
k1Þk2

(
q

Vk1 ,k2
pk11q/2p2k11q/2

3c2k21q/2ck21q/2 , ~25!

with V the area of the system. HereVk1k2
5Vk1k2

H 1Vk1k2

LC ,

where from Eqs.~9! and ~12! Vk1k2

H is given by

Vk1k2

H 5
4p i

mb
f̃

k13k2

uk12k2u2
, ~26!

andVk1k2

LC denotes the long-range part of the Coulomb int

action. As long as we fix the filling fraction, we do not ne
the short-range part of it. We need it when we consider qu
tum Hall systems of CF’s. In the presence of filled Land
levels, we takeVk1k2

LC as the form given by Aleiner and

Glazman, which takes into account the screening effect
electrons in filled Landau levels.17 They derived the effective
interaction in a partially filled Landau level by integratin
out electron fields in filled Landau levels. The static diele
tric function of filled Landau levels is given by17

es~q!511
4sl

qlB
e2q2l B

2 /2f S q2l B
2

2 D , ~27!

wheref (z)5*0
zdx(ex21)/x and we sets51 for n53/2 and

s52 for n55/2 because there is onen51 filled Landau
level in the case ofn53/2 and there are twon51 filled
Landau levels for↑ spin and↓ spin in the case ofn55/2.18

Here l is given by l5(e2/e l B)/\vc538(mb /me)/AB,
wherevc is the cyclotron frequency,me is the electron mass
in the vacuum, and the applied external magnetic fieldB is
measured in units of teslas. Using Eq.~27!, the long-range
part of the Coulomb interaction is given by

Vk1k2

LC 5
Vk12k2

C

es~ uk12k2u!
, ~28!

whereVq
C52pe2/eq is the bare Coulomb interaction in th

absence of screening by electrons in filled Landau levels

IV. MEAN-FIELD THEORY

We study the possibility of the pairing of CF’s based
the Hamiltonian~25! within mean-field theory. We take a
the mean fieldŝpkpk8&, ^ckck8&, and^pkck8&. Because of
the constraint k1Þk2 for the summation in the inter
action term, the mean fields^pk11q/2ck21q/2& and
n
e-
n

ap

h

we

-

n-
u

y

-

^p2k11q/2c2k21q/2& are absent. We consider an equilibriu

state and setq50 in these mean-fields. Introducing the ga
functionsDk and D̄k ,

Dk52
1

V (
k8(Þk)

Vkk8^c2k8ck8&, ~29!

D̄k52
1

V (
k8(Þk)

Vk8k^pk8p2k8&, ~30!

the mean-field Hamiltonian reads

HMF.( jk* pkck2
1

2 (
k

~pkp2kDk1D̄kc2kck!1const,

~31!

with jk* the renormalized kinetic energy,

jk* 5jk2
1

V (
k8(Þk)

V(k2k8)/2,(k82k)/2^pk8ck8&. ~32!

Note that bothVH andVNH have no contribution tojk* be-
causeVk,2k

(N,NH)50. Only the Coulomb interaction term con
tributes tojk* . Introducing the two-component description

tpk5@pk c2k#, ck5F ck

p2k
G , ~33!

Eq. ~31! reads

HMF5( 8
k

tpkE kck1const, ~34!

where(k8 denotes(kx.0,ky
and

E k5F jk* 2Dk

2D̄k 2jk*
G . ~35!

We define quasiparticle field operatorsqk andpk ,

qk5F qk

p2k
G5Ūkck, ~36!

tpk5@pk q2k#5 tpkŪk, ~37!

where

Uk5Ūk5
1

A2Ek~Ek1jk* !
F2jk* 2Ek Dk

D̄k jk* 1Ek
G . ~38!

In terms of these quasiparticle fields, the Hamiltonian is
agonalized as

HMF5( 8
k

tpkFEk 0

0 2Ek
Gqk1const. ~39!

