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In this paper we discuss various aspects of open-closed homotopy algebras
�OCHAs� presented in our previous paper, inspired by Zwiebach’s open-closed
string field theory, but that first paper concentrated on the mathematical aspects.
Here we show how an OCHA is obtained by extracting the tree part of Zwiebach’s
quantum open-closed string field theory. We clarify the explicit relation of an
OCHA with Kontsevich’s deformation quantization and with the B-models of ho-
mological mirror symmetry. An explicit form of the minimal model for an OCHA
is given as well as its relation to the perturbative expansion of open-closed string
field theory. We show that our open-closed homotopy algebra gives us a general
scheme for deformation of open string structures �A� algebras� by closed strings
�L� algebras�. © 2006 American Institute of Physics. �DOI: 10.1063/1.2171524�

. INTRODUCTION

In this paper we discuss various aspects of open-closed homotopy algebras �OCHAs� defined
n our previous paper.35 They are a kind of homotopy algebra inspired by Zwiebach’s classical
pen-closed string field theory74 and also related to the deformation quantization setup by
ontsevich.40 In Ref. 35 we showed that an OCHA actually defines a homotopy invariant alge-
raic structure and also it gives us a general scheme for deformation of open string structures �A�

lgebras� by closed strings �L� algebras�.
As tree closed strings and open strings are related to the conformal plane C with punctures and

he upper half plane H with punctures on the boundary, respectively, tree open-closed strings are
elated to the upper half plane H with punctures both in the bulk and on the boundary, which
ppears recently in the context of deformation quantization.40 In operad theory �see Ref. 53�, the
elevance of the little disk operad to closed string theory is known. The little interval operad and
ssociahedra are relevant to open string theory. The Swiss-cheese operad,69 that combines the little
isk operad with the little interval operad, also is inspired by Kontsevich’s approach to deforma-
ion quantization. Our OCHA should be homotopy equivalent to a part of an algebra over the
wiss-cheese operad. It should be very interesting to investigate the remaining structures �see Ref.
3, which is related to this direction�.

We first present the definition of OCHAs together with recalling two typical homotopy alge-
ras, A� algebras and L� algebras, in Sec. II.

In Sec. III, we give an alternate interpretation in terms of odd formal vector fields �often called
omological vector fields� on a supermanifold, which we believe is a more acceptable description
or physicists.

�Electronic mail: kajiura@yukawa.kyoto-u.ac.jp
�
Electronic mail: jds@math.upenn.edu
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The connection to classical open-closed string field theory by Zwiebach74 is given in Sec. IV.
t is known that classical closed string field theory has an L� structure,73,66,38 and classical open
tring field theory has an A� structure.11,74,55,31 We show that an OCHA is obtained by extracting
he tree part of Zwiebach’s quantum open-closed string field theory. Since in general homotopy
lgebras are something whose structures are governed by the underlying tree graph �operad�
tructure, the structures of quantum string field theories are something beyond the ordinary ho-
otopy algebra �see loop homotopy algebras50 for quantum closed string field theories�. Thus, we

an say that OCHAs are the maximal homotopy algebraic structures which string field theories
hould have. Namely,

Quantum open-closed SFT � OCHA � L� � A�.

One of the key theorems in homotopy algebra is the minimal model theorem which was
roven for A� algebras by Kadeishvili.30 It holds true also for L� algebras in a similar way, and in
ur previous paper35 we stated the minimal model theorem holds for OCHAs, too. In Sec. V we
resent an explicit way of constructing a minimal model for an OCHA, and explain its relation to
he perturbative expansion of classical open-closed string field theory.

Section VI is devoted to explaining some deformation theory aspect of OCHAs. An open-
losed homotopy algebra consists of a direct sum of graded vector spaces H=Hc � Ho. It has an

� structure on Hc and reduces to an A� algebra if we set Hc=0. From such a viewpoint, an
pen-closed homotopy algebra gives a general scheme of deformation of the A� algebra by Hc,
here the deformation space is parametrized by a moduli space of the L� algebra on Hc.

