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What happens when the inflaton stops during inflation
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The spectrum of adiabatic density perturbation generated during inflation is studied in the case the time
derivative of an inflation-driving scalar field~inflaton! vanishes at some time during inflation. It is shown that
the nondecaying mode of perturbation has a finite value even in this case and that its amplitude is given by the
standard formula with the time derivation of the scalar field replaced by the potential gradient using the
slow-roll equation.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

It is now widely believed that the large-scale homogene
and isotropy observed in the Universe were realized a
result of accelerated expansion or inflation in the early u
verse@1#. It also provides a mechanism to account for t
origin of primordial density fluctuations out of quantum flu
tuations of the inflation-driving scalar field which we call th
inflaton @2#. In the standard inflation models such as new@3#
and chaotic@4# inflation, inflation is driven by the potentia
energy of the inflation as it slowly rolls the potential hill an
is predicted to produce adiabatic fluctuations with a nea
scale-invariant spectrum.

More specifically, the amplitude of curvature perturb
tion, F, on a comoving scaler 52p/k is given by the for-
mula

F~r !'
H2

uḟu
U

tk

, ~1!

wheref is the inflaton andH is the Hubble parameter durin
inflation, and the right-hand side should be evaluated w
the relevant scale left the Hubble radius during inflation. T
above formula also gives an estimate of the amplitude
density perturbation on the comoving scaler when this scale
reentered the Hubble horizon after inflation as well as tha
large-scale anisotropy of cosmic microwave background
to the Sachs-Wolfe effect@5#, which has been probed by th
Cosmic Background Explorer satellite@6#. The reason why
Eq. ~1! gives an almost scale-invariant spectrum is that b
H and ḟ change very slowly during slow-roll inflation.

Recently, however, new classes of inflation models h
been proposed such thatf is not necessarily slowly rolling
during the entire period of inflation and that it changes
rection of motion during inflation. One example is the osc
lating inflation proposed by Damour and Mukhanov@7,8# in
which accelerated expansion is realized as the inflaton o
0556-2821/2000/61~10!/103504~7!/$15.00 61 1035
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lates around a minimum of a nonconvex potential. In t
model ḟ vanishes twice in each period of oscillation durin
inflation. Another example is the chaotic new inflation mod
proposed by one of us@9#. This model assumes a potenti
with a local maximum at the origin like new inflation bu
start with the same initial condition as chaotic inflation.
model parameters are appropriately chosen, the infla
climbs up the potential hill near to the origin after chao
inflation and new inflation can be realized there. In the ea
stage of new inflationḟ may vanish andf changes its di-
rection of motion if it does not have sufficient energy to
over the origin.

In both models, if we apply the formula~1! as it is, the
amplitude of fluctuation apparently diverges whenḟ van-
ishes. The above formula, however, has been derived u
the slow-roll approximation, namely, under the assumpt
that bothf and F changes slowly during inflation. On th
other hand, motion off is not given by the slow-roll formula
whenf changes its direction, becauseḟ vanishes where the
gradient of the potential does not vanish.

Thus we expect that it is inappropriate to apply Eq.~1! to
the caseḟ vanishes during inflation. The purpose of th
present paper is to derive a formula of curvature perturba
in such a situation. This is accomplished by a proper acco
of not only the growing~or nondecreasing! mode but also the
decaying mode as seen below. The rest of the paper is o
nized as follows. In Sec. II we give the formulation with a
appropriate choice of a variable and present solutions in
long- and the short-wavelength limit. Then these solutio
are matched for the case of the linear potential in Sec. III a
for the quadratic potential in Sec. IV. Section V is devoted
the conclusion.

