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Generalized two-leg Hubbard ladder at half filling: Phase diagram and quantum criticalities
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The ground-state phase diagram of the half-filled two-leg Hubbard ladder with intersite Coulomb repulsions
and exchange coupling is studied by using the strong-coupling perturbation theory and the weak-coupling
bosonization method. Considered here as possible ground states of the ladder model are four types of density-
wave states with different angular momentum (s-density-wave state,p-density-wave state,d-density-wave
state, andf-density-wave state! and four types of quantum disordered states, i.e., Mott insulating states
(S-Mott, D-Mott, S8-Mott, and D8-Mott states, whereS and D stand fors- and d-wave symmetry!. The
s-density-wave state, thed-density-wave state, and theD-Mott state are also known as the charge-density-wave
state, the staggered-flux state, and the rung-singlet state, respectively. Strong-coupling approach naturally leads
to the Ising model in a transverse field as an effective theory for the quantum phase transitions between the
staggered-flux state and theD-Mott state and between the charge-density-wave state and theS-Mott state,
where the Ising ordered states correspond to doubly degenerate ground states in the staggered-flux or the
charge-density-wave state. From the weak-coupling bosonization approach it is shown that there are three cases
in the quantum phase transitions between a density-wave state and a Mott state: the Ising (Z2) criticality, the
SU(2)2 criticality, and a first-order transition. The quantum phase transitions between Mott states and between
density-wave states are found to be the U~1! Gaussian criticality. The ground-state phase diagram is determined
by integrating perturbative renormalization-group equations. It is shown that theS-Mott state and the
staggered-flux state exist in the region sandwiched by the charge-density-wave phase and theD-Mott phase.
Thep-density-wave state, theS8-Mott state, and theD8-Mott state also appear in the phase diagram when the
next-nearest-neighbor repulsion is included. The correspondence between Mott states in extended Hubbard
ladders and spin-liquid states in spin ladders is also discussed.

DOI: 10.1103/PhysRevB.66.245106 PACS number~s!: 71.10.Fd, 71.10.Hf, 71.10.Pm, 71.30.1h
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I. INTRODUCTION

Ladder systems have been studied intensively over
years as a simplified model system that shows variety
quantum phenomena due to strong electron correlatio1

Since the ladder models can be analyzed with powerful n
perturbative methods such as bosonization and confor
field theory as well as with large-scale numerical calcu
tions, they provide a useful testing ground for various th
retical ideas developed for the two-dimensional case. Mo
over, the studies of ladder systems have been stro
stimulated by experimental developments in synthesiz
compounds with ladder structure that show superconduc
ity and spin-liquid behavior.2–4A good example is the ladde
compound Sr14Cu24O41 that showsd-wave superconducting
order5 under pressure with Ca doping and charge-dens
wave ~CDW! order as recently suggested experimentally6,7

Theoretical studies on doped ladder models such as the H
bard andt-J ladders1,8–22have established that the domina
correlation is indeed ad-wave-like superconducting order,
feature that is reminiscent of thed-wave superconductivity in
high-Tc cuprates. On the other hand, undoped half-fil
Hubbard and Heisenberg ladders are insulators that ha
gap in both charge and spin excitations.1,10,14,15,23–26This
spin-liquid behavior is caused by singlet formation on ea
rung, and the state is said to be in the rung-singlet phase.
also namedD-Mott phase25 because of its close connectio
to thed-wave-like paring state.

Recent theoretical interest on the ladder models has b
focused on the search of exotic phases in these system
0163-1829/2002/66~24!/245106~20!/$20.00 66 2451
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particular, the staggered-flux~SF! state,27 which is also
known as the orbital antiferromagnet28–30 and thed-density
wave,31,32 has received a lot of attention.33–38 For more than
a decade the SF state has been intensively studied in con
tion with the pseudogap phase in the two-dimensional hi
Tc cuprates.27,31,32,39–43The SF state has spontaneous c
rents flowing around plaquettes, breaking the time-reve
symmetry. Even though ladders are one-dimensional~1D!,
the long-range order of the SF correlation is possible at h
filling, since the symmetry broken in this state is discre
This point was emphasized recently in Ref. 38, where it w
also suggested that the SF phase should occur in the p
diagram of the SO~5! symmetric Hubbard model.44,45 Be-
sides the SF phase, the ground-state phase diagram o
ladder models can include theD-Mott phase mentioned
above, the CDW phase,46 and other phases.

Motivated by these developments, in this paper we
tempt systematic exploration of the ground-state phase
gram of a generalized two-leg Hubbard ladder at half filli
that has not only repulsive on-site and intersite interacti
but also antiferromagnetic~AF! exchange interaction an
pair hoppings between the legs. To map out the poss
phases in the parameter space of the model and to ana
various quantum phase transitions, we employ both
strong-coupling perturbation theory and the weak-coupl
bosonization method. We find that the inclusion of the ad
tional interactions leads to emergence of various new pha

In the strong-coupling approach, we describe the SF s
as an AF ordered state of pseudospins that represent cur
flowing on the rungs. The effective theory near the pha
©2002 The American Physical Society06-1
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boundary between the SF state and theD-Mott state is then
found to be the 1D Ising model in a transverse field. T
D-Mott phase is thus interpreted as a disordered state o
Ising model. We also present a similar mapping to the
quantum Ising model for the quantum phase transition
tween the CDW phase and theS-Mott phase.25 Here the
CDW state and theS-Mott state correspond to the ordere
and quantum disordered states of the Ising model, res
tively. Furthermore, we show that a low-energy effecti
theory near the phase transition between theD-Mott and the
S-Mott phases is theXXZ spin chain in a staggered field
which exhibits a U~1! Gaussian criticality.

In the weak-coupling limit, we follow the standard a
proach of taking continuum limit and bosonizing the Ham
tonian. We obtain a coupled sine-Gordon model for fo
bosonic modes~charge/spin and even/odd modes! and ana-
lyze it by perturbative renormalization-group~RG! method
and a semiclassical approximation. The scaling equations
derive are equivalent to those obtained earlier by L
Balents, and Fisher.25 We depart here from the earlier work
We consider four types of density-wave states with differ
angular momentum:31 s-density wave~5 CDW!, p-density
wave ~PDW, which is equivalent to the spin-Peierls stat!,
d-density wave~5 SF!, and f-density wave~FDW!. These
density-wave states breakZ2 symmetry and can have long
range order at zero temperature. We find that, in gene
there should appear four types of Mott insulating pha
~calledS-Mott, D-Mott, S8-Mott, andD8-Mott states!, each
of which can be obtained as a quantum disordered state
one of the fourZ2-symmetry-breaking density-wave state
We then study quantum phase transitions among these
phases and show that a transition between a density-w
state and a Mott state is either second order@in the Ising or
SU(2)2 universality class# or first order.47 Phase transitions
between density-wave states and between Mott states
U~1! Gaussian criticalities. After classifying the phases a
the quantum phase transitions, we determine the ground-
phase diagram of the extended Hubbard model with e
inter-site repulsion and the exchange interaction. We find
the S-Mott and the SF phases appear in the parameter s
of couplings where theD-Mott and the CDW phases com
pete. We also show that the next-nearest-neighbor repul
stabilizes theS8-Mott state and the PDW state; the latt
state is connected to theD-Mott state through the SU(2)2
criticality.

This paper is organized as follows. In Sec. II the mo
we analyze in this paper is introduced. In Sec. III we stu
the ground-state phase diagram by the strong-coupling
turbation theory, and examine phase transitions between
competing ground states: the SF,D-Mott, CDW, andS-Mott
states. In Sec. IV we apply the weak-coupling bosonizat
method to study the ground-state phase diagram. We de
effective low-energy theory for the charge mode and for
spin mode that describe the Gaussian, Ising, and SU(2
criticalities. The connection of our results to the phase d
gram of spin ladders with spin liquid ground states is a
discussed. We then determine the phase diagram of the
eralized Hubbard ladder from perturbative RG equations.
nally, the results are summarized in Sec. V.
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II. MODEL

We consider a half-filled two-leg Hubbard ladder wi
onsite and intersite Coulomb repulsions and rung excha
interaction. The Hamiltonian we study in this paper is giv
by

H5Ht i
1Ht'

1H int1HVi
1HV81Hpair. ~2.1!

The first two terms describe hopping along and between
legs, respectively,

Ht i
52t i (

j ,s,l
~cj ,l ,s

† cj 11,l ,s1H.c.!, ~2.2!

Ht'
52t'(

j ,s
~cj ,1,s

† c2,j ,s1H.c.!, ~2.3!

wherecj ,l ,s annihilates an electron of spins(5↑,↓) on rung
j and leg l (51,2). The HamiltonianH int5HU1HV'

1HJ'

consists of three terms representing interactions within
rung: the on-site repulsion,

HU5U(
j ,l

nj ,l ,↑nj ,l ,↓ , ~2.4!

the nearest-neighbor repulsion on a rung,

HV'
5V'(

j
nj ,1nj ,2 , ~2.5!

and the nearest-neighbor exchange interaction on a rung

HJ'
5J'(

j
Sj ,1•Sj ,2 . ~2.6!

The density operators arenj ,l ,s5cj ,l ,s
† cj ,l ,s and nj ,l5nj ,l ,↑

1nj ,l ,↓ , and the spin-12 operator is given by

Sj ,l5
1

2 (
s1 ,s2

cj ,l ,s1

† ss1 ,s2
cj ,l ,s2

, ~2.7!

wheress1 ,s2
are the Pauli matrices. The Hamiltonian~2.1!

also has nearest-neighbor repulsive interaction within a l

HVi
5Vi(

j ,l
nj ,lnj 11,l , ~2.8!

and next-nearest-neighbor repulsion,

HV85V8(
j

~nj ,1nj 11,21nj ,2nj 11,1!. ~2.9!

The last component of the Hamiltonian~2.1! is the pair hop-
ping between the legs,

Hpair5tpair(
j

~cj ,1,↑
† cj ,1,↓

† cj ,2,↓cj ,2,↑1H.c.!. ~2.10!

The coupling constants,U, V' , Vi , V8, J' , and tpair, are
assumed to be either zero or positive.~Most of our discus-
sions are actually concerned with the caseVi5V85tpair
6-2
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50.! In this paper we consider only the half-filled ca
where( j ,lnj ,l equals the number of total lattice sites.

III. STRONG-COUPLING APPROACH

In this section, we perform strong-coupling analysis sta
ing from the independent rungs and discuss transitions
tween various insulating phases.

We begin with eigenstates ofH int for decoupled rungs a
half filling. Convenient basis states for two electrons on
single rung~e.g., j th rung! with Sj ,1

z 1Sj ,2
z 50 are

u1& j5U↑↓L
j

[cj ,1,↑
† cj ,2,↓

† u0&, ~3.1!

u2& j5U↓↑L
j

[cj ,1,↓
† cj ,2,↑

† u0&, ~3.2!

u3& j5U↑↓
2

L
j

[cj ,1,↑
† cj ,1,↓

† u0&, ~3.3!

u4& j5U 2

↑↓L
j

[cj ,2,↑
† cj ,2,↓

† u0&. ~3.4!

The interaction HamiltonianH int is diagonalized as

H int

u1& j2u2& j

A2
5S V'2

3

4
J'D u1& j2u2& j

A2
, ~3.5!