35 In Sec.
I A we recall this fact in a more explicit way than Ref. 35. After that, we explain the relation of

his viewpoint to various aspects of string theory; Kontsevich’s deformation quantization40 in Sec.
I B, and open-closed B-models �cf. Ref. 26� in Sec. VI C.

I. OPEN-CLOSED HOMOTOPY ALGEBRA

An open-closed homotopy algebra, as we proposed in our previous paper,35 is a homotopy
lgebra which combines two typical homotopy algebras, an A� algebra and an L� algebra. There
re various equivalent ways of defining and/or describing strong homotopy algebras. In this paper,
e shall present them in terms of multivariable operations in this section, and in Sec. III we shall

einterpret them in terms of the supermanifold description. For the equivalent coalgebra descrip-
ion and tree graph description, see Ref. 35. Here we recall just enough so that this paper can be
ead without having to read Ref. 35. The reader familiar with A� algebras and L� algebras can go
irectly to Definition 2.8.

We first begin with recalling A� algebras and L� algebras in Sec. II A. The definition of
pen-closed homotopy algebras are given in Sec. II B. In Sec. II C we define cyclic structures in
pen-closed homotopy algebras together with explaining some background of such structures.

We restrict our arguments to the case that the characteristic of the field k is zero. We further
et k=C for simplicity.

. A� algebras and L� algebras

Definition 2.1 �A� algebra �strong homotopy associative algebra�64�: Let Ho be a Z-graded
ector space Ho= � r�ZHo

r and suppose that there exists a collection of degree one multilinear
aps

m ª �mk:�Ho��k → Ho�k�1.

Ho ,m� is called an A� algebra when the multilinear maps mk satisfy the following relations:

�
k+l=n+1

�
j=0

k−1

�− 1�o1+¯+ojmk�o1, . . . ,oj,ml�oj+1, . . . ,oj+l�,oj+l+1, . . . ,on� = 0 �2.1�
or n�1, where oi on �−1� denotes the degree of oi. A weak A� algebra �Ho ,m� consists of a
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ollection of degree one multilinear maps mª �mk : �Ho��k→Ho�k�0 satisfying the corresponding
elations

�
k+l=n+1

�
j=0

k−1

�− 1�o1+¯+ojmk�o1, . . . ,oj,ml�oj+1, . . . ,oj+l�,oj+l+1, . . . ,on� = 0

or n�0.
Remark 2.2: The definition above is different from the original one64 in the definition of the

egree of the multilinear maps mk. Both are in fact equivalent and related by suspension.15,53 In
ef. 64, the mk are multilinear maps on ↓Ho where �↓Ho�r+1=Ho

r ; in algebraic topology the
esuspension is denoted by ↓, which is equivalent to �−1� in the algebraic geometry tradition:
Ho=Ho�−1�. Since it might be more familiar also in mathematical physics as in Sec. VI, in this
aper we denote the suspension and desuspension by �1� and �−1�, respectively.

For an A� algebra �Ho ,m� �in the case m0=0�, the first three relations of the A� condition
2.1� are

0 = m1
2,

0 = m1�m2�o1,o2�� + m2�m1�o1�,o2� + �− 1�o1m2�o1,m1�o2�� ,

0 = m1�m3�o1,o2,o3�� + m3�m1�o1�,o2,o3� + �− 1�o1m3�o1,m1�o2�,o3� + �− 1�o1+o2m3�o1,o2,m1�o3��

+ m2�m2�o1,o2�,o3� + �− 1�o1m2�o1,m2�o2,o3�� .

he first equation, in the physics terminology, says m1 is nilpotent; �Ho ,m1� defines a complex on
he Z-graded vector space Ho. The second equation says the differential m1 satisfies the Leibniz
ule for the product m2. The third equation means the product m2 is associative up to the term
ncluding m3. Thus, a differential graded algebra �DGA� is described as an A� algebra on ↓Ho

Ho�−1� with a differential m1, a product m2, and m3=m4= ¯ =0.
Definition 2.3 �A� morphism�: For two A� algebras �Ho ,m� and �Ho� ,m��, suppose that there

xists a collection of degree zero �degree preserving� multilinear maps

fk:Ho
�k → Ho�, k � 1.