II. EQUATIONS OF MOTION AND THE SOLUTIONS
IN THE LONG- AND THE SHORT-WAVELENGTH LIMIT

We consider a minimally coupled singlet scalar fieldf in
the spatially flat Robertson-Walker background metric:
©2000 The American Physical Society04-1
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ds252dt21a2~ t !dx2, ~2!

wherea(t) denotes the scale factor. Then the total action

S5
1

2k2 E RA2gd4x1E F2
1

2
~]f!22V~f!GA2gd4x,

~3!

whereR is the scalar curvature andk258pG with G being
the gravitational constant. The Einstein equation and the fi
equation off read

H25S ȧ

aD 2

5
k2

3 S 1

2
ḟ21V~f! D , ~4!

f̈13Hḟ1V8~f!50, ~5!

with H being the Hubble parameter. Here a dot denotes t
differentiation and a prime represents differentiation with
spect tof. These are the equations for the unperturbed v
ables.

Next we incorporate a linear perturbation, writing the p
turbed metric in terms of the gauge-invariant variables@10#
in the longitudinal gauge,

ds252@112C~x,t !#dt21a2~ t !@112F~x,t !#dx2, ~6!

where we use the notation of@11# for the perturbation vari-
ables. Hereafter all perturbation variables represent Fou
expansion coefficients such as

Fk5E d3x

~2p!3/2F~x,t !eik•x, ~7!

and we omit the wave-number suffixk. We use the following
combination of gauge-invariant variables@12–14#:

Y5X2
ḟ

H
F, ~8!

where

X5df2
a

k
ḟsg , ~9!

is the gauge-invariant scalar field fluctuation withsg being
the shear of each constant time slice. The latter vanishe
Newtonian slice including the longitudinal gauge.

The above quantityY is related to the gauge-invarian
variable

Z[F2
aH

k
V5F1

2

3

F1H21Ḟ

11w
, ~10!

as

Z52
H

ḟ
Y, ~11!
10350
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in the present case where matter consists of a scalar fi
HereV is a gauge-invariant velocity perturbation@11# andw
denotes the ratio of pressure to energy density. Although
definition ofZ is slightly different from the Bardeen’sz @15#,
which was originally defined by

z5F11
2

9

k2

~11w!H2a2GF2
aH

k
V, ~12!

it enjoys the same property asz, that is, both quantities are
constant duringk!aH if only adiabatic fluctuation is presen
and sound velocity is nonsingular.

From the perturbed Einstein equations, we obtain the
lowing equations:

Ẋḟ2f̈X1ḟ2F5
2

k2

k2

a2 F, ~13!

Ḟ1HF52
k2

2
ḟX. ~14!

From these equations and Eq.~8!, the equation of motion of
Y reads

Ÿ13HẎ1F S k

aD 2

1MY eff
2 GY50, ~15!

with

MY eff
2 [V9~f!13k2ḟ22

k4

2H2 ḟ412k2
ḟ

H
V8~f!.

~16!

This equation has the following exact solution in the lon
wavelength limitk→0 @13,16#:

Y~ t !5 c̃1~k!Y1~ t !1 c̃2~k!Y2~ t !, ~17!

Y1~ t !5
ḟ

H
, ~18!

Y2~ t !5
ḟ

H
E

T

t H2

a3ḟ2
dt, ~19!

wherec̃1(k) and c̃2(k) are integration constants to be dete
mined by quantum fluctuations generated during inflati
and T is some initial time which may be chosen arbitrari
because its effect can be absorbed by a redefinition ofc̃1(k).
The solutionY2(t) is apparently singular atḟ50. But, in
fact, it is regular there@13#.

Since Y2(t) has a different dimension thanY1(t), it is
more convenient to redefine the coefficients as

c1~k![ c̃1~k!, c2~k![ c̃2~k!/k3, ~20!

for which the scale factor appears in the rescaling-invari
form of k/a(t), andc1(k) andc2(k) have the same dimen
sion.
4-2
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We next consider the evolution ofY in the short-
wavelength regime in order to set the initial condition ofY
out of quantum fluctuations. Since we are interested in
generation of perturbations around the turning point of
inflaton, we only consider the evolution ofY in the inflation-
ary stage around and after the timeḟ50 and assume tha
uḢ/H2u!1 holds in this stage. We further assume thatm
[V8/(kV) satisfies the condition

m8<0, mm9>0, ~21!

for the value off in this stage. This condition is satisfied fo
quite a large class of potentials including the pure expon
tial potential and those which are approximately given
cufun or V02cufun around the turning point wherec.0 and
n is a positive integer.

