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What happens when the inflaton stops during inflation
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The spectrum of adiabatic density perturbation generated during inflation is studied in the case the time
derivative of an inflation-driving scalar fielghflaton vanishes at some time during inflation. It is shown that
the nondecaying mode of perturbation has a finite value even in this case and that its amplitude is given by the
standard formula with the time derivation of the scalar field replaced by the potential gradient using the
slow-roll equation.

PACS numbds): 98.80.Cq

I. INTRODUCTION lates around a minimum of a nonconvex potential. In this
model ¢ vanishes twice in each period of oscillation during
It is now widely believed that the large-scale homogeneityinflation. Another example is the chaotic new inflation model
and isotropy observed in the Universe were realized as proposed by one of ul®9]. This model assumes a potential
result of accelerated expansion or inflation in the early uniwith a local maximum at the origin like new inflation but
verse[1]. It also provides a mechanism to account for thestart with the same initial condition as chaotic inflation. If
origin of primordial density fluctuations out of quantum fluc- model parameters are appropriately chosen, the inflaton
tuations of the inflation-driving scalar field which we call the climbs up the potential hill near to the origin after chaotic
inflaton[2]. In the standard inflation models such as &8k inflation and new inflation can be realized there. In the early

and chaotid4] inflation, inflation is driven by the potential siage of new inflationy may vanish andp changes its di-

energy of the inflation as it slowly rolls the potential hill and rection of motion if it does not have sufficient energy to go
is predicted to produce adiabatic fluctuations with a nearlygyer the origin.

scale-invariant spectrum. In both models, if we apply the formulé) as it is, the

i Mc:I;e specmcally,l the ar|r1p)_ht2let/ak9f cprvatll;retr[])erfturba—amp"tude of fluctuation apparently diverges whénvan—
lon, ©, on a comoving scale=zm/K IS given by th€ 101~ johes The above formula, however, has been derived under

mula the slow-roll approximation, namely, under the assumption
42 that both¢ and ® changes slowly during inflation. On the
d(r)~— (1) other hand, motion o is not given by the slow-roll formula
|¢| . when ¢ changes its direction, becaugevanishes where the
k

gradient of the potential does not vanish.

whereg is the inflaton andH is the Hubble parameter during Thus we expect that it is inappropriate to apply E&).to
inflation, and the right-hand side should be evaluated wheihe case¢ vanishes during inflation. The purpose of the
the relevant scale left the Hubble radius during inflation. ThePresent paper is to derive a formula of curvature perturbation
above formula also gives an estimate of the amplitude ofn such a situation. This is accomplished by a proper account
density perturbation on the comoving scalehen this scale  0f not only the growingor nondecreasingnode but also the
reentered the Hubble horizon after inflation as well as that oflecaying mode as seen below. The rest of the paper is orga-
large-scale anisotropy of cosmic microwave background du@ized as follows. In Sec. Il we give the formulation with an
to the Sachs-Wolfe effe¢E], which has been probed by the appropriate choice of a variable and present solutions in the
Cosmic Background Explorer satellif6]. The reason why long- and the short-wavelength limit. Then these solutions

Eq. (1) gives an almost scale-invariant spectrum is that bottre matched for the case of the linear potential in Sec. Il and
H and ¢ change very slowly during slow-roll inflation. for the quadratic potential in Sec. IV. Section V is devoted to

Recently, however, new classes of inflation models havd® conclusion.

been proposed such thétis not necessarily slowly rolling Il. EQUATIONS OF MOTION AND THE SOLUTIONS

dunng the enyre perllod _of |nflat|on and that it g:hanges Q|—|N THE LONG- AND THE SHORT-WAVELENGTH LIMIT
rection of motion during inflation. One example is the oscil-

lating inflation proposed by Damour and Mukhar{@v8] in We consider a minimally coupled singlet scalar fieldn
which accelerated expansion is realized as the inflaton oscithe spatially flat Robertson-Walker background metric:
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ds?=—dt?+a?(t)dx?, (2)  in the present case where matter consists of a scalar field.
HereV is a gauge-invariant velocity perturbatiphl] andw
wherea(t) denotes the scale factor. Then the total action isdenotes the ratio of pressure to energy density. Although the

definition of Z is slightly different from the Bardeens[15],
1
S= ﬁf R\/—gd4x+ f

B 1(3¢)2—V(¢) Jgdix which was originally defined by
2 L

2

() _
S ymrwem/® Y @

whereR is the scalar curvature ane’=8mG with G being

the gravitational constant. The Einstein equation and the fiel@ enjoys the same property d@sthat is, both quantities are

equation of¢ read constant duringc<<aH if only adiabatic fluctuation is present

and sound velocity is nonsingular.

a\?2 k(1. From the perturbed Einstein equations, we obtain the fol-
2_ — 2 '
H"= a _§(§¢ +V(¢)>’ 4) lowing equations:
. VN o, 2 K
$+3HP+V'(4)=0, 5 Xp= X+ ¢?0=— @, (13

with H being the Hubble parameter. Here a dot denotes time
differentiation and a prime represents differentiation with re-
spect tog. These are the equations for the unperturbed vari-
ables.

