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We study s-wave bound states of a hadron and a light pseudoscalar meson induced by the Weinberg-
Tomozawa (WT) interaction in the flavor SU(3) symmetric limit. The WT interaction is a driving force to
generate quasibound states dynamically in the chiral unitary approaches. The strength and sign of the WT
interaction are determined only by the group theoretical structure of the target hadrons, and we present a
general expression of the strengths for the flavor SU(3) case. We show that, for the channels which are
more exotic than the target, the interaction is repulsive in most cases, and the strength of the attractive
interaction is universal for any possible target states. We demonstrate that the attractive coupling is not
strong enough to generate an exotic state from the physically known masses of target hadrons. In addition,
we also find a nontrivial Nc dependence of the coupling strengths. We show that the channels which are
attractive at Nc � 3 change into repulsive ones for large Nc, and, therefore, no attractive interaction exists
in exotic channels in the large-Nc limit.
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I. INTRODUCTION

The hadrons observed in experiments are classified by
their spin and flavor quantum numbers [1]. The flavor
quantum numbers are ordinarily composed of the valence
quark contents of �qq for mesons and qqq for baryons. The
mesons and baryons with flavor that cannot be achieved by
�qq or qqq are called exotic hadrons, and must have more
valence quarks than the ordinary hadrons. So far, the ex-
istence of the exotic state has not been clearly established.
The evidence for the pentaquark �� at LEPS/SPring8 [2]
is one of the possible candidates, but the experimental
confirmation of the existence of �� is still controversial
[3]. The structure of the X�3872� [4] and Ds�2317� [5] is
also found to be quite different from a simple �qq state,
although their flavor quantum numbers can be achieved
by �qq.

The definitive answer for whether the exotics exist or not
will be given by future experiments, but it is highly non-
trivial that such states are almost completely absent in the
hadron spectrum. The fundamental theory of the strong
interaction, QCD, does not forbid the exotic states. There is
no simple selection rule to exclude such states in effective
models describing the ordinary hadrons well. In this con-
text, we have studied the nature of the exotic states as
hadronic molecule states in Ref. [6] based on the s-wave
dynamics with the underlying chiral symmetry in QCD.

In recent years, there have been remarkable develop-
ments in theoretical studies of hadron spectroscopy. Some
of the baryon resonances are well described as meson-
baryon quasibound states in chiral unitary approaches [7–

11]. These resonances are dynamically generated in
meson-baryon scattering formulated by unitarization of
low energy interactions governed by chiral symmetry.
This approach is along the same lines as the coupled-
channel analysis developed in the 1960’s [12,13], and
recent studies revealed the novel structure of the
��1405�, namely, the existence of two poles in the region
of ��1405� [14–16]. The method was also applied to the
scattering of the pseudoscalar mesons with the decuplet
baryons of JP � 3=2�, leading to the dynamical genera-
tion of the JP � 3=2� resonances [17,18]. Applications to
the charmed baryon sector [19] and the heavy meson sector
[20–22] were also performed, in fair agreement with the
experimental observation. In these studies, an important
ingredient to generate s-wave resonances dynamically was
the Weinberg-Tomozawa (WT) interaction of hadrons and
the Nambu-Goldstone (NG) bosons [23,24].

The WT term has unique features in chiral dynamics.
The kinematical structure of the coupling is fixed as an
s-wave interaction between the target hadron and NG
boson system with linear dependence of the NG boson
energy. Also, its sign and strength are universally deter-
mined by chiral symmetry, once one fixes the flavor struc-
ture of the hadron. This is because the interaction can be
derived from the current algebra, even without using the
chiral Lagrangians. In addition, the WT term is the leading
order term of the chiral expansion, and therefore it gives
the dominant contribution at low energy. Thus, the low
energy hadron interaction in an s-wave is governed by the
WT term, which is model independent, as far as we respect
chiral symmetry.

In this paper, we would like to present a detailed analysis
of Ref. [6], studying the mechanism of the generation of*Electronic address: hyodo@yukawa.kyoto-u.ac.jp
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resonances of the NG boson and a target hadron in a
simplified and essential version of the chiral unitary ap-
proaches, paying attention to the flavor exotic states. The
dynamically generated state in this approach is considered
as a quasibound state of the NG boson and the target
hadron. Since such a generated state has additional �qq
components, it is natural to consider exotic states in this
approach. To start with, we take the flavor SU(3) symmet-
ric limit for simplicity. In the SU(3) limit, the complicated
coupled-channel equations reduce to a set of independent
single-channel problems. In Refs. [14,25], some reso-
nances in the physical world of SU(3) breaking were
shown to turn into bound states in the limit of SU(3)
symmetry. The existence of the bound states in the SU(3)
limit was also confirmed in different channels [17–20].
Therefore, in this limit, our task is to search for bound state
poles in the scattering amplitude on the real axis below
threshold, which are considered to be the origin of the
physical resonances with SU(3) breaking.

This paper is organized as follows. In Sec. II, we review
the formulation of the chiral unitary approach and show
how the physical resonances are dynamically generated. In
Sec. III, we focus on the WT term, that is, the kernel
interaction of the chiral unitary approach. Based on a group
theoretical argument, we present the general formula of the
coupling strength of the WT term. Its expressions give us
the important consequence that the interaction in exotic
channels is repulsive in most cases, and the possible
strength of the attraction is independent of channels. The
behavior of the coupling strength in the large-Nc limit is
also discussed. In Sec. IV, we derive the condition to
generate a bound state, based on the general principle of
the scattering theory. Presenting numerical analysis with
physical masses and coupling constants, we show under
which condition the bound states are generated in the
exotic channels. The last section is devoted to a summary.

II. CHIRAL UNITARY APPROACH

In this section, we present the formulation of the chiral
unitary approach that describes the scattering of a NG
boson with a target hadron. There are two important in-
gredients, chiral symmetry of the interaction and the uni-
tarity of the scattering amplitude. The scattering amplitude
is nonperturbatively constructed so as to maintain the
unitarity and to match the kernel interaction with the chiral
perturbation theory in the low energy limit. The resonances
can be dynamically generated in the resulting amplitude
which agrees well with experimental data for various target
hadrons.

A. Kernel interaction

Here we introduce the Weinberg-Tomozawa interaction
[23,24], focusing on the kinematic structure. To start with,
let us take an example of the scattering of the pseudoscalar
octet mesons (the NG bosons of three flavor chiral sym-

metry) with the ground state octet baryons. In the chiral
perturbation theory, the WT interaction is derived as the
leading order term of the chiral expansion in the covariant
derivative of the kinetic term,
 

Tr� �Bi 6DB� � Tr� �Bi@6 B� � Tr
�

�Bi��
1

4f2 ��@
$

��; B�
�
� . . . ;

(1)

with the meson decay constant f in the SU(3) limit and the
baryon octet (B) and the pseudoscalar meson octet (�)
fields [26–29]. This term provides the interaction of the
meson-baryon scattering

 V�WT�
ij � �

1

4f2 Cij �u�k6 i � k6 j�u;

where i, j denote the meson-baryon channels in the final
and initial states, ki and kj are the momenta of the meson in
channels i and j, respectively, u and �u are the baryon
spinors, and Cij is the coupling strength matrix in channel
space.

The sign and strength of the matrix element Cij are
determined by the flavor symmetry. In general, the matrix
Cij has the off-diagonal components which are responsible
for the transition between two different channels.
Therefore, solving the scattering equation is a coupled-
channel problem. On the other hand, Cij becomes a diago-
nal matrix in the basis of the SU(3) irreducible representa-
tions, since the interaction is SU(3) symmetric. Using the
SU(3) Clebsch-Gordan coefficients hi; �i which relates the
particle basis i with the SU(3) basis � symbolically, the
matrix Cij can be transformed into that in the SU(3) basis
as C�� �

P
i;jhi; �iCijhj; �i � C����, where � and �

denote the irreducible representations of SU(3) [14].
Since this matrix is diagonal in the SU(3) basis, the
coupled-channel equations reduce to a set of independent
single-channel equations.

In the SU(3) limit, the interaction is written in the non-
relativistic reduction as

 V�WT�
�� ��

!

