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Hydrodynamics of driven granular gases

Hisao Hayakawa
Department of Physics, Yoshida-South Campus, Kyoto University, Kyoto 606-8501, Japan

~Received 8 April 2003; published 12 September 2003!

Hydrodynamic equations for granular gases driven by the Fokker-Planck operator are derived. Transport
coefficients appeared in Navier-Stokes order change from the values of a free-cooling state to those of a steady
state. The mismatch between the granular temperature and the constant temperature of the heat bath produces
a nontrivial steady state.
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I. INTRODUCTION

The gas kinetic theory of elastic particles played imp
tant roles in history of statistical mechanics@1,2#. When
there are inelastic interactions among particles, the beha
of collections of particles is completely different from that
elastic particles: There are no equilibrium states and any
tially homogeneous states are no longer stable. Such a
lection of particles having inelastic interactions is called
granular gas, whose physical realization can be observe
rings of planets, small planets, suspended particles in fl
ized beds, aerosols, and rapid granular flows, etc.@3#.

A typical example of granular gases can be found in ae
sols or suspensions, etc., in which the buoyancy is balan
with gravity @4,5#. In dense suspensions the hydrodynam
interaction among particles are important@6#, but effects of
the air may be regarded as a thermostat driven by the La
vin forces in dilute suspensions. Most researches for gran
gases are interested in undriven systems which are diffi
to be achieved in actual experiences. We believe that m
systematic studies for driven granular gases are requ
Montanero and Santos analyzed statistical properties of
homogeneous state and hydrodynamics of granular gase
white noise thermostat, and the Gaussian thermostat@7,8#.
Carrillo et al. @9# and Pagnaniet al. @10# analyzed granular
gases in driven systems by the Langevin force which
cludes both the white noise and the friction force in prop
tion to the velocity of particles, but they are not interested
hydrodynamics of such a granular fluid. Since we belie
that the model driven by such a thermostat, we call
Langevin thermostat, can describe physical situations of
lute suspensions, we need to clarify the properties of
hydrodynamics of such a system. The main purpose of
paper is to investigate the effects of Langevin thermostat
transport coefficients

The organization of this paper is as follows. In the follow
ing section, we introduce our model and the framework
the Chapman-Enskog method for the analysis of gran
gases. In Sec. III, we calculate the valuables such as
granular temperature and the fourth cumulant in a homo
neous state. In Sec. IV, we obtain the transport coefficie
such as the viscosity and the heat conductivity. In Sec. V,
discuss and summarize our results.

II. FRAMEWORK

We consider rarefied gases of smooth identical partic
with the massm, the velocityv, and the diameters. The
1063-651X/2003/68~3!/031304~6!/$20.00 68 0313
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distribution functionf (r ,v,t) in our system obeys the heate
inelastic Boltzmann equation

~] t1v•“ ! f 5J@ f , f #1LFPf , ~1!

where J@ f , f # represents the collisional integral given b
@11,12#

J@ f ,h#5sd21E dŝE dv1Q~g•ŝ!g•ŝ~e22b2121!

3 f ~r ,v,t !h~r ,v1 ,t !, ~2!

whereQ(x) is the Heaviside function,g5v2v1, and ŝ is
the unit vector along the line connecting centers of mass
contacting particles. The operatorb21 is the inverse of the
collisional operatorb which are defined as

bg5g2~11e!~g•ŝ!ŝ, ~3!

b21g5g2
11e

e
~g•ŝ!ŝ, ~4!

where e is the coefficient of restitution which is ranged
,e<1. Here we assume thate is a constant for the simpli-
fication of our argument, though the actual coefficient
restitution depends on the impact velocity@13–15#. The ef-
fects of the impact velocity dependence ofe to macroscopic
hydrodynamics can be seen in Ref.@16#. It should be noted
that the oblique impacts have important contributions in
tual inelastic collisions@17,18#. We, however, assume tha
the effects of inelastic oblique collision can be neglect
which may be justified when particles are smooth hard-c
particles.

