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Generalized two-leg Hubbard ladder at half filling: Phase diagram and quantum criticalities
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The ground-state phase diagram of the half-filled two-leg Hubbard ladder with intersite Coulomb repulsions
and exchange coupling is studied by using the strong-coupling perturbation theory and the weak-coupling
bosonization method. Considered here as possible ground states of the ladder model are four types of density-
wave states with different angular momentusidensity-wave statep-density-wave stated-density-wave
state, andf-density-wave stajeand four types of quantum disordered states, i.e., Mott insulating states
(S-Mott, D-Mott, S'-Mott, and D'-Mott states, whereS and D stand fors- and d-wave symmetry. The
s-density-wave state, thitdensity-wave state, and tiileMott state are also known as the charge-density-wave
state, the staggered-flux state, and the rung-singlet state, respectively. Strong-coupling approach naturally leads
to the Ising model in a transverse field as an effective theory for the quantum phase transitions between the
staggered-flux state and tfizMott state and between the charge-density-wave state an&-khett state,
where the Ising ordered states correspond to doubly degenerate ground states in the staggered-flux or the
charge-density-wave state. From the weak-coupling bosonization approach it is shown that there are three cases
in the quantum phase transitions between a density-wave state and a Mott state: th2JJsicrgti¢ality, the
SU(2), criticality, and a first-order transition. The quantum phase transitions between Mott states and between
density-wave states are found to be tH@).Gaussian criticality. The ground-state phase diagram is determined
by integrating perturbative renormalization-group equations. It is shown thatStfett state and the
staggered-flux state exist in the region sandwiched by the charge-density-wave phase RsMdattheohase.

The p-density-wave state, th®' -Mott state, and th®'-Mott state also appear in the phase diagram when the
next-nearest-neighbor repulsion is included. The correspondence between Mott states in extended Hubbard
ladders and spin-liquid states in spin ladders is also discussed.
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. INTRODUCTION particular, the staggered-fluxSP state?’ which is also
known as the orbital antiferromagi&t° and thed-density
Ladder systems have been studied intensively over theave®*?has received a lot of attentidi->® For more than
years as a simplified model system that shows variety o& decade the SF state has been intensively studied in connec-
quantum phenomena due to strong electron correlationstion with the pseudogap phase in the two-dimensional high-
Since the ladder models can be analyzed with powerful nonT, cuprates’313239-43The SF state has spontaneous cur-
perturbative methods such as bosonization and conformaénts flowing around plaquettes, breaking the time-reversal
field theory as well as with large-scale numerical calcula-symmetry. Even though ladders are one-dimensighB),
tions, they provide a useful testing ground for various theothe long-range order of the SF correlation is possible at half
retical ideas developed for the two-dimensional case. Morefilling, since the symmetry broken in this state is discrete.
over, the studies of ladder systems have been strongl¥his point was emphasized recently in Ref. 38, where it was
stimulated by experimental developments in synthesizinglso suggested that the SF phase should occur in the phase
compounds with ladder structure that show superconductivdiagram of the S@) symmetric Hubbard modéf:*> Be-
ity and spin-liquid behaviot=* A good example is the ladder sides the SF phase, the ground-state phase diagram of the
compound Sy,Cu,,0,, that showsd-wave superconducting ladder models can include thB-Mott phase mentioned
ordeP under pressure with Ca doping and charge-densityabove, the CDW phas®,and other phases.
wave (CDW) order as recently suggested experimentally. Motivated by these developments, in this paper we at-
Theoretical studies on doped ladder models such as the Hutempt systematic exploration of the ground-state phase dia-
bard andt-J ladder$®-??have established that the dominant gram of a generalized two-leg Hubbard ladder at half filling
correlation is indeed d-wave-like superconducting order, a that has not only repulsive on-site and intersite interactions
feature that is reminiscent of tliewave superconductivity in  but also antiferromagneti€AF) exchange interaction and
high-T. cuprates. On the other hand, undoped half-filledpair hoppings between the legs. To map out the possible
Hubbard and Heisenberg ladders are insulators that havepases in the parameter space of the model and to analyze
gap in both charge and spin excitatidn§:41523-26Thjs  various quantum phase transitions, we employ both the
spin-liquid behavior is caused by singlet formation on eachstrong-coupling perturbation theory and the weak-coupling
rung, and the state is said to be in the rung-singlet phase. It IBosonization method. We find that the inclusion of the addi-
also named-Mott phasé® because of its close connection tional interactions leads to emergence of various new phases.
to thed-wave-like paring state. In the strong-coupling approach, we describe the SF state
Recent theoretical interest on the ladder models has bees an AF ordered state of pseudospins that represent currents
focused on the search of exotic phases in these systems. flowing on the rungs. The effective theory near the phase
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boundary between the SF state and Er&lott state is then Il. MODEL
found to be the 1D Ising model in a transverse field. The

tween the CDW phase and tl&Mott phase?® Here the
CDW state and thé&-Mott state correspond to the ordered H= H‘H+ He +Hint HVH+ Hyr +Hpair- (2.9
and quantum disordered states of the Ising model, respec-
tively. Furthermore, we show that a low-energy effective The first two terms describe hopping along and between the
theory near the phase transition betweenDaklott and the  1€9s, respectively,
SMott phases is theXXZ spin chain in a staggered field,
which exhibits a 1) Gaussian criticality. HtH: _tHE (CJT,I,(er+1,|,0'+ H.c), (2.2
In the weak-coupling limit, we follow the standard ap- J.ol
proach of taking continuum limit and bosonizing the Hamil-
tonian. We obtain a coupled sine-Gordon model for four
bosonic modegcharge/spin and even/odd mogdesd ana-
lyze it by perturbative renormalization-groG) method - )
and a semiclassical approximation. The scaling equations w¥herec; |, annihilates an electron of spi(=1,]) on rung
derive are equivalent to those obtained earlier by Linj @nd legl(=1,2). The HamiltoniarHj=Hy+Hy +H;
Balents, and FishéP.We depart here from the earlier work. consists of three terms representing interactions within a
We consider four types of density-wave states with differentung: the on-site repulsion,
angular momentur* s-density wave(= CDW), p-density
wave (PDW, which is equivalent to the spin-Peierls sfate _ . .
d-density wave(= SP), andf-density wave(FDW). These Hy U% M 1ML 24
density-wave states breal, symmetry and can have long-
range order at zero temperature. We find that, in gener
there should appear four types of Mott insulating phases
(called SMott, D-Mott, S'-Mott, andD’-Mott stateg, each HVL:VLZ nj.an; 2, (2.5
of which can be obtained as a quantum disordered state from !
one of the fourZ,-symmetry-breaking density-wave states. and the nearest-neighbor exchange interaction on a rung,
We then study quantum phase transitions among these eight
phases and show that a transition between a density-wave
state and a Mott state is either second offderthe Ising or HJLZJLZ SERSPE (2.6
SU(2), universality claskor first order!” Phase transitions :
between density-wave states and between Mott states aiide density operators arg | ,= ch','ch,,,U andnj ;=n;j,
U(1) Gaussian criticalities. After classifying the phases and+n;, |, and the spirs operator is given by
the quantum phase transitions, we determine the ground-state
phase diagram of the extended Hubbard model with extra s _} E ot c 2.7
inter-site repulsion and the exchange interaction. We find that 1172 o jhoyTop,0500 0oy :
the SMott and the SF phases appear in the parameter space ) ] o
of couplings where th®-Mott and the CDW phases com- whereo, ,, are the Pauli matrices. The Hamiltoniéa 1)
pete. We also show that the next-nearest-neighbor repulsiciso has nearest-neighbor repulsive interaction within a leg,
stabilizes theS'-Mott state and the PDW state; the latter
state is connected to thHe-Mott state through the SU
criticality, 9 (2) HVH_VII%: Nj,Nj+1) (2.8
This paper is organized as follows. In Sec. Il the model . .
we analyze in this paper is introduced. In Sec. Ill we study?d néxt-nearest-neighbor repulsion,
the ground-state phase diagram by the strong-coupling per-
turbation theory, and examine phase transitions between the Hy =V’ (NjaNj 41,27 Nj 2N 10)- (2.9
competing ground states: the $~Mott, CDW, andS-Mott ]
states. In Sec. IV we apply the weak—coupling bosonizatio_nl—he last component of the Hamiltoni®.1) is the pair hop-
methqd to study the ground-state phase diagram. We derlvlﬁng between the legs,
effective low-energy theory for the charge mode and for the
spin mode that describe the Gaussian, Ising, and SJ(2) + ot
criticalities. The connection of our results to the phase dia- Hpair:tpairE (€j11Cj1,Cj2,Cj 2y TH.C). (210
gram of spin ladders with spin liquid ground states is also .
discussed. We then determine the phase diagram of the gefihe coupling constantd), V, , V|, V', J,, andt,y,, are
eralized Hubbard ladder from perturbative RG equations. Fiassumed to be either zero or positiy®ost of our discus-
nally, the results are summarized in Sec. V. sions are actually concerned with the cagg=V'=t,

H, = —tLjE (cf1,Caj o +H.C), (2.3

a}he nearest-neighbor repulsion on a rung,
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=0.) In this paper we consider only the half-filled case T —
whereX; n; ; equals the number of total lattice sites. |CDW>1=H B ' (3.113
J 2j—1 2j
. STRONG-COUPLING APPROACH and

In this section, we perform strong-coupling analysis start- —
ing from the independent rungs and discuss transitions be- |cow),=11 HN>
tween various insulating phases. J

We begin with eigenstates &f;,; for decoupled rungs at
half filling. Convenient basis states for two electrons on B
single rung(e.g.,jth rung with SJ-Z’1+ SJ-ZZ:O are

(3.11b

Tl>
— 2 '

In the next subsections we study phase transitions be-
een these phases.