2f2 C�;T���; (2)

with the energy of the meson ! and the diagonal matrix
C�;T for which we put the index of the target representation
T for later convenience.

It is important to note that the structure and strength of
the WT term are determined by chiral symmetry without
introducing additional coupling constants; the constant f
can be determined by the weak decay of the NG boson. In
addition, the structure of the coupling is universally fixed
for any target states, since Eq. (2) is also derived from
current algebra, without using the chiral Lagrangian [6].
Therefore, although Eq. (1) is given for the system of the
NG boson and the octet baryons, we can generalize Eq. (2)
to that of any hadron targets. For a meson target, some
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minor modifications should be made in Eq. (2) and the
formulas of this section. Nevertheless, we find that the
expression given in this section can be applied to the meson
target in the heavy mass approximation. The detailed dis-
cussion is given in Appendix C.

B. Unitarization and regularization

With the WT interaction in the perturbation theory, the
scattering amplitude does not satisfy the unitarity condi-
tion. Here we show the way to maintain the unitarity
[10,30]. It necessarily brings a regularization procedure
for divergent loop integrals [11]. We again take the ex-
ample of the meson-baryon scattering.

In the chiral unitary approaches, we impose the unitarity
condition for the scattering amplitude, based on the N/D
method [29]. Assuming the elastic unitarity and neglecting
the left-hand cut from the crossed diagrams, the meson-
baryon scattering amplitude reads

 t�
���
s
p
� �

1

1� V�
���
s
p
�G�

���
s
p
�
V�

���
s
p
�; (3)

as a function of the center-of-mass energy
���
s
p

. Here V�
���
s
p
�

denotes the WT interaction (2) where ! � �s�M2
T �

m2�=�2
���
s
p
� with m and MT being masses of the meson

and baryon, respectively. The function G�
���
s
p
� is given by

the spectral representation

 G�
���
s
p
� � �~a�s0� �

1

2�

Z 1
s�
ds0

�
��s0�
s0 � s

�
��s0�
s0 � s0

�
; (4)

where s� � �m�MT�
2 is the value of s at the threshold.

The parameter ~a�s0� is the subtraction constant which is
not determined within the N/D method. The integrated
phase space is

 ��s� �
2MT �q
4�

���
s
p ; (5)

where �q � �1=2�s;M2
T; m

2�=2
���
s
p

and the Källen function
�1=2�x; y; z� � x2 � y2 � z2 � 2xy� 2yz� 2zx.

In principle, the renormalization of the amplitude should
be performed so as to reproduce some experimental ob-
servables. Here, to fix the subtraction parameter, we adopt
the prescription given in Ref. [11], which gives the proper
subtraction constant for the S � �1 meson-baryon chan-
nel as we will see below. In this scheme, the scattering
amplitude is adjusted to be the kernel interaction V at���
s
p
� MT with the regularization scale � � MT:

 G��� � 0 , t��� � V��� at � � MT: (6)

This is equivalent to taking the subtraction point at the
baryon mass:

 s0 � M2
T; ~a�M2

T� � 0:

This condition determines the energy at which the chiral
pertrubation theory works. At the same time, this condition

guarantees that the present amplitude with s-channel uni-
tarity coincides with the crossed amplitude with u-channel
unitarity at

���
s
p
� MT . This prescription was first intro-

duced in the �-� scattering [31], and was applied to the
meson-baryon scattering in Ref. [11].

It is instructive to show that the algebraic form of Eq. (3)
derived in the N/D method was proved to be equivalent to
the solution of the on-shell factorized Bethe-Salpeter in-
tegral equation [10] if one identifies theG function (4) with
the meson-baryon loop function,
 

G�
���
s
p
� � i

Z d4q

�2��4
2MT

�P� q�2 �M2
T � i	

1

q2 �m2 � i	

�
2MT

�4��2

�
a��� � ln

M2
T

�2 �
m2 �M2

T � s
2s

ln
m2

M2
T

�
�q���
s
p �ln�s� �M2

T �m
2� � 2

���
s
p

�q�

� ln�s� �M2
T �m

2� � 2
���
s
p

�q�

� ln��s� �M2
T �m

2� � 2
���
s
p

�q�

� ln��s� �M2
T �m

2� � 2
���
s
p

�q��
�
;

where P� � �
���
s
p
; 0�, � and a��� are the regularization

scale and subtraction constant, which correspond to s0

and ~a�s0� in Eq. (4). This loop function is exactly the
same as the dispersion integral (4) with the phase space
(5) up to constants.

The renormalization condition (6) is suitable for the
present purpose, since the regularization parameters a
and � are systematically fixed by the baryon and meson
masses without other experimental inputs:
 

� � MT;

a�MT� � �

�
m2

2M2
T

ln
m2

M2
T

�
m

����������������������
m2 � 4M2

T

q
2M2

T

	 �ln�m2 �m
����������������������
m2 � 4M2

T

q
�

� ln�2M2
T �m

2 �m
����������������������
m2 � 4M2

T

q
�

� ln��m2 �m
����������������������
m2 � 4M2

T

q
�

� ln��2M2
T �m

2 �m
����������������������
m2 � 4M2

T

q
��

�
: (7)

This is not the unique choice of the subtraction parameter.
Generally, the subtraction constant is fixed at the renor-
malization point by experimental inputs, such as the scat-
tering length. One can also determine a��� so as to
reproduce the observed threshold branching ratios in the
strangeness S � �1 channels [8,10,32], where
a�630 MeV� ’ �2 is obtained. This is quite consistent
with the subtraction constant obtained by our procedure
with the averaged mass of the ground state octet baryons
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MT � 1151 MeV:

 a�630 MeV� � �1:98;

where we have used a��0� � a��� � 2 ln��0=�� [29]. In
this way, we consider that the present renormalization
scheme provides a natural extension to the channels in
which the scattering observables are not available.

C. Dynamically generated states and SU(3) limit

When a baryon resonance R is dynamically generated,
the scattering amplitude has a pole in the second Riemann
sheet of the complex energy plane. We can extract infor-
mation of the resonance from the pole, by identifying the
scattering amplitude close to the resonance energy region
by the Breit-Wigner amplitude plus nonresonant back-
ground term:

 � itij�
���
s
p
� � �igi

i���
s
p
�MR � i�R=2

��igj� � it
BG
ij ;

for an s-wave resonance in the coupled-channel scattering
with mass MR and total width �R, where gi is the coupling
strength of the resonance R to the channel i. Since the NG
boson is scattered in an s-wave, dynamically generated
states have the same spin but opposite parity with the target
hadron.

In the literature, many experimentally observed reso-
nances were identified as hadronic molecule states gener-
ated dynamically in the scattering of the NG boson and
hadrons. The studies with the octet baryon target success-
fully reproduced the JP � 1=2� resonances ��1405�,
��1670�, ��1620� [32], N�1535� [33], and ��1620� [34].
In a different scheme [25], the ��1690� resonance was
found in addition to the ��1620�. In the scattering with
baryon decuplet target [17,18], the JP � 3=2� resonances
such as ��1520�, ��1820�, ��1670� were well reproduced.
In the heavy sector, charmed resonances �c�2880� and
�c�2593� were generated dynamically in the scattering of
the NG boson with the ground state charmed baryons [19].
For the heavy meson sector, the recently discovered
Ds�2317� was properly reproduced as a resonance of the
NG boson and the ground state charmed mesons [20].

It was shown that the resonances found in the light
baryon sectors became bound states in the SU(3) limit,
by tracing the positions of poles with gradual restoration of
SU(3) symmetry [14,18,25]. The existence of the bound
state poles is also observed in the heavy sectors [19,20].
These facts imply that the bound states are first generated
in the SU(3) limit; then they acquire widths through the
coupled-channel dynamics in the different thresholds
among the channels due to the SU(3) breaking.
Therefore, in order to clarify the mechanism to generate
physical resonances, we study the bound states in the
SU(3) limit, which are expected to be the origin of the
resonances observed in nature.