H int

u1& j1u2& j

A2
5S V'1

1

4
J'D u1& j1u2& j

A2
, ~3.6!

H intu3& j5Uu3& j , ~3.7!

H intu4& j5Uu4& j . ~3.8!

Comparing the eigenvalues, we find that the lowe
energy state ofH int for U.V'23J'/4 is

uD-Mott&5)
j

1

A2
FU↑↓L

j

2U↓↑L
j
G . ~3.9!

This state is a direct product of rung singlets and is noth
but the strong-coupling limit of theD-Mott phase25 or the
Mott insulating phase of a half-filled Hubbard ladder.

WhenU,V'23J'/4, on the other hand, the doubly o
cupied statesu3& and u4& become lowest-energy states.
this case, one of the possible ground states is the on
paired insulating state realized in theS-Mott phase,25

uS-Mott&5)
j

1

A2
FU↑↓

2
L

j

1U 2

↑↓L
j
G . ~3.10!

Another possible ground state is the CDW state,
24510
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uCDW&15)
j

FU↑↓
2

L
2 j 21

U 2

↑↓L
2 j
G ~3.11a!

and

uCDW&25)
j

FU 2

↑↓L
2 j 21

U↑↓
2

L
2 j
G . ~3.11b!

In the next subsections we study phase transitions
tween these phases.

A. CDW –S-Mott transition: Ising criticality

In this subsection we discuss the phase transition betw
the S-Mott phase25 and the CDW phase25,46 for U,V'

23J'/4. This can be analyzed by mapping the system o
an effective spin model. A similar analysis for the SO~5!
symmetric ladder is reported in Refs. 44 and 45.

We restrict ourselves to the lowest-energy statesu3& and
u4& and denote them as

u1& j[u3& j , u2& j[u4& j ~3.12!

to make the connection to a spin model more evident.
regardu6& as the pseudospin up/down states. In this pictu
the antiferromagnetic ordering of the spins corresponds
the CDW ordering. We will treat the single-particle hoppin
termsHt i

andHt'
as weak perturbations to derive effectiv

Hamiltonian in the Hilbert space ofu1& and u2&. The
lowest-order contributions come from the second-order p
cesses,

H (2a)5Ht i

1

E02H int
Ht i

, ~3.13!

H (2b)5Ht'

1

E02H int
Ht'

, ~3.14!

whereE05NU with N being the number of rungs. The non
zero matrix elements ofH (2a) andH (2b) are given by

^6,7uH (2a)u6,7& j5
4t i

2

U22V'

, ~3.15!

^6uH (2b)u6& j5^6uH (2b)u7& j5
2t'

2

U2V'13J'/4
,

~3.16!

where us,s8& j[us& j us8& j 11 (s,s856). The above Hamil-
tonian is written in terms of pseudospin operators as

H (2a)5
2t i

2

2V'2U (
j

~t j
zt j 11

z 21!, ~3.17!

H (2b)5
2t'

2

U2V'13J'/4 (
j

t j
x1const, ~3.18!

wheret j
z andt j

x are Pauli matrices acting on the pseudos
states:t j

zu6& j56u6& j andt j
xu6& j5u7& j . Here we find that

H (2a) favors antiferromagneticordering, while H (2b) pre-
6-3
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vents the order. We thus find that the effective Hamilton
for the doubly occupied statesHCS

eff5H (2a)1H (2b) is given
by the one-dimensional quantum Ising model,

HCS
eff5(

j
~Kt j

zt j 11
z 2ht j

x!, ~3.19!

where the antiferromagnetic exchange couplingK and the
magnitude of the transverse fieldh are given by

K5
2t i

2

2V'2U
, h5

2t'
2

V'23J'/42U
. ~3.20!

This model exhibits the Ising criticality atK5h between the
ordered phase~i.e., the CDW phase! for K.h and the disor-
dered phase forK,h. The ground state in the disordere
phase is essentially the eigenstate oftx with eigenvalue11,
which is nothing but theS-Mott phase,

utx511& j5
u1& j1u2& j

A2
→uS-Mott&. ~3.21!

The condition for the CDW phase to appear is given
terms of the Hubbard interactions as

V'.
12~ t' /t i!

2

122~ t' /t i!
2

U1
3

4@122~ t' /t i!
2#

J' , ~3.22!

where 0,t' /t i,1/A2. Whent' /t i.1/A2, the CDW phase
is not realized within our approximation.

Here we briefly discuss effects ofHVi
, HV8 , andHpair,

treating them as small perturbations. The lowest-order c
tributions come from the first-order perturbation,H (1a)

5HVi
1HV8 andH (1b)5Hpair, which can be written in terms

of the pseudospin operators asH (1a)52Vi( j (t j
zt j 11

z 11)
22V8( j (t j

zt j 11
z 21) and H (1b)5tpair( jt j

x . The coupling
constants in the quantum Ising model are modified to

K5
2t i

2

2V'2U
12Vi22V8, ~3.23!

h5
2t'

2

V'23J'/42U
2tpair. ~3.24!

Thus,HVi
, HV8 , andHpair do not change the Ising univer

sality and only affect the coupling constants. Their main
fect is to move the phase boundary. TheVi and tpair interac-
tions favor the Ising ordered phase or the CDW phase, w
the V8 interaction is in favor of theS-Mott phase.

B. D-Mott –S-Mott transition: Gaussian criticality

Next we discuss the parameter regionU'V'23J'/4. In
this case the low-energy states ofH int are formed out of
(u1& j2u2& j )/A2, u3& j , and u4& j ; see Eqs.~3.5!–~3.8!. The
analysis in the preceding subsection indicates that, am
the states made ofu3& j and u4& j , only theS-Mott phase can
appear forU'V'23J'/4 due to the large transverse fieldh.
We thus keep only the two states,
24510
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u1&& j[
u1& j2u2& j

A2
, u2&& j[

u3& j1u4& j

A2
, ~3.25!

for each rung and derive an effective low-energy Ham
tonian for these states to study the competition between
S-Mott andD-Mott phases. In this basis,H int andHt'

on the

j th rung read

H int5S V'2
3

4
J' 0

0 U
D , ~3.26!

Ht'
5S 0 22t'

22t' 0 D , ~3.27!

whereu1&& j5
t(1,0) andu2&& j5

t(0,1). Since we are inter
ested in the region near the level crossing pointU5V'

23J'/4, we split the Hamiltonian as

H int1Ht'
1Ht i

5HDS
(0)1HDS8 , ~3.28!

where the unperturbed HamiltonianHDS
(0) and the perturbation

term HDS8 are given byHDS
(0)5U( j (nj ,1,↑nj ,1,↓1nj ,2,↑nj ,2,↓

1nj ,1nj ,2) and HDS8 5(V'2U)( jnj ,1nj ,21HJ'
1Ht'

1Ht i
.

Up to second order inHDS8 the effective Hamiltonian is ob-
tained asH (0)1H (1)1H (2),

H j
(0)5S U 0

0 U D , ~3.29!

H j
(1)5S 2S U2V'1

3

4
J'D 22t'

22t' 0
D , ~3.30!

H (2)5Ht i

1

E02HDS
~0! Ht i

, ~3.31!

whereH (0)5( jH j
(0) , H (1)5( jH j

(1) , andE05NU. Now we

introduce spin-1/2 operatorsS̃j
x , S̃j

y , andS̃j
z and identify the

two statesu1&& j and u2&& j with up and down states of th
pseudospinS̃j

z . The first-order termH (1) ~3.30! is then writ-
ten as

H (1)52S U2V'1
3

4
J'D(

j
S S̃j

z1
1

2D24t'(
j

S̃j
x.

~3.32!

The energy difference between theu6&& j states and the rung
hopping are represented as the longitudinal and transv
magnetic fields, respectively. The nonzero matrix eleme
of H (2) ~3.31! are given by

^^6,6uH (2)u6,6&& j52
2t i

2

U
, ~3.33!

^^6,6uH (2)u7,7&& j51
2t i

2

U
, ~3.34!
6-4
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^^6,7uH (2)u6,7&& j52
t i
2

2U
, ~3.35!

^^6,7uH (2)u7,6&& j51
t i
2

2U
, ~3.36!

where us,s8&& j[us&& j us8&& j 11 (s,s856). Thus the second
order contributionH (2) is written in terms of the pseudospi
operators as

H (2)52
t i
2

U (
j

S 3S̃j
zS̃j 11

z 1
5

4D1
2t i

2

U (
j

~S̃j
1S̃j 11

1

1S̃j
2S̃j 11

2 !1
t i
2

2U (
j

~S̃j
1S̃j 11

2 1S̃j
2S̃j 11

1 !.

~3.37!

From Eqs. ~3.32! and ~3.37! we find that, for U'V'

23J'/4, the low-energy effective HamiltonianHDS
eff 5H (1)

1H (2) is given by the anisotropic spin chain under the lo
gitudinal and transverse magnetic fields,

HDS
eff 5(

j
@JxS̃j

xS̃j 11
x 2Jyz~S̃j

yS̃j 11
y 1S̃j

zS̃j 11
z !#

2(
j

~hxS̃j
x1hzS̃j

z!, ~3.38!

where Jx55t i
2/U, Jyz53t i

2/U, hx54t' , and hz5U2V'

13J'/4. We are interested in the case where the Zeem
field in the z direction hz is weak. Whenhz50, HDS

eff is
equivalent to theXXZ model with the exchange anisotrop
D5Jx/Jyz55/3 and a uniform field in thez direction. It is
known48,49 that theXXZ model is in the massless phase go
erned by thec51 conformal field theory~CFT! with a com-
pactification radiusR (1/2Ap,R,1/Ap), if the uniform
field is in the range 0.175Jyz&hx, 8

3 Jyz. The weak perturba-
tion hz is acting on this gapless system. From the trans
mationS̃j

y,z→(21) j S̃j
y,z we see that the Zeeman fieldhz acts

as a staggered transverse field in the antiferromagneticXXZ

model. Since the scaling dimension of (21) j S̃y,z is pR2, it
is a relevant perturbation leading to the opening of a gap50

Hence we find that, whenhzÞ0, the hz term is always
relevant and generates a mass gap, while forhz50 the sys-
tem reduces to thec51 CFT or the Gaussian model. Ther
fore theD-Mott–S-Mott transition is a Gaussian U~1! criti-
cality with the central chargec51. The critical point is at
hz50, i.e.,

U2V'1
3

4
J'50. ~3.39!

The character of the gapped phases athzÞ0 is deduced by
looking at the dominanthz term. Since the gapped phas
should correspond to states minimizing the relevanthz-term,
2hz( j S̃j

z , in Eq. ~3.38!, we conclude that forhz.0 (hz

,0) the ground state is a ferromagnetically ordered s
24510
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with positive~negative! magnetization̂ S̃z&, or equivalently,
in theD-Mott (S-Mott! phase in the original Hubbard ladde
model; see Eq.~3.25!.

The phase diagram obtained from the strong-coupling p
turbation theory is shown in Fig. 1, where parameters
taken ast'5t i/2 andJ'50. The phase transition betwee
the D-Mott state and theS-Mott state is described as th
Gaussian criticality, while the phase transition between
S-Mott state and the CDW state is in the universality of t
Ising phase transition. The phase diagram for nonzeroJ' is
shown in Fig. 2. The CDW phase is realized when the c
dition ~3.22! is satisfied. We note that, within the stron
coupling expansion to second order, the CDW phase d
not exist fort i5t' .