MY eff
2 defined by Eq.~16! can be rewritten in terms ofm

as

MY eff
2

k2V
5

1

k
m81S kḟ

H
1m D 2

. ~22!

As is shown in the Appendix, under condition~21!, the value
of um8u/k at the turning point should be smaller than 1/N,
whereN is the number ofe-folds of inflation after the turning
point, i.e., the increase of lna. There it is also shown tha
ukḟ/(Hm)u is always less than unity and approaches un
i.e.,kḟ/(Hm)→21, in an expansion time afterf passes the
turning point. This implies that the second term in the rig
hand side of Eq.~22! is equal or less than the value o
2uḢ/H2u at the slow-roll phase following the short transie
period around the turning point. To be precise, this term
approximately given by (2/9)(um8u/k)2uḢ/H2u in the slow-
roll phase.

From these estimates we see thatMY eff
2 in Eq. ~15! can be

neglected in the regime

S k

aHD 2

.
1

N
, ~23!

which extends to a wavelength much larger than the Hub
horizon size. Thus in this regime Eq.~15! becomes

Ÿ13HẎ1S k

aD 2

Y50. ~24!

Under the conditionuḢ/H2u!1 the solution of this equation
satisfying the normalization condition for positive frequen
modes to define the vacuum state,

a3~YẎ* 2ẎY* !5 i , ~25!

is approximately given by

Y5
iH

A2k3
@ak~11 ikh!e2 ikh2bk~12 ikh!eikh#, ~26!
10350
e
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where h521/(Ha), and ak and bk are constants which
satisfy

uaku22ubku251. ~27!

We shall choose (ak ,bk)5(1,0) so that the vacuum reduce
to the one in Minkowski spacetime at the short-wavelen
limit ( 2kh→`). Therefore we obtain

Y5
iH

A2k3
~11 ikh!e2 ikh. ~28!

III. MATCHING THE SHORT- AND THE
LONG-WAVELENGTH REGIMES: THE CASE

OF A LINEAR POTENTIAL

Having obtained the short- and the long-wavelength so
tions we next connect these two regimes in order to de
mine the coefficientsc1(k) and c2(k). In this section we
consider the simplest case in which the inflaton’s poten
can be approximated by a linear function near the po
where the inflaton switches its direction of motion. That
we take

V~f!5V01V8f, ~29!

with V0 and V8 being constants and assumeuV8fu!V0 .
Then the solution of Eq.~5! is

ḟ~ t !5ḟs~12e23H~ t2t0!!5ḟsF12S a~ t0!

a~ t ! D 3G , ~30!

where ḟs[2V8/3H is the velocity of f in the slow-roll
limit and we have set

ḟ~ t0!50. ~31!

In this case Eq.~17! is rewritten as

Y~ t !5c1~k!
ḟs

H
F12S a~ t0!

a~ t !
D 3G1c2~k!

21

3ḟs

S k

a~ t !
D 3

,

~32!

where we have chosenT→` so thatY2(t) becomes the pure
decaying mode. It should be noted that it is nontrivial th
Y2(t) is described like this all the time because the integra
is singular att5t0 @13#. We emphasize thatY1(t), which is
the nondecreasing mode, has a decaying component in
trast to the case of slow-roll inflation.

We next match Eq.~32! with the short-wavelength solu
tion ~28! via two different methods and confirm that bo
methods give the same results.

The first method we adopt is to use the series expan
of Eq. ~28! with respect tok/a(t), namely,

Y5
iH

A2k3 F11
1

2 S k

a~ t !H D 2

1
i

3 S k

a~ t !H D 3

1¯G , ~33!
4-3
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and match each coefficient of the power series with tha
the long-wavelength solution. As is seen here the zero
order term matches the main part of the nondecreasing
and the third-order term corresponds to the decaying mo
However, the second-order term, which is present in
~33!, is absent in Eq.~32!. In fact, this term should be re
garded as a finite-wave-number correction to the nondecr
ing modeY1 as we see now.

