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Hydrodynamics of driven granular gases
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Hydrodynamic equations for granular gases driven by the Fokker-Planck operator are derived. Transport
coefficients appeared in Navier-Stokes order change from the values of a free-cooling state to those of a steady
state. The mismatch between the granular temperature and the constant temperature of the heat bath produces
a nontrivial steady state.
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. INTRODUCTION distribution functionf (r,v,t) in our system obeys the heated
inelastic Boltzmann equation

The gas kinetic theory of elastic particles played impor-
tant roles in history of statistical mechani€$,2]. When (0 +v-V)f=J[f,f]+Lgpf, (D)
there are inelastic interactions among particles, the behavior o _ )
of collections of particles is completely different from that of Where J[f,f] represents the collisional integral given by
elastic particles: There are no equilibrium states and any sp&ll,12
tially homogeneous states are no longer stable. Such a col-
lection of particles having inelastic interactions is called the J[f,h]zo_dflf d&f dv,0(g- 0)g- (e 2b~1—1)
granular gas, whose physical realization can be observed in
rings of planets, small planets, suspended particles in fluid-
ized beds, aerosols, and rapid granular flows, [&ik.

A typical example of granular gases can be found in aero- , . i ~
sols or suspensions, etc., in which the buoyancy is balancefinere ©(x) is the Heaviside functiong=v—v,, and o is
with gravity [4,5]. In dense suspensions the hydrodynamicthe unit vector _along the line connecting centers of mass of
interaction among particles are importdfi, but effects of ~contacting particles. The operator ! is the inverse of the
the air may be regarded as a thermostat driven by the Langéollisional operatob which are defined as
vin forces in dilute suspensions. Most researches for granular A
gases are interested in undriven systems which are difficult bg=g—-(1+e)(g-o)o, (3
to be achieved in actual experiences. We believe that more
systematic studies for driven granular gases are required. . e . .

Montanero and Santos analyzed statistical properties of the b 9:9_7(9' 0)o, (4)
homogeneous state and hydrodynamics of granular gases, the

white noise thermostat, and the Gaussian thermd3$t8l.  wheree is the coefficient of restitution which is ranged 0
Carrillo et al. [9] and Pagnanet al. [10] analyzed granular  <e<1. Here we assume thatis a constant for the simpli-
gases in driven systems by the Langevin force which infication of our argument, though the actual coefficient of
c_Iudes both the.wh|te noise and the friction forqe iN Proporregiitytion depends on the impact velodis8—15. The ef-
tion to the velocity of particles, but they are not interested Mtacts of the impact velocity dependenceedo macroscopic

hydrodynamics of such a granular fluid. Since we be”evqﬁydrodynamics can be seen in REE6]. It should be noted

that the model driven by such a thermostat, we call th : . . S : i
Langevin thermostat, can describe physical situations of diq-h"’lt t'he obl'lque 'T”P""Cts have important contributions in ac
tual inelastic collisiond17,18. We, however, assume that

lute suspensions, we need to clarify the properties of th?‘he effects of inelastic oblique collision can be neglected,

hydrodynarmcs OT such a system. The main purpose of thI§vhich may be justified when particles are smooth hard-core
paper is to investigate the effects of Langevin thermostat for

transport coefficients pa[lt'lrftleelszlokker-Planck operatdr-p in Eq. (1) represents the
The organization of this paper is as follows. In the follow- P FP d- P

. . . riven force coming from the Langevin force as
ing section, we introduce our model and the framework ofd 9 9

X f(r,v,t)h(r,vy,t), 2

the Chapman-Enskog method for the analysis of granular 9 Tg &
gases. In Sec. lll, we calculate the valuables such as the LFP:')’OW' V+HW , (5)

granular temperature and the fourth cumulant in a homoge-
neous state. In Sec. IV, we obtain the transport coefficient,
such as the viscosity and the heat conductivity. In Sec. V,
discuss and summarize our results.

Where the first term and the second term represent the fric-
W&onal force and the thermal activation, respectively. In gen-
eral, the temperature of the heat batp is different from
Il FRAMEWORK granular temperatur&. Here, we assume thatg _is acon-
stant throughout the argument in this paper. This assumption
We consider rarefied gases of smooth identical particless justified when the influence of granular particles to the
with the massm, the velocityv, and the diameter. The  heat bath is negligible. If there is no contribution from the
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collisional integral, the distribution function is relaxed to anwhere D;=d;+u-V. The pressure tensd?; and the heat
equilibrium state asf—>feqocexp:—m\F/2TB]. We note that flux q are, respectively, defined by

the Fokker-Planck operat@®) is different from white noise

thermostal nite= (7o T/M)(6%/dv?) even when we neglect L J v

the contribution the friction term. Actually, outgp is re- Pij=m | dWiVif(r,v.), (17)
duced toy,Tg/m(4?/dv?) in such a situation with a constant