Finally we discuss effects of the remaining interaction
HVi

, HV8 , andHpair. We find that we may ignoreHVi
and

HV8 since they yield only a constant energy shift in t
second-order perturbation theory. By contrast, the p
hopping term changes the phase boundary. SinceHpairu1&& j
50 and Hpairu2&& j5tpairu2&& j , the interaction part of the
Hamiltonian Eq. ~3.26! is modified asH int8 5H int1Hpair,
where

H int8 5S V'2
3

4
J' 0

0 U1tpair

D . ~3.40!

FIG. 1. Strong-coupling phase diagram ofHt i
1Ht'

1H int at
t'5t i/2 and J'50. The CDW–S-Mott transition is in the Ising
universality class, while theS-Mott–D-Mott transition is in the
U~1! ~Gaussian! universality class. The CDW (S-Mott! phase cor-
responds to the ordered~disordered! phase in the effective quantum
Ising model~3.19!. The S-Mott and D-Mott phases are the ferro
magnetically ordered phases of the effective spin model~3.38!.

FIG. 2. Strong-coupling phase diagram ofHt i
1Ht'

1H int at
t'5t i/2 on the plane ofV' /U andJ' /U. The CDW phase occu-
pies the parameter region where the condition~3.22! is satisfied.
6-5
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The main effect oftpair is to change the coupling constanthz

in Eq. ~3.38! to hz5U2V'13J'/41tpair. In this case, the
critical behavior is still governed by the Gaussian theory, a
the critical point appears at

U2V'1
3

4
J'1tpair50. ~3.41!

Thus, fortpair.0, the pair hopping term tends to stabilize t
D-Mott phase. As shown in the preceding subsection, it a
stabilizes the CDW phase, and the net effect of the pair h
ping is to suppress theS-Mott phase sandwiched by th
D-Mott and the CDW phases.

C. SF state as AF ordering of rung current
and SF–D-Mott transition

In this subsection, we study the SF state in the lad
system using the strong-coupling expansion. Our star
point is the pair-hopping HamiltonianHpair ~2.10!. The
eigenstates ofHpair are given by u1& j , u2& j , (u3& j

1u4& j )/A2, and (u3& j2u4& j )/A2, satisfying

Hpairu1& j5Hpairu2& j50, ~3.42!

Hpair

u3& j2u4& j

A2
52tpair

u3& j2u4& j

A2
, ~3.43!

Hpair

u3& j1u4& j

A2
51tpair

u3& j1u4& j

A2
. ~3.44!

We thus find that the pair hopping term favors the on-s
singlet state (u3& j2u4& j )/A2. Anticipating competition be-
tween the on-site singlet state and the rung-singlet s
(u1& j2u2& j )/A2 that has an energy gain of23J'/4 from the
exchange termHJ'

, we will consider in this subsection th

situation wheretpair.3J'/4 and J' is the largest energy
scale in the problem. Introducingdtpair5tpair23J'/4
(udtpairu!J'), we defineH̃0 and H̃8 by

H̃05HJ'
1Hpair

(0) , ~3.45!

H̃85HU1HV'
1Ht i

1Ht'
1Hpair8 , ~3.46!

whereHpair
(0) and Hpair8 are obtained fromHpair by replacing

tpair with 3J'/4 and dtpair, respectively. The unperturbe
HamiltonianH̃0 has eigenstates,

H̃0

u1& j2u2& j

A2
52

3

4
J'

u1& j2u2& j

A2
, ~3.47!

H̃0

u3& j2u4& j

A2
52

3

4
J'

u3& j2u4& j

A2
, ~3.48!

H̃0

u1& j1u2& j

A2
51

1

4
J'

u1& j1u2& j

A2
, ~3.49!
24510
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H̃0

u3& j1u4& j

A2
51

3

4
J'

u3& j1u4& j

A2
. ~3.50!

We will focus on the degenerate low-energy states (u1& j

2u2& j )/A2 and (u3& j2u4& j )/A2 and work with the follow-
ing states that break time reversal symmetry,

u↑& j[
1

2
@~ u1& j2u2& j )1 i ~ u3& j2u4& j )], ~3.51!

u↓& j[
1

2
@~ u1& j2u2& j )2 i ~ u3& j2u4& j )]. ~3.52!

We regard them as states with finite current running on
j th rung~Fig. 3!, as they are eigenstates of the ‘‘rung-curre
operator’’ defined by

Ĵ j[ i(
s

~cj ,1,s
† cj ,2,s2cj ,2,s

† cj ,1,s! ~3.53!

with eigenvalues62,

Ĵ j u↑& j512u↑& j , Ĵ j u↓& j522u↓& j . ~3.54!

We note thatĴ is not a true current operator forH̃0 due to the
pair hopping term.

The SF state has a long-range alternating order ofu↑& and
u↓& or, equivalently, of currents circulating around ea
plaquette~Fig. 4!.38 To verify the existence of the SF phas
we derive a low-energy effective theory, in perturbation e
pansion in H8, for the low-energy statesu↑& j and u↓& j ,
which we regard as up and down states of a pseudospin
this picture, the antiferromagnetic ordering of the pseu
spins corresponds to the staggered flux phase. The low
order contribution inH̃8 comes from the nonvanishing ma
trix elements in the subspace ofu↑& j and u↓& j ,

^↑uH̃8u↑& j5^↓uH̃8u↓& j5
1

2
~U1V'2dtpair!, ~3.55!

^↑uH̃8u↓& j5^↓uH̃8u↑& j52
1

2
~U2V'2dtpair!,

~3.56!

from which we obtain the first-order effective Hamiltonian

FIG. 3. Schematic illustration of the statesu↑& and u↓&. The
arrow denotes a state with a finite current running in the arro
direction.

FIG. 4. Staggered flux state described as a Ne´el ordered state of
the pseudospin states,u↑& and u↓&.
6-6
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HSF
(1)52

1

2
~U2V'2dtpair!(

j
s̃ j

x1const, ~3.57!

where s̃ j
a are the Pauli matrices (a5x,y,z). The lowest-

order contributions int i and t' come from the second-orde
processes,

HSF
(2a)5Ht i

1

Ẽ02H̃0

Ht i
, ~3.58!

HSF
(2b)5Ht'

1

Ẽ02H̃0

Ht'
, ~3.59!

whereẼ0523J'N/4 with N being the number of rungs in
the system. The nonzero matrix elements ofHSF

(2a) are given
by

^↑,↓uHSF
(2a)u↑,↓& j5^↓,↑uHSF

(2a)u↓,↑& j52
8t i

2

3J'

,

~3.60!

where um,n& j[um& j un& j 11 (m,n5↑,↓). We can thus write
HSF

(2a) as

HSF
(2a)5

4t i
2

3J'
(

j
~ s̃ j

zs̃ j 11
z 21!. ~3.61!

On the other hand, the nonzero matrix elements ofHSF
(2b) are

^↑uHSF
(2b)u↑& j5^↓uHSF

(2b)u↓& j5^↑uHSF
(2b)u↓& j

5^↓uHSF
(2b)u↑& j52

4t'
2

3J'

, ~3.62!

from which we obtain

HSF
(2b)52

4t'
2

3J'
(

j
s̃ j

x1const. ~3.63!

From Eqs.~3.57!, ~3.61!, and ~3.63!, we find that the total
effective Hamiltonian is the Ising chain in a transverse fie

HSF
eff5(

j
~K̃s̃ j

zs̃ j 11
z 2h̃s̃ j

x!, ~3.64!

where the antiferromagnetic exchange couplingK̃ and the
magnitude of the transverse fieldh̃ are given by

K̃5
4t i

2

3J'

, h̃5
1

2 S U2V'2dtpair1
8t'

2

3J'
D . ~3.65!

This model exhibits an Ising criticality atK̃5uh̃u: the Néel
ordered phase (K̃.uh̃u) corresponds to the SF phase, wh
for K̃,uh̃u the system is disordered. The disordered grou
state forh̃.K̃.0 is continuously connected with the groun
state ath̃→`, i.e., the eigenstate ofs̃x with eigenvalue11.
This state corresponds to theD-Mott state in the original
Hubbard ladder, since
24510
,

d

us̃x511& j5
1

A2
~ u↑& j1u↓& j )

5
1

A2
~ u1& j2u2& j )→uD-Mott&. ~3.66!

Hence we conclude that the Ising disordered phase co
sponds to theD-Mott phase.

It is interesting to rewrite the transverse magnetic fieldh̃
as

h̃5
1

2 S U2V'1
3

4
J'2tpair1

8t'
2

3J'
D . ~3.67!

The SF phase is realized when the inequality

2
16t2

3J'

,U2V'1
3

4
J'2tpair,0 ~3.68!

is satisfied~assumingt i5t'5t), where we have to keep in
mind the assumption thattpair'

3
4 J' .

IV. WEAK-COUPLING APPROACH

In this section, we study the phase diagram of the gen
alized Hubbard ladder, treating the two-particle interactio
as weak perturbations. To diagonalize the single-part
hopping Hamiltonian, we define the Fourier transfor
cj ,s(k'50)5(cj ,1,s1cj ,2,s)/A2, cj ,s(k'5p)5(cj ,1,s

2cj ,2,s)/A2, and cs(k)5( je
2 ik jcj ,s(k')/AN, where k

5(k,k') and the lattice spacinga is set equal to 1. The
kinetic-energy term then becomes

H0[Ht i
1Ht'

5(
k,s

«~k!cs
†~k!cs~k!, ~4.1!

where «(k)522t icosk2t'cosk' . For t',2t i , both the
bonding (k'50) and antibonding (k'5p) energy bands are
partially filled, and their Fermi points are located atk5
6kF,k'

with kF,05p/21d and kF,p5p/22d, where d
[sin21(t'/2t i). At these Fermi points the Fermi velocit
takes the common valuevF52t i@12(t'/2t i)

2#1/2. In the fol-
lowing analysis we restrict ourselves to the isotropic hopp
caset i5t'([t).

A. Order parameters

Let us first define order parameters characterizing insu
ing phases studied in this section. We consider the CDW,
PDW, and FDW states as possible density-wave orde
states. Their order parameters are written as

OA5
1

2N (
k,s

f A~k!cs
†~k!cs~k1Q![

1

N (
j

~21! jOA~ j !,

~4.2!

whereQ5(p,p) andA5CDW, SF, PDW, FDW. The form
factor f A(k) are given by f CDW51, f SF5cosk2cosk' ,
f PDW5sink, and f FDW5sinkcosk' . Order parameters fo
the spin density waves are not considered, since their co
6-7
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lations decay exponentially in the bulk of the phase diagr
of our model. It is clear that the CDW order parameter,

OCDW5
1

2
~nj ,12nj ,2!, ~4.3!

has nonvanishing average in the CDW states~3.11a! and
~3.11b!. The order parameter of the SF state is

OSF5
1

4i
ĴP, j , ~4.4!

where the operatorĴP, j denotes a current circulating aroun
a plaquette,

ĴP, j[ i(
s

~cj ,1,s
† cj ,2,s1cj ,2,s

† cj 11,2,s1cj 11,2,s
† cj 11,1,s

1cj 11,1,s
† cj ,1,s2H.c.!. ~4.5!

