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Using the method of the local transmission matrix, we generalize the well-known WKB formula for barrier
penetrability to multichannel systems. We compare the WKB penetrability with a solution of the coupled-
channels equations, and show that the WKB formula works well at energies well below the lowest adiabatic
barrier. We also discuss the eigenchannel approach to a multichannel tunneling, which may improve the
performance of the WKB formula near and above the barrier.
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I. INTRODUCTION

The coupled-channel approach has been a standard
method in describing atomic, molecular, and nuclear reac-
tions involving internal degrees of freedom[1–5]. In nuclear
physics, for instance, the coupled-channel method has been
successfully applied to heavy-ion fusion reactions at energies
around the Coulomb barrier in order to discuss the effect of
couplings between the relative motion of the colliding nuclei
and inelastic excitations in the target nucleus[1–3]. At these
energies, the fusion reaction takes place by quantum tunnel-
ing, and the coupled-channel calculations account well for
the enhancement of the barrier penetrability due to the chan-
nel couplings.

A difficulty in the coupled-channel calculations, however,
is that it is sometimes not so easy to obtain a numerically
stable solution with a controlled accuracy. This is particu-
larly the case in the presence of closed channels and/or when
the coupling strength is strong in the classically forbidden
region. Several methods have been proposed in order to sta-
bilize the numerical solution[4,6–8].

In this paper, instead of directly integrating the coupled-
channel equations with the stabilization techniques, we solve
them using the WKB approximation[9]. To this end, we
employ the method of the local transmission matrix, which
was originally developed by Brenig and Russ in order to
stabilize numerical solutions of the coupled-channel equa-
tions [4]. We solve the equation for the local transmission
matrix under the semiclassical assumption, and generalize
the well-known WKB formula for barrier penetrability for a
single channel to coupled-channel systems. Since the pen-
etrability is expressed in a compact form, the resultant WKB
formula is entirely free from the problem of numerical insta-
bility. Moreover, the WKB method can be easily applied to
systems with a large number of degrees of freedom, while
obtaining a direct solution of the coupled-channel equations
can be computationally demanding. Also, the WKB method
is useful in gaining a physical intuition for the dynamics of
multichannel tunneling.

The paper is organized as follows. In Sec. II, we set up the
coupled-channel equations and introduce the local transmis-
sion matrix. We derive the semiclassical expression for the
local transmission matrix, and obtain the WKB formula for

multichannel penetrability. We apply the WKB formula to a
three-channel problem, and compare the penetrability with
the numerical solutions of the coupled-channel equations. In
Sec. III we discuss the penetrability at energies near and
above the barrier height. The WKB formula which we derive
works when the multiple reflection of the classical path un-
der the barrier can be neglected, that is, at energies well
below the barrier. We show that the eigenchannel approach
can provide good prescriptions at higher energies, where the
primitive WKB formula breaks down. We summarize the
paper in Sec. IV.

II. MULTICHANNEL WKB FORMULA

Our aim in this paper is to derive the WKB formula for
penetrability for a one-dimensional potential barrier in the
presence of channel couplings. We consider the following
coupled-channel equations:

−
"2

2m

d2

dx2unn0
sxd + o

m

fVnmsxd + sem − Eddn,mgumn0
sxd = 0.

s1d

Here,m is the mass of a particle,en is the excitation energy
for the nth channel, andE is the total energy of the system.
unn0

sxd is the wave function matrix, wheren refers to the
channel whilen0 specifies the incident channel. Notice that
we express the wave functions in a matrix form by combin-
ing N linearly independent solutions of the coupled-channel
equations,N being the dimension of the coupled equations.
For the situation where the particle is incident on the barrier
from the right hand side, the boundary conditions forunn0

sxd
are given by

unn0
sxd → Tnn0

e−iknx sx → − `d, s2d

→dnn0
e−iknx + Rnn0

eiknx sx → `d,

s3d

where kn=Î2msE−end /"2 is the wave number for thenth
channel. The inclusive penetrability is then obtained as
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P = o
n

kn

kn0

uTnn0
u2. s4d

Let us now introduce the local transmission matrix de-
fined by [4]

tsxd ;
1

2
fiqsxd−1u8sxd + usxdg, s5d

where qsxd=h2mfE−Wsxdg /"2j1/2 with Wnmsxd=Vnmsxd
+endn,m. From Eqs.(2) and(3), the asymptotic form oftsxd
reads