2j-1

A. CDW —-S-Mott transition: Ising criticality

|1);= ‘l> =cl,,cl; 10y, 3.9 In this subsection we discuss the phase transition between
j the SMott phasé® and the CDW phage*® for U<V,
—3J,/4. This can be analyzed by mapping the system onto

2y — 1 —¢t et 39 an effective spin model. A similar analysis for the GD
12);= 1 __ClllvlCinle ) (32 symmetric ladder is reported in Refs. 44 and 45.
! We restrict ourselves to the lowest-energy sta8sand
1 |4) and denote them as
3)= =c',.cl, ]0), 3.3
| >l ‘ > 10 ],1,1' > ( ) |+>jE|3>j1 |_>jE|4>j (312)

J
to make the connection to a spin model more evident. We

- - regard| =) as the pseudospin up/down states. In this picture,
4)= 11 _Ecj,z,wci,z,il(»' B4 the antiferromagnetic ordering of the spins corresponds to
] the CDW ordering. We will treat the single-particle hopping
The interaction Hamiltoniai, is diagonalized as termsH; andH, as weak perturbations to derive effective
Hamiltonian in the Hilbert space of+) and |—). The
|1)—2); 3 \|1)—12), lowest-order contributions come from the second-order pro-
int#:( =3 = (3.5  cesses,
V2 4 2
HE=H ;H (3.13
|1);+]2); 1 \1)+]2) YEo—Hip '
n———=(V, +=J, | ———, (3.6
int \/5 4 \/E L
H@o) = Hy g =5 He. (3.19
Hint|3>j: U|3>j ) (3.7 0 int
whereEy=NU with N being the number of rungs. The non-
Hind 4);=U|4);. (3.8)  zero matrix elements dfl®® andH® are given by
2
Comparing the eigenvalues, we.find that the lowest- (£, %|H@| =, 5) = 4 (3.15
energy state oH;,, for U>V, —3J,/4 is ' A U=-2v)
2
AN M@y @)y P
|D-Mott>=H % ‘l>_‘TH (3.9 (EHE) == HI5)i ==V 33,
! ! (3.1

This state is a direct product of rung singlets and is nothingyhere |s,s")i=|s)ils')j+1 (s,'==). The above Hamil-

but the strong-coupling limit of thé®-Mott phasé® or the  tonjan is written in terms of pseudospin operators as
Mott insulating phase of a half-filled Hubbard ladder.

WhenU <V, —3J,/4, on the other hand, the doubly oc- (2a) ﬁ , 5
cupied stateg3) and |4) become lowest-energy states. In H “2v.-u 2}: (1i75+1— 1), (3.17
this case, one of the possible ground states is the on-site
paired insulating state realized in tBeMlott phase®® 2
e I > ~+const,  (3.18
s B U-V, +3J, /44 7 ' ‘
|S’M°tt>:H E — >_+ ”> } (3.10 WhererjZ andrj‘ are Pauli matrices acting on the pseudospin
. . statesrf| +);= x| =); and}|=);=|F);. Here we find that
Another possible ground state is the CDW state, H(3 favors antiferromagneticordering, while H®®) pre-
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vents the order. We thus find that the effective Hamiltonian 11);—2): 13)+|4).
; eff _ 13(2a) 4 14(2b) ia mi _ 1D )] _13) )]
for the doubly occupied statddZs=H'""*+H'“" is given [+)=——=— [-)i=——F=—, @329
by the one-dimensional quantum Ising model, V2 V2
for each rung and derive an effective low-energy Hamil-
Hfé‘ffS:; (KTJ»ZTjZH—hT}‘), (3.19  tonian for these states to study the competition between the

S-Mott andD-Mott phases. In this basisi;,; andH; on the

where the antiferromagnetic exchange couplifigand the jth rung read

magnitude of the transverse figidare given by 3

2 2 V,—--J, O
K:A h= 2; (3.20 Hint= boaT ) (3.26
2V, —U’ V,—3J3,/4-U 0 U
This model exhibits the Ising criticality & =h between the 0 ot
ordered phasé.e., the CDW phasd€or K>h and the disor- H =( i) (3.27)
dered phase foK<h. The ground state in the disordered L =2t o /)’

phase is essentially the eigenstaterbfvith eigenvaluet+ 1,

L= t —_— L= t I I -
which is nothing but thé& Mot phase, where|+));="(1,0) and —));='(0,1). Since we are inter

ested in the region near the level crossing pdihtV,

—3J, /4, we split the Hamiltonian as
[+)i+1-); - P

™=+1);=——————|S-Mott). 3.2 ,
| )i 2 | ) (.23 Hint e, +Hy = HEd+ Hps, (3.29
The condition for the CDW phase to appear is given inwhere the unperturbed Hamiltoniat{i2 and the perturbation
terms of the Hubbard interactions as term Hig are given byH{=US;(n; 101 +nj2n 2,
, +n;4nj o) and Hpg=(V, —U)Zin; n; o+ Hy +H +Hy.
1-(t /t) Up to second order i the effective Hamiltonian is ob-
> (3.22 DS

J., i
1-2t /2 4120t ) tained asH(®+ H®+H(,

where 0<t, /t;<1/y2. Whent, /t;>1/y/2, the CDW phase o (U O
is not realized within our approximation. H"=10o Ul (3.29
Here we briefly discuss effects tbfVH, Hy:, andHpgr,
treating them as small perturbations. The lowest-order con- 3
tributions come from the first-order perturbatiof}(*® e ( U-V,+ Z‘]L) -2t 33
=Hy, +Hy, andH®® =H ., which can be written in terms 1T . (330
of the pseudospin operators &K'¥=2V|3;(7f7f,,+1) -2t 0
—2V'S(rrf,,—1) and HIP)=t ;5,7 The coupling 1
constants in the quantum Ising model are modified to H@)= HtumHt”, (3.31)
o~ Mps
2
K= 2tj +2V— 2V, 323 WwhereH®@=3;H® HO=3H® andE,=NU. Now we
2V, ~u introduce spin-1/2 operato§, S/, andS; and identify the
ot2 two stateg +)); and|—)); with up and down states of the
1 .= . . .
hzm_tpair- (324  pseudospirs;. The first-order ternH® (3.30) is then writ-

ten as
Thus,HVH, Hys, andHp,; do not change the Ising univer-

sality and only affect the coupling constants. Their main ef- H@)=— ( U-V, + §Jl> > (~sz+ E —4, >, ~Sf
fect is to move the phase boundary. TWieandt,; interac- 4 i 2 i
tions favor the Ising ordered phase or the CDW phase, while (3.32
the V' interaction is in favor of th&sMott phase. The energy difference between the)); states and the rung
hopping are represented as the longitudinal and transverse
B. D-Mott —S-Mott transition: Gaussian criticality magnetic fields, respectively. The nonzero matrix elements
2 .
Next we discuss the parameter reglor-V, —3J,/4. In ~ ©f H(®) (3.31 are given by
this case the low-energy states Mf,, are formed out of 012
(|1>j—|2)j)/\/§, I3);, and|4);; see Eqs(3.5—(3.8. The <<i,4_r||_|(2)|i74_r>>j:__”, (3.33
analysis in the preceding subsection indicates that, among U
the states made ¢8); and|4);, only theS-Mott phase can )
appear fold~V, —3J, /4 due to the large transverse figdld (=, *|HP| 7, 7)) =+ ﬂ (3.34
—_ L J U L -

We thus keep only the two states,
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2

(=, FHO =, 5)), ———, (3.39

tf
<<i,I|H(2)|1,i>>j=+E, (3.39
where|s,s"));=|s));
order contributiorH

operators as

|s’ >>J+l (s,s'==). Thus the second-
& is written in terms of the pseudospin

2t?
RICEE

tf 5
H(2>:—U'2 (3sfj+l+

E (§75.1+5 5.

(3.37

From Egs. (3.32 and (3.37 we find that, for U~V
—3J,/4, the low-energy effective HamiltoniaH &= H®)

+H® is given by the anisotropic spin chain under the lon-

gitudinal and transverse magnetic fields,

2 [JX i j+1 ‘]yz(’é]}/éj}/+l+sf]+1)]

—; (PS+h7SD, (3.39

where J*= H/U V= ”/U h*=4t, , and h*=

1

+3J,/4. We are interested in the case where the Zeema

field in the z direction h? is weak. Whenh*=0, HET is
equivalent to theXxXZ model with the exchange anisotropy
A=J"/J¥*=5/3 and a uniform field in the direction. It is
knowr®4°that theX XZ model is in the massless phase gov-
erned by the=1 conformal field theoryCFT) with a com-
pactification radiusR (1/2\/F<R<1/\/;), if the uniform
field is in the range 0.17B*<h*<$JY% The weak perturba-

tion h* is acting on this gapless system From the transfor-

matlonS]y (- 1)’5}’ Z we see that the Zeeman fied acts
as a staggered transverse field in the antiferromagietié

model. Since the scaling dimension of 1)/$% is 7R?, it
is a relevant perturbation leading to the opening of a¥ap.
Hence we find that, wheh?#0, the h? term is always
relevant and generates a mass gap, whilehferO the sys-
tem reduces to the=1 CFT or the Gaussian model. There-
fore theD-Mott—S-Mott transition is a Gaussian (W) criti-
cality with the central charge=1. The critical point is at
h*=0, i.e.,

3
ZJ,=0.

7 (3.39

Uu-Vv, +
The character of the gapped phase$®’t 0 is deduced by
looking at the dominanh? term. Since the gapped phases
should correspond to states minimizing the rele#rtierm,

—h*=S, in Eq. (3.38, we conclude that foh?>0 (h?*

PHYSICAL REVIEW B 66, 245106 (2002

D-Mott

U

FIG. 1. Strong-coupling phase diagram Idf[H+ He +Hin at
t, =t/2 andJ, =0. The CDW-S-Mott transition is in the Ising
universality class, while th&Mott—D-Mott transition is in the
U(1) (Gaussiap universality class. The CDWSMott) phase cor-
responds to the orderddisordered phase in the effective quantum
Ising model(3.19. The SMott and D-Mott phases are the ferro-
magnetically ordered phases of the effective spin m@ai&€g.

with positive (negativé magnetizatio S?), or equivalently,
in the D-Mott (S-Mott) phase in the original Hubbard ladder
model; see Eq(3.25.

The phase diagram obtained from the strong-coupling per-
turbation theory is shown in Fig. 1, where parameters are
taken ast, =t)/2 andJ, =0. The phase transition between
the D-Mott state and thesMott state is described as the
Gaussian criticality, while the phase transition between the
S-Mott state and the CDW state is in the universality of the
Ising phase transition. The phase diagram for nonderes
shown in Fig. 2. The CDW phase is realized when the con-
Hmon (3.22 is satisfied. We note that, within the strong-
coupling expansion to second order, the CDW phase does
not exist fort=t, .