With the help of thek50 solutionsY1(t) andY2(t) and
the Green’s-function method, we obtain from Eq.~15! the
following iterative expression for arbitraryk @13#:

Y5c1~k!Y11c2~k!k3Y21k2Y1E aY2Ydt2k2Y2

3E aY1Ydt. ~34!

The lowest-order iterative solution valid for smallk reads

Y~ t !>c1~k!Y1~ t !1c2~k!k3Y2~ t !1c1~k!S k

a~ t ! D
2 ḟs

2H3

1OXS k

a~ t ! D
5C. ~35!

The new term corresponds to the second term in Eq.~33! and
we can now determinec1(k) andc2(k) consistently up to the
third order in (k/a)3, to yield,

c1~k!5
iH

A2k3

H

ḟs

, ~36!

c2~k!5
ḟs

A2k3H2 F123i S a~ t0!H

k D 3G . ~37!

We note thata(t0)H/k51 for the mode leaving the Hubbl
radius whenḟ vanishes.

Another method to decidec1(k) is simply to equate the
value and the first time derivative of Eqs.~28! and~35! at the
watershed. BecauseMY eff

2 is O(H2/N), we can use the
short-wavelength solution during (k/a)2*H2/N and the
long-wavelength solution for (k/a)2&H2/N. Thus we define
the dividing epochhc by „k/a(hc)…

25H2/N and match Eqs.
~28! and ~35! there.

At h5hc the short-wave solution~28! and its derivative
read

Y~hc!5
iH

A2k3
@11O„~2khc!

2
…#, ~38!

dY

dh
~hc!2

iH

A2k3
k2hc@12 ikhc1O„~2khc!

2
…#. ~39!

On the other hand, from Eq.~35! the long-wave counterpart
are given by
10350
f
h-
rm
e.
.

s-

Y~hc!5c1~k!
ḟs

H
F11

1

2
~2khc!

22S h

h0
D 3G

2c2~k!
H3

3ḟs

~2khc!
3, ~40!

dY

dh
~hc!5c1~k!

ḟs

H
S k2hc23

hc
2

h0
3D 1c2~k!

H3

ḟs

k3hc
2.

~41!

Equating Eq.~38! with Eqs.~40! and ~39! with Eq. ~41! we
find

c1~k!5
iH

A2k3

H

ḟs

@11O„~2khc!
2
…#, ~42!

c2~k!5
ḟs

A2k3H2 F123i S a~ t0!H

k D 3

1O~2khc!G , ~43!

in agreement with Eqs.~36! and ~37!. Note that the leading
terms of the above results are independent of the choic
the matching epochhc . Thus we find

c1~k!52
3iH 3

A2k3V8
. ~44!

IV. THE CASE OF A QUADRATIC POTENTIAL

Next we consider the case for which the potential is
cally given by

V~f!5V02
1

2
m2f2, ~45!

near the turning point, whereV0 and m are constants satis
fying H2[8pGV0/3@m2. We assumeV0@m2f2. Then the
solution of Eq.~5! reads

ḟ~ t !5
l1

12
l1

l2

f0~el1~ t2t0!2el2~ t2t0!!, ~46!

l6[2
3

2
H6A9

4
H21m2, ~47!

where we have set

ḟ~ t0!50, ~48!

f~ t0!5f0 . ~49!

By virtue of the inequalityH@m we find

l1>
m2

3H2 , l2>23H. ~50!
4-4
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To the lowest order inm2/(3H2), Eq. ~17! is expressed as

Y5c1~k!
m2

3H2 f0F12S a~ t0!

a~ t ! D 3G2c2~k!
H

m2f0
S k

a~ t ! D
3

.

~51!

We can repeat the same argument as the case of a l
potential. As is suggested by the fact that Eq.~51! coincides
with Eq. ~32! by the replacement

2
m2f0

3H
52

V8@f0#

3H
⇔ḟs52

V8

3H
,

we obtain in this case

c1~k!52
3iH 3

A2k3V8@f0#
. ~52!