The PDW phase is a Peierls dimerized state along the
direction with interleg phase differencep, characterized by
the order parameter,

OPDW5
i

4 (
s

~cj 11,1,s
† cj ,1,s2cj 11,2,s

† cj ,2,s1H.c.!.

~4.6!

The FDW state is a different kind of staggered current sta
Its order parameter is

OFDW5
1

4
~ Ĵ1, j2 Ĵ2, j !, ~4.7!

where the operatorsĴ6, j represent currents flowing along th
diagonal directions of plaquettes,

Ĵ1, j5 i(
s

~cj 11,2,s
† cj ,1,s2cj ,1,s

† cj 11,2,s!, ~4.8!

Ĵ2, j5 i(
s

~cj 11,1,s
† cj ,2,s2cj ,2,s

† cj 11,1,s!. ~4.9!

The long-range order of staggered currents flowing alo
diagonals of the plaquettes has been examined in a spin
ladder system.33

We also introduce order parameters of thes-wave and
d-wave superconductivity,

OA5
1

2N (
k

f A~k!c↑~k!c↓~2k!, ~4.10!

where A5SCs and SCd, and f SCs51 and f SCd5cosk
2cosk' .

B. Bosonization

We bosonize the Hubbard ladder Hamiltonian in this s
section. Following the standard bosonization scheme, we
earize the energy bands around the Fermi points. The lin
ized kinetic energy is given by
24510
g

s.

g
ss

-
n-
r-

H05 (
k,p,s

vF~pk2kF,k'
!cp,s

† ~k!cp,s~k!, ~4.11!

where the indexp51/2 denotes the right/left-moving elec
tron. We introduce field operators of the right- and left-goi
electrons defined by

cp,s,1~x!5
1

AL
(

k
eikxcp,s~k,0!, ~4.12a!

cp,s,2~x!5
1

AL
(

k
eikxcp,s~k,p!, ~4.12b!

whereL is the length of the system:L5Na. The linearized
kinetic energy now reads

H05vFE dx (
p,s,z

cp,s,z
† S 2 ip

d

dx
2kF,k'

Dcp,s,z ,

~4.13!

wherek'50 (p) for z51 (2).
The interactions among low-energy excitations near

Fermi points, HI5H int1HVi
1HV81Hpair, are written as

HI5*dxHI , where

HI5
1

4 (
p,s

( 8
z i56

@g1i
eēcp,s,z1

† c2p,s,z2

† cp,s,z4
c2p,s,z3

1g1'
eē cp,s,z1

† c2p,2s,z2

† cp,2s,z4
c2p,s,z3

1g2i
eēcp,s,z1

† c2p,s,z2

† c2p,s,z4
cp,s,z3

1g2'
eē cp,s,z1

† c2p,2s,z2

† c2p,2s,z4
cp,s,z3

1g3i
eēcp,s,z1

† cp,s,z2

† c2p,s,z4
c2p,s,z3

1g3'
eē cp,s,z1

† cp,2s,z2

† c2p,2s,z4
c2p,s,z3

#. ~4.14!

Here e5z1z3 and ē5z1z2. The primed summation ove
z i ( i 51, . . . ,4) is taken under the conditionz1z2z3z45
11, which comes from the momentum conservation con

tion in the transverse direction. The coupling constantsgi i
eē

andgi'
eē are related to the original coupling constants in t

Hamiltonian~2.1!,

gi i
eē

a
5 l eV'1

l e

4
J'1mi ,eVi1 l emi ,eV8, ~4.15!

gi'
eē

a
5U1 l eV'1

l e,ē

4
J'1 l ētpair1mi ,eVi1 l emi ,eV8

~4.16!

with the numerical factors defined byl 6561, l 6,1573,
l 6,2561. m1,15m3,1521, m1,25m3,2522, m2,1
512, m2,2511. We have neglected the so-calledg4 terms
describing the forward scattering processes within the sa
branch~left-/right-mover!, since including these terms woul
6-8
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only cause nonuniversal quantitative differences to
ground-state phase diagram. In Eqs.~4.15! and ~4.16!, we
have estimated the coupling constants in lowest order in
interaction of the Hubbard model. The higher-order con
butions can play a crucial role of changing the topology o
phase diagram, if different kinds of quantum criticalities a
cidentally occur simultaneously when lowest-order coupl
constants are used, as is the case in the 1D extended Hub
model at half filling.51 This is not the case in the ladde
model of our interest, and we will use the lowest-order for
Eqs.~4.15! and ~4.16!.

We apply the Abelian bosonization method52–54 and re-
write the kinetic energy in terms of bosonic fields:H0
5*dxH0, where

H05
vF

2p (
n5r,s

(
r 56

F ~pPnr !
21S dfnr

dx D 2G . ~4.17!

Here the sufficesr ands refer to the charge and spin secto
and r 56 refer to the even and odd sectors. The opera
Pnr(x) is a canonically conjugate variable tofnr(x) and
satisfies@fnr(x),Pn8r 8(x8)#5 id(x2x8)dn,n8d r ,r 8 . We then
introduce chiral bosonic fields

fnr
6 ~x![

1

2 Ffnr~x!7pE
2`

x

dx8Pnr~x8!G , ~4.18!

which satisfy the commutation relation
@fnr

6 (x),fn8r 8
6 (x8)#56 i (p/4)sgn(x2x8)dn,n8d r ,r 8 and

@fnr
1 (x),fn8r 8

2 (x8)#5 i (p/4)dn,n8d r ,r 8 . The right-moving
and left-moving chiral fieldsf1(x,t) andf2(x,t) are func-
tions oft2 i (x/vF) andt1 i (x/vF), respectively, wheret is
imaginary time. The kinetic-energy density can also be w
ten as

H05
vF

p (
p56

(
n5r,s

(
r 56

S dfnr
p

dx D 2

. ~4.19!

We also introduce the fieldunr defined byunr5fnr
1 2fnr

2 .
The u field satisfies the commutation relatio
th

24510
e

e
-
a
-
g
ard

,

r

-

@fnr(x),un8r 8(x8)#52 ipQ(2x1x8)d r ,r 8 , whereQ(x) is
the Heaviside step function.

To express the electron fields in terms of the bosons,
define a new set of chiral bosonic fields

wp,s,z5fr1
p 1zfr2

p 1sfs1
p 1szfs2

p , ~4.20!

wherep56, s56, andz56. The chiral bosons obey th
commutation relations@wp,s,z(x),wp,s8,z8(x8)# 5 ippsgn(x
2x8)ds,s8dz,z8 and @w1,s,z ,w2,s8,z8#5 ipds,s8dz,z8 .

The field operators of the right- and left-moving electro
are then written as

cp,s,z5
hs,z

A2pa
exp~ ipkF,k'

x1 ipwp,s,z!, ~4.21!

wheres51 for s5↑ ands52 for s5↓. The Klein factors
hs,z , which satisfy$hs,z ,hs8,z8%52ds,s8dz,z8 , are intro-
duced in order to retain the correct anticommutation relat
of the field operators between different spin and the ba
index. From Eq.~4.21! the density operator is given by

rp,s,z~x!5:cp,s,z
† cp,s,z :5

1

2p

d

dx
wp,s,z~x!. ~4.22!

The Hamiltonian and the order parameters contain o
products of the Klein factors such as17,38 G
[h↑,1h↓,1h↑,2h↓,2 , hs[hs,1hs,2 , and hz8[h↑,zh↓,z ,
which satisfy G52h↑h↓51h18 h28 . Since G2511, h2

5(h8)2521, the eigenvalues areG561, h56 i , andh8
56 i . We will adopt the following convention:G511, hs

5 i , hz85 i z.
In the bosonized Hamiltonian the phase fieldfr2 appears

in the form cos(2fr214dx) with d5sin21(t'/2t i). Since
t' (5t i) is not small, we can safely assume that thed is
relevant and the electrons are not confined in the legs.22,26,55

In this case the cos(2fr214dx) terms become irrelevant. W
thus discard them as well as other terms with higher-or
scaling dimensions. The interaction term Eq.~4.14! reduces
to
HI5 (
n5r,s

(
r 56

gnr

2p2
~]xfnr

1 !~]xfnr
2 !1

1

2p2a2
@gc1,c2cos 2fr1cos 2ur21gc1,s1cos 2fr1cos 2fs1

1gc1,s2cos 2fr1cos 2fs21gc1,s2cos 2fr1cos 2us21gc2,s1cos 2ur2cos 2fs11gc2,s2cos 2ur2cos 2fs2

1gc2,s2cos 2ur2cos 2us21gs1,s2cos 2fs1cos 2fs21gs1,s2cos 2fs1cos 2us2#, ~4.23!
where the coupling constants for the bilinear terms of
density operators are given by

gr15 (
e56

~g2i
1e1g2'

1e2g1i
ee!, ~4.24a!
e
gr25 (

e56
e~g2i

1e1g2'
1e2g1i

ee!, ~4.24b!

gs15 (
e56

~g2i
1e2g2'

1e2g1i
ee!, ~4.24c!
6-9
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gs25 (
e56

e~g2i
1e2g2'

1e2g1i
ee!, ~4.24d!

and the coupling constants for the nonlinear terms are g
by

gc1,c252g3'
21 , ~4.25a!

gc1,s152g3i
121g3i

22 , ~4.25b!

gc1,s252g3'
12 , ~4.25c!

gc1,s251g3'
22 , ~4.25d!

gc2,s152g1'
21 , ~4.25e!

gc2,s252g2'
21 , ~4.25f!

gc2,s251g2i
212g1i

21 , ~4.25g!

gs1,s251g1'
11 , ~4.25h!

gs1,s251g1'
22 . ~4.25i!

We note that the umklapp scattering~theg3 terms! generates
cosine potentials that lock thefr1 field.

The coupling constants in Eq.~4.23! are not independen
parameters. Imposing the global spin-rotation SU~2! symme-
try on the interaction terms Eq.~4.14!, we find that the rela-
tions

g2i
112g2'

112g1i
111g1'

1150, ~4.26a!

g2i
122g2'

122g1i
221g1'

2250, ~4.26b!

g2i
222g2'

222g1i
121g1'

1250, ~4.26c!

g2i
212g2'

212g1i
211g1'

2150, ~4.26d!

g3i
122g3i

222g3'
121g3'

2250, ~4.26e!

must hold. In terms of the coupling constants in Eq.~4.23!,
these relations read

gs11gs212gs1,s250, ~4.27a!

gs12gs212gs1,s250, ~4.27b!

gc2,s12gc2,s22gc2,s250, ~4.27c!

gc1,s12gc1,s22gc1,s250. ~4.27d!

We have ignored Eq.~4.26c! which is the constraint on the
irrelevant cosine term}cos(2fr214dx). Since the SU~2!
symmetry of the original Hubbard Hamiltonian~2.1! cannot
be broken, the coupling constants in Eq.~4.23! must satisfy
Eqs.~4.27a!–~4.27d! in the course of renormalization.

Finally, the order parameters are written in terms of
phase fields,
24510
n
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OCDW}cosfr1sinur2cosfs1cosus2

2sinfr1cosur2sinfs1sinus2 , ~4.28a!

OSF}cosfr1cosur2cosfs1cosus2

1sinfr1sinur2sinfs1sinus2 , ~4.28b!