Finally we discuss effects of the remaining interactions,

v Hy:, andH,y. We find that we may ignortei\,H and
Hy: since they vyield only a constant energy shift in the
second-order perturbation theory. By contrast, the pair-
hopping term changes the phase boundary. Sihggl+));
=0 andHpaid —))j=tpail —))j. the interaction part of the
Hamiltonian Eq.(3.26 is modified asH;=Hy+Hair,
where

3
_ZJJ—

Vi

H i,nt: (3 '4@

VU

3
+4—JJ_=()

JIU

FIG. 2. Strong-coupling phase diagram Idf[H+ Hy +Hiy at
t, =t)/2 on the plane o¥, /U andJ, /U. The CDW phase occu-

<0) the ground state is a ferromagnetically ordered statpies the parameter region where the conditd122) is satisfied.
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The main effect of ; is to change the coupling constarft I )

in Eq. (3.38 to h*=U—V, +3J, /4+tyy. In this case, the —0 O— —O O—
critical behavior is still governed by the Gaussian theory, and _)_I [% _J i /L_
the critical point appears at - - - -

3 FIG. 3. Schematic illustration of the statés) and||). The
_ arrow denotes a state with a finite current running in the arrow’s
U=V, + 70 +tpa=0. 34)  Girection,

Thus, fort,.;>0, the pair hopping term tends to stabilize the

D-Mott phase. As shown in the preceding subsection, it also HOM —_ EJJ_ M (3.50
stabilizes the CDW phase, and the net effect of the pair hop- NA 4 J2

ping is to suppress th&Mott phase sandwiched by the .

D-Mott and the CDW phases. We will focus on the degenerate low-energy statéls>j(

—[2);)/y/2 and (3);—|4);)/\2 and work with the follow-

C. SF state as AF ordering of rung current ing states that break time reversal symmetry,

and SF-D-Mott transition

1
In this subsection, we study the SF state in the ladder |T>JE§[(|1>J_|2>j)+'(|3>i_|4>1)]’ (35D
system using the strong-coupling expansion. Our starting
point is the pair-hopping Hamiltoniamd ., (2.10. The 1
eigenstates ofH,y, are given by |1);, [2);, (|3), |l>jE§[(|1)j—|2>J-)—i(|3>j—|4)j)]. (3.52
+|4)))/\2, and (3);—|4);)/\2, satisfying
We regard them as states with finite current running on the
Hpaid 1)) = Hpail 2);=0, (342  jth rung(Fig. 3), as they are eigenstates of the “rung-current
operator” defined by
13);—14); 13);—14);

Hogd oy (PRI (349 .
Pt \/E pair \/E J]EIE (CjT,l,(er,Z,(r_C}.,Z,rrcj,l,(r) (353
H 13);+14); 13)j+14); (3.44 with eigenvaluest 2,
pair \/E - pair \/z . . . A
JiIN=+2[1). Jll)i=—2[1); (3.59

We thus find that the pair hopping term favors the on-site . -

singlet state 3);— |4>]_)/\/§_ Anticipating competition be- We note that] is not a true current operator fél, due to the
tween the on-site singlet state and the rung-singlet statéair hopping term. _

(|1>j _ |2>j)/\/§ that has an energy gain ef3J, /4 from the The SF s'_[ate has a long-range altlernatllng ordét pand
exchange ternt; , we will consider in this subsection the 1) or, eql_leaIeQBtIy, of currents circulating around each
situation wheret,;~3J./4 andJ, is the largest energy plaquette(Fig. 4).°° To verify the existence of the SF phase,

. ; A we derive a low-energy effective theory, in perturbation ex-
scale in the problem. Introducingdtp,i=tpa—3J,/4 pansion inH’, for the low-energy statesl); and ||);,

(|8tpaid<J,), we defineHo andH' by which we regard as up and down states of a pseudospin. In
~ ©) this picture, the antiferromagnetic ordering of the pseudo-
Ho=H, +Hpgin (3.49 spins corresponds to the staggered flux phase. The lowest-
_ order contribution inH’ comes from the nonvanishing ma-
H'=Hy+Hy + HtH+ He, +Hpain (3.46  trix elements in the subspace [df); and||);,
whereH(® andH' . are obtained fronH,;, by replacing 1
pair pair pair Iy _ T _
tpar With 3J,/4 and 8t,y,, respectively. The unperturbed (TR =R 1) =5 (U+V, = dtp),  (3.59
HamiltonianH, has eigenstates,
~ ~ 1
- 1-12); 3. |1)—12), » (TR L= (LR [T)= = 5 (U= V. = otpa),
0 \/5 - 4 1 \/E ’ ( . D (356)

from which we obtain the first-order effective Hamiltonian
o 13);—14); _ EJ 13);—14);

HOM =+ l LM (3.49 FIG. 4. Staggered flux state described as’alNedered state of
\/E 4 \/5 the pseudospin statds,) and||).
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1 ~ ~ 1
HY=— S(U=V, - Stpar) > o +const, (3.57) 7=+ 1) =—(|1);+]1);)
J 2
where 5’? are the Pauli matricesaEx,y,z). The lowest- 1
order contributions irt) andt, come from the second-order =—(|1);—12);)—|D-Mott). (3.66
processes, V2
Hence we conclude that the Ising disordered phase corre-
H(Za)_ H, = H, (3.58 sponds to thé-Mott phase.
IEg—Hy I It is interesting to rewrite the transverse magnetic fteld
as
(2b) 1 2
H _HHTHH' (3.59 ~ l 3 8tl
Eo—Hy h=-{U~- VNL4\]l paﬁﬁ . (3.67

whereEoz —3J,N/4 with N being the number of rungs in 1e SE phase is realized when the inequality
the system. The nonzero matrix elementHi® are given

by 16t2 3
33U Vet 70t (3.69
8
H
(TLLHED T, D= (L THED| L 1) = is satisfied(assumingt|=t, =t), where we have to keep in

(3.60  mind the assumption thaf,~ 2.

Ltheare;g’wiE'“)j'V)j“ (w,v=1.1). We can thus write IV. WEAK-COUPLING APPROACH
SF
In this section, we study the phase diagram of the gener-
H@a)_ H alized Hubbard ladder, treating the two-particle interactions
Hsr 3J, E (‘T ‘71+1 : (3.6 as weak perturbations. To diagonalize the single-particle
hopping Hamiltonian, we define the Fourier transform,
On the other hand, the nonzero matrix elementsi g are Cjo(k = \(P (Cj1o1Cj, 2012, ’ cj, (,(kj_ m)=(Cj10
—Cj2,)/V2, and c,(K)=Z;e" ' c, +(k)/\N, where k
(TTHEI )= (LRGP )= (TIHED| L), =(k,k,) and the lattice spacmg is set equal to 1. The
2 kinetic-energy term then becomes

417
=(HE) =~ 35 (362
f b we optal HOEHtH+HtL=kE e(k)ch (ke (K), (4.1)
rom which we obtain o
4t2 where g(k) = — 2t cosk—t, cosk, . For t, <2t;, both the
H(Zb)_ __+ E 0'X+C0nst (3.63 bonding k, =0) and antibonding, = 7) energy bands are
3J, partially filled, and their Fermi points are located lat

. + i = m/2+ =
From Egs.(3.57), (3.61), and (3.63, we find that the total FKey With ke o=m/2+ 5 and ke ,=m/2=0, where

l
effective Hamiltonian is the Ising chain in a transverse field,=Sin (t./2t)). At these Fermi points th? 15:2erm| velocity
takes the common valug-=2t)[1—(t, /2t))“]™“ In the fol-

lowing analysis we restrict ourselves to the isotropic hopping

H?ﬁ=§j) (Kofot, ,—ha)), (864  caset)=t, (=t).
where the antiferromagnetic exchange coupliigand the A. Order parameters
magnitude of the transverse fighdare given by Let us first define order parameters characterizing insulat-

ing phases studied in this section. We consider the CDW, SF,
PDW, and FDW states as possible density-wave ordered

atf 1 8t2
37, 3J, (3.69 states. Their order parameters are written as

E: U=V, = tpat 5

This model exhibits an Ising criticality 4€=|h|: the Neel 1 1 o
ordered phaseK(>|h|) corresponds to the SF phase, while Or=7N kE,, fatkco(kic,(k+ Q=N 2 (=1)1OA()),
for K<|h| the system is disordered. The disordered ground (4.2
state forh>K>0 is continuously connected with the ground whereQ= (i, 7) andA=CDW, SF, PDW, FDW. The form
state ah—co, i.e., the eigenstate @f* with eigenvaluet-1.  factor f5(k) are given byfcpw=1, fge=cosk—cosk, ,

This state corresponds to tHg-Mott state in the original fppw=sink, and fgpyw=sinkcosk, . Order parameters for
Hubbard ladder, since the spin density waves are not considered, since their corre-
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lations decay exponentially in the bulk of the phase diagram

of our model. It is clear that the CDW order parameter, Ho=k% ve(pk— kF,ki)Cg,g(k)Cp,a(k)u (4.1
O =E(n- “ny) 4.3 where the index = +/— denotes the right/left-moving elec-
cowmo L T2k ' tron. We introduce field operators of the right- and left-going

_— . electrons defined b
has nonvanishing average in the CDW stat@sd1g and y

(3.11B. The order parameter of the SF state is 1
x)=— 2, e*c, .(k,0), 412
L Pp.o+ (X) ﬁ; . (K,0) (4.123
Ose=779p.j (4.4)
where the operatalp ; denotes a current circulating around wp,u,—(x):ﬁ ; ec, ,(k,m), (4.12b
a plaquette,

wherelL is the length of the systeni:=Na. The linearized

I t t t kinetic energy now reads
Jp =i > (€ 16Cj 201 Cj 26Ci+120 T Cj1+124Ci+ 1,10 9y
g

d
_ to in—
+CJ'T+1,1ng,1,a_H-C-)- (4.5 HO_UFJ dxpgg wpvmé“( P dx kF'kL) Yo,

The PDW phase is a Peierls dimerized state along the leg (4.13
direction with interleg phase difference, characterized by wherek, =0 (#) for {=+ (-).