In the next section, based on the group theoretical argu-
ment, we first study the sign and coupling strength of the
WT interaction systematically for various channels, which
is the driving force to generate the bound state. Of particu-
lar interest are the flavor exotic channels, where a small
attraction will be found. Then we discuss whether the
bound states can be generated with the given target hadron
mass and the coupling strength obtained in the group
theoretical argument.

III. WEINBERG-TOMOZAWA INTERACTION

A. Group theoretical structure

Here we discuss the interaction strengths C�;T in Eq. (2).
C�;T is the interaction strength of the WT term in the
channel belonging to the SU(3) irreducible representation
� in the direct product space of the target hadron T and the
NG boson Ad as shown in Fig. 1(a). The interaction
strength is dependent only on the representations of the
channel �, the hadron T and the NG boson Ad which is
always fixed as the adjoint representation. The WT term is
the vector-current–vector-current interaction, so that C�;T
(with proper normalization) can be written as

 C�;T � �2h�Ad; T��jFT 
 FAdj�Ad; T��i; (8)

where FT and FAd are the SU(3) generators in the repre-
sentations of the hadron T and the NG boson Ad, respec-
tively. The state labeled by �Ad; T�� belongs to the
representation � composed of the two particle system
Ad � T, which is schematically shown in Fig. 1(a). The
bound states appearing in the channel � after the unitar-
ization of the amplitude has the flavor quantum number �,
as depicted in Fig. 1(b).

The matrix element of Eq. (8) can be expressed in terms
of Casimir invariants:

 h�Ad; T��jFT 
 FAdj�Ad; T��i

� 1
2�C2��� � C2�Ad� � C2�T��;

where C2�R� is the quadratic Casimir of the representation
R. This is consistent with the fact that the WT term is
invariant under the SU(3) transformation. Recalling
C2�Ad� � 3 for the adjoint representation, we find that
the strength of the WT interaction can be written as

 C�;T � C2�T� � C2��� � 3: (9)

 

FIG. 1. (a): Notation of the representations �, Ad, and T for
the WT term. (b): The bound state pole diagram after unitariza-
tion of the amplitude.
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As seen in Eq. (2), the potential is proportional to �C�;T ,
and therefore a negative C�;T leads to a repulsive interac-
tion, whereas a positive C�;T gives an attractive interaction
in the present convention. The quadratic Casimir for the
�p; q� representation in the tensor notation is given by

 C2��p; q�� �
1
3�p

2 � q2 � pq� 3�p� q��: (10)

In the SU(2) case, Eq. (9) is expressed as

 CSU�2�
�;T � ��I��I� � 1� � IT�IT � 1� � 2�; (11)

where I� is the total isospin of the �-T state, and IT is the
isospin of the target. This is the well-known expression of
the �N scattering lengths of the Weinberg-Tomozawa
relation [23,24].

It is worth noting that, for the SU(3) case, the Cij in the
isospin space are given by Eq. (9) and the SU(3) isoscalar
factors [35,36] with suitable phase conventions:
 

Cij�I; IMi
; YMi

; ITi ; YTi ; IMj
; YMj

; ITj ; YTj�

�
X
�

�C2�T� � C2��� � 3�
8 T

IMi
; YMi

ITi ; YTi

����� �

I; Y

 !

	
8 T

IMj
; YMj

ITj ; YTj

����� �

I; Y

 !
;

Y � YMi
� YTi � YMj

� YTj ;

where IXi and YXi are the isospin and hypercharge of the
state X in channel i.

B. General expression for coupling strength
and exoticness

To form a bound state of a two-body system, the cou-
pling should at least be attractive, C�;T > 0, namely
C2���< 3� C2�T�. This indicates the difficulty of gener-
ating exotic resonances from a nonexotic target, since the
exotic states are generally in higher dimensional represen-
tations, and their Casimir invariants have larger values than
those of the simple nonexotic hadrons.

Here we evaluate the coupling strengths C�;T , using
Eqs. (9) and (10). We first consider the target hadrons in
specific representations, such as octet and decuplet. We
then consider the general cases with arbitrary representa-
tions of the target hadrons.

Let us consider the light flavor baryons, where the low-
est lying hadrons are in octet �N;�;�;�� and decuplet
��;��;��;	� representations. The representations for �
are found in the irreducible decomposition T � 8 �

P
�.

The coupling strengths for the octet T � 8 and decuplet
T � 10 targets are obtained by (9) and (10) and
summarized in Table I; they were also reported in
Refs. [14,17,18]. For light flavor baryons, nonexotic rep-
resentations are the singlet, octet, and decuplet representa-
tions, since they can be achieved by the three light quarks
qqq: 3 � 3 � 3 � 1 
 8 
 8 
 10. Thus, for the light flavor

baryons, � � 10, 27, and 35 are the exotic channels. We
find that, among exotic channels, only the channel 27
composed by the decuplet target is attractive, C27;10 � 1>
0 [37], while the couplings in other exotic channels are
either repulsive or zero.

We can apply the same argument to hadrons with heavy
quarks. In the SU(3) group argument, the heavy quarks are
spectators. For the hadrons containing one heavy quark Q,
the nonexotic baryons qqQ are classified in �3 and 6, and
the mesons q �Q are in 3. The representation 3 is also used
for baryons with two heavy quarks, which are not experi-
mentally well established to construct a multiplet. The
established lowest lying hadrons are classified in these
nonexotic multiplets: charmed baryons �3 ��c;�c� and 6
��c;�

�
c;	c�, charmed mesons 3 �D;Ds�, and bottomed

mesons 3 �B;Bs�. With these states being target hadrons,
coupling strengths C�;T are evaluated as shown in Table II.
For heavy baryons, 15 and 24 are the exotic channels,
while �6 and 15 are the exotic states for the heavy mesons.
We find that, as seen in Table II, the interaction in the
exotic channel 15 composed of the 6 heavy baryon is
attractive, C15;6 � 1> 0 [19], and the mesonic channel 6
from the 3 heavy meson target is also attractive, C�6;3 �

1> 0 [20]. Note that the states in 15 and 24 are flavor
exotic with one heavy quark, which is different from the
�c state of charm �1 discussed in Refs. [38–40], since it
has one anticharm quark.

It is interesting that the attractive interactions for the
exotic channels are found only in the limited cases
��; T� � �27; 10�, �15; 6�, and ��6; 3� with a universal
strength C�;T � 1. In the following, we show that this
observation is true for the general targets with arbitrary
representations.

Let us consider an arbitrary representation T � �p; q�
for the target hadron. Possible representations � for the
hadron and NG boson system are obtained in the irreduc-
ible decomposition of the direct product of the �p; q� for
the target hadron and the adjoint �1; 1� for the NG boson:

TABLE I. The coupling strengths C�;T for light flavor baryons.

� 1 8 10 10 27 35

T � 8 6 3 0 0 �2
T � 10 6 3 1 �3

TABLE II. The coupling strengths C�;T for heavy flavor had-
rons.

� �3 6 15 24 3 �6 15

T � �3 3 1 �1
T � 6 5 3 1 �2
T � 3 3 1 �1
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�p; q� � �1; 1� � �p� 1; q� 1� 
 �p� 2; q� 1�


 �p� 1; q� 2� 
 �p; q� 
 �p; q�


 �p� 1; q� 2� 
 �p� 2; q� 1�


 �p� 1; q� 1�: (12)

There are maximally eight representations. It is understood
that the representation �a; b� with a < 0 or b < 0 is not
taken into account, and that, for two �p; q� representations,
one has the condition p � 1 and the other has q � 1. The
coupling strengths C�;T are summarized in the third col-
umn of Table III. This is the general expression for the
coupling strength of the WT interaction for arbitrary rep-
resentations. As seen in the table, since p and q are non-
negative, the sign of the interaction is determined for a
given �, except for �p� 2; q� 1� and �p� 1; q� 2�. The
interactions of these channels are either attractive or re-
pulsive, depending on the values of p and q. It is worth
noting that C�;T is an integer, since p and q are also
integers.