Next we incorporate a linear perturbation, writing the per-From these equations and E@), the equation of motion of
turbed metric in terms of the gauge-invariant variadte8] Y reads
in the longitudinal gauge,

. K2.
b+ HD=— 5 ¢X. (14)

2
v . 2 —

ds2= —[1+2W (x,t)]dt2+a2(t)[ 1+ 2D (x,t)]dx2, (6) YH+3HY+| | o] +Myer|Y=0, (15)
where we use the notation pt1] for the perturbation vari-  with
ables. Hereafter all perturbation variables represent Fourier
expansion coefficients such as : K &

M7 ei=V"(8)+3k*¢* = 5z '+ 2k V' ().
d3x .
¢’k=f(2T)37q’(X,t)e'k'X, (7 (16)

This equation has the following exact solution in the long-
and we omit the wave-number suffix We use the following  wavelength limitk—0 [13,16:
combination of gauge-invariant variablg2—14:

_ Y (1) =Ty (k) Y1 (1) +Ta(K)Ya(1), 17
Y=X— %CD, (8) b
Y=g, (18)
where
| b [t H?
X=6¢p— E(b(rg, (9) Yo(t)= m T2 dt, (19

is the gauge-invariant scalar field fluctuation wit being ~ wheretT,(k) andT,(k) are integration constants to be deter-
the shear of each constant time slice. The latter vanishes anined by quantum fluctuations generated during inflation,

Newtonian slice including the longitudinal gauge. and T is some initial time which may be chosen arbitrarily
The above quantityy is related to the gauge-invariant because its effect can be absorbed by a redefiniti@ (d).
variable The solutionY,(t) is apparently singular ap=0. But, in
oy fact, it is regular ther¢13].
7 ﬁv_q)'i- 2®+H " 10 Since Y,(t) has a different dimension thavi(t), it is
o k 3 1+w more convenient to redefine the coefficients as
as c1(k)=Ty(k), Ca(k)=Ty(k)/K3, (20)
H for which the scale factor appears in the rescaling-invariant
Z=-—Y, (11  form of k/a(t), andcy(k) andc,(k) have the same dimen-
b sion.
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We next consider the evolution oY in the short- where »=—1/(Ha), and ¢ and B, are constants which

wavelength regime in order to set the initial conditionYof satisfy
out of quantum fluctuations. Since we are interested in the
generation of perturbations around the turning point of the la 2= Bul?=1. (27
inflaton, we only consider the evolution ¥fin the inflation-
ary stage around and after the tirde=0 and assume that We shall choosedy,8)=(1,0) so that the vacuum reduces

2 . . to the one in Minkowski spacetime at the short-wavelength
|H/H?|<1 holds in this stage. We further assume that .. .
L o ” limit (—kn—x). Therefore we obtain
=V'/(kV) satisfies the condition

p'<0, upu"=0, (1) Y= JH_3(1+ik77)e‘k’i. (28)
2k
for the value of¢ in this stage. This condition is satisfied for
quite a large class of potentials including the pure exponen-
tial potential and those which are approximately given by
c|#|" or Vo—c| ¢|" around the turning point where>0 and
nis a positive integer.
M? o defined by Eq(16) can be rewritten in terms qf Having obtained the short- and the long-wavelength solu-
as tions we next connect these two regimes in order to deter-
mine the coefficients;(k) and c,(k). In this section we
consider the simplest case in which the inflaton’s potential
(22) can be approximated by a linear function near the point
where the inflaton switches its direction of motion. That is,

As is shown in the Appendix, under conditit), the value W€ take
of |u'|/x at the turning point should be smaller thaiN1/
whereN is the number oé-folds of inflation after the turning
point, i.e., the increase of l There it is also shown that . A ,