the order parameter, The interactions among low-energy excitations near the

i Fermi points, H;=H;+ HVH+ Hyr+Hpair, are written as
Opow=7 2(;‘ (€¢]4110Ci 10— Cl+1.25Cj 20+ H.C). H,=JdxH,, where
(4.6)

l —
H,=— ' ccyl 1; o —p,o
The FDW state is a different kind of staggered current states. = 4 pz;f g;i [011Yp.0 ¥ prtyVpoti¥-pass

Its order parameter is + T
€€
T Ypo it V-p-0.t,0p -0, —pois

1. N
Opw=-(J; i—J_ 1), 4.7
FDW 4( ) it +92H¢pu—{llp—p,o,{2¢*PvU,§4¢p|0’:§3
where the operatofist,j represent currents flowing along the +g l/,‘r Y S
diagonal directions of plaquettes, Zi P.7e1 7:42 7iEaTPi s
ee t T
N ) " " 9306, Vp.0. Y -pirtV-poiy
‘]+,j:'2 (Cj+1,24Cj 107 Cj16Cj+1,.20) (4.9 - .
7 +93¢‘ﬁp,a,gl'ﬁp,—g,g2¢—p,—a,g4¢—p,0,43]- (4.14
I =i> (cf Cioy—Cl, Ci ). (4.9 Heree={{3 and e={,{,. The primed summation over
I 2 J2otit e g (i=1,...,4) istaken under the conditiod;{,{3{s=

+1, WhICh comes from the momentum conservation condi-
The long-range order of staggered currents flowing alon

diagonals of the plaquettes has been examined in a spinle gﬂ@” in the transverse direction. The coupling constagifs

ladder systenic andg; are related to the original coupling constants in the
We also introduce order parameters of thevave and Ham|lton|an(2 D,

d-wave superconductivity,

9il le
1 —=|V,+=-J,+m; V;+I.m V', 4.1
Oa=5y = fakici (e (—k), (410 a AT e @19
X

where A=SGCs and S@, and fee=1 and fgg=cosk (e lee ,

~cosk, . s& sad 1T=U+IEVL+TJL+|;tpair+miYEV”+|Emi’EV
(4.16
B. Bosonization with the numerical factors defined By =+1, 1. , ==%3,
We bosonize the Hubbard ladder Hamiltonian in this subd. —=*1. my,=mg,=—1, my_=mzg_=—2, my,

section. Following the standard bosonization scheme, we lin=+2, m, _=+1. We have neglected the so-calggdterms
earize the energy bands around the Fermi points. The Imeadescrlblng the forward scattering processes within the same
ized kinetic energy is given by branch(left-/right-movep, since including these terms would
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only cause nonuniversal quantitative differences to th¢ ¢, (x),6, . (X")]=—i7O(=x+x")d,,, where®(x) is

ground-state phase diagram. In Eg$.15 and (4.16, we the Heaviside step function.

have estimated the coupling constants in lowest order in the To express the electron fields in terms of the bosons, we

interaction of the Hubbard model. The higher-order contri-define a new set of chiral bosonic fields

butions can play a crucial role of changing the topology of a

phase diagram, if different kinds of quantum criticalities ac- Ppsc= b HL{Ph_+sdph, +siph_, (4.20

cidentally occur simultaneously when lowest-order coupling

constants are used, as is the case in the 1D extended Hubbayherep= =, s= =, and{= *. The chiral bosons obey the

model at half filling®* This is not the case in the ladder commutation relation§ ¢y s [(X), ¢p s (X")] =ipmsgni

model of our interest, and we will use the lowest-order form,—X')ds s 6o and[ @y s ¢, @ o/ ¢ | =155 0 7 -

Egs.(4.15 and(4.16. The field operators of the right- and left-moving electrons

We apply the Abelian bosonization metfiécP* and re-  are then written as

write the kinetic energy in terms of bosonic fieldsk,

= [dxH,, where Mo, . )
wp,a,f&:q;exmpkakiﬁlpgop,s,g), (4.2

deb,
2
(7l )"+ dx

UVE 2

Ho=5— > r2+ } (417 wheres= + for o= ands=— for o= |. The Klein factors

et Ne.c» Which satisfy{ 7, ;74 1} =28, 8, ., are intro-
Here the sufficegp ando refer to the charge and spin sectors duced in order to retain the correct anticommutation relation
andr=* refer to the even and odd sectors. The operatoof the field operators between different spin and the band
IT,.(x) is a canonically conjugate variable p,,(x) and index. From Eq(4.21) the density operator is given by
satisfieq ¢, (x), 1L,/ (X")]=18(x—x") 8, ,/ 6 . We then
introduce chiral bosonic fields T 1d
Pp.0, )= b o Wp0 =5 gy Ppsc(X). (422

, (418  The Hamiltonian and the order parameters contain only
products of the Klein factors such s T

which satisfy the commutation relations =7, 7+ 7,-1,,—, he=1n,411,_, andh;=n, n, ,,

[hin(X), b, (X')]=£i(ml4)sgn&—X") 8, /& 1 and which satisfy '=—h;h;=+h’h". Since I'*=+1, h?

[ (X), b, (X')]=i(m/4)5,, 8, . The right-moving =(h_’)2=—1_, the eigenvalues_arE:tl, hZii, andh’

and Ieft-moving chiral field$b+(x,7-) anddf(x,r) are func- ==*i. We will adopt the folIowmg conventiorl’=+1, hg

ol .
bur(0= 5[¢W(x>:w [* aene0

tions of 7—i(x/vg) and7+i(x/vg), respectively, whereis =1 N=id. o .
imaginary time. The kinetic-energy density can also be writ- N the bosonized Hamiltonian the phase figigl. appears
ten as in the form cos(g, +45) with 6= sin‘l(tL/ZtH). Since
t, (=t)) is not small, we can safely assume that #hes
Ve dogP, |2 relevant and the electrons are not confined in the 18§%>°
To="7 & Vgg =, ( ax |- (419 1n this case the cos(g, +44) terms become irrelevant. We

thus discard them as well as other terms with higher-order
We also introduce the field,, defined by#,,=¢' — ¢, . scaling dimensions. The interaction term KE4.14) reduces
The @6 field satisfies the commutation relation to

9. _
Hi= >, r (i) (Oxpr) + [Qc+ =COS 2,,COS 20, + U 5+ COS 2h, . COS by
v=p,0 r==

2?2 2m?a?
+0c4,s-COS2p,, COS2p, +Qcq 57COS2p, COS2W, +0g= 1 COS20, COS2,, +0c— s COS20, COS2p,_

+0c-5-C0s2, cos2f, +Qs; s COS2p, COS2p, +Qs; 5-COS2p, COS2H, ], (4.23

where the coupling constants for the bilinear terms of the e e e
density operators are given by gp—:E§+ €9 "+ 92— 91)), (4.24b

9,= 2 (951955~ g5f), (4.243 Jos =e§ (92— 92— 9%, (4.249
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9o-= > e(93 93 —g5D,

e==*

(4.249
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Ocpw*COSp,  Sin6, CcoSe, ,COSH,,

—sin¢,,cosf, _sing, sind,_, (4.283

and the coupling constants for the nonlinear terms are given

by

Oc+ 5= 03,

Ui+ =03 +03 »
Uors-=—03,
Oc+,5==*+03 »
Oc= s+ = — 911+ )
U=s-=—02 »

Je—s=10y —0y
Usi s =101,

Os+,5==101, -

We note that the umklapp scatterifthe g; termg generates

cosine potentials that lock thg, , field.

The coupling constants in E4.23 are not independent
parameters. Imposing the global spin-rotation(3lsymme-
try on the interaction terms E4.14), we find that the rela-

tions
95" — 95 —91 +91, =0,
9 —92. —9y +9i =0,
9z — 920 — 91 t9i =0,
92— 92, 9y +95, =0,

g;\\i —O3 — g;rf +9d3, =0,

(4.253
(4.250
(4.259
(4.259
(4.25¢
(4.25
(4.259
(4.25H

(4.25i)

(4.263
(4.26b
(4.269
(4.269

(4.269

must hold. In terms of the coupling constants in E423,

these relations read
9o+ T 90— 12054+ s-=0,
9o+~ 9o- 1205+ 5==0,
Oc= s+ ~Gc=s- ~9c=5==0,

Jc+ s+ Yc+,s—- " Yc+r 5= 0.

We have ignored Eq4.269 which is the constraint on the

(4.273
(4.27b
(4.279

(4.279

irrelevant cosine termecos(2p, +44dx). Since the S(2)

symmetry of the original Hubbard Hamiltonig@.1) cannot
be broken, the coupling constants in E4.23 must satisfy

Eqgs.(4.279—(4.279 in the course of renormalization.
Finally, the order parameters are written in terms of thefor the D-Mott and theS-Mott phases using the following

phase fields,

Ogpx 0S¢, COSH, COSeh,,, COSH,,

+sing,.sing,_sing,,sinf,_, (4.280

Oppw*C0S¢,, ; COSH,_sing, . sinb,,
+sing,.sing,_cos¢, cosb, , (4.280

Oppw>*C0S¢h, SiNG,_sing,,sing,_

P

—sin¢,, cosf, cose¢,,cosd, . (4.280

Oscd*€'?0+c0sb,_cose, ., Cose,,

—ie'%+sing,_sing,.sing,_, (4.289
Oscec€'%+cosb,_sing,,sing,_
—ie'%+sing,_cose, . cosp,_ . (4.28)

C. Critical properties in the charge and spin modes

In this subsection, we study the ground-state phase dia-
gram through qualitative analysis of the bosonized Hamil-
tonian(4.23. First we classify the phases that can appear at
half filling, and then discus@) the Gaussian criticality in the
charge sector an@) the Ising and SU(2)criticalities in the
spin sector.

1. Classification of phases

In general, all the modes become massive in the extended
Hubbard ladder at half filing. This means that in the
bosonized Hamiltoniari4.23 cosine terms are relevant at
low energies and that the bosonic phase fields are locked at
some fixed valuesinteger multiples ofr/2) where the rel-
evant cosine potentials are minimiz€dThe locked phase
fields can be treated as classical variables, and the average
value of an order parameter is found by substituting the
locked phases into Eq4.28. A nonvanishing order param-
eter signals which phase is realized. We can reverse the logic
and find the configuration of the locked phase fields for each
insulating phase by imposing its order parameter to have its
maximum modulus. This is what we do in the following
analysis.