In the general expression (12), it is not known which
representations are exotic before specifying the baryon
number of the target hadron. In order to discuss the exotic
states, we define the exoticness E [41– 44] as the number of
valence quark-antiquark pairs to compose the flavor mul-
tiplet. We denote B as the baryon number carried by u, d,
and s quarks. The number of the heavy quarks is not
counted as the baryon number here. For B> 0, the exotic-
ness E is given by

 E � 	
�	� � �
���; (13)

where

 	 �
p� 2q

3
� B; � �

p� q
3
� B:

Note that 	 � �. More general arguments and derivations
are given in Appendix A.

We are interested in the channel � which has a larger
exoticness E than that of the target hadron T. To find it we
define

 �	 � 	� � 	T; �� � �� � �T;

which are shown in the fifth and sixth columns of Table III.
With these quantities, we evaluate the difference of the
exoticness �E � E� � ET:

 �E �

8><>:
0 for 	� � 0; 	T � 0;
�	 for �� � 0; �T � 0;
�	� �� for others:

Therefore, the condition to generate the states with larger
exoticness than the target (�E � 1) is given by one of the
following cases:

(i) �	 � 1, �� � 0, 	T � 0,
(ii) �	 � 0, �� � 1, �T � 0,
(iii) �	 � 1, �� � �1, �T � 0.

These cases correspond to the first three rows of Table III.
For the target in �p; q�, case (i) is satisfied for � � �p�
1; q� 1�, but the interaction is always repulsive for this
channel. Case (ii) is satisfied for � � �p� 2; q� 1�. In
order to have attraction, however, p � 0 is required, which
leads to B � �q=3 because of �T � 0. This is achieved by
the hadrons with negative baryon number, which are not
considered here. Case (iii) is satisfied for � � �p� 1; q�
2�, where the interaction can be attractive only when q � 0
and the strength is C�;T � 1. In this case, the condition
�T � 0 gives p � 3B.

What we have shown here is that the attractive interac-
tion in more ‘‘exotic’’ channels than the target hadron is
only found as

 Cexotic � 1; (14)

with

 T � �p; 0�; � � �p� 1; 2�; p � 3B:

It is interesting that the strength is always C�;T � 1, which
is the smallest strength of the Weinberg-Tomozawa term.
In addition, this takes place when the target hadron belongs
to the totally symmetric representation �p; 0�. The ex-
amples shown above for the ground states are the special

TABLE III. Properties of the WT interaction for various channels of representations � formed by a target hadron �p; q� and an octet
meson �1; 1�. Tabulated from the left to right columns are the channel representation �, the condition to have � in the irreducible
decomposition, the coupling strengths of the WT term C�;T and its sign, the differences of the exoticness E, 	, � between � and T, the
coupling strengths with arbitrary Nc, C�;T�Nc�, and the sign of the WT interaction at the large-Nc limit.

� Condition C�;T Sign �E �	 �� C�;T�Nc� V�Nc ! 1�

�p� 1; q� 1� - �p� q Repulsive 1 or 0 1 0 3�Nc
2 � p� q Repulsive

�p� 2; q� 1� q � 1 1� p 
 
 
 1 or 0 0 1 1� p 0
�p� 1; q� 2� p � 1 1� q 
 
 
 1 or 0 1 �1 5�Nc

2 � q Repulsive
�p; q� q � 1 3 Attractive 0 0 0 3 0
�p; q� p � 1 3 Attractive 0 0 0 3 0
�p� 1; q� 2� q � 2 3� q Attractive 0 or �1 �1 1 3�Nc

2 � q Attractive
�p� 2; q� 1� p � 2 3� p Attractive 0 or �1 0 �1 3� p 0
�p� 1; q� 1� p � 1, q � 1 4� p� q Attractive 0 or �1 �1 0 5�Nc

2 � p� q Attractive
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cases of this conclusion with p � 1, 2, and 3 (T � 3, 6, and
10, respectively).

Let us consider the exoticness of the representation T �
�p; 0� with p � 3B,

 E �
�
p
3
� B

�
�

�
p
3
� B

�
� 2

�
p
3
� B

�
:

It follows from the condition of triality (A1) that �p=3�
B� is an integer. This means that the attractive channels to
generate more exotic states appear for an even number of
E. For instance, for B � 1 hadrons, [3, 0] is E � 0 and [6,
0] is E � 2, and there is no such channel in E � 1. Thus,
even if the attraction (14) is enough to generate a bound
state, the WT interaction can generate at most the �E �
�1 state, and it is not possible to generate a tower of exotic
states recursively.

The next question is whether the attraction (14) is strong
enough to provide a bound state. This will be discussed in
Sec. IV.

C. Large-Nc limit of the WT term

In this section we discuss the large-Nc limit of the WT
term. It is known that the WT term scales as O�1=Nc� in the
large-Nc limit, since it contains 1=f2 and f�O�

������
Nc
p
�

[45,46]. However, if the coupling strength C�;T has some
Nc dependence, the scaling of the amplitude will be differ-
ent. In Ref. [47], nontrivial Nc dependence of the WT term
was reported for the spin-flavor SU(6) extended WT term.
Here we show that C�;T does have the Nc dependence in
the case of the baryon target without incorporating the spin
degrees of freedom. The representations of mesons do not
depend on Nc so that the result for the heavy meson target
remains unchanged. An interesting discussion was recently
made on interplay of the chiral and 1=Nc expansions [48].
In the present argument, we perform the chiral expansion
first, then consider the large-Nc expansion.

For arbitrary Nc, a baryon is constructed by Nc quarks
and E pairs of quarks and antiquarks, where E is the
exoticness. Accordingly, the SU(3) flavor representations
for the baryon are extended as [49,50]

 �p; q� !
�
p; q�

Nc � 3

2

�
; (15)

which reduces to �p; q� at Nc � 3. In this extension, the
baryon spin is implicitly fixed at the value of Nc � 3.
Denoting the Nc extended representation of R as ‘‘R,’’
we find that the coupling strengths C“�”;“T” with arbitrary
Nc can be given by

 C“�”;“T” � C2�“T”� � C2�“�”� � 3: (16)

Note that the representation of the meson does not change
in the large-Nc limit. The general form of the quadratic
Casimir is given in Eq. (10). The Casimir of the large-Nc
baryon ‘‘�p; q�’’ is given by

 

C2�“�p; q�”� � C
��
p; q�

3� Nc
2

��

�
1

3

�
�

9

4
� p2 �

3p
2
� pq� q2

�

�
1

3

�
p
2
� q

�
Nc �

N2
c

12
; (17)

for arbitrary Nc. Note that C2�“�p; q�”� � C2�“�q; p�”�,
because “�p; q�” � “�q; p�” forNc � 3 by the construction
of the large-Nc baryon (15). It is important to note also that
the coefficient of the linear term of Nc in the right-hand
side of Eq. (17) depends on the representation �p; q�, while
the coefficient of N2

c is independent of the representation.
This means that there is nontrivial linear Nc dependence
at order O�Nc� in the coefficient of the WT term:
C“�”;“T”�Nc� � C�“T”� � C�“�”� � 3, where the leading
N2
c terms are canceled. This is consistent with the general

Nc dependence O�N0
c� of the meson-baryon interaction.

For specific target hadrons, using Eqs. (16) and (17) we
evaluate the C“�”;“T”�Nc� coefficients with arbitrary Nc.
These are summarized in Table IV for light flavor baryons
and in Table V for heavy flavor hadrons. It is worth noting
that the attraction of C“27”;“10” with Nc � 3 turns into
repulsion for Nc > 5, which is also the case for C“15”;“6”.
Thus, the attractions found in exotic baryon channels with
Nc � 3 change into repulsive interactions at large Nc.
Moreover, the repulsion in the exotic channels linearly
increases in the large-Nc limit. It is also interesting that
the attraction in the coupling C“1”;“8” linearly increases as
Nc is increased. As mentioned above, the heavy meson q �Q
does not change its representation in the large-Nc limit.
Therefore the strengths shown in Table II hold for arbitrary
Nc, and the exotic channel � � �6 remains attractive, as
shown in Table V.

The above discussion is on the large-Nc behavior of the
coupling strengths. Recalling that the WT term has Nc
dependence of 1=f2, the scaling of the amplitude of the

TABLE IV. The coupling strengths C“�”;“T”�Nc� for light flavor
baryons.