HereEk[Ajk*
21D̄kDk is the quasiparticle energy. Sincepk

andqk satisfy the anticommutation relations, we obtain

^pkqk&5
1

exp~bEk!11
, ~40!
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^q2kp2k&5
1

exp~2bEk!11
, ~41!

with b51/kBT.
In the following analysis we concentrate on the groun

state properties. From Eqs.~29! and ~30!, we obtain the gap
equations

Dk52
1

2V (
k8(Þk)

Vkk8

Dk8

Ek8

, ~42!

D̄k52
1

2V (
k8(Þk)

Vk8k

D̄k8

Ek8

. ~43!

From Eq.~32!, we obtain

jk* 5jk2
1

2V (
k8(Þk)

V(k2k8)/2,(k82k)/2
LC S 12

jk8
*

Ek8
D . ~44!

Within the mean-field approximation, the ground-state
ergy Egs is given by

Egs.
1

2 (
k

jk* S 12
jk*

Ek
D 2

1

4 (
k

D̄kDk

Ek
. ~45!

Next we derive the ground-state wave function of CF’s.
the ground-state there are no quasiparticles. Therefore
ground-stateugs& satisfiesqkugs&50 andq2kugs&50. Using
the CF operators, these equations become

~jk* 1Ek!ckugs&5Dkp2kugs&, ~46!

Dkpkugs&52~jk* 1Ek!c2kugs&. ~47!

Sincepk and ck satisfy the anticommutation relations, w
can replaceck by ]/]pk .19 Applying this replacement, Eqs
~46! and ~47! become differential equations with respect
pk . Solving these equations, we obtain

ugs&5 expF( 8
k

Dk

Ek1jk*
pkp2kG u0&. ~48!

The real space form of the ground stateugs& is given by20

CCF~r1 ,r2 , . . . ,r2N!5^0uc~r2N!•••c~r2!c~r1!ugs&

5Pfforb~r i2r j !, ~49!

where PfMi j 5A(M12M34•••M2N21,2N) with A the anti-
symmetrization operator of the entire function, and the
bital wave functionforb(r ) is given by

forb~r !5
1

V (
k

Dk

Ek1jk*
exp~ ik•r !. ~50!

In Appendix B we give an analysis of the pairing state
the case ofVk1k2

5Vk1k2

H . In that case we find that the groun

state is thep-wave pairing state of CF’s,10 and the ground-
state wave function is the so-called Pfaffian state@see Eq.
~B13!#.
-

-

he

-

r

V. POSSIBILITY OF THE PAIRING STATE

In this section we investigate the possibility of pairing
n5n1 1

2 with n integer. SinceVH leads to thep-wave pair-
ing state10 as we show in Appendix B, and the long-rang
part of the Coulomb interactionVLC has a pair-breaking ef
fect, we consider the stability of thep-wave pairing state in
the presence ofVLC. We take the same form of the ga
function Dk as in Appendix B@Eqs. ~B1! and ~B8! with l
51].

In Fig. 1, we show thea[(e2/e l B)/eF dependence of the
gapD. At each filling, the qualitative behavior ofD is almost
the same. The gapD goes to zero around a critical valueac .
Whena,ac is satisfied, pairing occurs. The behavior ne
D;0 is not important. It may arise from the failure of th
approximation Eq.~B8! in solving the gap equation becaus
of the presence ofVLC. Extrapolating the behavior ofD from
the region whereD is a monotonically decreasing functio
with respect toa, we roughly estimate the critical valueac .
From Fig. 1, we estimateac for each filling, and obtain
ac

(n51/2);1.3, ac
(n53/2);2.2, andac

(n55/2);3.0. Note that the
critical value of a increases with additional filled Landa
levels. Therefore, the pairing state atn55/2 is more stable
than that atn51/2 or n53/2.