In the SF, CDW, PDW, and FDW phases the ground state
breaks aZ, symmetry. Therefore the order parameter of
these phases can have a nonvanishing value at zero tempera-
ture even in one dimension. In each phase the bosonic fields
bpsy 0, b, , andé,_ are pinned at a point where the
modulus of the corresponding order parameter is maximized.
From Eg.(4.28 we can easily find at which values the
bosonic fields are locked for the four phases. The result is
summarized in Table I.

Once the configuration of locked phase fields is under-
stood for the SF and the CDW phases, we can also find that

arguments. On the one hand, we know from the strong-
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TABLE |. Pattern of phase locking. The * symbol indicates that a bosonic field is not lotjedre

integers.
Phase () (6,-) (bo+) (do-) (0,-)
T T T T
cbw slotly 5(lo+ 1)+l 5lot7ls * Slot
SF ” m 7 * T
E|0+7T|1 Elo‘l”/’le §|0+7T|3 §|O+7TI4
T o T o
PDW (ot tmly  s(gtl)tml,  Flotls * Flot
a aw o o
FDW S (ot 1)+, Slotl, Flot s ¥ Flot
T T T T
S-Mott Slotly 5 (lo+ 1)+, 5 lot s Zlotmly ’
a aw T o
D-Mott E|0_|.77-|1 EIO+7TI2 §|0+7T|3 §|0+7T|4 *
’ a o v an
S'-Mott ot D)+mly  Z(lotDal,  Zlgtmly i+l *
! ar o ar T
D'-Mott §(|0+1)+7T|1 E|O+7-,|2 E|0+7T|3 §|0+77I4 *

coupling analysis that these two insulating phases are Isinfndeed, the disorder parametey takes a nonzero value in
disordered phases of the SF and the CDW phases, respabe D-Mott and theSMott phases where the,_ field is
tively, where thed . _ field is locked. On the other hand, the locked. In the strong-coupling limit studied in Sec. Ill, we
Hamiltonian(4.23 has some cosine potentials that can lockmay impose the condition that; ;+n; ,=2 and Sf;+ 5/,
the ¢,_ field. Since the¢,_ field is a conjugate field to =0 on every rung. Under this condition we find that
0, , these two fields cannot be locked at the same time. lexdi(#/2)X;]=1— %xf and u; reduces to

fact, it is knowrt’ that an Ising phase transition must be

associated with switching of phase locking from one bosonic j

field to its conjugate field. We can thus obtain theMott ,U«J:H [(CiT,l,TCiT,l,iCi,2,lci,2,T+ H.c)—(S'S >+ SS9

and theS-Mott phases from the SF and the CDW phases by =1

exchanging the role of the,  field and thed, _ field, ar- (43D
riving at the phase locking pattern shown in Table I. A brief
comment on the connection to the superconducting states
in order here. If we ignore the+ mode for the moment, the . i i~
order parameter of the-wave (s-wave superconductivity that we can writgu; =II} 7 and u; =Il/o{ near the CDW-—
takes nonzero amplitude when the locked phages (), S-Mott and the SFB-Mott transitions, respectively. They

indeed the disorder parameter of the quantum Ising
(¢y+), and(p,_)) of the D-Mott (S-Mott) phase are sub- '€ |n4 >
stituted into Osqys - This is consistent with the previous modeP* that describes the CDW&-Mott and the SF-

resultd 111820222t upon doping, th®-Mott state turns D -Mott Ising transitions.
into the d-wave superconducting state in thd or Hubbard Since the PDW and the FDW phases bréalsymmetry,

ladder. The effect of carrier doping is to make the umklappVe can naturally expect that these two phases should also
term irrelevant and to leave the, . field unlocked. The have their own Ising disordered phases. We shall call them

operatore' ’»+ representing the superconducting correlation> ~Mott andD’-Mott phé?ses fgr the reason that W.'” bepome
then becomes quasi-long-range ordered. clear below. The configuration of phase locking in the

It is possible to construct a disorder parameter that char> “MOtt and D’-Mott phases can be obtained from that of
acterizes the Ising transitions and that has a nonvanishin}ﬁ"e PDW and FDW phases by exchangig, ) and

expectation value in th®-Mott and theSMott phases. A (0o-); See Table I. V,Ve see ir,nmediately that the phase-
candidate operator for the disorder parameter is locking pattern of theS’'-Mott (D'-Mott) state differs from
that of theS-Mott (D-Mott) only in the locking of thes,, ,
i
o
,uj:exp( i= E X
i=1

which acts on the pseudospin states defined in Secs. lll Aand
Iﬁ C aS/J,]'|+>i: | _>i andMJ|T>|:|l>| fOI’ | $J . Th|S means

field shifted by /2. This implies that the phase transition
, betweenS'-Mott (D'-Mott) state and thesMott (D-Mott)
state is a Gaussian transition in tig, mode, and that the
S’-Mott (D’-Mott) state should evolve into the-wave
Xi=cl i tcl,ciii—clycin —cly ¢ : - - -
TR T 2 L T L 2 T 2 M (d-wave superconducting state upon carrier doping as in the
(429 sMott (D-Mott) state.
In the weak-coupling limit we take the continuum limit and ~ The nature of theS'-Mott state can be deduced through

express the operat®4.29 in terms of the bosonic fields. We its similarity to theS-Mott state(3.10. We first note that, as
then obtain mentioned above, th8'-Mott state is related to th&Mott

state by ar/2 shift of the¢,, mode, which is equivalent to
mi=exdid,_()]. (4.30 translation by half unit cell, in such a way that the PDW state
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is related to the CDW state. This suggests that the center of
mass of a singlet in th&'-Mott state should be located at a ’m_'

center of a plaquette. Noting that dososk, is positive
(s-wave like at all the Fermi pointsk= (= (#/2+ §),0) and

(£ (/2 - 6),m), of the ladder model, we speculate that the
singlet-pair wave functioor the symmetry of a Cooper pair

in the swave superconducting state realized upon dopisig

of the form cosk cosk, c!(k)c[(—k) in momentum space. In
real space this corresponds to a linear combination of two
singlets formed between diagonal sites of a plaquette. From
these considerations we come to propose the following wave
function as a representative of tB&-Mott state:

FDW
. A
1 : 5
r_ =TI Z(cf, .cf —cf. ¢ fo.cf v v
|S'-Mott) H 2(C],1,TC]+1,2¢ Ci1,Cj+127 T Cj2:Cj+1,1, P W
~ I — i -
Tt
—€{2,C{41,1)0). (4.32 S—Mott D-Mott
This state mostly consists of singlets along the diagonal di- <«— Gaussian criticality (c=1)
rection of plaquettes but also contains resonating singlets <> Ising criticality  (c=1/2)
that are formed by two spins on different legs that can be «— SU(2), criticality  (c=3/2)
Separated far away. or first—order transition

TheD'-Mott state consists of singlets that would turninto k. 5. Schematic illustration of the phase diagram under the
d-wave Cooper pairs upon doping. Since the singlet-paigobal SU2) symmetry. The phase transitions indicated by the solid
wave function in theD-Mott state is co&, in momentum (dasheglarrows are the=1 (c=1/2) criticality. The phase transi-
space, we expect that the singlet pairs in IWeMott state  tions indicated by the double arrows are either ¢ke3/2 SU(2),
should be of the form cds In real space this corresponds to criticality or first order; see discussion in Sec. IV C 3 and Fig. 10.
a linear combination of singlets formed in the leg direction.The diagonal solid arrows denote the Gaussian transitions in the
This leads to the following wave function: ¢,+ mode.

R R interesting to find an order parameter that can distinguish
D' -Moty=1] | Gl it~ GG 10) different Mott phases. The transitions in the vertical direction
R 2 within a column are, if continuous, either tlee=1/2 Ising
(4.33 criticality or thec=3/2 SU(2), criticality. The latter may be
) ) _ replaced by a first-order transition. We will discuss these
as a representative of tiz’-Mott state. It is easy to see by yansitions in more detail in the following subsubsections.
expanding the product that this state is a resonating valence a prief comment on the related earlier works is in order
bond state in which some singlets can be formed out of tWq,gre The top four phaséSF, CDW,S-Mott, andD-Mott) in
spins that are separated arbitrary far away along a leg. How=iy 5 and the Gaussian and Ising transitions between these
ever, amplitude c_Jf the states havmg_such a I(_)ng-dlstance Sithhases have been found in the weak-coupling RG analysis of
glet is exp_onenhally suppressed with the distance betweef e S@s) symmetric ladder model by Lin, Balents, and
the two spins. _ Fisher?® The misidentification of the SF phase with the PDW
It is interesting to note that the wave functl(m32) can  phase made in this work has been corrected later by
be constructed froJr(’n th&-Mott wave function(3.10 by re-  Fjzrestad and MarstAWe have pointed out the existence
placingc], , with Ci 17, Wherel=2 (1) for =1 (2) such  of four more phases in the generalized Hubbard ladder model
that CJT,I,TC]'T,I,1—>(C]'T+ 1I_TCJT,|,L+CJT,|,TC]T+ 1I_1)/‘/§' This rule and determined the universality class of the phase transitions

can also be used fo construct the wave function of thdetween all the eight phases.
D'-Mott state(4.33 from that of theD-Mott state(3.9).
Since theg,,_ field is locked in theS’-Mott andD ' -Mott
phases, the operat6t.30 also serves as the disorder param-  First we discuss the Gaussian criticality when all the
eter in the PDW-S’-Mott and the FDW-D'-Mott transitions modes except the relative charge moge-() become mas-
of the Ising universality class. In fact, the disorder parametesive at some higher energy scale. This situation is relevant
(4.30 takes a nonzero value in any of the Mott phases andor the horizontal transitions in Fig. 5: SF-CDWW:Mott—
vanishes otherwise. S-Mott, PDW—-FDW, andS’-Mott—D’-Mott transitions. We
The various insulating phases and phase transitiontake the D-Mott—S-Mott phase transition as an example.
among them are schematically shown in Fig. 5. In this figuréWithout loss of generality we may assume that the phase
phase transitions between a phase in the left column andariables are locked dip,.)=(¢,+)=(¢,-)=0 mod .
another in the right column, such as transitions between thBelow the energy scale at which the three fields are locked,
Mott phases, are the=1 Gaussian criticality. It would be we can replace the cosine terms in the Hamiltonian Eg.