Thus in both cases the coefficient of the nondecaying m
is given by the standard formula as iff is slowly rolling with
the speed

ḟ52
V8@f#

3H
, ~53!

even for thek mode leaving the horizon whenḟ vanishes.

V. CONCLUSION

In the present paper we have derived a formula for
spectrum of the density perturbation generated by inflatio
the case where the time derivative of the inflatonḟ vanishes
at some time during inflation. Calculation in such a situat
is not straightforward because the amplitude of the grow
mode in the long-wavelength limit vanishes at the turn
point of the inflaton, which implies that the Bardeen para
eter estimated for quantum fluctuations at the horizon cro
ing diverges at that time. This is the origin of the divergen
of the standard formula atḟ50. Of course, the amplitude o
perturbations generated around the turning point do not
verge in reality because the Bardeen parameter become
nite when the inflaton moves away from the turning poi
This implies that we must subtract a contribution of the d
caying mode, for which the Bardeen parameter is not c
stant, from the perturbation generated from the quan
fluctuation in order to obtain a correct formula for the a
plitude of the growing mode.

In order to treat this problem properly, we have fir
shown that the standard expression for quantum fluctuat
in the short-wavelength limit gives a good approximation
the evolution of perturbations during inflation, at least in t
case we are concerned with, even when wavelengths
much larger than the Hubble horizon size. Then we h
matched this expression with an exact long-wavelength
pression for the evolution of the perturbation variable,Y,
which does not show any singular behavior whenḟ van-
ishes, in a range of wavelength in which both expressions
valid to determine the amplitude of growing mode in qua
tum fluctuations. As a result we have obtained the new
10350
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mula for the amplitude of the curvature perturbation

FS r 5
2p

k D5 f
3H3

2puV8@f#uU
tk

, ~54!

where f 53/5 (2/3) in the matter-~radiation-! dominated
stage. Apparently this formula coincides with the stand
formula with ḟ in the denominator replaced by the slow-ro
velocity,

ḟ52
V8~f!

3H
, ~55!

but it is valid not only in the slow-roll regime but also in a
extreme situationḟ50 when the relevant mode leave
Hubble radius during inflation.

Although we have done calculations only for two simp
models in the present paper, the above formula seems to
for perturbations generated around and after the turning p
of the inflaton in generic models for the following reaso
First recall that the expression~28! for perturbations gener
ated from quantum fluctuations gives a good approximat
during inflation even when the wavelength is much larg
than the Hubble horizon size. Though it is a combination
a growing mode and a decaying mode at the horizon cro
ing, the amplitude of the latter component decreases rap
with cosmic expansion after the horizon crossing. In th
stage the Bardeen parameterZ52HY/ḟ should approach a
constant. As shown in the Appendix, in several Hubble ti
after passing the turning point, the slow-roll approximati
becomes good andḟ/H is expressed as2V8/3H2, which is
constant with a good accuracy in the early phase of inflat
after the turning point. In the meanwhileY given by Eq.~28!
also becomes a constantiH /A2k3. Hence, the value of the
Bardeen parameter for the growing mode should be given

Z52 i
H

A2k3

3H2

V8
. ~56!

This expression coincides withZ obtained fromc1(k)Y1
with c1(k) given by Eq.~36!. This argument does not dete
mine the amplitude of the decaying-mode component, bu
has no importance in the estimation of the curvature per
bation in later states.
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APPENDIX

In this appendix, for inflation models in whichḟ vanishes
at some time during inflation and the inflaton potentialV
satisfies condition~21!, we show thatu„V8/(k2V)…8u is much
smaller than unity around the turning point of the inflaton
well as in the slow-roll phase of the inflationary stage af
that. We also show that a local quadratic approximation
the potentialV gives a good description of the evolution
the inflaton and the scale factor in the same period.