tnmsxd → Tnme−iknx sx → − `d, s6d

→dn,me−iknx sx → `d. s7d

Here, we have used the fact thatqnmsxd→kndn,m asx→ ±`.
It is easy to show that the local transmission matrixtsxd
obeys the equation[4]

t8sxd = −
1

2
q−1sxdq8sxdf1 + rsxdgtsxd − iqsxdtsxd, s8d

where

rsxd ; fiq−1sxdu8sxd − usxdg · fiq−1sxdu8sxd + usxdg−1

s9d

is the local reflection matrix[4].
The WKB approximation may be obtained by neglecting

rsxd in Eq. (8) [10,11], that is,

t8sxd = −
1

2
q−1sxdq8sxdtsxd − iqsxdtsxd. s10d

A similar equation has been derived by Van Dijk and Razavy
[10,11], but by using the method of variable reflection am-
plitude (see also Ref.[12]). Notice that the asymptotic form
of the local reflection matrixrsxd is [4]

rnmsxd → 0 sx → − `d, s11d

→− Rnme2iknx sx → `d. s12d

Neglectingrsxd in Eq. (8) is thus equivalent to ignoring the
reflection, which is reasonable in the semiclassical limit.
This, in fact, corresponds to the lowest order of the Bremmer
expansion[13–17], where the WKB formula is obtained by
approximating a smooth potential with a series of sharp po-
tential steps.1

For a single-channel problem, Eq.(10) can be easily in-
tegrated to yield

tsxd =Îqs`d
qsxd

expS− iEx

qsx8ddx8D . s13d

For a coupled-channel problem, however, care must be taken
in the integration, sinceqsxd and q8sxd do not commute to
each other in general. We attempt to solve Eq.(10) by dis-
cretizing the coordinate with a mesh spacing ofDx. Replac-
ing the derivative term by a simple point difference formula,
we obtain

tsxn−1d , tsxnd + DxFiqsxndtsxnd +
1

2
q−1sxndq8sxndtsxndG

s14d

,F1 +
Dx

2
q−1sxndq8sxndGf1 + iqsxndDxgtsxnd s15d

,f1 − Dxq−1sxndq8sxndg−1/2eiqsxndDxtsxnd, s16d

to the lowest order of Dx. Using qsxn−1d,qsxndf1
−Dxq−1sxndq8sxndg, the first factor in Eq.(16) is transformed
to be

f1 − Dxq−1sxndq8sxndg−1/2 ,
1

Îq−1sxndqsxn−1d
1

Îqsxnd
Îqsxnd.

s17d

Approximating fq−1sxndqsxn−1dg−1/2fqsxndg−1/2

,fqsxndq−1sxndqsxn−1dg−1/2=1/Îqsxn−1d, we finally obtain

tsxn−1d =
1

Îqsxn−1d
eiqsxndDxÎqsxndtsxnd. s18d

Iterating this equation backward fromx=`, we obtain

ts− `d =
1

Îqs− `dSpi

eiqsxidDxDÎqs`d. s19d

Substituting this expression into Eq.(4) together with Eq.
(6), the WKB approximation to the multichannel penetrabil-
ity reads

P = o
n
ZKnUp

i

eiqsxidDxUn0LZ2
. s20d

This is the main result in this paper. Notice that the factor
kn/kn0

does not appear in the WKB formula Eq.(20). In
practice, one can evaluate Eq.(20) by diagonalizingWsxd at
eachxi. This yields

P = o
n
ZKnUp

i
Fo

m

umsxidleiqmsxidDxkmsxiduGUn0LZ2
,

s21d

whereumsxdl is the eigenvector of the matrixWsxd with the
eigenvalue oflmsxd, and qmsxd;Î2mfE−lmsxdg /"2. For a
single-channel problem, Eq.(20) is reduced to the familiar
WKB formula,

1The local reflection matrixrsxd satisfies the equationr8= isqr
+rqd−s1−rdq−1q8s1+rd /2 [4]. One may solve this equation per-
turbatively assuming thatrsxd remains small and finding the cor-
rection to Eq.(10).
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PsEd = expF− 2E
x0

x1

dx8Î2m

"2 fVsx8d − EgG , s22d

wherex0 and x1 are the inner and the outer turning points,
respectively.