To find whether pairing occurs or not, we estimate t
value ofa for GaAs/AlGaAs heterojunctions. By definition
we obtaina575.6(m* /me)/AB, wherem* is the effective
mass of CF’s,B is measured in units of teslas, and we ha
set e513. Since we assume the irrelevance ofVNH, m*
approachesmb50.07me in the limit D→10. In that case,a
is given by a55.3/AB. SubstitutingB55 T into this, we
obtaina52.4. This value ofa is lower thanac

(n55/2) . Since
the magnetic field used by Willettet al.6 was ;5 T, the
condition for the pairing of CF’s was satisfied there. Thu
we can understand the existence of the pairing state an
55/2.

For the case of n53/2, the pairing conditiona
,ac

(n53/2) is satisfied when the applied magnetic field
larger than 6 T. For the electron charge densityn, this con-
dition corresponds ton.2.231011 cm22. A large magnetic
field is a more plausible cause for the pairing state of CF
Therefore, the pairing state atn53/2 may be realized a
sufficiently large but still realistic magnetic field.

Now we discuss the possibility of a pairing state atn
51/2. We solve Eqs.~42! and~44! self-consistently. In order
to setjk5kF

* 50, we change Eq.~44! to

FIG. 1. The Coulomb energya @[(e2/e l B)/eF# dependence of
the gapD. In evaluating the screening effect, we setl51.2, which
is the value atB55 T.
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jk* 5jk2~Fk2Fk5kF
!, ~51!

whereFk is given by

Fk5
1

V (
k8Þk

Vk2k8
C F S 12

jk8
*

Ek8
D 2S 12

jk8
*

Ek8
D

D̄k8Dk850
G .

~52!

Here we define Eq.~52! as the difference between the pairin
state and the no-pairing state because the mass renorm
tion effect, which comes from the exchange interaction te
of the Coulomb interaction, has already been included in
band massmb . Equation~51! is a nonlinear equation with
respect tojk* . To solve this nonlinear equation, we assum
thatjk* has the formjk* 5(k22kF

2)/2m* . We evaluatem* on
the Fermi surface of the CF’s:

1

m*
5

1

mb
2

1

kF
FdFk

dk G
k5kF

. ~53!

Given the value ofD, we obtain the value ofa from the gap
equation Eq.~42! and the value ofm* /mb from Eq. ~53!.
Setting the former toac(D) the condition for the pairing
state with a gap larger thanD is written asac(D).a r ,
where a r is the value ofa for a real sample. For GaAs
AlGaAs heterojunctions, we obtain

a55.3
m*

mb
B21/2. ~54!

Substituting Eq.~53! into Eq. ~54! and after some algebra
we see thatB is a monotonically decreasing function wit
respect toa. Therefore, there is a critical value of the ma
netic field above which a pairing state with a gap larger th
D occurs. This value of the magnetic field is calculated
settinga5ac(D) in Eq. ~54!. In Fig. 2, we show the gapD
versus the magnetic field atn51/2. Within our approxima-
tion, it seems that pairing occurs when the magnetic field
larger thanBc;200 T. It seems that the quantum Hall effe
at n51/2 might not be impossible but hard to realize f
GaAs/AlGaAs heterojunctions.21

Here we remark on the weak magnetic field limit. At ha
filled high Landau levels, such asn59/2 andn511/2, the
fractional quantum Hall effect is not observed.13 To deal
with these states, the Hamiltonian Eq.~25! may not be use-

FIG. 2. The magnetic field dependence of the gapD at n51/2.
iza-

e

n
y

is

ful. In a weak magnetic field, the short-range part of t
Coulomb interaction is not strong enough to stabilize CF
At these fillings states based on CF’s may not be stabili
by the effect of the non-Hermitian term. A charge dens
wave state or a Wigner crystal may be more plausible22 than
states based on CF’s.