� ‘‘1’’ ‘‘8’’ ‘‘10’’ ‘‘10’’ ‘‘27’’ ‘‘35’’

T � “8” 9
2�

Nc
2 3 0 3

2�
Nc
2 � 1

2�
Nc
2

T � “10” 6 3 5
2�

Nc
2 � 3

2�
Nc
2

TABLE V. The coupling strengths C“�”;“T”�Nc� for heavy fla-
vor hadrons. T � 3 is assigned to heavy mesons so that C�;T�Nc�
are unchanged.

� ‘‘3’’ ‘‘6’’ ‘‘15’’ ‘‘24’’ 3 �6 15

T � “�3” 3 1 1
2�

Nc
2

T � “6” 5 3 5
2�

Nc
2 � 1

2�
Nc
2

T � 3 3 1 �1
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WT term is in total given by the product of 1=Nc and
C“�”;“T”�Nc�. Therefore, in the large-Nc limit, the WT
interaction

(i) is attractive for the ‘‘1’’ channel in the scattering of
the ‘‘8’’ baryon and the NG boson,

(ii) has no interaction for other nonexotic baryonic
channels,

(iii) is repulsive for all exotic baryonic channels,
(iv) has no interaction for nonexotic and exotic mesonic

channels.
The first statement is very interesting in the context of

the two-pole structure of ��1405� [14–16]. It was found
that two poles originate in the singlet and octet bound
states in the SU(3) limit [14]. Although the SU(3) breaking
causes admixture of the singlet and octet states, different
behavior of the poles is expected in the large-Nc limit. The
investigation of the large-Nc limit would provide deeper
understanding of the ��1405� resonance.

We show that the coupling in the ‘‘1’’ channel is attrac-
tive in the large-Nc limit, while ‘‘10,’’ ‘‘27,’’ and ‘‘35’’
channels are all repulsive. This observation may be related
to the kaon bound state approach to the Skyrmion [51]
which is essentially based on the large-Nc limit. In this
approach, s-wave bound states of K with the SU(2) soliton
are obtained for the S � �1 channel, which corresponds to
��1405� and may largely have the flavor singlet compo-
nent. On the other hand, exotic S � �1 states are not
bound [52,53]. The relation between two different ap-
proaches in the large-Nc limit is worth investigating,
although the present analysis is based on the SU(3) sym-
metric limit, while the bound state approach is based on the
large SU(3) breaking.

We can also extend the large-Nc limit to the general
target hadrons belonging to the representation �p; q�. In the
seventh column of Table III, we show the coupling strength
at arbitrary Nc. Combining with the 1=Nc factor of 1=f2,
the sign of the WT interaction at the large-Nc limit can be
obtained in the eighth column of Table III. It is seen that in
the large-Nc limit, among the exotic channels, � � �p�
1; q� 1� and � � �p� 1; q� 2� are repulsive and the
strength of the interaction for � � �p� 1; q� 2� is zero.
In this way, we show that no attractive interaction exists for
exotic channels in the large-Nc limit. This means that, in
the large-Nc limit, the nonexistence of the s-wave exotic
baryons can be shown without solving the scattering
problem.

IV. BOUND STATE SOLUTIONS

A. Condition to generate a bound state

We have been discussing the kernel interaction of the
chiral unitary approach so far and have found the possible
attractive interaction in exotic channels with universal
strength Cexotic � 1. Now we study the unitarized ampli-
tude (3) with the WT interaction, and derive the condition
to generate a bound state pole. In other words, we solve the

Schrödinger equation with the potential (2). Before study-
ing the chiral unitary approach, let us note that the WT
interaction is independent of the three-momentum, as seen
in Eq. (2). Therefore it is instructive to recall an analogous
problem of the delta function potential in three-
dimensional nonrelativistic quantum mechanics.

As is well known, in one spatial dimension, the delta
function potential always provides one bound state, if the
interaction is attractive. However, in three dimensions, the
existence of a bound state is not trivial. Moreover, an
ultraviolet divergence appears in obtaining the wave func-
tion in coordinate space, as we show in Appendix B. This is
because the eigenvalue problem is ill defined, since the
short distance behavior of the potential is more singular
than the kinetic term [54]. To obtain a physically mean-
ingful result, we should tame the divergence by a proper
regularization scheme. With a three-momentum cutoff �,
the binding energy of a bound state Eb in the three-
dimensional delta function potential V�x� � �v��x� is
given by the equation

 

1

2mv
�

1

2�2

�
��

������������
2mEb

p
arctan

�
�������������

2mEb
p

��
;

where m is the reduced mass of the system (see
Appendix B). Note that the binding energy depends on
the cutoff �, and the solution does not always exist. The
condition to have a bound state solution is

 v >
�2

m�
� vc;

where we have defined the critical strength of attraction vc.
For a given cutoff �, vc is the smallest attraction that can
provide the bound state. If the attraction is less than vc, no
bound state exists. In addition, as shown in Appendix B, no
resonance solution with a complex energy is found in the
delta function potential.

Turning to the chiral unitary approach, the problem is
quite similar to the delta function potential problem, but
with the following differences: (i) relativistic kinematics
and (ii) energy dependence of the coupling. In order to find
the bound state in the scattering amplitude (3), we write the
denominator of the amplitude as

 D�
���
s
p
� � 1� V�

���
s
p
�G�

���
s
p
�: (18)

Then the mass of the bound state with its mass Mb is
obtained by

 D�Mb� � 0; MT <Mb <MT �m: (19)

The mass of the bound state should be between the target
mass MT and the scattering threshold m�MT . Let us
consider the behavior of theD�

���
s
p
� in this region. It follows

from Eq. (2) that V�MT� � 0, and in the present renormal-
ization condition (6), G also vanishes at

���
s
p
� MT , so that

 D�MT� � 1:
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From Eqs. (2) and (4), it is seen that, for the attractive
interaction C�;T > 0, both V�

���
s
p
� and G�

���
s
p
� are monotoni-

cally decreasing in the region MT <
���
s
p

<MT �m. Since
V�MT� � G�MT� � 0, VG is positive and monotonically
increasing for MT <

���
s
p

<MT �m, and therefore we find
that D � 1� VG is monotonically decreasing in this re-
gion. This means that there is only one bound state, if it
exists, and the condition to satisfy Eq. (19) is given by
D�MT �m�< 0. Thus, we define the critical strength of
attraction Ccrit such that

 D�MT �m� � 0: (20)

If the coupling strength is smaller than Ccrit, no bound state
exists. Substituting Eq. (2) into Eq. (20), we obtain

 Ccrit �
2f2

m��G�MT �m��
; (21)

where

 G�MT �m� �
2MT

�4��2

�
a�MT� �

m
m�MT

ln
m2

M2
T

�
;

with �q � 0 at the threshold and a�MT� defined in Eq. (7).
Note that Ccrit is a function of the mass of the target hadron
MT once the mass m and the decay constant f of the NG
boson are fixed.

It is worth noting that V changes the sign at
���
s
p
� MT .

The attractive WT interaction turns into a repulsive one for���
s
p

<MT . This energy region corresponds to the kinemat-
ics of the (bound region of) u-channel scattering, which is
not considered in the present formulation, since it is an
unphysical region of the s-channel scattering. To study the
amplitude of this region properly, we should include the
u-channel multiscattering diagrams in the scattering equa-
tion or introduce the effect from the left-hand cut in the
N/D method.

B. Bound state spectrum

Let us evaluate numerically the function D�
���
s
p
� defined

in Eq. (18), in order to find the energy of the bound state
Mb by

 D�Mb� � 0: (22)

For the numerical computation, we use the decay constant
f � 93 MeV and the mass of the NG bosons m �
368 MeV, which is the averaged value over the pseudo-
scalar octet mesons. We first choose the target hadron
masses MT by averaging over the masses of the experi-
mentally known ground states of the light flavor baryons,
the charmed baryons, and the D and B mesons given by
Particle Data Group (PDG) [1]. These are presented in the
third column of Table VI.