OPDW}cosfr1cosur2sinfs1sinus2

1sinfr1sinur2cosfs1cosus2 , ~4.28c!

OFDW}cosfr1sinur2sinfs1sinus2

2sinfr1cosur2cosfs1cosus2 . ~4.28d!

OSCd}eiur1cosur2cosfs1cosfs2

2 ieiur1sinur2sinfs1sinfs2 , ~4.28e!

OSCs}eiur1cosur2sinfs1sinfs2

2 ieiur1sinur2cosfs1cosfs2 . ~4.28f!

C. Critical properties in the charge and spin modes

In this subsection, we study the ground-state phase
gram through qualitative analysis of the bosonized Ham
tonian~4.23!. First we classify the phases that can appea
half filling, and then discuss~a! the Gaussian criticality in the
charge sector and~b! the Ising and SU(2)2 criticalities in the
spin sector.

1. Classification of phases
In general, all the modes become massive in the exten

Hubbard ladder at half filling. This means that in th
bosonized Hamiltonian~4.23! cosine terms are relevant a
low energies and that the bosonic phase fields are locke
some fixed values~integer multiples ofp/2) where the rel-
evant cosine potentials are minimized.25 The locked phase
fields can be treated as classical variables, and the ave
value of an order parameter is found by substituting
locked phases into Eq.~4.28!. A nonvanishing order param
eter signals which phase is realized. We can reverse the l
and find the configuration of the locked phase fields for e
insulating phase by imposing its order parameter to have
maximum modulus. This is what we do in the followin
analysis.

In the SF, CDW, PDW, and FDW phases the ground st
breaks aZ2 symmetry. Therefore the order parameter
these phases can have a nonvanishing value at zero tem
ture even in one dimension. In each phase the bosonic fi
fr1 , ur2 , fs1 , andus2 are pinned at a point where th
modulus of the corresponding order parameter is maximiz
From Eq. ~4.28! we can easily find at which values th
bosonic fields are locked for the four phases. The resu
summarized in Table I.

Once the configuration of locked phase fields is und
stood for the SF and the CDW phases, we can also find
for the D-Mott and theS-Mott phases using the following
arguments. On the one hand, we know from the stro
6-10
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TABLE I. Pattern of phase locking. The * symbol indicates that a bosonic field is not locked.I is are
integers.

Phase ^fr1& ^ur2& ^fs1& ^fs2& ^us2&

CDW p

2
I 01pI 1

p

2
(I 011)1pI 2

p

2
I 01pI 3

* p

2
I 01pI 4

SF p

2
I 01pI 1

p

2
I 01pI 2

p

2
I 01pI 3

* p

2
I 01pI 4

PDW p

2
(I 011)1pI 1

p

2
(I 011)1pI 2

p

2
I 01pI 3

* p

2
I 01pI 4

FDW p

2
(I 011)1pI 1

p

2
I 01pI 2

p

2
I 01pI 3

* p

2
I 01pI 4

S-Mott p

2
I 01pI 1

p

2
(I 011)1pI 2

p

2
I 01pI 3

p

2
I 01pI 4

*

D-Mott p

2
I 01pI 1

p

2
I 01pI 2

p

2
I 01pI 3

p

2
I 01pI 4

*

S8-Mott p

2
(I 011)1pI 1

p

2
(I 011)1pI 2

p

2
I 01pI 3

p

2
I 01pI 4

*

D8-Mott p

2
(I 011)1pI 1

p

2
I 01pI 2

p

2
I 01pI 3

p

2
I 01pI 4

*
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coupling analysis that these two insulating phases are I
disordered phases of the SF and the CDW phases, res
tively, where theus2 field is locked. On the other hand, th
Hamiltonian~4.23! has some cosine potentials that can lo
the fs2 field. Since thefs2 field is a conjugate field to
us2 , these two fields cannot be locked at the same time
fact, it is known17 that an Ising phase transition must b
associated with switching of phase locking from one boso
field to its conjugate field. We can thus obtain theD-Mott
and theS-Mott phases from the SF and the CDW phases
exchanging the role of thefs2 field and theus2 field, ar-
riving at the phase locking pattern shown in Table I. A br
comment on the connection to the superconducting state
in order here. If we ignore ther1 mode for the moment, the
order parameter of thed-wave (s-wave! superconductivity
takes nonzero amplitude when the locked phases (^ur2&,
^fs1&, and^fs2&) of the D-Mott (S-Mott! phase are sub
stituted intoOSCd(s) . This is consistent with the previou
results1,11–18,20,22that, upon doping, theD-Mott state turns
into thed-wave superconducting state in thet-J or Hubbard
ladder. The effect of carrier doping is to make the umkla
term irrelevant and to leave thefr1 field unlocked. The
operatoreiur1 representing the superconducting correlat
then becomes quasi-long-range ordered.

It is possible to construct a disorder parameter that ch
acterizes the Ising transitions and that has a nonvanis
expectation value in theD-Mott and theS-Mott phases. A
candidate operator for the disorder parameter is

m j5expS i
p

2 (
i 51

j

Xi D ,

Xi5ci ,1,↑
† ci ,2,↑1ci ,2,↑

† ci ,1,↑2ci ,1,↓
† ci ,2,↓2ci ,2,↓

† ci ,1,↓ .
~4.29!

In the weak-coupling limit we take the continuum limit an
express the operator~4.29! in terms of the bosonic fields. W
then obtain

m j5exp@ ifs2~ j !#. ~4.30!
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Indeed, the disorder parameterm j takes a nonzero value in
the D-Mott and theS-Mott phases where thefs2 field is
locked. In the strong-coupling limit studied in Sec. III, w
may impose the condition thatni ,11ni ,252 and Si ,1

z 1Si ,2
z

50 on every rung. Under this condition we find th
exp@i(p/2)Xi #512 1

2 Xi
2 andm j reduces to

m j5)
i 51

j

@~ci ,1,↑
† ci ,1,↓

† ci ,2,↓ci ,2,↑1H.c.!2~Si ,1
1 Si ,2

2 1Si ,1
2 Si ,2

1 !#,

~4.31!

which acts on the pseudospin states defined in Secs. III A
III C as m j u1& i5u2& i andm j u↑& i5u↓& i for i< j . This means
that we can writem j5) i

jt i
x andm j5) i

j s̃ i
x near the CDW–

S-Mott and the SF–D-Mott transitions, respectively. The
are indeed the disorder parameter of the quantum Is
model54 that describes the CDW–S-Mott and the SF–
D-Mott Ising transitions.

Since the PDW and the FDW phases breakZ2 symmetry,
we can naturally expect that these two phases should
have their own Ising disordered phases. We shall call th
S8-Mott andD8-Mott phases for the reason that will becom
clear below. The configuration of phase locking in t
S8-Mott and D8-Mott phases can be obtained from that
the PDW and FDW phases by exchanging^fs2& and
^us2&; see Table I. We see immediately that the pha
locking pattern of theS8-Mott (D8-Mott! state differs from
that of theS-Mott (D-Mott! only in the locking of thefr1

field shifted byp/2. This implies that the phase transitio
betweenS8-Mott (D8-Mott! state and theS-Mott (D-Mott!
state is a Gaussian transition in thefr1 mode, and that the
S8-Mott (D8-Mott! state should evolve into thes-wave
(d-wave! superconducting state upon carrier doping as in
S-Mott (D-Mott! state.

The nature of theS8-Mott state can be deduced throug
its similarity to theS-Mott state~3.10!. We first note that, as
mentioned above, theS8-Mott state is related to theS-Mott
state by ap/2 shift of thefr1 mode, which is equivalent to
translation by half unit cell, in such a way that the PDW sta
6-11
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is related to the CDW state. This suggests that the cente
mass of a singlet in theS8-Mott state should be located at
center of a plaquette. Noting that coskcosk' is positive
(s-wave like! at all the Fermi points,k5„6(p/21d),0… and
„6(p/2 2d),p…, of the ladder model, we speculate that t
singlet-pair wave function~or the symmetry of a Cooper pa
in thes-wave superconducting state realized upon doping! is
of the form coskcosk'c↑

†(k)c↓
†(2k) in momentum space. In

real space this corresponds to a linear combination of
singlets formed between diagonal sites of a plaquette. F
these considerations we come to propose the following w
function as a representative of theS8-Mott state:

uS8-Mott&5)
j

1

2
~cj ,1,↑

† cj 11,2,↓
† 2cj ,1,↓

† cj 11,2,↑
† 1cj ,2,↑

† cj 11,1,↓
†

2cj ,2,↓
† cj 11,1,↑

† !u0&. ~4.32!

This state mostly consists of singlets along the diagonal
rection of plaquettes but also contains resonating sing
that are formed by two spins on different legs that can
separated far away.

TheD8-Mott state consists of singlets that would turn in
d-wave Cooper pairs upon doping. Since the singlet-p
wave function in theD-Mott state is cosk' in momentum
space, we expect that the singlet pairs in theD8-Mott state
should be of the form cosk. In real space this corresponds
a linear combination of singlets formed in the leg directio
This leads to the following wave function:

uD8-Mott&5)
j

F (
l 51,2

cj ,l ,↑
† cj 11,l ,↓

† 2cj ,l ,↓
† cj 11,l ,↑

†

2 G u0&

~4.33!

as a representative of theD8-Mott state. It is easy to see b
expanding the product that this state is a resonating vale
bond state in which some singlets can be formed out of
spins that are separated arbitrary far away along a leg. H
ever, amplitude of the states having such a long-distance
glet is exponentially suppressed with the distance betw
the two spins.

It is interesting to note that the wave function~4.32! can
be constructed from theS-Mott wave function~3.10! by re-
placingcj ,l ,s

† with cj 11,l̄ ,s
† , wherel̄ 52 ~1! for l 51 ~2! such

that cj ,l ,↑
† cj ,l ,↓

† →(cj 11,l̄ ,↑
†

cj ,l ,↓
† 1cj ,l ,↑

† cj 11,l̄ ,↓
† )/A2. This rule

can also be used to construct the wave function of
D8-Mott state~4.33! from that of theD-Mott state~3.9!.

Since thefs2 field is locked in theS8-Mott andD8-Mott
phases, the operator~4.30! also serves as the disorder para
eter in the PDW–S8-Mott and the FDW–D8-Mott transitions
of the Ising universality class. In fact, the disorder parame
~4.30! takes a nonzero value in any of the Mott phases
vanishes otherwise.

The various insulating phases and phase transit
among them are schematically shown in Fig. 5. In this fig
phase transitions between a phase in the left column
another in the right column, such as transitions between
Mott phases, are thec51 Gaussian criticality. It would be
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interesting to find an order parameter that can distingu
different Mott phases. The transitions in the vertical directi
within a column are, if continuous, either thec51/2 Ising
criticality or thec53/2 SU(2)2 criticality. The latter may be
replaced by a first-order transition. We will discuss the
transitions in more detail in the following subsubsections

A brief comment on the related earlier works is in ord
here. The top four phases~SF, CDW,S-Mott, andD-Mott! in
Fig. 5 and the Gaussian and Ising transitions between th
phases have been found in the weak-coupling RG analys
the SO~5! symmetric ladder model by Lin, Balents, an
Fisher.25 The misidentification of the SF phase with the PD
phase made in this work has been corrected later
Fjærestad and Marston.38 We have pointed out the existenc
of four more phases in the generalized Hubbard ladder mo
and determined the universality class of the phase transit
between all the eight phases.