: ) , _with Vy and V' being constants and assurfé’ ¢|<V,.
|;<¢/(H,u)| is always less than unity and approaches unity:then the solution of Eq5) is
i.e., kp/(Hu)— —1, in an expansion time aftef passes the
turning point. This implies that the second term in the right- . _ )
hand side of Eq(22) is equal or less than the value of ¢(t)=¢s(1—e_3H(t_t°)):¢s[1—
2|H/H?| at the slow-roll phase following the short transient
period around the turning point. To be precise, this term isynere ¢p.=—\V'/3H is the velocity of ¢ in the slow-roll

IIl. MATCHING THE SHORT- AND THE
LONG-WAVELENGTH REGIMES: THE CASE
OF A LINEAR POTENTIAL

2
M—l ’+
K2V KM

«¢
R

V(¢)=Vo+V'ée, (29

a(to)
a(t)

3
} , (30

approximately given by (2/9)f'|/x)?|H/H?| in the slow-  limit and we have set
roll phase.
From these estimates we see thH o in Eq. (15) can be &(ty)=0. (31

neglected in the regime
In this case Eq(17) is rewritten as

a(ty) )’ —1( k \®
— K) — | ——
{5 el )

2>1
Nu

k

2H (23

Y(I)ZCl(k)%

which extends to a wavelength much larger than the Hubble 3¢\ L)
horizon size. Thus in this regime E(L5) becomes (32)
_ K\ 2 where we have choséen—« so thatY,(t) becomes the pure
Y+3HY+ 3 Y=0. (24)  decaying mode. It should be noted that it is nontrivial that

Y,(t) is described like this all the time because the integrand
T _ . . is singular at =t [13]. We emphasize that,(t), which is
Under the conditioiH/H?|<1 the solution of this equation the nondecreasing mode, has a decaying component in con-
satisfying the normalization condition for positive frequencytrast to the case of slow-roll inflation.

modes to define the vacuum state, We next match Eq(32) with the short-wavelength solu-
_ ) tion (28) via two different methods and confirm that both
ad(YY*—YY*)=i, (25  methods give the same results.
The first method we adopt is to use the series expansion
is approximately given by of Eq. (28) with respect tdk/a(t), namely,
Y= ' 1+ikn)e k7 1—ikn)e*], (26 Y= i 1+1 X 2+i X 3+ 33
_W[ak( +ikn)e 7B (1—-ikn)e™"], (26) _\/ﬁ 2\an/ "3lamA , (33
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and match each coefficient of the power series with that of
the long-wavelength solution. As is seen here the zeroth-
order term matches the main part of the nondecreasing term

PHYSICAL REVIEW D 61 103504

and the third-order term corresponds to the decaying mode.

However, the second-order term, which is present in Eq.
(33), is absent in Eq(32). In fact, this term should be re-
garded as a finite-wave-number correction to the nondecreas-

ing modeY; as we see now.

With the help of thek=0 solutionsY,(t) andY,(t) and
the Green’s-function method, we obtain from E@5) the
following iterative expression for arbitraty[13]:

Y=C1(k)Y1+C2(k)k3Y2+ kZYlf aYszt_ k2Y2
XJ’ aY,Ydt (39

The lowest-order iterative solution valid for smélreads

k \? ¢
Y(t)Ecl(k)Yl(t)+cz(k)k3Y2(t)+Cl(k)(%) %g
( 5)

The new term corresponds to the second term in(&8).and
we can now determine; (k) andc,(k) consistently up to the
third order in k/a)3, to yield,

ci(k)= i i (36)
V2ié g,
bs to)H\®
cz(k)=J2;:’3H2 13 I‘()) } (37)

We note that(ty)H/k=1 for the mode leaving the Hubble

radius wheng vanishes.

Another method to decide;(k) is simply to equate the
value and the first time derivative of Eq28) and(35) at the
watershed. Becaushl? . is O(H?/N), we can use the
short-wavelength solution duringkfa)’=H?/N and the
long-wavelength solution fork{a)?<H?/N. Thus we define
the dividing epochy, by (k/a(7.))?=H?/N and match Egs.
(28) and (35) there.