The Fokker-Planck operatorLFP in Eq. ~1! represents the
driven force coming from the Langevin force as

LFP5g0

]

]v
•FV1

TB

m

]

]vG , ~5!

where the first term and the second term represent the
tional force and the thermal activation, respectively. In ge
eral, the temperature of the heat bathTB is different from
granular temperatureT. Here, we assume thatTB is a con-
stant throughout the argument in this paper. This assump
is justified when the influence of granular particles to t
heat bath is negligible. If there is no contribution from th
©2003 The American Physical Society04-1
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collisional integral, the distribution function is relaxed to a
equilibrium state asf→ f eq}exp@2mV2/2TB#. We note that
the Fokker-Planck operator~5! is different from white noise
thermostatLwhite5(g0T/m)(]2/]v2) even when we neglec
the contribution the friction term. Actually, ourLFP is re-
duced tog0TB /m(]2/]v2) in such a situation with a constan
temperatureTB . We also note that the frictional force in th
first term of Eq.~5! has the inverse sign of the Gaussi
thermostat@7# LGauss52g0(]/]v)V which is also used in
simulation of molecular hydrodynamics@19#.

Hydrodynamic variables which characterize the mac
scopic behavior of the gas are the number density, the ve
ity field, and the granular temperature defined by

n~r ,t !5E dvf ~r ,v,t !, ~6!

n~r ,t !u~r ,t !5E dv vf ~r ,v,t !, ~7!

d

2
n~r ,t !T~r ,t !5E dv

1

2
mV2f ~r ,v,t !, ~8!

where V[v2u. The integral of the collisional invarianc
multiplied byJ@ f , f # overV is zero. Since the loss of kineti
energy in each collision is given by

DE52
12e2

4
m~g•ŝ!2, ~9!

the following relation holds:

E dv
1

2
mV2J~ f , f !52

nd

2
Tz@ f , f #. ~10!

Here, the cooling ratez in Eq. ~10! can be evaluated approx
mately @12#

z.z (0)5
12e2

4d
n0~d12!S 11

3

16
a2D , ~11!

where n05p21/2nsd21(T/m)1/24Vd /(d12), with Vd
52pd/2/G(d/2). a2 is the fourth cumulant defined by

a2[
d

d12

^V4&

^V2&2
21, ~12!

^Vk&[
1

nE dVVkf ~V,t !, ~13!

which will be determined later.
The balance equations for hydrodynamic variables are

Dtn1n“•u50, ~14!

Dtui1~mn!21
“ j Pi j 50, ~15!

DtT1
2

dn
~Pi j“ jui1“•q!1Tz52g0~TB2T!, ~16!
03130
-
c-

where Dt5] t1u•“. The pressure tensorPi j and the heat
flux q are, respectively, defined by

Pi j 5mE dvViVj f ~r ,v,t !, ~17!

q5
m

2 E dvV2V f ~r ,v,t !. ~18!

We adopt the Chapman-Enskog method@2#, where space
and time dependences appear through hydrodynamic v
ables. The expansion parameter is regarded as the magn
of spatial inhomogeneity. Thus, we expandf around the ho-
mogeneous solutionf (0) as f 5 f (0)1« f (1)1«2f (2)1•••, the
time derivative is also expanded as] t5] t

(0)1«] t
(1)1•••.

Here we apply the Chapman-Enskog method for dil
granular gases developed by Breyet al. @20,21# and Santos
@8# to driven systems. To remove the ambiguity of the dis
bution function, we impose the solubility conditions in whic
hydrodynamic variables are unchanged from the evalua
by f (0)(v,t).

III. HOMOGENEOUS STATES

As the first step of Chapman-Enskog method, we ne
also to obtain the homogeneous solution of the inelastic B
zmann equation. We usually assume the scaling form

f ~v,t !5nv0~ t !2df̃ ~c,t!, c5V/v0~ t !, ~19!

with dt5vEdt andv0(t)5A2T/m. The fourth cumulant in-
troduced in Eq.~12! for the scaling function is related to

^c4&[*dcc4 f̃ (c) as ^c4&5d(d12)(a211)/4. HerevE is
Enskog’s collision frequency, given by

vE5
d12

4
n05A2

p
Vdnsd21v0 . ~20!