In Fig. 2, we plot D � 1� VG for various target had-
rons with the coupling strengths found in Sec. III A. The
position where curves cross zero determines bound state

energies. The resulting energies of bound statesMb and the
binding energies

 Eb � MT �m�Mb

are summarized in the sixth and seventh columns of
Table VI. As expected, larger coupling strengths provide
larger binding energies. Phenomenology of the bound
states found here has been extensively studied in more
realistic calculations with SU(3) breaking, and has been
shown to reproduce experimentally observed resonances
[18–20,25,32–34]. It is worth noting that no bound state is
found for the flavor exotic channels. The attraction in these
channels C�;T � 1 is not enough to bind the two-body
system for the physical masses of these hadrons. This point
will be further studied in the next subsection.

It is instructive to show the dependence of the binding
energy on the target mass. In Fig. 3 we plot the binding
energies Eb � MT �m�Mb as functions of the mass of
targetMT , fixing the coupling strengths asC�;T � 6, 5, and
3. Eb � 0 corresponds to the bound state exactly at the
threshold, and Eb � m corresponds to Mb � MT . We find
that the larger mass of the target provides larger binding
energy. Note that C�;T � 1 does not generate a bound state
in this energy region,

���
s
p

< 6 GeV.
The spectrum of the bound states in the light flavor

sector shows an interesting structure, when we compare
it with that of the SU(6) quark model. Recall the ground
states and first excited states in the SU(6) quark model,
which are 56 and 70, respectively. These representations
include the spin-flavor quantum numbers of f2S�1DSU�3� �
28; 410g in 56, and f21; 28; 28; 41; 48g in 70. In the chiral
unitary approach, the bound states of the baryon and NG
boson have the same spin as the target baryon with the
opposite parity, since the pseudoscalar NG boson is bound
in the s-wave interaction. Let us take the ground state octet

TABLE VI. Masses MT and coupling constants C�;T for sev-
eral targets in the SU(3) limit. The masses of bound statesMb are
obtained by solving Eq. (22) numerically.

Target hadron T MT (MeV) � C�;T Mb (MeV) Eb (MeV)

Light baryon 8 1151 1 6 1450 69
8 3 1513 7

10 1382 8 6 1668 80
10 3 1737 13
27 1 No solution

Charmed baryon �3 2408 �3 3 2736 40
6 1 No solution

6 2534 �3 5 2804 98
6 3 2860 42

15 1 No solution
D meson 3c 1900 3 3 2240 28

�6 1 No solution
B meson 3b 5309 3 3 5600 77

�6 1 No solution
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28 and decuplet 410 as the target baryons. Then the spin-
flavor quantum numbers of the hadron-NG boson bound
states are 21, 28, 28 from the octet target and 48, 410 from
the decuplet target, as shown in Table VI. Comparing the
bound states obtained in the chiral unitary approach and the
first excited states belonging to 70 in the quark model, we
find that the 41 bound state is absent in our approach but the
410 state is present instead. It is interesting to see that, in
the quark models, the 41 state is assigned as ��1520� [55],
while in the chiral unitary approach it is reproduced as a 48
dominant state [18,56]. Therefore, examination of the
property of the ��1520� resonance will provide further
understanding of the baryon spectroscopy, for instance,
through the coupling to the vector mesons [57].

C. Critical coupling strength

As studied in Sec. IVA, we find the critical attractive
strength Ccrit to generate a bound state. We plot Ccrit which
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FIG. 3 (color online). Binding energies Eb � MT �m�Mb
as functions of MT with coupling strengths C�;T � 6 (solid line),
5 (dash-dotted line), and 3 (dotted line). For reference, the upper
limit of the binding energies is indicated as the dashed line. No
bound state is found for C�;T � 1 in this energy region.
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FIG. 2 (color online). The denominator of the scattering amplitude of 1� VG for light flavor baryons (top left panel: T � 8; bottom
left panel: T � 10), for charmed baryon (top center panel: T � �3; bottom center panel: T � 6) and for D and B mesons (top right
panel: T � 3c; bottom right panel: T � 3b). Results for exotic channels are denoted by dashed lines.

TETSUO HYODO, DAISUKE JIDO, AND ATSUSHI HOSAKA PHYSICAL REVIEW D 75, 034002 (2007)

034002-10



is evaluated by Eq. (21) as a function ofMT in Fig. 4, where
we employ the meson decay constant f � 93 MeV and the
meson massm � 368 MeV which corresponds to the aver-
aged mass of the octet mesons ��;K; ��. We also plot
Cexotic � 1, which is the universal strength of the possible
attraction in exotic channels. It is clear that the attraction
Cexotic � 1 is not enough to bind the two-body system for
the target mass M< 6 GeV, where all the hadronic target
states we consider lie.

Let us examine the robustness of the conclusion. As
seen in Fig. 4 the critical coupling Ccrit is monotonically
decreasing as we increase MT . Therefore it will become
smaller than C�;T � 1 at sufficiently large MT .
Quantitatively, in order to have a bound state for the exotic
channel with Cexotic � 1, the mass of the target hadron MT
should be larger than about 14 GeV form � 368 MeV and
f � 93 MeV. Exotic hadrons can exist as bound states of
the NG boson-hadron system if a stable hadron (in 3
representation, for instance) exists in this energy region.
So far no hadronic states have been reported.

Next we study the dependence of Ccrit on m and f. It
follows from Eq. (21) that, as the decay constant f is
increased, the critical coupling Ccrit also increases. The
dependence onm is essentially determined by the prefactor
1=m, and the critical coupling Ccrit becomes smaller as we
increase m, since the dependence of G on m is not so
strong. In Fig. 5, we show the Ccrit � Cexotic lines in the
m-f plane with three different values, MT � 1000, 3000,
and 6000 MeV. A parameter choice below the Ccrit �
Cexotic lines provides Ccrit < 1, so that the exotic states
can be bound. Above these lines, the attractive interaction
in the exotic channels is not strong enough to generate a
bound state.

In Fig. 5, we indicate the point �m; f� � �368; 93� MeV
by the cross. From this figure, we see that the NG boson
could be bound in the exotic channel, if we use a heavier
mass for the NG boson. For instance, with m � 500 MeV
an exotic bound state appears with MT ’ 2500 MeV as
shown in Ref. [19]. One should however note that, to
utilize the low energy theorem of the chiral symmetry,

the mass of the NG boson should not be large. On the
other hand, for a smaller NG boson mass, the critical
strength Ccrit becomes larger. Indeed, with m � m�, the
critical strength Ccrit � 10 for the mass of N and �. Using
Eq. (11), we can show that the strongest attraction is
C1=2;1=2 � 2 for T � N and C1=2;3=2 � 5 for T � �.
Therefore, attractions found in SU(2) meson-baryon scat-
terings do not generate the bound states, which is consis-
tent with experimental observation.

In summary, we show that the critical coupling strength
Ccrit is larger than the attractive interaction found in exotic
channels, with the physically known values of parameters
MT ,m, and f. The critical value Ccrit could be smaller than
Cexotic if the mass of the target hadron MT is sufficiently
heavy, or the mass of the NG bosonm is large, or the decay
constant of the NG boson f is small.

V. SUMMARY AND DISCUSSIONS

In this paper, we have studied the s-wave bound states in
the NG boson-hadron scattering described by the chiral
unitary approach in flavor SU(3) limit. We have studied the
group theoretical structure of the Weinberg-Tomozawa
interaction, which is independent thanks to the chiral sym-
metry. The general expressions of the coupling strengths of
the WT interaction C�;T have been derived. Considering
the nonexotic hadrons as the target hadrons, we have found
an attraction in several exotic channels with the strength
Cexotic � 1. More generally, based on the group theoretical
argument, we have shown that the coupling strengths of the
attractive interaction for the channel raising the exoticness
are universally Cexotic � 1, which is the smallest value in
the WT interaction.

We have proved that the weak attraction Cexotic � 1 of
the exotic channel in the WT term is not enough to generate
the bound state of the experimentally observed hadrons and
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the NG boson. For proof, we have derived the critical
strength of attraction to generate a bound state Ccrit, based
on the general principles of the scattering theory. The
critical strength is expressed in terms of the mass of the
target hadron and the mass and decay constant of the NG
boson. Studying the dependence of the critical strength on
these parameters, we find that the exotic bound state could
be generated by the WT term for larger MT , larger m, and
smaller f. We find, however, that these parameters for
experimentally known hadrons do not satisfy Ccrit <
Cexotic. In other words, the strength of attraction in the
exotic channels is very weak and smaller than the critical
value, for the experimentally known particles.