At 5= 7 the short-wave solutiof28) and its derivative
read

iH
- _ 2
Y(10)= L1+ O ko))
dy iH

dn(’?c)_ \/W

(39)

kzﬂc[l_ ik77c+ o((— knc)z)]- (39

On the other hand, from E¢35) the long-wave counterparts

are given by

_ ﬂs 1 a7 ’
Y(7¢)=c1(K) H 1+2( K7c) (770)
H3
— (k) — (—kne)?, (40
3dbs
) ) 3
d—Y(nc)=01(k)ﬁ(k2nc—3n—§ +C2(k)ik3ﬂ§-
dn H 7o b
(41)

Equating Eq(38) with Egs.(40) and (39) with Eq. (41) we
find

iH H ,
Cl(k)z\/?;[lﬂLO((—kﬂc) )] (42

be to)H\3
cz(k)=ﬁ[l—3i A |2) +O(—k7o) |, 43

in agreement with Eqg36) and (37). Note that the leading
terms of the above results are independent of the choice of
the matching epochy.. Thus we find

3iH®

J2K3V'

IV. THE CASE OF A QUADRATIC POTENTIAL

cy(k)=~— (44)

Next we consider the case for which the potential is lo-
cally given by

1
V(¢)=Vo— 5m?e?, (45)
near the turning point, wheré, and m are constants satis-
fying H>=87G V,/3>m?. We assum&/,>m?¢2. Then the
solution of Eq.(5) reads

. A
D)=~ g ) (4
+
=%
SRVER A 4
Ne=—SHZ A ZH+mMS (47)
where we have set
$(to) =0, (48)
(to) = o. (49
By virtue of the inequalityH>m we find
m2
M:W’ N_=-—3H. (50)
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To the lowest order im?/(3H?), Eq.(17) is expressed as mula for the amplitude of the curvature perturbation

a(to) 3 H
at) | | Y mPey,

m2 3

3nz %o

Kk
a(t)

Y=cy(k)

277') 3H3
(54

q’(rZT VT4

(51) .
We can repeat the same argument as the case of a linear _ o _
potential. As is suggested by the fact that E%fl) coincides ~ Where f=3/5(2/3) in the matter-(radiation) dominated

with Eq. (32) by the replacement stage. Apparently this formula coincides with the standard

5 ) ) formula with ¢ in the denominator replaced by the slow-roll

M Vol . V' velocity,

3H 3H s 3H’

we obtain in this case b M (55)
3H
o= 3iH3 -
Ca(k)= ~/2k§V’[¢O] ' (52) but it is valid not only in the slow-roll regime but also in an

) o ] extreme situationg=0 when the relevant mode leaves
Thus in both cases the coefficient of the nondecaying modgjupple radius during inflation.

is given by the standard formula as#fis slowly rolling with Although we have done calculations only for two simple
the speed models in the present paper, the above formula seems to hold
V'] for perturbations generated around and after the turning point

R ’ (53 of the inflaton in generic models for the following reason.
3H First recall that the expressid28) for perturbations gener-
. ated from quantum fluctuations gives a good approximation
even for thek mode leaving the horizon whep vanishes.  during inflation even when the wavelength is much larger
than the Hubble horizon size. Though it is a combination of
V. CONCLUSION a growing mode and a decaying mode at the horizon cross-

ing, the amplitude of the latter component decreases rapidly

In the present paper we have derived a formula for theyith cosmic expansion after the horizon crossing. In that
spectrum of the density perturbation generated by inflation in

. o L . stage the Bardeen paramefer —HY/ ¢ should approach a
the case where the time derivative of the inflathwanishes

. L X S >''=2  constant. As shown in the Appendix, in several Hubble time
at some time during inflation. Calculatlor_1 in such a situation,gar passing the turning point, the slow-roll approximation
is not straightforward because the amplitude of the growmgoecomes good and/H is expressed as V' /3H2, which is

mode in the long-wavelength limit vanishes at the turningconstant with a good accuracy in the early phase of inflation
point of the inflaton, which implies that the Bardeen param- 9 y yp

eter estimated for quantum fluctuations at the horizon crosselfter the turning point. In the meanwhiiegiven by Eq.(28)

ing diverges at that time. This is the origin of the divergenceaISO becomes a consta/y2k®. Hence, the value of the

of the standard formula a=0. Of course, the amplitude of Bardeen parameter for the growing mode should be given by

perturbations generated around the turning point do not di-

verge in reality because the Bardeen parameter becomes fi- H 3H?

nite when the inflaton moves away from the turning point. Z=-lI W RV (56)

This implies that we must subtract a contribution of the de-

caying mode, for which the Bardeen parameter is not con-

stant, from the perturbation generated from the quantunThis expression coincides witd obtained fromc,(k)Y;

fluctuation in order to obtain a correct formula for the am-with c,(k) given by Eq.(36). This argument does not deter-

plitude of the growing mode. mine the amplitude of the decaying-mode component, but it
In order to treat this problem properly, we have firsthas no importance in the estimation of the curvature pertur-

shown that the standard expression for quantum fluctuationigation in later states.