2. Gaussian criticality in the charge degrees of freedom
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(4.23 by their average: CO%_*_*)CP_*_E(COS Zﬁp+>, that governs the SF—FDW, CDW-PD\D:-Mott—D'-Mott,
COS 2p,+ —C, =(COS 2p,, ), and COS 3, —C,_ and SMott—S'-Mott transitions.
=(cos 2p,_), wherec,, , ¢,,, andc,_ are nonuniversal . .
positive constants that depend on bare interactions. We then ~ 3- Z2X0(3) symmetry in the spin degrees of freedom
have the effective theory and the Ising and SW2), criticality
Here we focus on the case where the masses of the two
charge modesp(==) are larger than those of the spin modes
=—[((9X¢ )2+(‘9X¢ )2]+ (aX‘ﬁ -)(9x,-) (o*). Below the mass scale of the charge modes we may
regard that thes,, and 6, fields are locked by cosine
g— potentials. The effe_ctive low-energy theory is obtgined from
+ﬁ005 2, (434 Eq.(4.23 by replacing cos @, and cos 2, by their aver-
age values,, =(cos 2p,.) andc,;= (cos ¥,),
where the coupling constagg= is given by
Hy=[(ai )+ (3, ) 2+ (965 )2+ (0, )?]
9e==Cp+Gc+ o=+ Cor U= ,s+ +Co-Uoms- - (4.39 Tom Tt - - 7
Since the canonical dimension of ca$,2is 1, thegz=term gg+
is a relevant perturbation and hence the system always be-
comes massive except whep—=0. If gc—>0, then the
phase field is locked a§f,_)=m/2 mod 7, which corre-
sponds to th&Mott phase. Whelgz—<0, the phase field is ((9¢ (e, 7)+
locked ag(¢,_)=0 mod, and the ground state in this case
turns out to be theD-Mott state. The Gaussian criticality
with the central charge=1 is realized agz—=0. In terms

<a¢o+><a¢ﬁ>+ 5005 2.:

cos 20,

+ 95 ————C0S 20, _ +g 0032¢U+0032¢U_

of the original Hubbard interactions the coupling constant 2232 212a?
0c— is given by
g— 3 +gs%cos 2p,.c0s20, (4.39
?Z—C U_VL+Z‘]L+tpair +C'(VH—V’), 2ma’
(4.36  Where the coupling constants, , gs- , andgs= are given
by
whereC=c,, +¢c,, +c,_ andC'=2c,, +2c,, —C,_ are
nonuniversalpositive constants. Thus, thB-Mott (S-Mott) Os+=Cpi0c+ s+ TCo 0 s+ » (4.393
state appears whet) —V, +3J, /4+t,5—C'(V|—V')/C
>0 (<0), and the Gaussian criticality shows up at 0s-=Cp+0c+ s- TCo=0c= s, (4.39h
v +33 e~ S vovico  4a 95-=Cp+Ye+ 5=+ Cp-Uc= 5= (4.390
Lt o (VmVH=0. (437 The coupling constants in E¢.38 are not completely free

o . arameters, since the system has the spin-rotation&?)SU
which is the same as the phase boundary obtained from t mmetry. From Eqs(4. 2y7) and (4.39 thepconstraintgzz)n

strong-coupling analysis, E¢3.41), for V|=V'=0. the coupling constants read
The SF—CDW phase transition can be analyzed in a simi-

lar way. We consider a situation where the phase variable Os+ —0s- —05==0, (4.403
6, , instead ofe,,_, is locked at §,_)=0 mod. In this
case we can replace the cosine factor in the Hamiltonian as 1
cos ¥,_—c;—=(cos ¥,_)>0. The effective theory is given 9s+.s-=~ 5(9o+ +90-), (4.400
by Eg. (4.34 with the coupling constangz—= e
+Cy+ 05— s+ + C5=0z=35=. The SF(CDW) state Is realized 1
for gz— —<0 (>0), where the phase, is locked at 0 {r/2) Os+ 5==— E(gﬁ—ga_). (4.409
mod 7. In terms of the original Hubbard interactions, the
coupling constangz= is given by Eq.(4.36 with C=c, To appreciate the S@@) symmetry in the effective theory
+¢,+>0andC’'=2c,, +2c, +3c;=—. We thus conclude (4.38, we fermionize it by introducing spinless fermion
that the SF(CDW) state appears fod—V, +32 J| +tpar  fields gy, (p== andr==),
—C'(V|—V’")/IC>0 (<0), and the condition for the Gauss-
ian criticality is given by Eq(4.37).

The other transitions of the=1 Gaussian criticality can e (X)= \/—eXF[+|2¢gr(X)] (4.41
also be analyzed in the same manner. We note that in addi-
tion to the Gaussian criticality in the— mode discussed where the index =+ (—) refers to the totalrelative de-
above, there is another Gaussian criticality in the mode  grees of freedom of spin mode, afig, ,n,/} =26, . The
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density operators are given by,;g P+ i=dy¢P .7 We TABLE II. Signs of the fixed-point coupling constants and the

then introduce the Majorana fermiog8 (n=1~4) by

massesifiy, Mg, M) in various phases.

Latie L i), (42 Phase  (gi=.9% .08 .03=.05..05) Mg Mg m,
=—(£&+i D), _=—(&+IE). (4.
l;bp,Jr \/E(gp gp wp, \/E(gp gp CDW (+,_,0,_,+,_) + _ +
. . . . . SF (_!_101_!—"_!_) - - +
These fields satisfy the anticommutation relationspp,, (—,+,04,+,-) -+ -
{gg(x),gg,(x’)}:=5(x—x’)5p’p,5n’n.,. With the h.elp of thg FDW (+,+.0+,+,-) + + -
SU(2) constraints(4.40, we rewrite the effective Hamil- S-Mott (+,—,—,0,+,+) + + +
tonian in terms of the Majorana fermions, D-Mott (—=,—,—.,0+,+) + +
S'-Mott (=, +,+,0+,+) - -~
L UE . D’-Mott (+,+,+,0,+,+) + - -
Ha:_'7(§+'¢9x§+_§—'3x§—)_|mt§+'§—
_.UF 444 o ey imt £ t 1
15 (E50x€5 — €2 0xE7) — ML &7 o7 =Gt GGy +5GG, (4.483
gzr
g >2+—<§+ £)&84et, (443 %:G# thGU , (4.48H
where we have introduceg},= (£5,£5,£5) and 4G 1 1
T _2G2, +-G2 +2G?, (4.480
—g— dl 2 2
= Os+ =_gs— Os= (4.44)
v 27a’ s 2ma ' dG
_ _ T =G,,G,_+2G,Gs, (4.480
Thus the effective theory for the spin sector becomes O(3) dl
XZ, symmetric, i.e., the four Majorana fermions are where di=da/a, G.=—0../2 G.=—
grouped into a singlef* with massmg and a triplet¢ with V2mve, andG gt /Z?TSJF ?r%';,coupli;gss(%sr;d
’ or T Yox . S

massm; . We note that the O(3¥ Z, symmetry also appears G are relevant, w
in the low-energy effective theory of the isotropic Heisen-
berg laddef**® It is known that, wherm,,m,#0, the quar-

hileG,,. are marginal. Within the one-
Ioop RG we find four stable fixed points,
(Gf G5 Gy, ,Gy_)=(x°,£o,0,) and (£%,Fx,%,

tic marginal terms lead to mass renormalizatiog— mg and — ), which correspond to the eight phases listed in Fig. 5

m,—m;, wheré*%*
~ 9o+ A gr A
my=m;+ myIn mgIn ,
2o " dmog o my
~ 30, | A
mg= Mg+ mdn—
s s’ 4 Ve t |m |

and Table Il. The Ising criticality is governed by the unstable
fixed point Gf ,G: ,G%, ,Gi_)=(*=,0:,0), where the
Majorana fermioné* is massless. The unstable fixed point

(4.49 (G ,Gf .G}, ,G>_)=(0,£»,0,0) corresponds to the

SU(2), criticality since the tripletf becomes massless. Fi-
nally, we find another kind of unstable fixed points

(449  (GF,G!,G*,,G*_)=(0,~=,%,0), where all the modes

are massive. To understand the nature of these unstable fixed

Here A is a high-energy cutoff. The effective theory then points, let us assume g{, ,9s=—0s ,9,+,9,-)

reduces to
.UF L~
Ho=—175 (8 0x: =& &) —Imi&. - &

i (E e — E o) — it €

N
4.4 -
(4.47 2ma?

=(0,2:1,2\,,0), where\, , are constantsN;# 0, A,>0).
This, together with the S(@@) constraint(4.40, leads to
Os==—0s-=MA; and gs; s5==0s+,s-=—A2<0. In this
case the cosine terms i, (4.38 become

(cos2p,_—cos29,_)

It immediately follows from Eq(4.47) that the Ising critical-

ity with c=1/2 emerges am,—0. On the other hand, the -
critical properties for the () invariant sector if—0) are

27Tzazcos 26, (cos2p,_+cos20, ). (4.49

known to be described by the SUE)Wess-Zumino- Suppose thah;>0 and(¢,.)=(6,-)=0. We then find