temperaturel 3. We also note that the frictional force in the . m 2

first term of Eq.(5) has the inverse sign of the Gaussian a= 2 dwWAVE(r,v.1). (18)

thermosta 7] Lgauss= — Yo(d/dv)V which is also used in

simulation of molecular hydrodynami¢49]. We adopt the Chapman-Enskog meth@ll where space
Hydrodynamic variables which characterize the macro-and time dependences appear through hydrodynamic vari-

scopic behavior of the gas are the number density, the velo@bles. The expansion parameter is regarded as the magnitude

ity field, and the granular temperature defined by of spatial inhomogeneity. Thus, we expahdround the ho-

mogeneous solutiofl® asf=f© +efM+¢2f()+ ... the

time derivative is also expanded ag=d,+&g, D+ ...

Here we apply the Chapman-Enskog method for dilute

granular gases developed by Bretal. [20,21] and Santos

[8] to driven systems. To remove the ambiguity of the distri-

bution function, we impose the solubility conditions in which

hydrodynamic variables are unchanged from the evaluation

by fO(v,t).

n(r,t)=f dvf(r,v,t), (6)
n(r,t)u(r,t)=f dv vi(r,v,1), (7)

d T —Jd L \V/2f 8
SNILOT(rG= | dvomV(r,v,0), (8)

IIl. HOMOGENEOUS STATES
where V=v—u. The integral of the collisional invariance
multiplied by J[ f,f] overV is zero. Since the loss of kinetic
energy in each collision is given by

As the first step of Chapman-Enskog method, we need
also to obtain the homogeneous solution of the inelastic Bolt-

zmann equation. We usually assume the scaling form
2

AE=—-——m(g 0)%, 9 f(v,t) =nuo(t) (e, 7), c=Vlvg(t), (19)
the following relation holds: with d7= wgdt andv(t) = y2T/m. The fourth cumulant in-
' troduced in Eq.(12) for the scaling function is related to
1 nd (cY=[dcc*f(c) as (c*y=d(d+2)(a,+1)/4. Herewg is
f dvEmsz(f,f)= — 5 Tt Tl (100 Enskog's collision frequency, given by
Here, the cooling raté in Eq.(10) can be evaluated approxi- _d+2 B \FQ d-1 20
mately[12] we="—"—vo= \ (N "vo. (20)
1-¢? 3 For the calculation we need to obtain
=~ 0= =
=_ kyrF F
where vo=m gt Y(T/m)2404/(d+2), with Qg = f dec™JLf,f]. (@)

=27Y2/T'(d/2). a, is the fourth cumulant defined by
The cumulants ang, can be evaluated by an approximate

_ d (V9 _ 12 expansion of Sonine polynomial&2]. For exampleu, is
&2 452 (va2 (12 evaluated as
p 1 « ~ 1 2 Qd 3
(V >Eﬁf dVVKE(V,1), (13 po=7(1-€ )E 1+ 7622 (22)
which will be determined later. M4 is estimated afl2]
The balance equations for hydrodynamic variables are
2
D;n+nV-u=0, (14 Mog= \[;Qd(AﬁaE'Az), (23
D.u;j+(mn)~*V;P;;=0, (19 with
2 1-¢? 3
DT+ g (P Viui+V-q) +T{=2y0(Tg=T), (16) Ar=— d+§+e2 :
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A,=35(1—e?)(10d+ 39+ 10e?) + 2 (1+e)(d—1). 099
(24 0.04
a 0.03
It should be noted that these evaluations are based on two 2
approximations{i) the truncation of the first Sonine expan-
sion and(ii) the linearization ofa,. If we adopt the first
assumption, the linearization @f, gives a nice evaluation 0
[22]. We also indicate that the direct comparison of the trans-
port coefficients obtained by the Monte Carlo simulation and
the linearized approximation gives good agreement in free- €
cooling stateg21]. However, nobody knows how to con-  _ ~ Steadya, as a function ok for d=3 andy=0.1. The

verge the Sonine expansion for driven granular gases. Thu§o|id line and the solid circles represent the result of linearized
we may need to check the convergence of the Sonine eXPalroximation and the exact one, respectively

sion as in the case of elastic partic/@S].
Now, let us discuss the time evolution of temperature

0.02

. 19. .
field. Eq.(16) becomes a2(7)2a°2°+[a2(0)—a°2°]><ex;{(Zg—AZ)r

3 D0=2y0=(2y0+ )6 (25 i

~ T T
: . _ - Yf OTENL (31
in the homogeneous state with the Langevin thermostat, 0 0%(7")
where §=T/Tg. Assuming 6= 69+a,0Y+0(a3), Eq.
(25) is reduced to where
s A,—4¢
7:09=2{y—(y+ 16} (26) O . S 32

19, A a
A . ZL 4+ D=A,
in the lowest order, where=y,/wg and {=(1—e?)/2d.