2. Gaussian criticality in the charge degrees of freedom

First we discuss the Gaussian criticality when all t
modes except the relative charge mode (r2) become mas-
sive at some higher energy scale. This situation is relev
for the horizontal transitions in Fig. 5: SF–CDW,D-Mott–
S-Mott, PDW–FDW, andS8-Mott–D8-Mott transitions. We
take the D-Mott–S-Mott phase transition as an exampl
Without loss of generality we may assume that the ph
variables are locked at^fr1&5^fs1&5^fs2&50 mod p.
Below the energy scale at which the three fields are lock
we can replace the cosine terms in the Hamiltonian

FIG. 5. Schematic illustration of the phase diagram under
global SU~2! symmetry. The phase transitions indicated by the so
~dashed! arrows are thec51 (c51/2) criticality. The phase transi
tions indicated by the double arrows are either thec53/2 SU(2)2
criticality or first order; see discussion in Sec. IV C 3 and Fig. 1
The diagonal solid arrows denote the Gaussian transitions in
fr1 mode.
6-12
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~4.23! by their average: cos 2fr1→cr1[^cos 2fr1&,
cos 2fs1→cs1[^cos 2fs1&, and cos 2fs2→cs2

[^cos 2fs2&, wherecr1 , cs1 , and cs2 are nonuniversa
positive constants that depend on bare interactions. We
have the effective theory

Hr25
vF

p
@~]xfr2

1 !21~]xfr2
2 !2#1

gr2

2p2
~]xfr2

1 !~]xfr2
2 !

1
gc2

2p2a2
cos 2ur2 , ~4.34!

where the coupling constantgc2 is given by

gc25cr1gc1,c21cs1gc2,s11cs2gc2,s2 . ~4.35!

Since the canonical dimension of cos 2ur2 is 1, thegc2 term
is a relevant perturbation and hence the system always
comes massive except whengc250. If gc2.0, then the
phase field is locked aŝur2&5p/2 mod p, which corre-
sponds to theS-Mott phase. Whengc2,0, the phase field is
locked aŝ ur2&50 modp, and the ground state in this cas
turns out to be theD-Mott state. The Gaussian criticalit
with the central chargec51 is realized atgc250. In terms
of the original Hubbard interactions the coupling const
gc2 is given by

gc2

a
52CS U2V'1

3

4
J'1tpairD1C8~Vi2V8!,

~4.36!

whereC[cr11cs11cs2 andC8[2cr112cs12cs2 are
nonuniversalpositiveconstants. Thus, theD-Mott (S-Mott!
state appears whenU2V'13J'/41tpair2C8(Vi2V8)/C
.0 (,0), and the Gaussian criticality shows up at

U2V'1
3

4
J'1tpair2

C8

C
~Vi2V8!50, ~4.37!

which is the same as the phase boundary obtained from
strong-coupling analysis, Eq.~3.41!, for Vi5V850.

The SF–CDW phase transition can be analyzed in a s
lar way. We consider a situation where the phase varia
us2 , instead offs2 , is locked at̂ us2&50 modp. In this
case we can replace the cosine factor in the Hamiltonia
cos 2us2→cs2[^cos 2us2&.0. The effective theory is given
by Eq. ~4.34! with the coupling constantgc25cr1gc1,c2

1cs1gc2,s11cs2gc2,s2 . The SF~CDW! state is realized
for gc2,0 (.0), where the phaseur2 is locked at 0 (p/2)
mod p. In terms of the original Hubbard interactions, th
coupling constantgc2 is given by Eq.~4.36! with C5cr1

1cs1.0 andC852cr112cs113cs2 . We thus conclude
that the SF~CDW! state appears forU2V'1 3

4 J'1tpair
2C8(Vi2V8)/C.0 (,0), and the condition for the Gauss
ian criticality is given by Eq.~4.37!.

The other transitions of thec51 Gaussian criticality can
also be analyzed in the same manner. We note that in a
tion to the Gaussian criticality in ther2 mode discussed
above, there is another Gaussian criticality in ther1 mode
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that governs the SF–FDW, CDW–PDW,D-Mott–D8-Mott,
andS-Mott–S8-Mott transitions.

3. Z2ÃO„3… symmetry in the spin degrees of freedom
and the Ising and SU„2…2 criticality

Here we focus on the case where the masses of the
charge modes (r6) are larger than those of the spin mod
(s6). Below the mass scale of the charge modes we m
regard that thefr1 and ur2 fields are locked by cosine
potentials. The effective low-energy theory is obtained fro
Eq. ~4.23! by replacing cos 2fr1

and cos 2ur2 by their aver-

age valuescr1[^cos 2fr1& andcr2[^cos 2ur2&,

Hs5
vF

p
@~]fs1

1 !21~]fs1
2 !21~]fs2

1 !21~]fs2
2 !2#

1
gs1

2p2
~]fs1

1 !~]fs1
2 !1

gs1

2p2a2
cos 2fs1

1
gs2

2p2
~]fs2

1 !~]fs2
2 !1

gs2

2p2a2
cos 2fs2

1
gs2

2p2a2
cos 2us21

gs1,s2

2p2a2
cos 2fs1cos 2fs2

1
gs1,s2

2p2a2
cos 2fs1cos 2us2 , ~4.38!

where the coupling constantsgs1 , gs2 , andgs2 are given
by

gs1[cr1gc1,s11cr2gc2,s1 , ~4.39a!

gs2[cr1gc1,s21cr2gc2,s2 , ~4.39b!

gs2[cr1gc1,s21cr2gc2,s2 . ~4.39c!

The coupling constants in Eq.~4.38! are not completely free
parameters, since the system has the spin-rotational S~2!
symmetry. From Eqs.~4.27! and ~4.39!, the constraints on
the coupling constants read

gs12gs22gs250, ~4.40a!

gs1,s252
1

2
~gs11gs2!, ~4.40b!

gs1,s252
1

2
~gs12gs2!. ~4.40c!

To appreciate the SU~2! symmetry in the effective theory
~4.38!, we fermionize it by introducing spinless fermio
fields cp,r (p56 and r 56),

c6,r~x!5
h r

A2pa
exp@6 i2fsr

6 ~x!#, ~4.41!

where the indexr 51(2) refers to the total~relative! de-
grees of freedom of spin mode, and$h r ,h r 8%52d r ,r 8 . The
6-13
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density operators are given by :cp,6
† cp,6 :5]xfs6

p /p. We
then introduce the Majorana fermionsjn (n51;4) by

cp,15
1

A2
~jp

11 i jp
2!, cp,25

1

A2
~jp

41 i jp
3!. ~4.42!

These fields satisfy the anticommutation relatio

$jp
n(x),jp8

n8(x8)%5d(x2x8)dp,p8dn,n8 . With the help of the
SU~2! constraints~4.40!, we rewrite the effective Hamil-
tonian in terms of the Majorana fermions,

Hs52 i
vF

2
~j1•]xj12j2•]xj2!2 imtj1•j2

2 i
vF

2
~j1

4 ]xj1
4 2j2

4 ]xj2
4 !2 imsj1

4 j2
4

1
gs1

4
~j1•j2!21

gs2

2
~j1•j2!j1

4 j2
4 , ~4.43!

where we have introducedjp5(jp
1 ,jp

2 ,jp
3) and

mt[2
gs1

2pa
, ms[2

gs22gs2

2pa
. ~4.44!

Thus the effective theory for the spin sector becomes O
3Z2 symmetric, i.e., the four Majorana fermions a
grouped into a singletj4 with massms and a tripletj with
massmt . We note that the O(3)3Z2 symmetry also appear
in the low-energy effective theory of the isotropic Heise
berg ladder.24,56 It is known that, whenms ,mtÞ0, the quar-
tic marginal terms lead to mass renormalization,ms→m̃s and
mt→m̃t , where24,54

m̃t5mt1
gs1

2pvF
mtln

L

umtu
1

gs2

4pvF
msln

L

umsu
, ~4.45!

m̃s5ms1
3gs2

4pvF
mtln

L

umtu
. ~4.46!

Here L is a high-energy cutoff. The effective theory the
reduces to

Hs52 i
vF

2
~j1•]xj12j2•]xj2!2 im̃tj1•j2

2 i
vF

2
~j1

4 ]xj1
4 2j2

4 ]xj2
4 !2 im̃sj1

4 j2
4 . ~4.47!

It immediately follows from Eq.~4.47! that the Ising critical-
ity with c51/2 emerges asm̃s→0. On the other hand, th
critical properties for the O~3! invariant sector (m̃t→0) are
known to be described by the SU(2)2 Wess-Zumino-
Novikov-Witten model with the central chargec53/2.54,57

Let us examine the critical behavior in more detail usi
the scaling equations for the coupling constants appearin
the effective Hamiltonian~4.43!,
24510
s
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dGt

dl
5Gt1GtGs11

1

2
GsGs2 , ~4.48a!

dGs

dl
5Gs1

3

2
GtGs2 , ~4.48b!

dGs1

dl
5

1

2
Gs1

2 1
1

2
Gs2

2 12Gt
2 , ~4.48c!

dGs2

dl
5Gs1Gs212GtGs , ~4.48d!

where dl5da/a, Gt52gs1/2pvF , Gs52(gs2

2gs2)/2pvF , andGs65gs6/2pvF . The couplingsGs and
Gt are relevant, whileGs6 are marginal. Within the one
loop RG we find four stable fixed points
(Gt* ,Gs* ,Gs1* ,Gs2* )5(6`,6`,`,`) and (6`,7`,`,
2`), which correspond to the eight phases listed in Fig
and Table II. The Ising criticality is governed by the unstab
fixed point (Gt* ,Gs* ,Gs1* ,Gs2* )5(6`,0,̀ ,0), where the
Majorana fermionj4 is massless. The unstable fixed poi
(Gt* ,Gs* ,Gs1* ,Gs2* )5(0,6`,0,0) corresponds to the
SU(2)2 criticality since the tripletj becomes massless. F
nally, we find another kind of unstable fixed poin
(Gt* ,Gs* ,Gs1* ,Gs2* )5(0,6`,`,0), where all the modes
are massive. To understand the nature of these unstable
points, let us assume (gs1 ,gs22gs2 ,gs1 ,gs2)
5(0,2l1,2l2,0), wherel1,2 are constants (l1Þ0, l2.0).
This, together with the SU~2! constraint ~4.40!, leads to
gs252gs25l1 and gs1,s25gs1,s252l2,0. In this
case the cosine terms inHs ~4.38! become

2
l1

2p2a2
~cos 2fs22cos 2us2!

2
l2

2p2a2
cos 2fs1~cos 2fs21cos 2us2!. ~4.49!

Suppose thatl1.0 and ^fr1&5^ur2&50. We then find
that the potential~4.49! has degenerate minima at, e.g
(^fs1&,^fs2&,^us2&)5(0,0,*) and (p/2,*,p/2), where *
means that the phase field is not locked. Since these min
correspond to theD-Mott and PDW phases, respectively, th

TABLE II. Signs of the fixed-point coupling constants and th

masses (mg , m̃s , m̃t) in various phases.

