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We reexamine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with
on-site and nearest-neighbor repulsive interactions. We calculate second-order corrections to coupling
constants in the weak-coupling renormalization-group approach (g-ology) to show that the bond-charge-
density-wave (BCDW) phase exists for weak couplings in between the charge-density-wave (CDW)
and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons
destabilizes the BCDW state and gives rise to a bicritical point where the CDW-BCDW and SDW-BCDW
continuous-transition lines merge into the CDW-SDW first-order transition line.
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Electronic correlations in solids have been a subject
of intensive research over the years. At commensurate
band filling, correlation effects have the strongest impact
and lead to a Mott or a charge-ordered insulating state,
as observed experimentally, e.g., in low-dimensional or-
ganic materials [1]. The one-dimensional (1D) extended
Hubbard model (EHM) with the nearest-neighbor repul-
sion V , in addition to the on-site repulsion U, is a standard
minimal model that exhibits these rich phase structures [2].
The model has a long history of research, and considerable
amount of knowledge has been accumulated. Much effort
has been devoted to understanding its ground-state phase
diagram at half filling. In the strong-coupling limit [2–5],
one can show that the model has two insulating phases, the
spin-density-wave (SDW) phase and the charge-density-
wave (CDW) phase, which are separated by a first-order
transition line located at U � 2V . In the weak-coupling
limit the perturbative renormalization group (RG) analy-
sis [2] concluded that there is a continuous phase transi-
tion between the CDW and SDW phases also at U � 2V .
It was then considered that, as the coupling constants are
increased, the continuous-transition line changes into the
first-order one at a tricritical point in the intermediate-
coupling regime. This picture was supported by both nu-
merical [4,6,7] and analytical [6,8] studies and had been
regarded for a long time as the complete phase diagram of
the EHM at half filling.

Recently, Nakamura [9] found numerically that another
phase exists between the CDW and SDW phases for weak
couplings. The new phase is the bond-charge-density-
wave (BCDW) phase in which the Peierls dimerization
occurs spontaneously. He concluded that SDW-BCDW
and BCDW-CDW transitions are continuous and that these
two transition lines merge at a multicritical point into the
first-order line separating the CDW and SDW phases [10].
His claim was confirmed by a recent extensive Monte
Carlo calculation [11]. The appearance of a spontaneously
dimerized phase in the EHM is surprising and calls for
thorough theoretical study. Such an insulating phase with
bond order has also been discussed in connection with
two-dimensional Mott insulators [12]. So far the BCDW
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phase in the 1D EHM has been shown analytically to ex-
ist only when extra correlated-hopping interactions are in-
cluded [13]. For the original EHM, however, the origin of
the BCDW phase and the nature of the associated phase
transitions are not fully understood. In this Letter, we pro-
vide a theoretical argument for the existence of the BCDW
phase by reformulating the weak-coupling theory to in-
clude higher-order terms. Using the bosonization tech-
nique, we derive a set of RG equations and discuss the
ground-state phase diagram. We find that the umklapp
scattering between electrons with parallel spins is respon-
sible for the emergence of the bicritical point.

The Hamiltonian of the 1D EHM is

H � 2t
X
j,s

�cyj,scj11,s 1 H.c.�

1 U
X
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nj,"nj,# 1 V
X
j
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y
j,scj,s 2

1
2 , nj � nj," 1 nj,#, and c

y
j,s

denotes the creation operator of an electron at the jth site
with spin s. Following the previous studies on models
with correlated-hopping interactions [13], we consider
the CDW, SDW, BCDW, and bond-spin-density-wave
(BSDW) phases. They are characterized by the order pa-
rameters, OCDW � �21�jnj , OSDW � �21�j�nj," 2 nj,#�,
OBCDW � �21�j

P
s�cy

j,scj11,s 1 H.c.�, and OBSDW �
�21�j�cy

j,"cj11," 2 c
y
j,#cj11,# 1 H.c.� [14].

We first focus on the weak-coupling limit U, V ø t.
The hopping t generates the energy band with dispersion
´k � 22t cosk. At half filling the Fermi points are
at k � 6kF � 6p�2a, where a is a lattice constant.
Electrons experience two-particle scattering by the on-site
and nearest-neighbor repulsions U and V . We follow the
standard weak-coupling approach (g-ology) [2,15] and
parametrize the scattering matrix elements by the coupling
constants g. In lowest order in U and V they are known
to be g1k � 22Va, g1� � �U 2 2V �a, g2k � 2Va,
g2� � �U 1 2V �a, g3k � 22Va, g3� � �U 2 2V �a,
g4k � 2Va, and g4� � �U 1 2V �a, where we have used
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the standard notation [2,15]. Here we note that both g1�

and g3� vanish at U � 2V , and this is the reason why the
lowest-order calculation predicts the direct CDW-SDW
transition at U � 2V . Hence, we need to go beyond
the lowest order to see if the BCDW phase really exists.
To this end, we adapt the two-step RG scheme used in
Ref. [16]. (i) We separate the states into low-energy states
(jjkj 2 kF j , L) and high-energy ones (jjkj 2 kF j . L)
by introducing a momentum cutoff L, and integrate out
high-energy states to obtain effective scattering matrix
elements for low-energy states. (ii) We then derive
one-loop RG equations for these matrix elements using
the standard bosonization method. The diagrams for the
effective couplings up to second order in U and V are
shown in Fig. 1. The explicit calculation yields

g1� � �U 2 2V �a
∑
1 2

C1

4pt
�U 2 2V �

∏
2

C2

pt
V 2a ,

(2)

g3� � �U 2 2V �a
∑
1 1

C1

4pt
�U 1 6V �

∏
1

C2

pt
V 2a ,

(3)

where C1�L� � 2 ln�cot�aL�2�� . 0 and C2�L� �
2 cos�aL� . 0. The weak dependences of Cis on L allow
us to set L � p�4a; different choices will lead only to
small quantitative changes. We see that g1� , 0 and
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FIG. 1. Vertex diagrams. The solid lines denote the low-
energy states and the dashed lines represent the high-energy
states to be integrated out.

g3� . 0 at U � 2V due to the C2 term. This implies that
a new phase different from the CDW and SDW can appear
for U � 2V , as we will show shortly. The zeros of g1�

and g3� are shifted from U � 2V due to the momentum
dependence of the matrix element 2Va cos�qa� for the
virtual scattering of high-energy states (q fi 0, 2kF).
There is no symmetry principle that enforces g1� and
g3� to vanish simultaneously.

Having derived the effective scattering matrix elements
for low-energy states, we now apply the bosonization
method. The right-going and left-going electron fields
c6,s are written as [2,15]

cp,s�x� �
hsp
2pa

exp�ipkFx 1 ipwp,s�x�� , (4)

where wp,s �p � 6� are the chiral bosonic fields and
�hs , hs 0	 � 2ds,s 0. The bosonic fields obey the com-
mutation relations �wp,s�x�, wp,s 0 �x0�� � ipp sgn�x 2

x0�ds,s 0 and �w1,s�x�, w2,s 0�x0�� � ipds,s 0. We define
chiral charge fields, up � �wp," 1 wp,#��2, and chiral spin
fields, fp � �wp," 2 wp,#��2, to write the Hamiltonian
density for low-energy states:
H �
1

2p

X
p�1,2

�yr�≠xup�2 1 ys�≠xfp�2� 1
gr

2p2 �≠xu1� �≠xu2� 2
gs

2p2 �≠xf1� �≠xf2� 2
gc

2�pa�2 cos2u

1
gs

2�pa�2 cos2f 2
gcs

2�pa�2 cos2u cos2f 2
grs

2p2 �≠xu1� �≠xu2� cos2f 1
gcs

2p2 �≠xf1� �≠xf2�cos2u

1
grs

2p2 a2�≠xu1� �≠xu2� �≠xf1� �≠xf2� , (5)
where u � u1 1 u2 and f � f1 1 f2. The renormal-
ized velocities are yr � 2ta 1 �g4k 1 g4� 2 g1k��2p

and ys � 2ta 1 �g4k 2 g4� 2 g1k��2p. To simplify
the notation, we have written gc � g3�, gs � g1�, and
gcs � g3k. The other coupling constants are given by
gr � g2� 1 g2k 2 g1k, gs � g2� 2 g2k 1 g1k, and
grs � gcs � grs � 22Va to lowest order in V . The
grs (grs) coupling comes from the backward scattering
of electrons with opposite (parallel) spins, while the gcs

coupling is generated from the umklapp scattering of elec-
trons with antiparallel spins. The SU(2) symmetry in the
spin sector ensures gs � gs, gcs � gcs , and grs � grs,
and therefore it is important to retain the grs term.