This equation has the solution . o o
a Although we present the result of linearization &f, it is

. possible to obtain the exact steady valuesfadind a, for
00=0..+(0(0)—0,.)e 20107, (27)  Egs.(25 and(29). The result is presented in the Appendix,
but the differences between the exact values and the result
from linearized approximation are invisib(Eig. 1). We also
comparea, in Eq. (31)and @ in Eq. (27) with the numerical
solution of Egs.(29) and (25) to confirm the validity of the
linearization ofa,.

with 6.,=y/(y+2).
In the scaling limit, the inelastic Boltzmann equatid)
is reduced to

Q¢ -~ NPT F Y_ M2)d = IV. THE DETERMINATION OF THE TRANSPORT
—ad,f(c,n)=3[ffl+|-——F|—" cf(c, :
N (en =I5~ g 5 Lefen] COEFFICIENTS
Y . Here, we explicitly obtain the result of the transport coef-
+ 29 —f(c,7), (28) ficients for heated granular gases. The solufi®his isotro-
Jc pic so that the zeroth-order pressure and the heat flux are
given by
where J[f,f]1=n?(a/vo(t))4 *J[f,f]. From the equation o o
for (c*)=d(d+2)(a,+1)/4 we obtain the equation of the P;@=ps;, d@=0, (33
lowest order ofa,: ) )
wherep=nT is the hydrostatic pressure.
19 . 2 The first-order equation of the Boltzmann equation be-
Gaa=Al-Agray SU-as-Ry|+ la2 (29 oM
) (3{(0)+L_LFP)f(1):_(&t(1)+V.V)f(0)
. (19, 5 . =—(DWM+Vv.V)fO, (34
24-§_A:|_'|‘a.2 Z§_4E_A2 , (30)

with DM=9,Y+u.V. Here the linear operatdr in Eq.
A A (34) is defined by

with A,=8A, /d(d+2) andA,=8A,/d(d+2). The solu-

tion of Eq. (30) is given by LfM=—J[fO ][ f®) £, (35
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Multiplying both sides of Eq(34) by mV;V; and integrat-
ing overV, we obtain

(0 @+ )Py +11; V= — pAj Vi, (36)
where
Hij(”s—mf dVV,VLepf®), (37
2
Aijk|E5ik5j|+5i|5jk—a5ij5k|- (39
The solution of Eq(36) can be written as
P V=~ A Viuy, (39

where 7 is the viscosity.
It is possible to obtain in Eq. (36) through the relation

mJ dVvV,V,LfO(Vv)=vp;; 1) (40)

The evaluation ofv is independent of the existence of the

thermostat. We have evaluatedas[12]

x_ Y 3 1 2d 1 1 ! 41
V”_V_O_E e+§ ( +e) 3—2&12 . ( )
With the aid of
Op @[ 0 oo
P = 9 Yoo Pij*, (42)
Egs.(36)—(42) lead to
2v*+1
== ? AL
M0 Y1+ +vE—1*2

*:

where y* = yo/vg, v} =wvlvo, and{* ={lvy. no(7) is the
viscosity fore=1, which is different from the valuey, of
the elastic gas asz7.=7n(2y*+1). We note 7,

=57mT/(16\ma?) for d=3 in the lowest-order Sonine
approximation 2]. The steady value of* is obtained when

we substituted” anda; into Eq. (43).

Let us consider the heat flux. Multiplying both sides of

Eq. (34) by mV2V/2 and integrating oveY we obtain

d+2
(0{9+v")gV+QW=— ——(1+ 2az)%VT

d+2 T?
where
m
QW= Ef dVVAVLpf®), (45)

Here,v’ has already been calculated[24]
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L, VvV 1l+te d—1+3 4+ 8)(1
Vi = vo d 2 16( )(1-e€)
4+5d-3(4—d)e 46
+ 512 az|. ( )
The heat flux is described by
q¥=—kVT—uVn, 47)

where » and k are the shear viscosity and the thermal con-
ductivity, respectively. The other transport coefficiegntap-
pears only in granular gases. Through the substitution of Eqgs.
(47) and (46) with the result ofQ™") into Eq. (44) we can
obtainx and x.

From the scaling forn19) the following relations should
be satisfied:

(9t(°)q(1)= (2¢+3y9— v/ 0)kVT

+

k(T
K n

+—]Vn. (48)

3
5{T3y0(1-67Y)

On the other hand]I® and Q™) have the relations

QM=3y0q™.