We have also examined the large-Nc behavior of the
coupling strengths, which shows the nontrivial Nc depen-
dence. Because of the Nc dependence of the coupling
strengths, all amplitudes calculated by the WT term for
the exotic channels become repulsive or vanish in the
large-Nc limit, including attractive ones at Nc � 3. The
analysis of the critical coupling, together with the large-Nc
behavior of the WT interaction, shows the difficulty of
generating the exotic state by the chiral interaction.

In the present approach, exotic hadrons are treated as
quasibound states of the NG boson and a target hadron on
the same footing with the nonexotic resonances. We have
shown that the attractive interaction of the WT term is not
enough to bind the system. Considering the fact that a
certain number of known resonances have been properly
generated by the chiral unitary approaches, our conclusion
on the exotic states should be of great relevance. It should
be noted, however, that the present analysis does not ex-
clude the existence of the exotic states formed by other
mechanisms, for instance the genuine quark states, because
the WT interaction is one specific mechanism to generate
states dynamically.

Apart from the existence of the genuine quark state, one
may be cautious of the following uncertainties in the
analysis: the flavor SU(3) symmetry is badly broken in
nature, where it is known that the substantial breaking
effect is of about 20%. We implicitly assumed that the
target particle is stable, although several states such as
those in 10 can decay via the strong interactions. In recent
studies of the chiral unitary approach [58–62], an impor-
tant role played by the higher order terms of the chiral
Lagrangian has been discussed, while we only take into
account the leading order term. The channels which are
zero or repulsive at the leading order can become attractive
when the higher order terms are included. Indeed, some
resonances can be generated by the effect of the higher
order terms, which are absent in the leading order calcu-
lations [61].

Despite these caveats, the present formulation in the
SU(3) limit is sufficient to discuss the qualitative features
of the dynamically generated states. For instance, two
poles corresponding to the ��1405� resonance are found

with and without the SU(3) breaking effects or the higher
order terms [14,29,59,62]. This fact indicates that the
qualitative feature of the result is independent of the de-
tailed construction of the model, and that the essential
structure is determined by the WT term, which is common
for all approaches. To perform a more quantitative analy-
sis, corrections from the above-mentioned effects should
be taken into account. This can be performed systemati-
cally, for instance, based on the chiral perturbation theory.
For future perspective, it is important to include the SU(3)
breaking effects to draw more quantitative conclusions.
The bound states in the SU(3) limit were found to become
resonances when the SU(3) breaking effect was taken into
account. The mechanism for how the bound states acquire
the width should be clarified, in order to connect the results
in the SU(3) limit to the physical world. These will be
summarized elsewhere.
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APPENDIX A: EXOTICNESS

In this section, we derive the exoticness quantum num-
ber E [41–44]. The exoticness expresses the minimal
number of the valence quark-antiquark pairs to compose
the flavor multiplet �p; q� with a given baryon number B.
The baryon number B here counts only the u, d, and s
quarks, so that B can be fractional for the hadrons with the
heavy quarks. Here we obtain the formula of E for arbitrary
B and �p; q� for the first time.

Let us consider a hadron with the baryon number B
belonging to the �p; q� representation in the flavor SU(3)
group, where p and q are nonnegative integers. From the
triality of the �p; q� representation, p� 2q is congruent to
3B modulo 3:

 p� 2q � 3B �mod 3�: (A1)

This ensures that the exoticness quantum numbers are
integers. We denote the numbers of the light valence
quarks and antiquarks in the hadron as nq and n �q, respec-
tively. Then the baryon number and the exoticness are
given by

 B �
nq � n �q

3
; (A2)
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 E � min�nq; n �q�: (A3)

The exoticness is given by the antiquark number for the
hadron with the positive baryon number (nq > n �q) and the
quark number for the negative baryon number (nq < n �q).
We have an exception for the light mesons (B � 0). Their
exoticness is given by

 E � nq � 1 � n �q � 1 for light meson: (A4)

The valence quark contents �nq; n �q� of the hadron are
uniquely determined by the baryon number B and the
representation �p; q�. Therefore, once we know the quark
contents �nq; n �q� of the hadron, we obtain the exoticness E
through Eqs. (A3) and (A4). In the following, we express
nq and n �q in terms of B, p, and q.

Let us consider the Young tableau of the representation
�p; q�, which is expressed diagrammatically by

 

In order to know the valence quark contents of the hadron
with B and �p; q�, we assign these boxes to quarks and
antiquarks so as to give the baryon number B of the hadron.
The quark is denoted by one box, while the antiquark is
expressed by two boxes in an antisymmetric combination
(two boxes in different rows). The baryon number which
can be expressed by the boxes is limited within the follow-
ing range:

 �� � B � ��; (A5)

with

 �� �
p� q

3
; �� �

p� 2q
3

: (A6)

The lower limit �� is given by maximizing the number of
antiquarks, while the upper limit �� corresponds to the
assignment of all the boxes for quarks. There are two cases:
(i) the present boxes are enough to obtain the baryon
number, that is, the baryon number of the hadron is within
the range (A5); (ii) some extra boxes with the flavor singlet
combination are necessary to express the baryon number.
The addition of the extra boxes with the flavor singlet
combination can be done without changing the representa-
tion �p; q�.

For case (i), since the number of the boxes in the Young
tableau is just enough to give the quark contents of the
hadron, the total number of the boxes, p� 2q, is given by

 p� 2q � nq � 2n �q: (A7)

Combining Eqs. (A2) and (A7), we obtain the quark con-
tents in terms of B, p, and q as

 nq �
p� 2q

3
� 2B; n �q �

p� 2q
3

� B:

For case (ii), the baryon number cannot be obtained from
the existing boxes, so we add some sets of three boxes
forming the flavor singlet (totally antisymmetric) combi-
nation with nonzero baryon number:

 

Note that the addition of the flavor singlet with zero baryon
number is meaningless, since it supplies just sea quark
pairs. An example of case (ii) is the flavor singlet hadron
with B � 1. Since the Young tableau of the flavor singlet
�0; 0� has no box, the baryon number B � 1 cannot be
achieved by the present box. Thus we add one set of three
boxes with the flavor singlet and assign quarks to these
boxes to give B � 1. Then we obtain the valence quark
contents as nq � 3 and n �q � 0 for the flavor singlet hadron
with B � 1.

Case (ii) can be further classified into two cases:

 B<�� or �� <B: (A8)

For the case �� <B, the baryon number B exceeds the
upper limit ��. Recalling that �� is obtained so as to
assign all the boxes to quarks, that is, the quark number is
p� 2q and the antiquark number is zero, we see that the
boxes for quarks are not enough to express the baryon
number. To fill the deficit, we add B� �� sets of three
boxes in one column forming the flavor singlet and assign
quarks to the boxes. The addition of one set of boxes
changes the baryon number by �1. Hence, we obtain

 nq � p� 2q� 3�B� ��� � 3B; n �q � 0:

For the case B< ��, the baryon number B is less than the
lower limit ��. In the lower limit, the antiquarks are
maximally assigned to the boxes, that is, the quark number
is p and the antiquark number is q. Since B< �� means a
lack of boxes for antiquarks to express the baryon number,
we add �� � B sets of the flavor singlet combination and
maximally assign antiquarks to the whole boxes. The
addition of �� � B sets of boxes changes the total number
by �1. Hence we obtain

 nq � p� ��� � B� � �� � �� � B;

n �q � q� 2��� � B� � �� � �� � 2B:

Summarizing all the cases, we obtain the valence quark
contents of the hadron with the baryon number B belong-
ing to the SU(3) representation �p; q�:

 nq �

8><>:
3B for �� � B;
�� � 2B for �� � B � ��;
�� � �� � B for B � ��;

(A9)
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 n �q �

8><>:
0 for �� � B;
�� � B for �� � B � ��;
�� � �� � 2B for B � ��;

(A10)

where �� and �� are defined in Eq. (A6). Substituting
Eqs. (A9) and (A10) into Eqs. (A3) and (A4), we obtain the
exoticness for the hadron with B and �p; q�.