VI. EFFECT OF IN-PLANE MAGNETIC FIELD

Now we discuss the effect of tilting the magnetic fiel
Panet al. observed that atn55/2 an in-plane magnetic field
induces a strong electrical anisotropy, which is similar to
behavior at half-filled high Landau levels.23 Since we expect
CF’s not to be stable objects at half-filled high Landau le
els, the collapse of then55/2 quantum Hall state may b
understood as the breakdown of CF’s rather than pair bre
ing of the pairing state of CF’s. When we denote Haldan
pseudopotential asVm

n for the nth Landau level, the gap
Vm50

n 2Vm52
n [dn stabilizes CF’s for short-range correla

tion. With increasing n, dn decreases asd0 /(e2/e l B)
50.5539,d1 /(e2/e l B)50.1592, andd2 /(e2/e l B)50.1330.

When we apply an in-plane magnetic field, the value ofdn
decreases because the energy of an electron pair withm52
is larger than that of an electron pair withm50 in the pres-
ence of the in-plane magnetic field. Let us calculate
change ofdn . For simplicity we assume a harmonic potent
V(z)5 1

2 mbVc
2z2 for the confining potential and that the an

gular momentum of the relative motion of electron pairs
parallel to the direction of the total magnetic field. In a tilte
magnetic field with the axis of tilting parallel to thex axis,
electron pairs experience the potentialV(y,z,u)
5 1

2 mbVc
2(z cosu1ysinu)2. When we setem(u) as the en-

ergy of the electron pair with relative angular momentumm
under a tilted magnetic field with tilting angleu, calculation
of the first order perturbation with respect toV(y,z,u) yields
em(u)5(m11)/2(Vc /vc)\Vc sin2(u/2). The point of col-
lapse of the CF’s may be determined by solving the equa
d22d15e0(u)2e2(u). For GaAs/AlGaAs heterojunction
\vc;8.5 meV ande2/e l B;10 meV at B;5 T and the
energy gap for the motion of thez direction is of the order of
10 meV. Substituting these values into the above equa
and settingVc;10 meV, we obtainu;10°. Although the
estimation is crude the order of magnitude of this va
seems reasonable. Thus, we may understand the collap
the spin-polarized pairing state as the breakdown of CF’

VII. REAL SPIN DEGREES OF FREEDOM

In this section we discuss the effect of the real spin
grees of freedom and the Zeeman energy. To begin with,
discuss the former in the absence of the latter. There is
possibility of a spin-unpolarized pairing state. For electro
with spin, we can also perform the Rajaraman-Son
transformation.15 In that caseVH becomes

VH5
1

2V (
k1Þk2

(
q

3KabVk1 ,k2

H pk11q/2p2k11q/2c2k21q/2ck21q/2 ,

~55!
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wherea and b, which take values↑ or ↓, are indices for
spins and the matrixK is given by

K5F f̃1 f̃2

f̃2 f̃1
G

with f̃1 and f̃2 the number of fluxes attached to compos
particles. The flux numberf̃1 is for particles with the same
spin and the flux numberf̃2 is for particles with opposite
spin. The Landau level filling fractionn is related tof̃1 and
f̃2 asn52/(f̃11f̃2) up to filled Landau levels.

For the case ofn51/2, there are several choices forf̃1

andf̃2. We consider a system of CF’s and setf̃1 andf̃2 as
even integers. The case off̃250 should be excluded be
cause the pairing state with this flux attachment is two in
pendent n51/4 pairing states. Also, the case off̃150
should be excluded because the cost in Coulomb energ
larger than for other flux attachments. From these argume
we setf̃15f̃252.25

Essentially the pairing interaction is the same as in
case of spinless CF’s. Therefore, we may apply the disc
sion of the spinless CF’s to multicomponent CF’s. Energ
cally, thep-wave pairing state is also the most plausible o
for multicomponent CF’s. Thes-wave pairing is impossible
for CF’s becauseVH has no effect on thes-wave pairing.
Since we consider the case off̃15f̃2, the pairing state tha
has the lowest ground-state energy is theSz50 pairing
state.25 For that pairing state the energy difference betwe
the pairing state and the no-pairing state is given by

dE(2)52
V

8pm*
kF

4G~D!, ~56!

whereG(D) is a function ofD. For the spin-polarized pair
ing state Eq.~56! changes to

dE(1)52
V

16pm*
kF

4G~D!. ~57!