Novikov-Witten model with the central charge= 3/2.54%’ that the potential(4.49 has degenerate minima at, e.g.,
Let us examine the critical behavior in more detail using({ ¢, ),{#,_),{0,-))=(0,0,*) and @/2,*,7/2), where *

the scaling equations for the coupling constants appearing imeans that the phase field is not locked. Since these minima

the effective Hamiltoniar{4.43),

correspond to th®-Mott and PDW phases, respectively, the
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unstable fixed point describes a first-order transition between-0 (<0). Thus, the produat;=(U—V, +3J,/4) is positive
the D-Mott and PDW phases. Hence we conclude that thdor both positive and negative —V, +3J, /4, and hence the
unstable fixed points G; ,Gs ,G¥, ,Gx_)=(0,£%,2,0) bare massesi; andm, are also positive. We argue, however,
correspond to a first-order phase transition. The phase trathat the Ising criticality is possible due to the mass renormal-
sition at which the renormalized triplet ma€g" vanishes ization effect. The renormalized mass can become nega-
can be either SU(2)criticality or first-order transition, de- tive since the coupling constagt._ of the correction term in
pending on the sign d&,,, .*® The condition for the SU(2)  Eq. (4.46 is given byg,_=2a(—V, +J,/4). We expect
criticality is G;=0 and G, <0 below the energy scale that sufficiently largeV, can drive the system toward the
where G4 becomes of order 1. On the other hand, the firstising criticality in the&* mode, even whefy,;= 0.
order transition is realized ;=0 andG,, >0. In addition to the Ising criticality at larg¥, , the Gauss-
The phase fields are locked at some multiplesr(# de-  ian criticality in the §,_ mode should appear af, =U
pending on signs of the relevant coupling constants at a fixed-3J, /4. Let us find out which phase is realized near the
point, (g;%,g§+ ol ,g;‘T), of the cosine potentials in Eqs. Gaussian critical line. Whetd —V, +3J,/4=0, the cou-
(4.34 and(4.38. Comparing the configuration of the locked pling g,— equals—2U —J, and the renormalized Ising mass
phases and those listed in Table |, we can find out to whichbecomes
phase the ground state belongs for a given combination of

the renormalized coupling constantgiz(,g%, .05 ,g9%). mg u 3], 2r A
Table Il summarizes for each phase the signs of these renor- ¢ :1_AX 1+ AT In Uu+J,

. . . . L . .. pt U 1
malized coupling constants includimg .. , which is positive (4.52
(negative when ¢, (0,-) is locked. When writing Table
I, we have used the fach) that either one of*_ and g’s*__ whereA is a positive constant of order 1. For small/U

must vanish except at the Ising criticality because and  this renormalized Ising mass should be positive, and we con-
6, are conjugate fields, an®) that Eq.(4.403 constraints ~ clude that théd-Mott and theS-Mott phases are separated by
possible combinations of signs gf. , gs— , andgs—. the Gaussian critical linéNote thatm,>0). As we increase

The coupling constants listed in Table Il also determined, /U (or V, /U) along the Gaussian critical line, the nega-
the signs of massesiy(=gg=/27a), me, andm, through tive correction (g, ) in the mass renormalization increases
Eqgs. (4.44), (4.45, and (4.46). The Gaussiang=1), Ising and eventuaII)FnS can change sign. Across this Ising transi-
(c=1/2), and SU(2) (c=3/2) criticalities are realized tion the D-Mott and SMott phases turn into the SF and
whenmy=0, ms=0, andm,=0, respectively. From Table I CDW phases, respectively. This implies that a pair of phases
we can therefore figure out which criticality can occur atSurrounding the Gaussian critical line changes from
each phase transition where the relevant mass changes sigR-Mott,S-Mott) to (SF,CDW at a tetracritical point as
The universality class of the phase transitions is also suml./U increases. This qualitative analysis will be supported
marized in Fig. 5. We find from Table Il that the CDW— in the following subsection by a more quantitative
S-Mott and SF-D-Mott phase transitions are indeed in the 'enormalization-group analysis.

Ising universality class and the-Mott—S-Mott phase tran- Now we briefly discuss the effect of the pair hopping term
sition is in the Gaussian universality class, in agreement witfpar 2Nd Next-nearest-neighbor repulsigh. WhenV’=0,
the strong-coupling approach in Sec. III. the Gaussian transition takes placellt V| +3J, /4+ 1ty

Let us discuss implications of the above general qualita=0 [see Eq.(4.37)]. Thus for largety,,, we can have a
tive analysis to the phase diagram of the extended Hubbargituation wherems<0 and m>0 with U—V, +3J,/4
ladder. From Eqs(4.39 and(4.44) we write the bare masses + tpair=0 [see Eqs(4.50 and(4.51], i.e., t,,; can stabilize

in terms of the coupling constants in the model, the SF state near the Gaussian critical line. In the tgge
=0, on the other hand, we expect that sufficiently lawje

can lead to a phase witmg>0 andm,<0, i.e., the PDW

Ms=75_—| 2Cp+ (U~ tpairt V") state, ifc,,>c;=>0.
Finally, we discuss the implications of our schematic
3 , phase diagraniFig. 5 to the phase diagram of isotropic
tem| U=Vt ZJiHPaW— 4v ” (4.50 spin+4 ladder systems, which have been studied intensively
in connection with the so-called Haldane’s conjectiire
1 1 3 about the existence of a finite energy gap in the integer-spin
Me=5_12C,+| Vit 7J1— EV’) Heisenberg chain. By using the Abelian bosonization
method, it has been shown that four kinds of gapped phases
3 can appear in spin ladder systems with various types of ex-
e U=Vt 730+ tpairt 2V') . (45)  change interaction¥:?° The possible gapped phases étp

the rung-singlet state, which is known to be realized in the
To simplify the discussion, we assume here tNatV’ isotropic Heisenberg ladder with nearest-neighbor antiferro-
=tpr=0 and thatgp, . is locked at(¢,,)=0 (mod ), i.e., magnetic exchange coupling$?) the Affleck-Kennedy-
Cp+>0. If U=V, +3J,/4>0 (<0), the phased, is Lieb-Tasaki(AKLT )-like spin-liquid state, in which short-
locked at O ¢r/2) [see Eq.(4.36] and c,==(cos%,_) range valence bonds couple spins on neighboring rbhes,
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the dimerized state along the chain withrelative phase, D. Renormalization-group analysis

and(4) the dimerized state along the chain with zero relative | this subsection, we study the ground-state phase dia-
phase. Both the rung-singlet state and the AKLT-like state argram of the extended Hubbard ladder model using perturba-
Haldane-type spin liquids with unique ground state and n@jye RG analysis of the 13 coupling constants appearing in
broken local symmetries. In the dimerized states which arg(. (4.23. These coupling constants are, however, not inde-
known to be realized when a sufficiently strong four-spinpendent because of the four constraints coming from the
interaction is included}*° there is spontaneous breaking of SU(2) symmetry, Eq.(4.27. Accordingly, we have nine in-
the translation Z,) symmetry and the ground state is two- dependent RG equations that describe how the coupling con-
fold degenerate. In the limit of large the extended Hubbard stants scale when we change the lattice constante”’.
ladder we analyze in this paper should reduce to a systemhe nine independent variables we choose to work with are:
with only the spin degrees of freedom. This situation corre-G, =0, /2mvg, G, =d, 2mvg, G, =0, /2mvE,
sponds togz=<0 [see EQ.(4.36], i.e., my=<<0, with |[my|  G,-=0,-/2mvr, G,=(Uc+ s —Ge+57)/2mvF, Gp
>|m/,|m,/. Under this condition, we still have four phases: = (9&=s- ~9e=5)/2mve,  Ga=0cs g=/2mve,  Gg

the SF,D-Mott, PDW, andS'-Mott phases. From Table II = Jc+s+/2mve, and Ge=0g=s/2mve. After some alge-
(see also Refs. 56 54, and)6@ve can find correspondence bra we obtain the RG equations

between the phases in spin ladders and the phases that we
have obtained in the extended Hubbard ladders: The rung-
singlet and AKLT-like Haldane states correspond to the
D-Mott and S’-Mott states, respectively, and the PD\&F) d 3 1
state corresponds to the dimerized state along the chain with —G,_= _zer —G%— _G,%" (4.59)
7 (0) relative phase. We note that the physical pictures of the di 2 2

phases in the extended Hubbard ladder are consistent with q 1 1
those in the spin ladder; for example, tBeMott state is —G,,=+-G2, +-G2_+G3+G%, (455
nothing but the rung-singlet state, as seen in the strong- dl 2 2

coupling approach(see Sec. I)l. The AKLT-like Haldane
state, which is known to be realized either with plaquette
diagonal exchange coupling or with ferromagnetic rung
exchangé?® would be smoothly connected to tH&-Mott

d 2 3 2 1 2
aGp+:+GA+ EGB"F EGa, (453

d
§iCo-=+Gy1G, +GeG,+ GGy, (456

state, in which the ground-state wave function consists of d = 1 1 3 1

singlets formed between diagonal sites of plaquéttes Eq. a1 Ca= 1 560+ Gam 56,-Gam 566 56uGp,
(4.32] and, moreover, has the same topological numbers as (4.57
the AKLT-like Haldane stat€’ The PDW state is nothing but

the dimerized state with interchain phasas seen in Fig. 5, d_ 1 3 1

which is not a Haldane-type spin liquid since the PDW state  dI Gp=+5G+Cet G G~ GaGet 56, G
spontaneously breaks the translation symmetry and is two- (4.58

fold degenerate. In order to discuss phase transitions in spin
ladder systems, two kinds of string order parameters have EG __ EG Gt G  GCreG Gt EG G
been introduced which characterize hidden orders with dif- dl ~¢ 2 7p~—C' Zor=C FAPBT 5 Fe==5

ferent topological numbers, i.e., the parity of the number of (4.59
dimers crossing a line perpendicular to the two ch&s. ; . .