First we rewrite the basic evolution equations~4! and~5!
in terms of the new variables

v5k
ḟ

H
, ~A1!

z5 ln~a/a0!, ~A2!

as

k
df

dz
5v, ~A3!

dv
dz

523S 12
v2

6 D ~v1m!, ~A4!

where a0 is the value ofa at the time whenḟ50. H is
written in terms of these variables as

H25
k2V

3S 12
v2

6 D . ~A5!

Note that from the equation

Ḣ

H2 52
1

2
v2, ~A6!

the inflation condition (aH) ˙ .0 is expressed asv2,2.
For definiteness we consider the casem.0 at the turning

point f5f0 , v50. In this casev becomes negative after th
inflaton passes the turning point. We restrict the consid
ation to the inflationary stage 0<z<z* , where z* is the
value of z at the time whenv becomes2& for the first
time. In this stage Eq.~A4! yields

d

dz S 11
v
m D523F12

v2

6
1

n

3 S 11
uvu
m D G S 11

v
m D1n,

~A7!

where n52m8/k>0. From this equation we immediatel
see that 11v/m cannot vanish. Hence Eq.~A4! is written as

duvu
dz

53S 12
v2

6 D ~m2uvu!. ~A8!

From the conditionn8<0, m satisfiesm8/k<2n0 , where
n0 is the value ofn at f5f0 . Integrating this equation, we
obtain
10350
s
r
r

r-

m>m01n0k~f02f!, ~A9!

wherem05m(f0). From this equation and Eq.~A8! it fol-
lows thatf satisfies the differential inequality

d2f

dz2 12
df

dz
1

2m0

k
12n0~f02f![ f <0. ~A10!

Solving this equation yields

uv~z!u5
m0

~112n0!1/2~el1z2e2l2z!2
l1

2~112n0!1/2

3el1zE
0
dze2l1z f 2

l2

2~112n0!1/2

3e2l2zE
0
dzel2z f , ~A11!

where

l15A112n021, l25A112n011. ~A12!

Since f <0, this equation gives the inequality

uvu>
m0

~112n0!1/2~el1z2e2l2z!. ~A13!

Hence we obtain the estimate

N[z* ,
1

2l1
ln

2~112n0!

m0
;

1

n0
. ~A14!

In particular it follows thatn0 should be much smaller tha
unity if a sufficient inflation occurs after the inflaton pass
the turning point.

Next we show thatv/m rapidly approaches unity. Inte
grating Eq.~A7!, we obtain

11
v
m

5e23g~z!1E
0

z

dz1n~z1!e23@g~z!2g~z1!#, ~A15!

where

g~z!5E
0

z

dz1F12
v2

6
1

n

3 S 11
uvu
m D G . ~A16!

Since g, uvu and n are nondecreasing functions ofz, this
equation gives the inequality

11
v
m

<
2n

62v212n
1

62v2

62v212n

3expF2
1

2
~62v212n0!zG . ~A17!

Therefore, we obtain

11
v
m

&
n

2
, ~A18!
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U1v dv
dzU&n, ~A19!

for z*zs[1/3 ln 3/n. Sincedv/dz/v is expressed as

1

v

dv

dz
5

f̈

Hḟ
2

Ḣ

H2
, ~A20!

the above estimate implies that the slow-roll approximat
becomes good forz*zs , i.e., in a few Hubble time after the
inflaton passes the turning point.

Finally, we show that the linear approximationm.m0
1n0(f02f) for m can be used to determine the evoluti
of the inflaton with a good accuracy for a long period af
,

.

10350
n

r

the inflaton enters the slow-roll regime. First, integrating E
~A3! by taking account of the inequalityunu,m, we obtain

n

m
kuf2f0u&nz. ~A21!

If we expandm as

m5m01n0k~f02f!1¯ , ~A22!

the ratio of the second term and the subsequent higher-o
terms is in general of the order of (n0 /m0)kuf02fu. Hence,
the above estimate implies that the first two terms in t
expansion gives a good approximation form in the period
z,1/n0 , which covers a large fraction of the slow-roll stag
v. D
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