For the calculation we need to obtain

mk[2E dcckJ@ f̃ , f̃ #. ~21!

The cumulants andmk can be evaluated by an approxima
expansion of Sonine polynomials@12#. For example,m2 is
evaluated as

m2.
1

2
~12e2!

Vd

A2p
S 11

3

16
a2D . ~22!

m4 is estimated as@12#

m4.A2

p
Vd~A11a2

HA2!, ~23!

with

A15
12e2

4 S d1
3

2
1e2D ,
4-2
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A25 3
128~12e2!~10d139110e2!1 1

4 ~11e!~d21!.
~24!

It should be noted that these evaluations are based on
approximations:~i! the truncation of the first Sonine expa
sion and~ii ! the linearization ofa2. If we adopt the first
assumption, the linearization ofa2 gives a nice evaluation
@22#. We also indicate that the direct comparison of the tra
port coefficients obtained by the Monte Carlo simulation a
the linearized approximation gives good agreement in fr
cooling states@21#. However, nobody knows how to con
verge the Sonine expansion for driven granular gases. T
we may need to check the convergence of the Sonine ex
sion as in the case of elastic particles@23#.

Now, let us discuss the time evolution of temperatu
field. Eq. ~16! becomes

] t
(0)u52g02~2g01z!u ~25!

in the homogeneous state with the Langevin thermos
where u[T/TB . Assuming u5u (0)1a2u (1)1O(a2

2), Eq.
~25! is reduced to

]tu
(0)52$ĝ2~ ĝ1 ẑ !u (0)% ~26!

in the lowest order, whereĝ5g0 /vE and ẑ5(12e2)/2d.
This equation has the solution

u (0)5u`1~u (0)~0!2u`!e22(ĝ1 ẑ)t, ~27!

with u`[ĝ/(ĝ1 ẑ).
In the scaling limit, the inelastic Boltzmann equation~1!

is reduced to

Vd

A2p
]t f̃ ~c,t!5 J̃@ f̃ , f̃ #1S ĝ

u
2

m2

d
D ]

]c
•@cf̃ ~c,t!#

1
ĝ

2u

]2

]c2
f̃ ~c,t!, ~28!

where J@ f , f #5n2(s/v0(t))d21J̃@ f̃ , f̃ #. From the equation
for ^c4&5d(d12)(a211)/4 we obtain the equation of th
lowest order ofa2:

]ta254ẑ2Â11a2F19

4
ẑ24

ĝ

u
2Â2G1

3

4
ẑa2

2 ~29!

.4ẑ2Â11a2F19

4
ẑ24

ĝ

u (0)
2Â2G , ~30!

with Â158A1 /d(d12) and Â258A2 /d(d12). The solu-
tion of Eq. ~30! is given by
03130
o

-
d
-
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t,

a2~t!.a2
`1@a2~0!2a2

`#3expF S 19

4
ẑ2Â2D t

24ĝE
0

t dt8

u (0)~t8!
G , ~31!

where

a2
`5

Â124ẑ

19

4
ẑ24~ ĝ1 ẑ !2Â2

. ~32!

Although we present the result of linearization ofa2, it is
possible to obtain the exact steady values ofu and a2 for
Eqs.~25! and ~29!. The result is presented in the Appendi
but the differences between the exact values and the re
from linearized approximation are invisible~Fig. 1!. We also
comparea2 in Eq. ~31!andu in Eq. ~27! with the numerical
solution of Eqs.~29! and ~25! to confirm the validity of the
linearization ofa2.