he collection �fk�k�1 : �Ho ,m�→ �Ho� ,m�� is called an A� morphism iff it satisfies the following
elations:

�
1�k1�k2...�ki=n

mi��fk1
�o1, . . . ,ok1

�, fk2−k1
�ok1+1, . . . ,ok2

� ¯ fn−ki−1
�oki−1+1, . . . ,on��

= �
k+l=n+1

�
j=0

k−1

�− 1�o1+¯+ojfk�o1, . . . ,oj,ml�oj+1, . . . ,oj+l�,oj+l+1, . . . ,on� �2.2�

or n�1. If �Ho ,m� and �Ho� ,m�� are weak A� algebras, then a weak A� morphism consists of
ultilinear maps �fk�k�0, where f0 :C→A�, satisfying the above conditions and in addition

f1 � m0 = � mk��f0, . . . , f0� .

As an A� algebra can be thought of as a generalization of a differential graded algebra �DGA�,
n L� algebra is a generalization of a differential graded Lie algebra �DGLA�. As ordinary asso-
iative and Lie algebras are related by skew-symmetrization and the universal enveloping con-
truction, there are corresponding relations for A� algebras and L� algebras.42
Definition 2.4 �graded symmetry�: A graded symmetric multilinear map of a graded vector
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pace V to itself is a linear map f :V�n→V such that, for any ci�V 1� i�n and any ��Sn �the
ermutation group of n elements�, the relation

f�c1, . . . ,cn� = �− 1�����f�c��1�, . . . ,c��n�� �2.3�

olds, where the sign �−1����� is the Koszul sign of the permutation �.
Also we adopt the convention that tensor products of functions or operators have the signs

uilt in; e.g., �f � g��x � y�= �−1�g·xf�x� � g�y�.
Definition 2.5 �L� algebra �strong homotopy Lie algebra�43�: Let Hc be a graded vector space

nd suppose that a collection of degree one graded symmetric multilinear maps lª �lk :Hc
�k

Hc�l�0 is given. �Hc , l� is called a weak L� algebra iff the multilinear maps satisfy the follow-
ng relations:

�
k+l=n+1

�
��Sn

�− 1�����

l ! �n − l�!
lk�ll�c��1�, . . . ,c��l��,c��l+1�, . . . ,c��n�� = 0 �2.4�

or n�0. If the relation is satisfied for n�1 without the additional map l0 :C→Hc
1�Hc, then

Hc , l� is called an L� algebra.
Remark 2.6: L� algebras are usually defined in a similar but different fashion, where the

ummation for the permutation Sn in Eq. �2.4� is replaced by the summation over the unshuffle
ermutations �2.3�. This unshuffled description would enable us to drop all the symmetrization
actors in this paper. However, we take the one with all the permutations since it fits the dual
escription in the next section.

For an L� algebra �Hc , l�, the first three relations of the L� condition �2.4� are

0 = �l1�2,

0 = l1�l2�c1,c2�� + l2�l1�c1�,c2� + �− 1�c1l2�c1,l1�c2�� ,

0 = l1�l3�c1,c2,c3�� + l3�l1�c1�,c2,c3� + �− 1�c1l3�c1,l1�c2�,c3� + �− 1�c1+c2l3�c1,c2,l1�c3��

+ l2�l2�c1,c2�,c3� + �− 1�c1�c2+c3�l2�l2�c2,c3�,c1� + �− 1�c3�c1+c2�l2�l2�c3,c1�,c2� .

s in the case of an A� algebra, the first equation indicates that �Hc , l1� defines a complex, while,
fter a shift in grading, the second equation implies the differential l1 satisfies a Leibniz rule with
espect to the Lie bracket l2, and the third equation means the bracket l2 satisfies the Jacobi
dentity up to the terms including l3. Thus, a differential graded Lie algebra is described as an L�

lgebra on ↓Hc=Hc�−1� with a differential l1, a Lie bracket l2, and l3= l4= ¯ =0.
Definition 2.7 �L� morphism�: For two weak L� algebras �Hc , l� and �Hc� , l��, suppose that

here exists a collection of degree zero �degree preserving� graded symmetric multilinear maps

fk:Hc
�k → Hc�, l � 0.