Let us now apply the WKB formula(20) to a three-
channel problem. We consider the following coupling poten-
tial:

Wsxd = 1Vsxd Fsxd 0

Fsxd Vsxd + e Fsxd
0 Fsxd Vsxd + 2e

2 , s23d

with

Vsxd = V0e
−x2/2s2

, s24d

Fsxd = F0e
−x2/2sf

2
. s25d

The parameters are chosen following Ref.[18] to be V0
=100 MeV, F0=3 MeV, ands=sf =3 fm, which mimic the
fusion reaction between two58Ni nuclei. The excitation en-
ergy e and the massm are taken to be 2 MeV and 29mN,
respectively, wheremN=938 MeV is the nucleon mass. With
these parameters, the three eigenbarrierslisxd, which are ob-
tained by diagonalizingWsxd at eachx, have the barrier
height of 97.31, 102.0, and 106.7 MeV, respectively, while
the barrier height for the uncoupled barrierVsxd is 100 MeV
(see Fig. 1).

Before we study the three-channel problem, let us first
examine the validity of the WKB approximation for a single-
channel case to see whether the semiclassical approximation
works in principle for the parameters that we choose. Figure
2 shows a comparison between the WKB penetrability for
the uncoupled barrierVsxd (the dashed line) obtained with
Eq. (20) and the exact solution. It is plotted in linear and
logarithmic scales in the upper and the lower panels, respec-
tively. One clearly sees that the WKB approximation indeed
works well at energies about 2 MeV below the barrier height
and lower.

As is well known, the naive WKB approximation breaks
down around the barrier. In fact, the WKB penetrability is
unity at the barrier height, while the exact result is about a

half. Around these energies, one needs to improve the WKB
formula by using the uniform approximation in order to take
into account the multiple reflection of the classical path un-
der the barrier[19,20]. We will discuss this problem more in
the next section in connection to the penetrability in a
coupled-channels system.

Let us now solve the coupled-channels problem, Eq.(23).
We integrate Eq.(21) from x=−15 fm to x=15 fm with
Dx=0.05 fm. The dashed line in Fig. 3 shows the penetrabil-
ity in the WKB approximation for this problem, which is
compared to the exact solution of the coupled-channels equa-
tions (the solid line). The figure also shows the penetrability

FIG. 1. The eigenpotentials for the three-channel problem ob-
tained by diagonalizing the coupling matrixWsxd at eachx (the
solid lines). The uncoupled barrierVsxd is shown by the dotted line
for a comparison.

FIG. 2. The barrier penetrability for the uncoupled barrierVsxd
as a function of energyE in linear (the upper panel) and the loga-
rithmic (the lower panel) scales. The solid and the dashed lines are
the exact solution and the WKB approximation, respectively.

FIG. 3. Same as Fig. 2, but for the three-channel problem. The
dotted line shows the penetrability in the no-coupling limit.
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for the uncoupled barrier as a comparison(the dotted line).
Remarkably, the WKB formula(20) reproduces almost per-
fectly the exact solution at energies well below the lowest
adiabatic barrier, i.e., 97.31 MeV, as in the single-channel
problem.

We notice that the WKB penetrability increases much
more rapidly than the exact penetrability at energies corre-
sponding to the height of each eigenbarrier. This is in close
analogy to the single-channel problem shown in Fig. 2. This
behavior may be expected in the eigenchannel approach dis-
cussed in Refs.[18,21,22]. We will discuss this point in the
next section.

III. PENETRABILITY NEAR AND ABOVE THE BARRIER

In the previous section, we showed that the multichannel
WKB formula works remarkably well at energies well below
the lowest eigenbarrier. Therefore, it can be expected that the
WKB formula provides a useful framework in discussing, for
instance, the role of inelastic excitations in the colliding nu-
clei in nuclear reactions at extremely low energies, such as
astrophysically relevant reactions, where the standard
coupled-channel calculations may be difficult to carry out.

At higher energies, however, we found that the agreement
between the primitive WKB formula and the exact solution
of the coupled-channel equations becomes poor. For a single-
channel problem, one can cure this problem by using the
uniform approximation[19,20]. The WKB formula which is
valid at all energies is given by

PsEd =
1

1 + expH2E
x0

x1

dx8Îs2m/"2dfVsx8d − EgJ , s26d

where the turning pointsx0 andx1 become complex numbers
when the energyE is above the barrier. It is not straightfor-
ward at all, however, to extend the uniform approximation to
the coupled-channel problem. In this section, we instead
present two prescriptions to deal with the coupled-channel
penetrability at energies near and above the barrier.