Phase (gc2
* ,gs1* ,gs2* ,gs2

* ,gs1* ,gs2* ) mg m̃s m̃t

CDW (1,2,0,2,1,2) 1 2 1

SF (2,2,0,2,1,2) 2 2 1

PDW (2,1,0,1,1,2) 2 1 2

FDW (1,1,0,1,1,2) 1 1 2

S-Mott (1,2,2,0,1,1) 1 1 1

D-Mott (2,2,2,0,1,1) 2 1 1

S8-Mott (2,1,1,0,1,1) 2 2 2

D8-Mott (1,1,1,0,1,1) 1 2 2
6-14
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unstable fixed point describes a first-order transition betw
the D-Mott and PDW phases. Hence we conclude that
unstable fixed points (Gt* ,Gs* ,Gs1* ,Gs2* )5(0,6`,`,0)
correspond to a first-order phase transition. The phase t
sition at which the renormalized triplet massGt* vanishes
can be either SU(2)2 criticality or first-order transition, de-
pending on the sign ofGs1 .58 The condition for the SU(2)2
criticality is Gt50 and Gs1,0 below the energy scal
whereGs becomes of order 1. On the other hand, the fir
order transition is realized ifGt50 andGs1.0.

The phase fields are locked at some multiples ofp/2 de-
pending on signs of the relevant coupling constants at a fi
point, (gc2

* ,gs1* ,gs2* ,gs2
* ), of the cosine potentials in Eqs

~4.34! and~4.38!. Comparing the configuration of the locke
phases and those listed in Table I, we can find out to wh
phase the ground state belongs for a given combinatio
the renormalized coupling constants, (gc2

* ,gs1* ,gs2* ,gs2
* ).

Table II summarizes for each phase the signs of these re
malized coupling constants includinggs6* , which is positive
~negative! when fs6 (us6) is locked. When writing Table
II, we have used the fact~a! that either one ofgs2* andgs2

*
must vanish except at the Ising criticality becausefs2 and
us2 are conjugate fields, and~b! that Eq.~4.40a! constraints
possible combinations of signs ofgs1 , gs2 , andgs2 .

The coupling constants listed in Table II also determ
the signs of massesmg(5gc2/2pa), m̃s , and m̃t through
Eqs. ~4.44!, ~4.45!, and ~4.46!. The Gaussian (c51), Ising
(c51/2), and SU(2)2 (c53/2) criticalities are realized
whenmg50, m̃s50, andm̃t50, respectively. From Table I
we can therefore figure out which criticality can occur
each phase transition where the relevant mass changes
The universality class of the phase transitions is also s
marized in Fig. 5. We find from Table II that the CDW
S-Mott and SF–D-Mott phase transitions are indeed in th
Ising universality class and theD-Mott–S-Mott phase tran-
sition is in the Gaussian universality class, in agreement w
the strong-coupling approach in Sec. III.

Let us discuss implications of the above general qual
tive analysis to the phase diagram of the extended Hubb
ladder. From Eqs.~4.39! and~4.44! we write the bare masse
in terms of the coupling constants in the model,

ms5
1

2p F2cr1~U2tpair1V8!

1cr2S U2V'1
3

4
J'1tpair24V8D G , ~4.50!

mt5
1

2p F2cr1S V'1
1

4
J'2

3

2
V8D

1cr2S U2V'1
3

4
J'1tpair12V8D G . ~4.51!

To simplify the discussion, we assume here thatVi5V8
5tpair50 and thatfr1 is locked at̂ fr1&50 ~modp), i.e.,
cr1.0. If U2V'13J'/4.0 (,0), the phaseur2 is
locked at 0 (p/2) @see Eq. ~4.36!# and cr25^cos 2ur2&
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.0 (,0). Thus, the productcr2(U2V'13J'/4) is positive
for both positive and negativeU2V'13J'/4, and hence the
bare massesms andmt are also positive. We argue, howeve
that the Ising criticality is possible due to the mass renorm
ization effect. The renormalized massm̃s can become nega
tive since the coupling constantgs2 of the correction term in
Eq. ~4.46! is given by gs252a(2V'1J'/4). We expect
that sufficiently largeV' can drive the system toward th
Ising criticality in thej4 mode, even whentpair50.

In addition to the Ising criticality at largeV' , the Gauss-
ian criticality in the ur2 mode should appear atV'5U
13J'/4. Let us find out which phase is realized near t
Gaussian critical line. WhenU2V'13J'/450, the cou-
pling gs2 equals22U2J' and the renormalized Ising mas
becomes

m̃s

cr1U
512A

U

L S 11
3J'

U
1

2J'
2

U2 D lnS L

U1J'
D ,

~4.52!

whereA is a positive constant of order 1. For smallJ' /U
this renormalized Ising mass should be positive, and we c
clude that theD-Mott and theS-Mott phases are separated b
the Gaussian critical line~Note thatm̃t.0). As we increase
J' /U ~or V' /U) along the Gaussian critical line, the neg
tive correction (}gs2) in the mass renormalization increas
and eventuallym̃s can change sign. Across this Ising trans
tion the D-Mott and S-Mott phases turn into the SF an
CDW phases, respectively. This implies that a pair of pha
surrounding the Gaussian critical line changes fro
(D-Mott,S-Mott! to ~SF,CDW! at a tetracritical point as
J' /U increases. This qualitative analysis will be support
in the following subsection by a more quantitativ
renormalization-group analysis.

Now we briefly discuss the effect of the pair hopping te
tpair and next-nearest-neighbor repulsionV8. When V850,
the Gaussian transition takes place atU2V'13J'/41tpair
50 @see Eq.~4.37!#. Thus for largetpair, we can have a
situation wherems,0 and mt.0 with U2V'13J'/4
1tpair.0 @see Eqs.~4.50! and~4.51!#, i.e., tpair can stabilize
the SF state near the Gaussian critical line. In the casetpair
50, on the other hand, we expect that sufficiently largeV8
can lead to a phase withms.0 andmt,0, i.e., the PDW
state, ifcr1@cr2.0.

Finally, we discuss the implications of our schema
phase diagram~Fig. 5! to the phase diagram of isotropi
spin-12 ladder systems, which have been studied intensiv
in connection with the so-called Haldane’s conjectur59

about the existence of a finite energy gap in the integer-s
Heisenberg chain. By using the Abelian bosonizati
method, it has been shown that four kinds of gapped pha
can appear in spin ladder systems with various types of
change interactions.54,60 The possible gapped phases are~1!
the rung-singlet state, which is known to be realized in
isotropic Heisenberg ladder with nearest-neighbor antife
magnetic exchange couplings,~2! the Affleck-Kennedy-
Lieb-Tasaki ~AKLT !-like spin-liquid state, in which short-
range valence bonds couple spins on neighboring rungs,61 ~3!
6-15
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the dimerized state along the chain withp relative phase,
and~4! the dimerized state along the chain with zero relat
phase. Both the rung-singlet state and the AKLT-like state
Haldane-type spin liquids with unique ground state and
broken local symmetries. In the dimerized states which
known to be realized when a sufficiently strong four-sp
interaction is included,54,56 there is spontaneous breaking
the translation (Z2) symmetry and the ground state is tw
fold degenerate. In the limit of largeU the extended Hubbard
ladder we analyze in this paper should reduce to a sys
with only the spin degrees of freedom. This situation cor
sponds togc2,0 @see Eq.~4.36!#, i.e., mg,0, with umgu
@um̃su,um̃tu. Under this condition, we still have four phase
the SF,D-Mott, PDW, andS8-Mott phases. From Table I
~see also Refs. 56 54, and 60!, we can find correspondenc
between the phases in spin ladders and the phases tha
have obtained in the extended Hubbard ladders: The ru
singlet and AKLT-like Haldane states correspond to
D-Mott andS8-Mott states, respectively, and the PDW~SF!
state corresponds to the dimerized state along the chain
p ~0! relative phase. We note that the physical pictures of
phases in the extended Hubbard ladder are consistent
those in the spin ladder; for example, theD-Mott state is
nothing but the rung-singlet state, as seen in the stro
coupling approach~see Sec. III!. The AKLT-like Haldane
state, which is known to be realized either with plaque
diagonal exchange coupling or with ferromagnetic ru
exchange,60 would be smoothly connected to theS8-Mott
state, in which the ground-state wave function consists
singlets formed between diagonal sites of plaquettes@see Eq.
~4.32!# and, moreover, has the same topological number
the AKLT-like Haldane state.60 The PDW state is nothing bu
the dimerized state with interchain phasep as seen in Fig. 5
which is not a Haldane-type spin liquid since the PDW st
spontaneously breaks the translation symmetry and is t
fold degenerate. In order to discuss phase transitions in
ladder systems, two kinds of string order parameters h
been introduced which characterize hidden orders with
ferent topological numbers, i.e., the parity of the number
dimers crossing a line perpendicular to the two chains.60,62

These string order parameters are different fromm j @Eq.
~4.29!#, since m j is associated with exp(ifs2) in the
bosonized form while the string order parameters introdu
in Refs. 60 and 62 are associated with thefs1 field in our
notation. Since the phase transition associated with thefs1

field is related tom̃t→0, we expect that the string orde
parameters introduced in Refs. 60 and 62 characterize
SU(2)2 criticality or the first-order phase transition~double
arrows in Fig. 5!. In our schematic phase diagram~5! the
phase transition from the rung-singlet state to the AK
Haldane state can take place~which is actually the case in
the spin-12 ladder systems60,63!, if the SU(2)2 and the Ising
criticalities appear simultaneously. This implies that the c
tral charge for the continuous transition between the ru
singlet and the AKLT states is given by32 1 1

2 52. This tran-
sition becomes first order when the marginal interaction
the triplet Majorana fermion sector is marginally relevant
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D. Renormalization-group analysis

In this subsection, we study the ground-state phase
gram of the extended Hubbard ladder model using pertu
tive RG analysis of the 13 coupling constants appearing
Eq. ~4.23!. These coupling constants are, however, not in
pendent because of the four constraints coming from
SU~2! symmetry, Eq.~4.27!. Accordingly, we have nine in-
dependent RG equations that describe how the coupling
stants scale when we change the lattice constanta→aedl.
The nine independent variables we choose to work with a
Gr1[gr1/2pvF , Gr2[gr2/2pvF , Gs1[gs1/2pvF ,
Gs2[gs2/2pvF , Ga[(gc1,s22gc1,s2)/2pvF , Gb
[(gc2,s22gc2,s2)/2pvF , GA[gc1,c2/2pvF , GB
[gc1,s1/2pvF , and GC[gc2,s1/2pvF . After some alge-
bra we obtain the RG equations

d

dl
Gr151GA

21
3

2
GB

21
1

2
Ga

2, ~4.53!

d

dl
Gr252GA

22
3

2
GC

2 2
1

2
Gb

2, ~4.54!

d

dl
Gs151

1

2
Gs1

2 1
1

2
Gs2

2 1GB
21GC

2 , ~4.55!

d

dl
Gs251Gs1Gs21GBGa1GCGb , ~4.56!

d

dl
GA51

1

2
Gr1GA2

1

2
Gr2GA2

3

2
GBGC2

1

2
GaGb ,

~4.57!

d

dl
GB51

1

2
Gr1GB1Gs1GB2GAGC1

1

2
Gs2Ga,

~4.58!