IV. THE DETERMINATION OF THE TRANSPORT
COEFFICIENTS

Here, we explicitly obtain the result of the transport coe
ficients for heated granular gases. The solutionf (0) is isotro-
pic so that the zeroth-order pressure and the heat flux
given by

Pi j
(0)5pd i j , q(0)50, ~33!

wherep5nT is the hydrostatic pressure.
The first-order equation of the Boltzmann equation b

comes

~] t
(0)1L2LFP! f (1)52~] t

(1)1v•“ ! f (0)

52~Dt
(1)1V•“ ! f (0), ~34!

with Dt
(1)5] t

(1)1u•“. Here the linear operatorL in Eq.
~34! is defined by

L f (1)52J@ f (0), f (1)#2J@ f (1), f (0)#. ~35!

FIG. 1. Steadya2 as a function ofe for d53 andĝ50.1. The
solid line and the solid circles represent the result of lineariz
approximation and the exact one, respectively.
4-3
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Multiplying both sides of Eq.~34! by mViVj and integrat-
ing overV, we obtain

~] t
(0)1n!Pi j

(1)1P i j
(1)52pD i jkl“kul , ~36!

where

P i j
(1)[2mE dVViVjLFPf (1), ~37!

D i jkl [d ikd j l 1d i l d jk2
2

d
d i j dkl . ~38!

The solution of Eq.~36! can be written as

Pi j
(1)52hD i jkl“kul , ~39!

whereh is the viscosity.
It is possible to obtainn in Eq. ~36! through the relation

mE dVViVjL f (1)~V!5nPi j
(1). ~40!

The evaluation ofn is independent of the existence of th
thermostat. We have evaluatedn as @12#

nh* [
n

n0
.

3

4d S 12e1
2

3
dD ~11e!S 12

1

32
a2D . ~41!

With the aid of

] t
(0)Pi j

(1)5S g0

u
2g02

z

2D Pi j
(1), ~42!

Eqs.~36!–~42! lead to

h* [
h

h0
5

2g* 11

g* ~11u21!1nh* 2z* /2
, ~43!

whereg* 5g0/n0 , nh* 5n/n0, andz* 5z/n0 . h0(ĝ) is the
viscosity for e51, which is different from the valuehe of
the elastic gas ashe5h0(2ĝ* 11). We note he

55ApmT/(16Aps2) for d53 in the lowest-order Sonine
approximation@2#. The steady value ofh* is obtained when
we substituteu` anda2

` into Eq. ~43!.
Let us consider the heat flux. Multiplying both sides

Eq. ~34! by mV2V/2 and integrating overV we obtain

~] t
(0)1n8!q(1)1Q(1)52

d12

2
~112a2!

p

m
“T

2
d12

2
a2

T2

m
“n, ~44!

where

Q(1)52
m

2 E dVV2VLFPf (1). ~45!

Here,n8 has already been calculated as@21#
03130
nk* [
n8

n0
.

11e

d Fd21

2
1

3

16
~d18!~12e!

1
415d23~42d!e

512
a2G . ~46!

The heat flux is described by

q(1)52k“T2m“n, ~47!

whereh andk are the shear viscosity and the thermal co
ductivity, respectively. The other transport coefficientm ap-
pears only in granular gases. Through the substitution of E
~47! and ~46! with the result ofQ(1) into Eq. ~44! we can
obtaink andm.

From the scaling form~19! the following relations should
be satisfied:

] t
(0)q(1)5~2z13g02g0 /u!k“T

1H mF3

2
z13g0~12u21!G1

kzT

n J“n. ~48!

On the other hand,P (1) andQ(1) have the relations

P i j
(1)52g0Pi j

(1), Q(1)53g0q(1). ~49!

Thus,k andm can be obtained from Eqs.~48!, ~49!, and~44!
as

k5
d12

2

112a2

n822z1g0 /u

nT

m
, ~50!

m5

kzT

n
1

d12

2
a2

T2

m

n82
3

2
z13g0 /u

. ~51!

Thus,k* 5k/k0 which is the heat conductivity normalize
by its value ofe51, k0(ĝ), is given by

k* 5S d21

d
1g* D 112a2

nl* 22z* 1g* /u
, ~52!

m* 5
k*

112a2

a2~nk* 1g* /u!

nk* 2
3

2
z* 13g* /u

. ~53!