A. Dynamical norm method

The first prescription is closely related to the dynamical
norm method developed in Ref.[23]. It was argued in Ref.
[23] that the penetrability may be expressed as a product of
the penetrability in the adiabatic limit and a multiplicative
factor to it which accounts for the nonadiabatic effect. The
latter factor, which was called the dynamical norm factor,
was evaluated through the imaginary time evolution for an
intrinsic degree of freedom with a classical path obtained
with the adiabatic potential.

We follow here the same idea as in the dynamical norm
method, and reexpress Eq.(19) as

ts− `d =
1

Îqs− `dSpi

eiq0sxidDxeifqsxid−q0sxidgDxDÎqs`d,

s27d

where q0sxd=Î2mfE−l0sxdg /"2 is the local wave number
for the lowest eigenbarrier(i.e., the adiabatic barrier) l0sxd.
The penetrabilityPsEd is then given by

P = o
n
ZKnUp

i

eifqsxid−q0sxidgDxUn0LZ2

3expF− 2E
x0

x1

dx8Î2m

"2 fl0sx8d − EgG . s28d

The second factor on the right hand side(RHS) of this equa-
tion is nothing more than the WKB penetrability for the adia-
batic potentiall0sxd. At this stage, one may replace it by the
exact penetrability for the adiabatic potential,PadsEd. The
first factor on the RHS of Eq.(28) expresses the nonadiabatic
effect, as in the dynamical norm factor introduced in Ref.
[23]. Notice that our formula,(28), is in fact an improvement
of the dynamical norm method in Ref.[23], since the classi-
cal path is not assumed from the beginning in evaluating the
dynamical norm factor.

The result of the modified dynamical norm method is
shown in Fig. 4 by the dashed line. It is evident that the
agreement between the WKB approximation and the exact
solution improves significantly at energies near and slightly
above the adiabatic barrier, although the method provides
essentially the same result as the original WKB formula(20),
at higher energies.

FIG. 4. Comparison of the barrier penetrability calculated by
several methods. The solid line shows the exact solution of the
coupled-channel equations. The dashed line is obtained with the
modified adiabatic method which takes the nonadiabatic correction
into account, while the filled circles are results of the eigenchannel
approximation. The upper and the lower panels show the penetra-
bility in linear and logarithmic scales, respectively.
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B. Eigenchannel approach

The second prescription that we discuss is based on the
eigenchannel approximation. In this approach, the penetra-
bility is expressed as a weighted sum of the penetrability for
the eigenbarriers[18,21,22], that is,

PsEd = o
n

wnPnsEd, s29d

wherePnsEd is the penetrability for the eigenpotentiallnsxd.
The weight factorswn are usually estimated by assuming that
the matrixWsxd is independent ofx through the interaction
range[18,22], while the coordinate dependence ofWsxd is
properly taken into account in calculating the penetrability
PnsEd. One often takes the barrier position of the uncoupled
barrier,Xb, in order to estimate the weight factors[22]. This
leads to[see Eq.(21)]

wn = wnsXbd = zknsXbdun0lz2. s30d

This procedure is indeed exact when the intrinsic degree of
freedom has a degenerate spectrum[21,24–26], since the
matrix Wsxd can be diagonalized independent ofx. When the
intrinsic states have a finite excitation energy, however, the
unitary matrix which diagonalizesWsxd explicitly depends
on x, and the results may depend strongly on the position
where the weight factors are evaluated. Also the weight fac-
tors possess some energy dependence in general. In Ref.
[21], we have explicitly shown for a two-channel problem
that the optimum weight factors are considerably different
from those estimated at the barrier position, although their
energy dependence appears to be weak. A satisfactory proce-
dure to determine the weight factors has not been found so
far when the excitation energy is finite.