d

dl
GC52

1

2
Gr2GC1Gs1GC2GAGB1

1

2
Gs2Gb ,

~4.59!

d

dl
Ga51

1

2
Gr1Ga1

3

2
GBGs22GAGb , ~4.60!

d

dl
Gb52

1

2
Gr2Gb1

3

2
GCGs22GAGa . ~4.61!

These equations are equivalent to the ones reported in
25, in which another set of nine independent variables
used: b11

r 5(gr11gr2)/8, b11
s 52(gs11gs2)/2, b12

r

5gb/4, b12
s 5gC , f 12

r 5(gr12gr2)/8, f 12
s 52(gs12gs2),

u11
r 52gA/8, u12

r 5ga/8, and u12
s 5gB/2, where gn

52pvFGn .
Integrating the RG equations~4.53!–~4.61! numerically

with the initial condition set by the bare coupling constan
in the extended Hubbard ladder model, we find thatGr1( l )
grows most rapidly and becomes of order unity first. At t
length scalel 5 l r1 where Gr1( l r1)52, we stop the nu-
6-16



a

th
th
e
rg

t

ed
u
a
ot
O

pp
ta

ar

be-
in
ub-

ar.

re k-

xists

he

GENERALIZED TWO-LEG HUBBARD LADDER AT HALF . . . PHYSICAL REVIEW B 66, 245106 ~2002!
merical integration. Below this energy scale ther1 mode
becomes massive. We can assume without losing gener
that the phasefr1 is locked at^fr1&50 mod p. The ef-
fective theory at lower energy scale (l . l r1) is obtained
from Eq. ~4.23! through the substitution cos 2fr1→1,
gc1,c2→gc2 , gc1,s1→gs1 , gc1,s2→gs2 , and gc1,s2

→gs2 . We then derive and solve the RG equations for
coupling constants in the effective theory to understand
low-energy properties of the remaining modes. The patt
of phase locking can be found from asymptotic low-ene
behavior of thegc2 , gs1 , gs2 , and gs2 in the numerical
solution of the RG equations. The phase fieldF (5fs6 or
ur(s)2) is locked at̂ F&5p/2 or 0, if the coupling constan
g (gP$gc2 ,gs1 ,gs2 ,gs2%) behaves asg→1C or 2C in
the low-energy limit, respectively, whereC is a positive con-
stant of order unity. Once the configuration of the lock
phase fields is determined, the resulting ground state is fo
from Table I. The phase diagram of the extended Hubb
ladder obtained in this way is shown in Figs. 6–10. We n
that this approach reproduces the phase diagram of the S~5!
symmetric ladder obtained in earlier studies.25,38 Since the
exotic phases such as the SF state and theS-Mott state ap-
pear only for a negativeU in this model, we will not further
discuss it as we concentrate on the case with positiveU and
V in this paper.

Let us first consider the simple case whereU andV' are
the only electron-electron interactions. The phase diagram
the plane ofU/t and V' /t is shown in Fig. 6. In this and
other phase diagrams shown below, all the modes are ga
everywhere except on the phase boundaries. With the s
dard notation CnSm of representing a state havingn mass-
less charge modes andm massless spin modes,18 the three
phases in Fig. 6 are characterized as the ‘‘C0S0’’ phase.18,25

The phase boundary between theD-Mott state and the
S-Mott state is the U~1! Gaussian critical line of ther2
mode~C1S0!, which is given byV'5U; see Eq.~4.37! with
J'50. The phase boundary between theS-Mott state and the

FIG. 6. Weak-coupling phase diagram ofHt i
1Ht'

1H int at t'
5t i5t andJ'50 obtained from the one-loop RG equations. The
is a massless mode~C1S0! on the boundary between theD-Mott
and theS-Mott states while the boundary between theS-Mott and

the CDW state is C0S12 .
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CDW state is the Ising critical line of the spins2 mode,

which is C0S1
2 . This weak-coupling phase diagram is simil

to Fig. 1 obtained from the strong-coupling approach.
Next, we include the AF exchange couplingJ' . The

phase diagram on the plane ofJ' /U andV' /U at U/t51 is
shown in Fig. 7. A different choice ofU/t does not lead to
qualitative changes in theJ' /U vs V' /U phase diagram. An
interesting new feature is that the SF phase shows up
tween theD-Mott phase and the CDW phase. This is
agreement with the qualitative analysis of the preceding s
section, where it is found that the exchange interactionJ'

suppresses theS-Mott phase and helps the SF phase appe
The Gaussian criticality of ther –mode~C1S0! emerges on

FIG. 7. Weak-coupling phase diagram ofHt i
1Ht'

1H int at t'
5t i and U/t51. This corresponds to Fig. 2. Inset shows wea
coupling phase diagram ofHt i

1Ht'
1H int1Hpair at t'5t i5t,

U/t51, and tpair /t50.5. On the boundaries between theD-Mott
and theS-Mott states and between the SF and the CDW states e

a massless mode C1S0. A massless mode C0S1
2 appears on the

boundaries between theD-Mott and the SF states and between t
S-Mott and the CDW states. The different choice ofU/t does not
yield qualitative changes to this phase diagram.

FIG. 8. Weak-coupling phase diagram ofH for U/t51, Vi

5V'5V, andtpair5V850. The tetracritical point with C1S12 is at
(J' /t,V' /t).(0.40, 0.43).
6-17
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the almost straight phase boundary between theD-Mott
phase and theS-Mott phase and between the SF phase a
the CDW phase. This critical line is given byV' /U51
13J'/4U, in accordance with Eq.~4.37!. The phase bound
ary between theD-Mott phase and the SF phase and betwe
the S-Mott phase and the CDW phase is the Ising critical

C0S1
2 . A tetracritical point of C1S12 appears at the poin

where the two kinds of phase boundaries cross. The inse
Fig. 7 shows the phase diagram attpair50.5t. We see clearly
that the pair-hopping favors the SF phase over theS-Mott
phase. In the strong-coupling perturbation theory, we h
introduced the pair-hopping termHpair to stabilize the SF

FIG. 9. Weak-coupling phase diagram ofH on the plane ofU/t
andV8/t for Vi5V'50, andJ'5tpair50. The boundary between

the D-Mott state and the PDW state is C0S3
2 , and the boundary

between the PDW state and theS8-Mott state is C0S12 .

FIG. 10. Weak-coupling phase diagram ofH on the plane of
V8/U and V/U for U/t50.5, Vi5V'5V, and J'5tpair50. The
phase transition between the CDW andS-Mott phases and betwee
the PDW andS8-Mott phases is in the Ising universality clas

(C0S1
2 ). The phase transition between Mott phases is a Gaus

transition~C1S0!. The boundary between theD-Mott phase and the

PDW phase is C0S32 @SU(2)2 criticality#. The transition between
the CDW phase and theD8-Mott phase shown by the thick soli
line is a first-order transition.
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state. This is not necessary, however, in the weak-coup
approach, where the pair-hopping process is effectively g
erated from the second-order process in the rung hoppingt' .
In fact, we can show that positive pair-hopping terms a
generated in the renormalization-group procedure in the
phase.22

Next we turn on the nearest-neighbor Coulomb repuls
in the leg direction,Vi . The phase diagram forVi5V'

([V) is shown in Fig. 8. Even though the additionalVi
interaction strongly favors the CDW state, a small region
the S-Mott phase still remains in between theD-Mott phase
and the CDW phase. Besides this quantitative modificat
the phase diagram is not changed qualitatively, and, in p
ticular, the critical properties at the phase boundaries are
same as in Figs. 6 and 7. Using the density-ma
renormalization-group method, Vojtaet al.46 determined the
phase boundary between the CDW state and a state
homogeneous charge density for the model we used for
8. At U51.5t they observed a transition to the CDW sta
aroundU/V'2.9, which is not very different from the phas
boundary atJ'50 in Fig. 8. The transition is, however
found to be first order forU>4t in their numerical results,
which is different from the continuous transition we found
the weak-coupling analysis. A possible source of this d
crepancy might be the neglect of irrelevant operators w
canonical dimension 4 that could become important
strong couplings as in the single-chain case.51

Finally, we include next-nearest-neighbor Coulomb rep
sion V8, Eq. ~2.9!. Figures 9 and 10 show theV8-U andV-
V8 phase diagrams. In agreement with the discussion in
preceding subsection, the PDW phase appears asV8 is in-
creased. At even largerV8 the S8-Mott phase and the
D8-Mott phase appear in Figs. 9 and 10. On the ph
boundary between theD-Mott state and the PDW state ap
pears the SU(2)2 criticality; we have confirmed in our nu
merical calculation that the couplinggs1 in Eq. ~4.43! is
negative, i.e., marginally irrelevant. We have thus establis
that the two-particle interactionV8 can drive the system to
the SU(2)2 criticality.

Figure 10 shows a rich phase diagram containing the f
Mott phases and the two density-wave phases. We note
in Fig. 10 the six phase boundaries meet atV5V85U,
which corresponds to C2S2. This happened because, w
our approximation, all the coupling constants in Eq.~4.23!
exceptgr1 vanish whenU5V5V8, t'5t i , and J'5tpair
50. If t'Þt i , or if higher-order contributions to theg’s are
included,51 this special situation might not occur. In Fig. 1
the phase boundaries between the Mott phases are C
~Gaussian criticality!, while the CDW–S-Mott and PDW–

S8-Mott phase boundaries are C0S1
2 ~Ising criticality!. The

phase boundary between the PDW phase and theD-Mott

phase is C0S32 @SU(2)2 criticality# as in Fig. 9. Finally, the
phase transition between the CDW phase and theD8-Mott
phase is found to be first order; we have confirmed that
coupling gs1 in Eq. ~4.43! is positive and marginally rel-
evant. Even though Fig. 10 is obtained from the wea
coupling RG equations, we think that the phase diagram

an
6-18
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reliable since we have confirmed that the (V/U)-(V8/U)
phase diagram is not changed much whenU/t is varied.

V. CONCLUSIONS

In this paper we have studied the half-filled generaliz
Hubbard ladder with the intersite Coulomb repulsion and
exchange interaction by using the strong-coupling pertur
tion theory and the weak-coupling bosonization method.
the strong-coupling approach the SF state is described a
AF ordered state of the Ising model where pseudospins
resent the currents flowing along the rungs. We have sh
that the SF state can appear next to the CDW state and
D-Mott state in the phase diagram and that the quan
phase transition between the SF state and theD-Mott state is
in the Ising universality class. We have also established
Ising transition between theS-Mott and the CDW phases an
the Gaussian transition between theD-Mott and theS-Mott
phases. In the weak-coupling approach we have shown
in general, the model can accommodate a total of eight in
lating phases at half filling, four density-wave phases, a
four Mott phases~Fig. 5!. The universality class of the phas
transitions among these phases is determined. In partic
s.

.
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o-
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we have shown that the SU(2)2 criticality with the central
chargec53/2 is induced by the next-nearest-neighbor Co
lomb repulsionV8, which drives the system from theD-Mott
phase to the PDW phase~Figs. 9 and 10!. WhenV8 is further
increased, theS8-Mott phase and theD8-Mott phase, which
correspond to the quantum disordered states of the P
phase and the FDW phase, show up~Fig. 9!.

When this manuscript was almost completed, we beca
aware of the work by Wuet al.,64 where the eight insulating
phases in Sec. IV are obtained independently.
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