In terms of the phase fields u and f the order parameters
are written as

OSDW�x� ~ cosu�x� sinf�x� , (6)

OCDW�x� ~ sinu�x� cosf�x� , (7)

OBCDW�x� ~ cosu�x� cosf�x� , (8)

OBSDW�x� ~ sinu�x� sinf�x� . (9)
The phase diagram can be qualitatively understood via a
quasiclassical analysis: we neglect spatial variations of the
fields and focus on the potential, V �u,f� � 2gc cos2u 1

gs cos2f 2 gcs cos2u cos2f, where gcs � g3k , 0. The
order parameters take maximum amplitudes when the
fields u and f are pinned at the following poten-
tial minima: �u, f� � �0, 6p�2� in the SDW state,
�6p�2, 0� in the CDW state, �0, 0� or �p, 0� in the BCDW
state, and �p�2, 6p�2� in the BSDW state (modp).
In these states the potential energy V�u, f� becomes
VSDW � 2gc 2 gs 2 jgcsj, VCDW � gc 1 gs 2 jgcsj,
VBCDW � 2gc 1 gs 1 jgcsj, and VBSDW � gc 2 gs 1

jgcsj, respectively. Comparing these energies, we obtain
the phase diagram in the gc-gs plane (Fig. 2). The
direct CDW-SDW transition is first order because there
is a potential barrier of height min�jgcsj, 2jgcsj 2 2jgcj�
between the corresponding minima. The other boundaries
located at gs � 6jgcsj and gc � 6jgcsj are continuous
transitions, because the pinning potential for u or f van-
ishes when the other phase field is pinned. When gcs � 0,
056402-2
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FIG. 2. Phase diagram obtained by minimizing the potential
energy. Bicritical points are at gc � 2gs � 6gcs .

the first-order CDW-SDW transition line collapses to a
tetracritical point.

To obtain the ground-state phase diagram of the EHM,
we need to include the renormalization of the coupling
constants due to quantum fluctuations of the fields. A sys-
tematic analysis in the weak-coupling limit can be done
by applying the perturbative RG method to H (5). The
SU(2) spin symmetry guarantees the relations gs � gs,
gcs � gcs, and grs � grs to hold in the scaling proce-
dure. The one-loop RG equations that describe changes
of the coupling constants during the scaling of the short-
distance cutoff (a ! aedl) are then given by

d
dl

Gr � 12G2
c 1 G2

cs 1 GsGrs , (10)

d
dl

Gc � 12GrGc 2 GsGcs 2 GcsGrs , (11)

d
dl

Gs � 22G2
s 2 GcGcs 2 G2

cs , (12)

d
dl

Gcs � 22Gcs 1 2GrGcs 2 4GsGcs

2 2GcGs 2 2GcGrs 2 4GcsGrs , (13)

d

dl
Grs � 22Grs 1 2GrGs

2 4GcGcs 2 4G2
cs 2 4GsGrs , (14)

where Gn � gn�4pta. From Eqs. (13) and (14), one
finds that gcs and grs are irrelevant and renormalized
towards zero for weak interactions. It is therefore natural
to ignore gcs and grs first. With this approximation the
Hamiltonian reduces to two decoupled sine-Gordon mod-
els, and it is easy to follow the RG flows of Gr , Gc, and Gs

from Eqs. (10)–(12). Since gr � �U 1 6V �a . 0, Gc

is relevant and grows at low energies. The coupling Gs is
marginally relevant (irrelevant) for gs , 0 (gs . 0). The
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phase diagram of the EHM is obtained tentatively from
Fig. 2 by setting gc � g3� [Eq. (3)], gs � g1� [Eq. (2)],
and gcs � 0. When U is sufficiently larger than 2V such
that gc . 0 and gs . 0, we have the SDW phase. If U
is smaller than 2V (gc , 0 and gs , 0), we then have the
CDW phase. Around the U � 2V line we find the BCDW
phase, where g1� , 0 and g3� . 0 due to the C2 term.
The BSDW phase does not exist in the EHM. The charge
excitations are gapful except on the CDW-BCDW tran-
sition line where the relevant pinning potential vanishes.
The spin excitations are gapless in the SDW phase and on
the SDW-BCDW transition line and gapful otherwise.
In the gapped phases the charge gap Dc and the spin gap
Ds are given by Dc � tjGcj

1�2Gr and Ds � t exp�1�2Gs�
for jGcj ø 1 and 0 , 2Gs ø 1, respectively.

Next we examine effects of the parallel-spin umklapp
scattering gcs for U � 2V . Let us assume U 2 2V �
2C2V2�pt 1 O �V 3�t2�, i.e., gc 
 0 and gs , 0. We
are considering the situation very close to the CDW-
BCDW transition. In this case the spin gap is formed first
as the energy scale is lowered, and we can replace cos2f

with its average �cos2f� � �Ds�t�2 for energies below
the spin gap. This means that the cos2u potential that tries
to pin the fluctuating u field has the effective coupling

g�
c � gc 1 gcs�cos2f� . (15)