in the short-wavelength limit gives a good approximation for

the evolution of perturbations during inflation, at least in the

case we are concerned with, even when wavelengths are ACKNOWLEDGMENTS
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APPENDIX W= o+ vok(do— @), (A9)

In this appendix, for inflation models in which vanishes where uo=u(¢y). From this equation and EGA8) it fol-

at some time during inflation and the inflaton potental |ows that¢ satisfies the differential inequality
satisfies conditiori21), we show that(V'/(«2V))’| is much

smaller than unity around the turning point of the inflaton as d’¢ d¢ 2ug

well as in the slow-roll phase of the inflationary stage after d_§2+ d_éﬂL — T2vo(¢o—¢)=f<0. (Al0)
that. We also show that a local quadratic approximation for

the potentialV gives a good description of the evolution of Solving this equation yields

the inflaton and the scale factor in the same period.

_ First we rewrite the basic evolution equatiods and (5) b(0)|= Mo (eMé—gol)— Ay
in terms of the new variables v (1+2vg) 2(1+2v) 2
¢ ng. —\q< A2
= — X eM 16 —
V=K (A1) ent | die i 2(1+2vy) 12
g:ln(a/ao), (AZ) Xef)\zgf dé«engf, (All)
0
as
where
d¢
Skl (A3) N=V1+209-1, Ap=1+2pp+1.  (AL2)
do 2 Sincef=0, this equation gives the inequality
d—g=—3(1—§)(v+ﬂ), (A4) »
. |U|2 m(e)‘lg—e_)‘ﬂ). (A13)
where a, is the value ofa at the time wheny=0. H is Yo
written in terms of these variables as Hence we obtain the estimate
KV 2(1+2vy) 1
H?=—— . (AS) N=¢, < L2tz 1 (A14)
3( 1— E) 2)\ Mo Vo
In particular it follows thatvy should be much smaller than
Note that from the equation unity if a sufficient inflation occurs after the inflaton passes
] the turning point.
H 1, Next we show that/u rapidly approaches unity. Inte-
H2™ T2V (A6) grating Eq.(A7), we obtain
the inflation condition 4H) >0 is expressed as®<2. Vo 3000 Jg —3[g(D)—9(¢1)]
L . . 1+—=e7°9%+ | d gte)meled” (A15
For definiteness we consider the case 0 at the turning M © SIS (A15)

point = ¢, v=_0. In this case& becomes negative after the

inflaton passes the turning point. We restrict the considerwhere

ation to the inflationary stage<9({<¢, , where{, is the

value of ¢ at the time wherv becomes—v?2 for the first 9(0)= ng
time. In this stage EqA4) yields !

2

1-2 4
613

|v]

1+—
)7

(A16)

d lv] Since g, |v| and v are nondecreasing functions ¢f this
dg = _3[1_ 53 ( 1+ 7) M e equation gives the inequality
A7) ,
2v 6—v
where v=—u'/k=0. From this equation we immediately 1+ ;< 602120  6-vZt2v

see that ¥ v/u cannot vanish. Hence EGA4) is written as

o] 02 xex;{—%(e—u%zvo)g . (A17)
d—§=3(1— —v)). (A8)
Therefore, we obtain
From the condition' <0, u satisfiesu’/ k< — vy, where
Vo is the value ofv at p= ¢y . Integrating this equation, we 1+ 35 i (A18)
obtain w2
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1 dv the inflaton enters the slow-roll regime. First, integrating Eq.
vz =v, (A19)  (A3) by taking account of the inequalify| < u, we obtain
for ;= ¢,=1/3In3k. Sincedv/d{/v is expressed as 1K|¢_¢0|SV§. (A21)
M
1d b H
-l i— —, (A20) If we expandu as

vd{ He¢ H?2

m=pot vor(do— )+, (A22)

the above estimate implies that the slow-roll approximation

becomes good fof= (s, i.e., in a few Hubble time after the the ratio of the second term and the subsequent higher-order

inflaton passes the turning point. terms is in general of the order of{/ ) x| po— ¢|. Hence,
Finally, we show that the linear approximatigpn=u, the above estimate implies that the first two terms in this

+vo(po— @) for u can be used to determine the evolution expansion gives a good approximation ferin the period

of the inflaton with a good accuracy for a long period after{<1/v,, which covers a large fraction of the slow-roll stage.
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