Thus,x andu can be obtained from Eq&18), (49), and(44)
as

I1;(V=2yP; ), (49

_d+2 1+2a, nT

K —, (50)
2y =20+y,le M
k{T . d+2 T2
n 2 2y
m= (51

3
V’—§§+370/6

Thus, k* = «k/ ko which is the heat conductivity normalized
by its value ofe=1, xq(7), is given by

" (d_1+ ) l+2a2 (52)
K*=|—— _

d y vy =20+ y*10

K* a(vi+y*10)
ut et (59

1+2a, , 3
V,— Eg* +3’y*/0
Their steady values are evaluated repladgiranda, by their
steady values.

Figure 2 shows the time evolution ef, «*, andu* for
e=0.9,d=3, andax= 0.1. Figure 3 shows the steady values
of »*, k*, andu* as functions ofe for d=3 andy=0.1.

As we can see from the figureg; can be comparable with
others. This situation has not been realized for free-cooling
systems.
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2 are large. They also include the feedback effect from granu-

5 .78 - lar particles to the elastic particles in the heat bath. At
R S present, they do not discuss the spatial fluctuations but dis-
2o = cuss only homogeneous states. Thus, the study of such a

= ' model will be fruitful. On the other hand, Garzo and Mon-

01;72 - tanero[24] determined the transport coefficients in a heated
0.2;5 Seo- o system by the white noise thermostat, but their result is less
related to ours, because the white noise thermostat is heated

not by Tg but by the granular temparture.

T We have derived hydrodynamic equations based on a sys-
tematic Chapman-Enskog method for dilute granular gases
driven by the Langevin thermostat in this paper. We have
determined all the transport coefficienjs x, and u appear

in Navier-Stokes order as a function of the restitution coef-
ficiente.

It is remarkable thaju* is not proportional toa, and The result is based on the linearized approximatioa.of
keeps positive for the region af,<0 even in the steady in the first-order truncation of Sonine expansion. Although
limit. This result is contradicted with the framework by San-Wwe believe that this approximation gives a nice evaluation,
tos[8]. To clarify the reason, let us calculat¢®q®) in the ~ nobody knows its theoretical background and quantitative

FIG. 2. The time evolution of;* (solid line), x* (dashed ling
andu* (dot-dashed lingfor e=0.9, d=3, y=0.1, and#(0)=2.

V. DISCUSSION AND CONCLUSION

long time limit: validity. In particular, Pagnaret al. [10] have reported that
deviation off from the Gaussian in driven granular gases is
0OV — — kV 4, OT— uV 4 ®n large. So we may need to check the convergence of the So-

nine expansion and to compare the theoretical prediction
=~ «V[2y0T= (270 +{)T] with simulations. We also need to look for the possibility to
= k(290+ () VT #O0. (54) apply our result to explain the data in actual experiments for

suspensions.

Thus, 3,9q®) cannot be zero even in the long time limit.

This paradoxical situation comes from the following. In our ACKNOWLEDGMENTS

system, the system is heated by the constgnuniformly,

but the temperature field contains spatial fluctuations.

Thus, the mismatch of the two temperature fields survives i

the long time limit. In other words, we cannot neglect the

time derivative in the scaled inelastic Boltzmann equation

(28) to reproduce the relaxation to the steady state.

After submission of the paper, the author has realized the As mentioned in the text, it is possible to obtain exact
existence important related papé24—26. In particular, the  steady solutions of Eq$25) and (29). The result is so com-
latter two papers discussed mixtures of elastic particles anglicated and the difference between them and the linearized

granular particles. Their model reduces to our model wherolutions is small so that we do not use the exact form for
the density ratio and the mass ratio of two kinds of particlegater discussion. Here we present the exact solutions

The author would like to thank A. Santos for fruitful dis-
ussion. This study was partially supported by the Inamori
oundation.

APPENDIX A: STEADY VALUES OF a, AND 6

N

. 16(1—3e”+2e%)

X
E 1 a , (A1)
~1os == — where  Q;= 73— 32— 75e?— 30e*+ 64d%y+8d(7+4e
~ 1 == -
o —3e?+16y), and
0.5‘-‘_‘>‘ dAQ
0.25 T~ - aoo: = Y1 , (AZ)
0.2 0.4 0.6 IR Q,+64d>y +Q3_d(1+8)Q4
e where Q,=2(1+e€)%(19-46e+33?—123+6e%), Q,
FIG. 3. The steady values of* (solid line), x* (dashed ling =8d2§/(1l+ 4e—7e’+ 165/), and Q3= — 28+ e%(28— 303/)
and u* (dot-dashed lingfor e=0.9, d=3, andy=0.1. —137y+6e3(5y—2)+e(12+169y).
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