Comparing Eq.~56! with Eq. ~57!, dE(1) is half of dE(2).
However, the Fermi wave numberkF is different for the
spin-unpolarized pairing state and the spin-polarized pai
state. The former haskF

(2)5(A2l B)21 and the latter has
kF

(1)5 l B
21 . Substituting these equations into Eqs.~56! and

~57!, respectively, we obtain

dE(2)52
V

32pm*
l B

24G~D!, ~58!

dE(1)52
V

16pm*
l B

24G~D!. ~59!

Since l B is the same for both the spin-unpolarized case
the spin-polarized case,dE(1) is twice dE(2). Therefore, for
the spin-polarized pairing state the energy gain of being
pairing state is larger than that for the spin-unpolarized p
ing state. Meanwhile, it is observed that a compressible
uid of n51/2 has kF5 l B

21 .24 From this fact anddE(1)
-

is
ts,

e
s-
i-
e

n

g

d

e
r-
-

,dE(2),0, we may conclude that if a pairing state is realiz
at the half-filled Landau level then it is the spin-polariz
pairing state. The above scenario is also applicable for
case of the half-filled Landau level with filled Landau leve
The pairing state atn55/2 may be thep-wave spin-polarized
pairing state. For spin-polarized pairing states the effec
the Zeeman energy is just to shift the chemical potentia
CF’s. Such an effect may not cause any qualitative chang
the pairing state.

VIII. CONCLUSIONS

In this paper, we have investigated the condition for
pairing state of CF’s. We have introduced the CF operator
performing the Rajaraman-Sondhi nonunitary transform
tion. The Hamiltonian for CF’s contains not only the attra
tive interaction that leads to thep-wave pairing state but also
a term that destabilizes CF’s. The latter appears in
Hamiltonian as a non-Hermitian term. When the short-ran
Coulomb interaction is strong enough, CF’s may be sta
and we can project the system into the subspace of st
based on CF’s.

For the long-range Coulomb interaction, this gives rise
a pair-breaking effect. In the presence of filled Landau le
els, the long-range Coulomb interaction is screened. An
55/2, this screening effect is enough to satisfy the pair
condition within the analysis of mean-field theory. Atn
53/2, the necessary condition for pairing isB.6 T. At n
51/2, there is a critical magnetic field above which pairi
occurs. This critical magnetic field is about 200 T for GaA
AlGaAs heterojunctions. The pairing state atn51/2 might
not be impossible but will be hard to realize for GaA
AlGaAs heterojunctions. Atn59/2, n511/2, and other half-
filled high Landau levels, CFs may not be stabilized beca
of the reduction of the short-range Coulomb interaction.

The instability of then55/2 state against an in-plan
magnetic field is understood as a breakdown of CF’s beca
it decreases the gap produced by the short-range Coul
interaction. The resulting state may be a similar state to
observed atn59/2 andn511/2.

On the spin polarization of the pairing state we have co
pared the ground-state energy of the spin-unpolarized pai
state with that of the spin-polarized pairing state. Since
former is larger than the latter and an experimentally o
served compressible liquid atn51/2 is spin polarized, the
pairing state may be spin polarized.
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APPENDIX A: WAVE FUNCTION
FOR COMPOSITE FERMIONS

In this Appendix we derive the relation between the ele
tron wave function and the CF wave function. Suppose
state ofN particles and denote it asuC&N . If we use the field
operators of electrons,uC&N is described by
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uC&N5
1

N! E d2r1d2r2•••d2rNCel~r1 ,r2 ,•••,rN!