The CDW-BCDW transition occurs when g�
c � 0, i.e.,

gc � 2gcs�cos2f� . 0. The phase space of the BCDW
state is reduced upon inclusion of the gcs term. Note,
however, that the CDW-BCDW boundary does not
move across the U � 2V line because jgcs�cos2f�j �
2Va exp�2c�t�V �2� is much smaller than the C2 term for
V ø t, where c is a positive constant. A similar argument
applies to the region near the SDW-BCDW transition.
Suppose that U 2 2V � 1C2V 2�pt 1 O �V 3�t2� (gs 
 0
and gc . 0). In this case, as the energy scale is lowered,
the charge gap opens first and the u field is pinned at
u � 0 (modp). Below the charge-gap energy scale the f

field is subject to the pinning potential g�
s cos2f with

g�
s � gs 2 gcs�cos2u� , (16)

where �cos2u� � �Dc�t�2�12Gr �. The SDW-BCDW tran-
sition now happens at gs � gcs�cos2f� , 0, and thus the
SDW-BCDW transition line moves to increase the SDW
phase. Again the phase boundary is not changed be-
yond the U � 2V line as jgcs�cos2u�j � 2Va�c0V�t�pt�V

is much smaller than V 2a�t, where c0 is a constant of or-
der 1. This completes our proof of the existence of the
BCDW phase near the U � 2V line in the weak-coupling
limit.

For larger U and V , the gcs coupling becomes less ir-
relevant, and the BCDW phase will eventually disappear.
Since the cosine factor in Eqs. (15) and (16) can be con-
sidered as the renormalization of gcs, we conclude that
the two continuous lines meet when the renormalized cou-
plings satisfy the relation

Gc � 2Gs � 2Gcs � G �G . 0� (17)
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in the low-energy limit. This is the condition for the bi-
critical point in the RG scheme. Note that the condition
is not simply that the gcs term becomes relevant, as previ-
ously assumed [6]. When Eq. (17) is satisfied, the effective
potential takes a simple form V�u, f� � 2G�cos2u 1

cos2f 2 cos2u cos2f�, which has an interesting feature
in that its potential minima are not isolated points but the
crossing lines u � pm or f � pn (m, n: integer). On
these lines either u or f becomes a free field; the theory
has more freedom than a single free bosonic field, but less
than two free bosonic fields. We thus expect that the theory
of the bicritical point should have a central charge larger
than 1 but smaller than 2. Detailed analysis of the critical
theory is left for a future study.

We have numerically solved the scaling equations
(10)–(14) to obtain the global phase diagram of the EHM.
The phase is determined by looking at which of the
couplings Gc, Gs, and Gcs becomes relevant. The idea is
essentially the same as what we have discussed above. If
Gc grows with increasing l and reaches, say, 1 first among
the three couplings, then we stop the integration and
calculate G�

s � Gs 2 Gcs. Since the charge fluctuations
are suppressed below this energy scale, we are left with
Eq. (12), where Gs is replaced by G�

s and Gcs � 0. We
immediately see that a positive (negative) G�

s leads to
the SDW (BCDW) state. If jGsj becomes 1 first, then
the sign of G�

c � Gc 2 Gcs determines the phase: the
CDW (BCDW) state for G�

c , 0 (G�
c . 0). Finally,

when jGcsj reaches 1 first, we stop the calculation and
compare Gc and Gs. Since both charge and spin fluc-
tuations are already suppressed by the Gcs cos2u cos2f

potential, we can deduce the phase from the quasiclassical
argument. From Fig. 2 we see that we have the SDW
state for Gs . 2Gc and the CDW state for Gs , 2Gc.
In the SDW state the pinning potential for the f field
is marginally irrelevant, and therefore the spin sector
becomes gapless. The phase diagram obtained in this
way is shown in Fig. 3. For weak couplings the BCDW
phase appears at U � 2V , and the successive continuous
transitions between the SDW, BCDW, and CDW states
occur as V�U increases. As U and V increase along the
line U � 2V , the BCDW phase first expands and then
shrinks up to the bicritical point �Uc, Vc� 
 �5.0t, 2.3t�,
where the two continuous-transition lines meet. Beyond
this point the BCDW phase disappears and we have the
direct first-order transition between the CDW and the
SDW phases. The phase diagram (Fig. 3) is similar to
the one reported recently [9,11]. The position of the
phase boundaries in Fig. 3 is not reliable quantitatively,
however, as we have used the perturbative RG equations
which are valid only in the weak-coupling regime.

In summary, we have shown analytically that the BCDW
phase appears at U � 2V ø t in the ground-state phase
diagram of the 1D half-filled extended Hubbard model. We
have also discussed the instability of the BCDW state and
the emergence of the bicritical point due to the parallel-spin
umklapp scattering.
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FIG. 3. Phase diagram of the half-filled extended Hubbard
model. The bicritical point is at �Uc , Vc� � �5.0t, 2.3t�.
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