These string order parameters are different fram[Eq. _

(4.29], since u; is associated with exjg,-) in the @1 Ca= 565+ Cat 568G, ~CaGp, (460
bosonized form while the string order parameters introduced

in Refs. 60 and 62 are associated with thg, field in our d 1 3

notation. Since the phase transition associated withthe 4168~ 3C-CGpt 56cC,-~GaGa- (46D

field is related tom,—0, we expect that the string order ) ) )
parameters introduced in Refs. 60 and 62 characterize thEnese equations are equivalent to the ones reported in Ref.
SU(2), criticality or the first-order phase transitigdouble 25, in which another set of nine independent variables is
arrows in Fig. 3. In our schematic phase diagrai®) the used: b%,=(g,++9,-)/8, bi;=—(d,++9,-)/2, Dbl
phase transition from the rung-singlet state to the AKLT=0z/4, b,=0c, f1,=(9,+—9,-)/8, f1,=—(9p+—90-).
Haldane state can take plagehich is actually the case in uf;=—0,/8, u{,=0./8, and uj,=gg/2, where g,

the spins ladder systen?$%3, if the SU(2), and the Ising =27v(G,.

criticalities appear simultaneously. This implies that the cen- Integrating the RG equation@.53—(4.61) numerically
tral charge for the continuous transition between the rungvith the initial condition set by the bare coupling constants
singlet and the AKLT states is given By+ 3=2. This tran-  in the extended Hubbard ladder model, we find Bat (1)
sition becomes first order when the marginal interaction ingrows most rapidly and becomes of order unity first. At the
the triplet Majorana fermion sector is marginally relevant. length scalel=1,, whereG, (I,,)=2, we stop the nu-
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FIG. 6. Weak-coupling phase diagram Ht”+Hti+Hint att, FIG. 7. Weak-coupling phase diagram IdtH+ He +Hin att,

=t)=t andJ, =0 obtained from the one-loop RG equations. There=t; and U/t=1. This corresponds to Fig. 2. Inset shows weak-
is a massless mod&€1S0 on the boundary between th2-Mott coupling phase diagram olf-lt‘+Hti+Him+ Hpair at t, =t =t,

and theS-Mott states while the boundary between ®&&lott and  yUj/t=1, andt,y;/t=0.5. On the boundaries between theMott

the CDW state is COS and theS-Mott states and between the SF and the CDW states exists

a massless mode C1S0. A massless mode3Céispears on the
boundaries between tHa-Mott and the SF states and between the
Mott and the CDW states. The different choicelft does not

leld qualitative changes to this phase diagram.

merical integration. Below this energy scale theé mode
becomes massive. We can assume without losing generali
that the phasep, . is locked at(¢,.)=0 modx. The ef-
;treé:rtrgveE;h.ec()gz;t L(r)]\:\éirgﬁn(ter:gy ;Jngli(Jltlpc;r? fogsgial_rjffj CDW state is the Ising critical line of the spin— mode,

Ucr =05 Uet st —Usi» Gets.—0s , and gey 5= which is C0S. This weak-coupling phase diagram is similar
—gs—. We then derive and solve the RG equations for thelo Fig. 1 obtained from the strong-coupling approach.
coupling constants in the effective theory to understand the Next, we include the AF exchange couplidg . The
low-energy properties of the remaining modes. The patterphase diagram on the planebf/U andV, /U atU/t=1 is

of phase locking can be found from asymptotic low-energyshown in Fig. 7. A different choice dfl/t does not lead to
behavior of thegz=, g.., gs_, andgs= in the numerical qualitative changes in thi /U vsV, /U phase diagram. An
solution of the RG equations. The phase fidld = ¢,. or  interesting new feature is that the SF phase shows up be-
0,()—) is locked a®)=m/2 or O, if the coupling constant tween theD-Mott phase and the CDW phase. This is in
g (9e{gc—.9s: ,9s_ ,0s—}) behaves ag— +C or —C in agreement with the qualitative analysis of the preceding sub-
the low-energy limit, respectively, whef@is a positive con- ~ section, where it is found that the exchange interacipn
stant of order unity. Once the configuration of the lockedsuppresses th&Mott phase and helps the SF phase appear.
phase fields is determined, the resulting ground state is fountihe Gaussian criticality of the—mode(C1SQ emerges on
from Table I. The phase diagram of the extended Hubbard

ladder obtained in this way is shown in Figs. 6—10. We note 1
that this approach reproduces the phase diagram of tli&) SO

symmetric ladder obtained in earlier studfés® Since the

exotic phases such as the SF state andStMott state ap- Vit CDW

pear only for a negative) in this model, we will not further SE
discuss it as we concentrate on the case with posifiand

Vin this paper. 0.5+

Let us first consider the simple case wherandV, are
the only electron-electron interactions. The phase diagram on
the plane ofU/t andV, /t is shown in Fig. 6. In this and S—Mott
other phase diagrams shown below, all the modes are gapped D—Mott
everywhere except on the phase boundaries. With the stan-
dard notation @Sm of representing a state havimgmass- . .
less charge modes amd massless spin modé$the three 0 ] 2 3
phases in Fig. 6 are characterized as the “C0S0” phi&se. Jo it
The phase boundary between teMott state and the
SMott state is the 1) Gaussian critical line of thep— FIG. 8. Weak-coupling phase diagram bf for U/t=1, V,
mode(C1S0, which is given by, =U; see Eq(4.37) with =V, =V, andt,,;=V'=0. The tetracritical point with C15is at
J, =0. The phase boundary between gblott state and the (3, /t,V, /t)=(0.40, 0.43).
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2 - - state. This is not necessary, however, in the weak-coupling
approach, where the pair-hopping process is effectively gen-
S'—Mott erated from the second-order process in the rung hogping
In fact, we can show that positive pair-hopping terms are
generated in the renormalization-group procedure in the SF
PDW 2
phasé
1y 1 Next we turn on the nearest-neighbor Coulomb repulsion
in the leg direction,V|. The phase diagram fov|=V,
(=V) is shown in Fig. 8. Even though the additiond|
interaction strongly favors the CDW state, a small region of
D-Mort the SMott phase still remains in between tReMott phase
and the CDW phase. Besides this quantitative modification
0 ] 2 3 the phase diagram is not changed qualitatively, and, in par-
Ult ticular, the critical properties at the phase boundaries are the
same as in Figs. 6 and 7. Using the density-matrix
FIG. 9. Weak-coupling phase diagramtdfon the plane o/t renormalization-group method, Vojet al*® determined the
andV'/t for V=V, =0, andJ, =ty;~=0. The boundary between phase boundary between the CDW state and a state with
the D-Mott state and the PDW state is CBSand the boundary homogeneous charge density for the model we used for Fig.
between the PDW state and tB&-Mott state is COS. 8. At U=1.% they observed a transition to the CDW state
aroundU/V=2.9, which is not very different from the phase
the almost straight phase boundary between Eh#fott ~ boundary atJ, =0 in Fig. 8. The transition is, however,
phase and th&Mott phase and between the SF phase andound to be first order fokJ=4t in their numerical results,
the CDW phase. This critical line is given by, /lU=1 which is different from the continuous transition we found in
+3J,/4U, in accordance with Eq4.37). The phase bound- the weak-coupling analysis. A possible source of this dis-
ary between th®-Mott phase and the SF phase and betweercrepancy might be the neglect of irrelevant operators with
the SMott phase and the CDW phase is the Ising criticality canonical dimension 4 that could become important for

COS}. A tetracritical point of C1$ appears at the point Strong couplings as in the single-chain cake.
where the two kinds of phase boundaries cross. The inset of Finally, we include next-nearest-neighbor Coulomb repul-
Fig. 7 shows the phase diagramtgg,=0.5. We see clearly SionV’, Eq.(2.9). Figures 9 and 10 show the'-U andV-
that the pair-hopping favors the SF phase over $idott V' phase diagrams. In agreement with the discussion in the
phase. In the strong-coupling perturbation theory, we hav@receding subsection, the PDW phase appearg’as in-
introduced the pair-hopping terrH . to stabilize the SF creased. At even largeV’ the S'-Mott phase and the
D’-Mott phase appear in Figs. 9 and 10. On the phase
2 , boundary between thB-Mott state and the PDW state ap-
pears the SU(2) criticality; we have confirmed in our nu-
merical calculation that the coupling,, in Eq. (4.43 is
negative, i.e., marginally irrelevant. We have thus established
that the two-particle interactiok’’ can drive the system to
the SU(2) criticality.

Figure 10 shows a rich phase diagram containing the four
Mott phases and the two density-wave phases. We note that
in Fig. 10 the six phase boundaries meetVatV’'=U,
which corresponds to C2S2. This happened because, within
our approximation, all the coupling constants in E4.23
exceptg,, vanish whenU=V=V’', t, =t|, andJ, =ty,;
=0. If t, #t;, or if higher-order contributions to thgis are
0 ] 2 included>! this special situation might not occur. In Fig. 10

ViU the phase boundaries between the Mott phases are C1S0
) , (Gaussian criticality, while the CDW-S-Mott and PDW-
FIG. 10. Weak-coupling phase diagram léfon the plane of

V'/U andV/U for U/t=0.5, V;=V, =V, andJ, =t,y=0. The S’'-Mott phase boundaries are CPSIsing criticality). The
phase transition between the CDW a&#lott phases and between Phase boundary between the PDW phase andDiiott

the PDW andS’-Mott phases is in the Ising universality class phase is CO%[SU(Z)2 criticality] as in Fig. 9. Finally, the
(COS}). The phase transition between Mott phases is a Gaussigphase transition between the CDW phase andOheMott
transition(C1S0Q. The boundary between tliz-Mott phase and the phase is found to be first order; we have confirmed that the
PDW phase is CO5[SU(2), criticality]. The transition between coupling g, in Eqg. (4.43 is positive and marginally rel-
the CDW phase and thB’-Mott phase shown by the thick solid evant. Even though Fig. 10 is obtained from the weak-
line is a first-order transition. coupling RG equations, we think that the phase diagram is

Vit
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reliable since we have confirmed that thé/()-(V'/U)
phase diagram is not changed much whkh is varied.

we have shown that the SU(ZZFriticality with the central
chargec=3/2 is induced by the next-nearest-neighbor Cou-
lomb repulsionv’, which drives the system from thHz-Mott
phase to the PDW phagEigs. 9 and 1 WhenV' is further
) . _ . increased, th&'-Mott phase and th®'-Mott phase, which

In this paper we have studied the half-filled generalizéd;orespond to the quantum disordered states of the PDW
Hubbard ladder with the intersite Coulomb repulsion and thephase and the FDW phase, show (&ig. 9).
exchange interaction by using the strong-coupling perturba- \yhen this manuscript was almost completed, we became
tion theory and the weak-coupling bosonization method. Ing\yare of the work by Wt al.54 where the eight insulating

the strong-coupling approach the SF state is described as @Rases in Sec. IV are obtained independently.
AF ordered state of the Ising model where pseudospins rep-

resent the currents flowing along the rungs. We have shown
that the SF state can appear next to the CDW state and the
D-Mott state in the phase diagram and that the quantum We thank M. Sigrist, C. Mudry, and H. Tsunetsugu for

phase transition between the SF state andDHMott state is  helpful discussions. We also thank E. Orignac for pointing
in the Ising universality class. We have also established theut to us the importance of the marginal operator in the
Ising transition between th®Mott and the CDW phases and analysis of the SU(2)criticality. One of the authoréA.F.)

the Gaussian transition between theMott and theSMott  thanks S. Chakravarty and M. Troyer for enlightening dis-
phases. In the weak-coupling approach we have shown thatussions at the Aspen Center for Physics. This work was
in general, the model can accommodate a total of eight insusupported in part by a Grant-in-Aid for Scientific Research
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