3ce
†~r1!ce

†~r2!•••ce
†~rN!u0&, ~A1!

whereCel(r1 ,r2 , . . . ,rN) is the first quantized wave func
tion of electrons andu0& is the vacuum state. If we use th
field operators of extended CF’s, theuC&N is described by

uC&N5
1

N! E d2r1d2r2•••d2rNCCF~r1 ,r2 ,•••,rN!

3p~r1!p~r2!•••p~rN!u0&, ~A2!

whereCCF(r1 ,r2 ,•••,rN) is the first quantized wave func
tion of extended CF’s. Let us find the relation betwe
Cel(r1 ,r2 , . . . ,rN) and CCF(r1 ,r2 , . . . ,rN).14 Using the
second equation in Eqs.~5!, we obtain

p~r1!p~r2!•••p~rN!u0&

5ce
†~r1!eJ(r1)ce

†~r2!eJ(r2)
•••ce

†~rN!eJ(rN)u0&

5)
i , j

~zi2zj !
f̃ce

†~r1!

3ce
†~r2!•••ce

†~rN!eJ(r1)eJ(r2)
•••eJ(rN)u0&

5)
i , j

~zi2zj !
f̃ expS 2

1

4 l B
2 (

j 51

N

uzj u2D
3ce

†~r1!ce
†~r2!•••ce

†~rN!u0&, ~A3!

where we have used eJ(r1)eJ(r2)
•••eJ(rN)u0&5 exp

(21/4l B
2( j 51

N uzj u2)u0&. Substituting Eq.~A3! into Eq. ~A2!,
we obtain

uC&N5
1

N! E d2r1d2r2•••d2rN)
i , j

~zi2zj !
f̃

3expS 2
1

4l B
2 (

j 51

N

uzj u2D
3CCF~r1 ,r2 , . . . ,rN!ce

†~r1!ce
†~r2!•••ce

†~rN!u0&.

~A4!

Comparing Eq.~A1! with Eq. ~A4!, we find

Cel~r1 ,r2 , . . . ,rN!

5)
i , j

~zi2zj !
f̃expS 2

1

4l B
2 (

j 51

N

uzj u2D
3CCF~r1 ,r2 , . . . ,rN!. ~A5!

Note that the correlation effect described by the Jastrow
tor is completely factorized out of the wave function of ele
tronsCel(r1 , . . . ,rN). Therefore, the wave function of CF’
is not blurred by the two-body correlation of the Laugh
wave function. When we perform the usual singular gau
transformation, we need to include the fluctuation from
ground state of the CF’s to obtain Eq.~A5!.
c-
-

e
e

APPENDIX B: ANALYSIS OF VH

In this Appendix, we solve the mean-field equations d
rived in Sec. IV for the case ofVk,k85Vk,k8

H , and show that
it leads to thep-wave pairing state following the analysis o
Ref. 10. In order to solve the gap equations we set

Dk5Dk exp~2 i l uk!, ~B1!

for the l-wave pairing state. Herel must be chosen as an od
integer because we consider a system of spinless CF’s.
viously, Eq. ~B1! is not general. However, as we will se
below, the attractive interaction arises only in the case ol
.0. Therefore, we neglect the possibility of combinations
l .0 components andl ,0 components.

SinceVkk8
H satisfy (Vkk8

H )* 5Vk8k
H , D̄k is the complex con-

jugate of Dk . Therefore, it is enough to consider the g
equation~42! only. Furthermore we need not consider E
~44! because we neglect the Coulomb interaction he
Therefore, we setm* 5mb in this Appendix. Substituting Eq
~B1! into Eq. ~42!, we obtain

Dk5
f̃

2mb
E

0

`

dk8
k8Dk8

Ek8

I l
HS k21k82

2kk8
D , ~B2!

where the functionI l
H(l) is given by

I l
H~l!52E

0

2p du

2p i

sinu

l2 cosu
exp~2 i l u!. ~B3!