ere f0 is a map from C to a degree zero subvector space of Hc. The collection �fk�k�0 : �Hc , l�
�Hc� , l�� is called a weak L� morphism iff it satisfies the following relations:

�
k+l=n+1

�
��Sn

�− 1�����

l ! �n − l�!
fk�ll � 1c

�n−l��c��1�, . . . ,c��n�� = �
k1+¯+kj=n

�
��Sn

�− 1�����

k1 ! k2 ! ¯ kj ! · j!
lj��fk1

� fk2

� ¯ � fkj
��c��1�, . . . ,c��n�� �2.5�

or n�0. In particular, when �Hc , l� and �Hc� , l�� are L� algebras, a weak L� morphism

fk�k�0 : �Hc , l�→ �Hc� , l�� is called an L� morphism if in addition f0=0.
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. Open-closed homotopy algebra

Definition 2.8 �open-closed homotopy algebra35�: Let H=Hc � Ho be a graded vector space
nd �Hc , l� be a weak L� algebra. Consider a collection of multilinear maps

n ª �nk,l:�Hc��k
� �Ho�� l → Ho�k,l�0

ach of which is graded symmetric on �Hc�� l. We call �H , l ,n� a weak open-closed homotopy
lgebra �weak OCHA� when n satisfies the following relations:

0 = �
p+r=n

�
��Sn

�− 1�����

p ! r!
n1+r,m�lp�c��1�, . . . ,c��p��,c��p+1�, . . . ,c��n�;o1, . . . ,om�

+ �
p+r=n

�
i+s+j=m

�
��Sn

�− 1��p,i���

p ! r!

�np,i+1+j�c��1�, . . . ,c��p�;o1, . . . ,oi,nr,s�c��p+1�, . . . ,c��n�;oi+1, . . . ,oi+s�,oi+s+1, . . . ,om� .

�2.6�

ere the sign exponent �p,i��� is given explicitly by

�p,i��� = ���� + �c��1� + ¯ + c��p�� + �o1 + ¯ + oi� + �o1 + ¯ + oi��c��p+1� + ¯ + c��n�� ,

�2.7�

orresponding to the signs effected by the interchanges. In particular, if l0=n0,0=0, we call
H , l ,n� an open-closed homotopy algebra. We can also write the defining equation �2.6� in the
ollowing shorthand expression:

0 = �
p+r=n

�
��Sn

�− 1�����

p ! r!
�− 1�����n1+r,m��lp � 1c

�r
� 1o

�m��c��1�, . . . ,c��n�;o1, . . . ,om��

+ �
p+r=n

�
i+s+j=m

�
��Sn

�− 1�����

p ! r!
np,i+1+j��1c

�p
� 1o

� i
� nr,s � 1o

� j��c��1�, . . . ,c��n�;o1, . . . ,om�� ,

here the complicated sign is absorbed into this expression.
Remark 2.9: For an OCHA �H , l ,n�, the substructure �Hc , l� is by definition an L� algebra and

Ho , �n0,k�� forms an A� algebra. Furthermore, the substructure �H , �n1,q�q�0� forms an A� module
ver the A� algebra �Ho ,m� in the sense of Refs. 49 and 67. Also, if np,0=0 for all p�1, the
ubstructure �H , �np,1�� makes Ho an L� module over �Hc , l�.42

Now, let us denote l1=dc and n0,1=do. The first few relations which do not appear as A� or L�

onditions are

0 = don1,0 + n1,0dc, �2.8�

0 = don1,1�c;o� + n1,1�c;do�o�� + n1,1�dc�c�;o� + n0,2�n1,0�c�,o� + �− 1�c�o+1�n0,2�o,n1,0�c�� ,

�2.9�

0 = don2,0�c1,c2� + n2,0�dc�c1�,c2� + �− 1�c1c2n2,0�dc�c2�,c1� + n1,0l2�c1,c2� + �− 1�c1n1,1�c1,n1,0�c2��
c2�1+c1�
+ �− 1� n1,1�c2,n1,0�c1�� , �2.10�
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0 = don1,2�c;o1,o2� + n1,2�dc�c�;o1,o2� + �− 1�cn1,2�c;do�o1�,o2� + �− 1�c+o1n1,2�c;o1,do�o2��

+ n1,1�c,n0,2�o1,o2�� + n0,2�n1,1�c;o1�,o2� + �− 1�o1�1+c�n0,2�o1,n1,1�c,o2�� + n0,3�n1,0�c�,o1,o2�

+ �− 1�o1�1+c�n0,3�o1,n1,0�c�,o2� + �− 1��o1+o2��1+c�n0,3�o1,o2,n1,0�c�� , �2.11�

0 = don2,1�c1,c2;o� + n2,1�dc�c1�,c2;o� + �− 1�c1n2,1�c1,dc�c2�;o� + �− 1�c1+c2n2,1�c1,c2;do�o��

+ n1,1�l2�c1,c2�;o� + + �− 1�c1n1,1�c1;n1,1�c2;o�� + �− 1�c2�c1+1�n1,1�c2;n1,1�c1;o��

+ n0,2�n2,0�c1,c2�,o� + �− 1�o�1+c1+c2�n0,2�o,n2,0�c1,c2�� + �− 1�c2�1+c1�n1,2�c2;n1,0�c1�,o�

+ �− 1��c2+o��1+c1�n1,2�c2;o,n1,0�c1�� + �− 1�c1n1,2�c1;n1,0�c2�,o�

+ �− 1�c1+o�1+c2�n1,2�c1;o,n1,0�c2��, . . . . �2.12�

quation �2.8� implies n1,0 is a chain map by an appropriate relative shift of the grading. On the
ther hand, in the case n0,1=0, Eq. �2.9� is an extended Leibniz rule. Suppose that we have an
CHA with only nonzero structures dc ,do , l2 ,n1,1 ,m2ªn0,2. In Eq. �2.11� only the second line

urvives, which means that Hc acts on an algebra �Ho ,m2� by n1,1 as derivations. Furthermore, in
q. �2.12� only the second line survives, which implies that Ho represents a Lie algebra �Hc , l2�.
hen �H ,dc ,do , l2 ,n1,1 ,m2� forms what is called a g algebra or Leibniz pair �see Ref. 35 and

eferences there�.
Definition 2.10 �open-closed homotopy algebra morphism�: For two weak OCHAs �H , l ,n�

nd �H� , l� ,n��, consider a collection f of degree zero �degree preserving� multilinear maps

fk:�Hc��k → Hc� for k � 0,

fk,l:�Hc��k
� �Ho�� l → Ho� for k,l � 0,

here fk and fk,l are graded symmetric with respect to �Hc��k. We call f : �H , l ,n�→ �H� , l� ,n�� a
eak OCHA morphism when �fk�k�0 : �Hc , l�→ �Hc� , l�� is a weak L� morphism and �fk,l�k,l�0

urther satisfies the following relations:

�
p+r=n

�
��Sn

�− 1�����

p ! r!
f1+r,m��lp � 1c

�r
� 1o

�m��c��1�, . . . ,c��n�;o1, . . . ,om��

+ �
p+r=n

�
i+s+j=m

�
��Sn

�− 1�����

p ! r!
fp,i+1+j��1c

�p
� 1o

� i
� nr,s � 1o

� j��c��1�, . . . ,c��n�;o1, . . . ,om��

= �
�r1+¯+ri�+�p1+¯+pj�=n

�q1+¯+qj�=m

�
��Sn

�− 1�����

i ! �r1 ! ¯ ri ! ��p1 ! ¯ pj ! �
ni,j� ��fr1

� ¯ � fri
� fp1,q1

� ¯ � fpj,qj
��c��1�, . . . ,c��n�;o1, . . . ,om�� . �2.13�

he right-hand side is written explicitly as

ni,j� ��fr1
� ¯ � fri

� fp1,q1
� ¯ � fpj,qj

��c��1�, . . . ,c��n�;o1, . . . ,om��

=�− 1�	p�,q����ni,j� �fr1
�c��1�, . . . ,c��r1��, . . . , fri

�c��r̄i−1+1�, . . . ,c��r̄i�
�;