In Fig. 3, we have shown that the WKB penetrability
approaches a constant value at the barrier height of each
eigenbarrier. Assuming that the weight factors are indepen-
dent of energy, one can exploit this fact to determine a con-
sistent value of the weight factors in the eigenchannel ap-
proach. For instance, at the barrier height of the lowest
eigenbarrier,E=B0, assuming that the contribution from the
higher barriers is negligible, Eq.(29) suggests

PsB0d , w0P0sB0d , w0, s31d

in the primitive WKB approximation(i.e., without the uni-
form approximation). Therefore, if one evaluates Eq.(20) at
E=B0, it directly provides the weight factor for the lowest
eigenbarrier. One can repeat this procedureN−1 times to
determine the weight factorsw0,w1, . . . ,wN−2: suppose that
the weight factors for thek lowest eigenbarriers have been
determined. The weight factor for thesk+1dth eigenbarrier is
then estimated as

wk = PWKBsBkd − o
i=0

k−1

wi , s32d

where Bk is the barrier height of thesk+1dth eigenbarrier,
and PWKB is the penetrability in the WKB approximation
(20). Here, we have used the factPisBkd=1 for i øk in the
primitive WKB approximation, and assumedPisBkd=0 for

i .k. The weight factor for the highest eigenbarrierlN−1sxd
is evaluated as

wN−1 = 1 − o
i=0

N−2

wi , s33d

in order to ensure unitarity.
We apply this prescription to the three-channel problem

discussed in the previous section. The weight factors are
evaluated to be 0.5914, 0.3543, and 0.0543 for the lowest,
the second lowest, and the highest eigenbarriers, respec-
tively. The result of the eigenchannel approximation with the
weight factors thus estimated is denoted by the filled circles
in Fig. 4. The result is indistinguishable from the exact solu-
tion of the coupled-channel equations for all the energy re-
gion shown in the figure. We thus conclude that the multi-
channel WKB formula which we derive in this paper
provides a consistent way to determine the weight factors in
the eigenchannel approach, and it provides a useful and
simple prescription to compute the penetrability in the pres-
ence of channel couplings at energies from well below to
well above the potential barrier, as long as the weight factors
are slowly varying functions of energy.

IV. SUMMARY

We have extended the well-known WKB formula for bar-
rier penetrability to systems with intrinsic degrees of free-
dom. Applying the formula to a three-channel problem, we
have explicitly demonstrated that the WKB formula repro-
duces very nicely the exact solution of coupled-channel
equations at energies well below the lowest eigenbarrier, i.e.,
the adiabatic barrier. The WKB formula which we derived is
applicable even to systems with a large number of degrees of
freedom, where the standard coupled-channel calculation
cannot be performed due to a computational limitation. Our
method may therefore provide a useful framework to discuss,
e.g., a quantum scattering problem in the presence of cou-
pling to a heat bath[27,28]. The WKB formula is also useful
when one discusses the channel coupling effect on the tun-
neling rate at deep subbarrier energies, especially in the pres-
ence of closed channels, since the direct integration of the
coupled-channel equations may suffer from a numerical in-
stability. Such interesting problems include heavy-ion fusion
reactions at extremely low energies[29], electron screening
effects in nuclear astrophysical reactions[30,31], and nuclear
structure effects in astrophysical fusion reactions[32,33].

The WKB formula that we derived neglects the effect of
multiple reflection of a classical path under the potential bar-
rier. Such primitive formula breaks down at energies near
and above the adiabatic barrier, as is well known. We dis-
cussed two prescriptions to cure this problem. One is the
dynamical norm method, where the WKB formula is reex-
pressed as a product of the penetrability for the adiabatic
barrier and a multiplicative factor which accounts for the
nonadiabatic effect. By replacing the adiabatic penetrability
in the WKB approximation by the exact one, we have shown
that this prescription improves the result at energies near and
slightly above the adiabatic barrier. The second prescription
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is the eigenchannel approximation, where the penetrability is
given as a weighted sum of the eigenpenetrability. By apply-
ing the WKB formula at energies corresponding to the bar-
rier height of each eigenbarrier, we have presented a consis-
tent procedure to determine the weight factors. We have
shown that this prescription works well at energies from well
below to well above the barrier, as long as the energy depen-
dence of the weight factors is negligible. This method would
provide a useful way to simplify the coupled-channel calcu-
lations in realistic systems.

For a single-channel problem, the primitive WKB formula
can be improved by using the uniform approximation
[19,20], where the resultant WKB formula is applicable at
energies both below and above the barrier. It will be an in-
teresting, but very challenging, problem to extend it to a
multichannel problem. For this purpose, it will be extremely

helpful to construct a solvable coupled-channel model. Work
in this direction is now in progress[34].
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