In the case ofl .0, we calculateI l
H(l) from the contour

integral setting exp(2ilu)5z. After some algebra, we obtai

I l
H~l!5S k,

k.
D l

, ~B4!

wherek, (k.) denotes a smaller~larger! value ofk andk8.
Since the right hand side of Eq.~B4! is larger than zero, an
attractive interaction is induced between CF’s. On the ot
hand, forl ,0 we obtainI l

H(l)52@ I u l u
H (l)#* 52I u l u

H (l). In
that case a repulsive interaction arises between them.

We setl .0 in the following. Substituting Eq.~B4! into
Eq. ~B2!, we obtain

Dk5
f̃

2mb
E

0

k

dk8
k8Dk8

Ek8
S k8

k D l

1
f̃

2mb
E

k

`

dk8
k8Dk8

Ek8
S k

k8
D l

.

~B5!

To solve the nonlinear equation~B5!, we introduce an ap-
proximation forDk .10 From Eq.~B5! we find the asymptotic
form of Dk :

Dk}kl for k→10, ~B6!

Dk}k2 l for k→1`. ~B7!

From Eqs.~B6! and ~B7!, we assume the form ofDk to be

Dk5H eFD~k/kF! l for k,kF

eFD~kF /k! l for k.kF .
~B8!

The remaining parameterD is determined by the following
equation:
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Fl~D![E
0

1

dx
x2l 11

A~x221!21D2x2l

1E
1

`

dx
x122l

A~x221!21D2x22l
5

1

f̃
. ~B9!

In Fig. 3, we show the gapD dependence ofFl(D) for the
case off̃52 (n51/2). The largest value ofD is obtained
for the case ofl 51. The gaps forl>7 are smaller than the
gap for l 55. For anyf̃, the largest gapD is obtained atl
51. In Fig. 4, we show the gap dependence of the cond
sation energydE for l 51,3,5. We see thatdE always has a
negative value and the decrease of the energy is the la
for l 51. Furthermore, the ground-state energy is a mo
tonically decreasing function with respect toD. Therefore,
the ground state is thep-wave pairing state.

Let us calculate the ground-state wave function for
pairing state. Substituting Eq.~B8! into Eq. ~50!, we obtain

forb~r !5
i

2p
eiurF E

0

kF
dk

kDeF~k/kF!

Ajk
21D2eF

2~k/kF!21jk

J1~kr !

1E
kF

`

dk
kDeF~kF /k!

Ajk
21D2eF

2~kF /k!21jk

J1~kr !G ,

~B10!

FIG. 3. The gapD dependence of the functionFl(D) in Eq.
~B9! for l 51,3,5. The gapD is determined from the point wher

the curve crosses the horizontal line given byFl(D)51/f̃. The

figure shows the case off̃52.
.

.

n-

est
-

e

where we have used the formula*0
pdueix cosu cosu5ipJ1(x)

with J1(x) the Bessel function of first order. Equation~B10!
has a simple form when the conditionD52 is satisfied and
we take the limitrkF}r / l B→`. In that case, we obtain

forb~r !}
e2 iur

r
5

1

z
. ~B11!

From Eqs.~49! and~B11! the ground-state wave function fo
2N CF’s is given by

CCF~z1 ,z2 , . . . ,z2N!5PfS 1

zi2zj
D . ~B12!

From Eqs.~A5! and ~B12! the ground-state wave functio
for 2N electrons is given by

Cel~z1 ,z2 , . . . ,z2N!5PfS 1

zi2zj
D)

i , j
~zi2zj !

2

3expS 2
1

4l B
2 (

j 51

2N

uzj u2D .

~B13!

The wave function~B13! is the so-called Pfaffian state.26

FIG. 4. The condensation energy versus the gapD.
ev.
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