In the present study, we are interested in B> 0. In this
case, the exoticness E � n �q is given by

 E �

8><>:
0 for 	 � 0;
	 for 	 � 0; � � 0;
	� � for � � 0;

with 	 � �� � B and � � �� � B. This is equivalently
expressed as

 E � 	
�	� � �
���;

with the step function 
�x�.
The exoticness quantum number was introduced in the

context of the chiral soliton models [41,42], but without
considering the case (A8). The insufficiency of the defini-
tion was realized [43] and later the definition was gener-
alized to give correct values for B< �� [44], while the
definition of B>�� states was still not properly treated.
This is enough for the states in the excited spectrum of
soliton rotation, since there is no state with B> ��. In our
definition, the states with B>�� can be correctly treated,
and the generalization to the arbitrary baryon number is
performed.

The exoticness derived above can be extended to the
baryon with arbitrary Nc. The minimal content of the
baryon is Nc quarks. The baryon number for a hadron
with nQ heavy quarks is given by B � 1� nQ=Nc. From
this and the triality of the flavor SU(3), we have, instead of
Eqs. (A1) and (A2),

 p� 2q � NcB �mod 3�; B �
nq � n �q

Nc
:

Following the same argument as before with the replace-
ment B! Nc

3 B, we obtain the numbers of quarks and
antiquarks for arbitrary Nc,

 nq �

8><>:
NcB for �� �

Nc
3 B;

�� �
2Nc

3 B for �� �
Nc
3 B � ��;

�� � �� �
Nc
3 B for Nc

3 B � ��;

 n �q �

8><
>:

0 for �� �
Nc
3 B;

�� �
Nc
3 B for �� �

Nc
3 B � ��;

�� � �� �
2Nc

3 B for Nc
3 B � ��:

From Eq. (A3), the exoticness of a baryon is given by E �
n �q.

APPENDIX B: DELTA FUNCTION POTENTIAL

Let us consider the d-dimensional delta function poten-
tial problem in quantum mechanics [54]. The Schrödinger
equation takes on the form with @ � 1,

 �
1

2m
r2 �r� � V�r� �r� � E �r�;

with the reduced mass of the system m and the
d-dimensional delta function potential V�r� � �v��r�.
We consider the attractive interaction v > 0. To get an
essential feature of the problem, it is convenient to consider
it in a variational method. Let us take an expectation value
of the Hamiltonian of the sum of the kinetic and potential
terms with a normalized s-wave trial wave function with a
size parameter, say b, as a variational parameter. Then the
energy plot as a function of b has one minimum for d � 1,
while it has no such stable point for d � 3; it falls into�1
as b! 0, meaning that the delta function potential is too
strongly attractive to overcome the kinetic energy due to
the uncertainty principle.

For more quantitative discussions, we consider the wave
function explicitly which is given in momentum space as

 
�p� �
v0 �0�
p2 � ~Eb

;

where v0 � 2mv and ~Eb � 2mEb � �2mE> 0.
Integrating both sides over p, we obtain

 

1

v0
�

1

�2��d
Z
ddp

1

p2 � ~Eb

�
1

�2��d
Z
d	

Z
dppd�1 1

p2 � ~Eb
:

Here we use
R
ddp
�p� �  �0�. Notice that the integral is

divergent for d � 2 so that we need regularization. For
d � 3, by introducing the cutoff � in the three-momentum,
this integration leads to

 

1

v0
�

1

2�2

0
@��

������
~Eb

q
arctan

�
�������
~Eb

q
3
5
1
A: (B1)

The energy of the bound state Eb can be obtained by
solving this equation, which depends not only on v but
also �. In addition, we need a condition in order to obtain
the solution for Eq. (B1):

 v >
�2

m�
� vc:

This equation determines the critical strength of attraction
vc that can provide the bound state, for a given cutoff �. If
the attraction is weaker than vc, no bound state appears.

For the scattering state, the wave function in momentum
space 
�p� is given by
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�p� � �2��3��p� k� �
v0

p2 � k2 � i	
 �0�;

where k2 � 2mE. Integrating both sides over p, we obtain
the scattering amplitude f�k� as

 f�k� �
v0 �0�

2�
�

1

2�

�
1

v0
�

1

2�2

�
��

k
2

ln
k��

k��

��
�1

�
1

2�D�k�
:

Here we use, for a complex value k,

 I �
Z �

0
dp

p2

p2 � k2 � i	
� ��

k
2

ln
k��

k��
:

This integral I with the complex k is obtained through
analytic continuation of the integral with a real value k:

 I �

8>>><
>>>:

��
k
2

�
ln

								�� k
�� k

								�i�
�

for k <�;

��
k
2

ln

								�� k
�� k

								 for k >�:

Bound states and resonances appear when f�k� has poles
[or, equivalently, D�k� � 0] at

 Re �k� � 0; Im�k�> 0 for a bound state;

Re�k�> 0; Im�k�< 0 for a resonance state:

(B2)

Indeed, the condition that D�k� should be zero for pure
imaginary k is equivalent to Eq. (B1). In order to obtain a
resonance state, the imaginary part of D�k� should neces-
sarily be zero with Im�k�< 0, which can be decomposed as
 

Im�D�k�� � �
1

2�2

�
Re�k�

2
arg
k��

k��

�
Im�k�

2
ln

								k��

k��

								
�
:

Now the first term should be positive because the argument
is defined in the range 0 � 
 < 2�. Since jk��j> jk�
�j,

 ln

								k��

k��

								<0;

and therefore the second term is also positive. Thus we find
Im�D�k��< 0 for Eq. (B2), and no resonance state appears.

APPENDIX C: HEAVY MESON TARGET

Here we address the formulation of the chiral unitary
approach for the case with the meson target. The scattering
amplitude is given in the same way as Eq. (3):

 t � V � VGt �
1

1� VG
V; (C1)

with the interaction V and the loop function G. Denoting

VB andGB for a baryon target equivalent to the expressions
in Sec. II and VM and GM for a meson target given in
Ref. [20], we have

 VB � �
1

2f2 C!;

VM � �
1

8f2 C
�
3s� 2M2

T � 2m2 �
�M2

T �m
2�2

s

�
;

where
���
s
p

is the total energy and MT and m are the masses
of the target and the NG boson. We have used our con-
vention for the coupling strength C. The loop function is
given by

 GB � i
Z d4q

�2��4
2MT

�P� q�2 �M2
T � i	

1

q2 �m2 � i	
;

GM �
GB

2MT
:

Note that the dimensions of G and V in the two cases are
different, reflecting the factor 2MT which comes from the
normalization of the fermion spinor �uu � 1.

We expand the interaction potentials in terms of !=MT ,
where! is the NG boson energy. Since we are interested in
the low energy dynamics of the NG boson, the energy of
the NG boson is of order of its mass. The target meson
mass is taken to be large in comparison with the NG boson
mass. Since

���
s
p

also depends on MT , it is better to express
the amplitudes as functions of the meson energy ! to take
the large MT limit. Expanding the interaction VM with
respect to !=MT , we obtain

 VM � �2MT
!

2f2 C
�
1�
�m2 �!2

2!2

!
MT

�
�O

��
!
MT

�
2
�
:

The leading term agrees with the interaction VB, except for
the trivial normalization factor 2MT :

 VB �
VM

2MT
:

This also indicates, from Eq. (C1), that the scattering
amplitudes also coincide up to O��!=MT��:

 tB �
tM

2MT
�O�!=MT�:

Thus, we have shown that the formulation given in Sec. II
can be applied to the heavy meson target, up to O�!=MT�
corrections. The convergence becomes much better, if we
include the next to leading order terms in VB:

 V�2�B � �
1

2f2 C�
���
s
p
�MT�

ET �MT

2MT
: (C2)

Here ET is the on-shell energy of the baryon, and
���
s
p

is the
total energy in the center-of-mass system. This agrees with
the interaction VM up to O��!=MT�

2�.
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