Their steady values are evaluated replacingu anda2 by their
steady values.

Figure 2 shows the time evolution ofh* , k* , andm* for
e50.9, d53, andĝ50.1. Figure 3 shows the steady valu
of h* , k* , andm* as functions ofe for d53 andĝ50.1.
As we can see from the figures,m* can be comparable with
others. This situation has not been realized for free-coo
systems.
4-4
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V. DISCUSSION AND CONCLUSION

It is remarkable thatm* is not proportional toa2 and
keeps positive for the region ofa2,0 even in the steady
limit. This result is contradicted with the framework by Sa
tos @8#. To clarify the reason, let us calculate] t

(0)q(1) in the
long time limit:

] t
(0)q(1)→2k“] t

(0)T2m“] t
(0)n

52k“@2g0TB2~2g01z!T#

5k~2g01z!“TÞ0. ~54!

Thus, ] t
(0)q(1) cannot be zero even in the long time lim

This paradoxical situation comes from the following. In o
system, the system is heated by the constantTB uniformly,
but the temperature fieldT contains spatial fluctuations
Thus, the mismatch of the two temperature fields survive
the long time limit. In other words, we cannot neglect t
time derivative in the scaled inelastic Boltzmann equat
~28! to reproduce the relaxation to the steady state.

After submission of the paper, the author has realized
existence important related papers@24–26#. In particular, the
latter two papers discussed mixtures of elastic particles
granular particles. Their model reduces to our model wh
the density ratio and the mass ratio of two kinds of partic

FIG. 2. The time evolution ofh* ~solid line!, k* ~dashed line!,

andm* ~dot-dashed line! for e50.9, d53, ĝ50.1, andu(0)52.

FIG. 3. The steady values ofh* ~solid line!, k* ~dashed line!,

andm* ~dot-dashed line! for e50.9, d53, andĝ50.1.
03130
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are large. They also include the feedback effect from gra
lar particles to the elastic particles in the heat bath.
present, they do not discuss the spatial fluctuations but
cuss only homogeneous states. Thus, the study of su
model will be fruitful. On the other hand, Garzo and Mo
tanero@24# determined the transport coefficients in a hea
system by the white noise thermostat, but their result is l
related to ours, because the white noise thermostat is he
not by TB but by the granular temparture.

We have derived hydrodynamic equations based on a
tematic Chapman-Enskog method for dilute granular ga
driven by the Langevin thermostat in this paper. We ha
determined all the transport coefficientsh, k, andm appear
in Navier-Stokes order as a function of the restitution co
ficient e.

The result is based on the linearized approximation ofa2
in the first-order truncation of Sonine expansion. Althou
we believe that this approximation gives a nice evaluati
nobody knows its theoretical background and quantitat
validity. In particular, Pagnaniet al. @10# have reported tha
deviation off from the Gaussian in driven granular gases
large. So we may need to check the convergence of the
nine expansion and to compare the theoretical predic
with simulations. We also need to look for the possibility
apply our result to explain the data in actual experiments
suspensions.
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APPENDIX A: STEADY VALUES OF a2 AND u

As mentioned in the text, it is possible to obtain exa
steady solutions of Eqs.~25! and~29!. The result is so com-
plicated and the difference between them and the linear
solutions is small so that we do not use the exact form
later discussion. Here we present the exact solutions

a2
`5

16~123e212e4!

Q1
, ~A1!

where Q1573232e275e2230e4164d2ĝ18d(714e

23e2116ĝ), and

u`5
dĝQ1

Q2164d3ĝ21Q32d~11e!Q4

, ~A2!

where Q252(11e)2(19246e133e2212e316e4), Q3

58d2ĝ(1114e27e2116ĝ), andQ352281e2(28230ĝ)
2137ĝ16e3(5ĝ22)1e(121169ĝ).
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