�fp1,q1
�c��r̄i+1�, . . . ,c��p̄1�;o1, . . . ,oq1

�, . . . , fpj,qj
�c��p̄j−1+1�, . . . ,c��p̄j�

;oq̄j−1+1, . . . ,oq̄j
�� ,

here r̄kªr1+ ¯ +rk, p̄kª r̄i+ p1+ ¯ + pk, q̄kªq1+ ¯ +qk and 	p�,q���� is given by

	p�,q���� = �
j−1

�c��p̄k+1� + ¯ + c��p̄k+1���o1 + ¯ + oq̄k
� .
k=1
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n particular, if �H , l ,n� and �H� , l� ,n�� are OCHAs and if f0= f0,0=0, we call it an OCHA
orphism.

Definition 2.11 �quasi-isomorphism�: Suppose that two OCHAs �H , l ,n�, �H� , l� ,n�� and an
CHA morphism f : �H , l ,n�→ �H� , l� ,n�� are given. f is called an open-closed homotopy algebra
uasi-isomorphism if f1 :Hc→Hc� induces an isomorphism between the cohomology spaces of the
omplexes �Hc , l1� and �Hc� , l1��, and further f0,1 :Ho→Ho� induces an isomorphism between the
ohomology spaces of the complexes �Ho ,n0,1� and �Ho� ,n0,1� �. In particular, if f1and f0,1 are
somorphisms, we call f an open-closed homotopy algebra isomorphism.

. Cyclic structures in OCHAs

Now we consider an additional structure, cyclicity, �cf. Ref. 16� on open-closed homotopy
lgebras. It is defined in terms of constant symplectic inner products. The string theory motivation
or this additional structure is that punctures on the boundary of the disk inherit a cyclic order
rom the orientation of the disk and the operations are to respect this cyclic structure, just as the

� structure reflects the symmetry of the punctures in the interior of the disk or on the sphere.
lternatively, a typical Lagrangian of a �quantum� field theory originally has such structure and in
articular in the Batalin-Vilkovisky �BV� formalism,3,4 such structure is defined in terms of an odd
degree minus one� symplectic structure on the corresponding supermanifold.3,62,1,33 Both pictures
re then combined with each other in string field theory as discussed in Sec. IV.

From such background, in Ref. 33 a “cyclicity” is defined for A� algebras in terms of a degree
inus one constant symplectic inner product, and it is shown that homotopy invariant properties

f A� algebras hold true also in the category of cyclic A� algebras. However, in string theory or in
articular topological string theory, there often exist cyclic structures defined by inner products
aving some different degree. For the arguments on homotopy invariant properties in Ref. 33, the
egree of the inner product is not essential. Thus, we define cyclic structures with constant
ymplectic inner products of arbitrary fixed integer degrees.

Definition 2.12 �constant symplectic structure�: Bilinear maps, 
c :Hc � Hc→C and 
o :Ho

� Ho→C, are called constant symplectic structures when they have fixed integer degrees

c � , �
o � �Z and are nondegenerate and skew-symmetric. Here skew-symmetric indicates that


c�c2,c1� = − �− 1�c1c2
c�c1,c2�, 
o�o2,o1� = − �− 1�o1o2
o�o1,o2�

or any c1 ,c2�Hc, o1 ,o2�Ho, and the degree of 
c ,
o implies that 
c�c1 ,c2�=0 except for
eg�c1�+deg�c2�+ �
c � =0 and 
o�o1 ,o2�=0 except for deg�o1�+deg�o2�+ �
o � =0. We further de-
ote the constant symplectic structure on H=Hc � Ho by 
ª
c � 
o.

Suppose that an open-closed homotopy algebra �H , l ,n� is equipped with constant symplectic
tructures 
c :Hc � Hc→C and 
o :Ho � Ho→C as in Definition 2.12.

For �lk�k�1 and �np,q�p+q�1, let us define two kinds of multilinear maps by

Vk+1 = 
c�lk � 1c�:�Hc���k+1� → C, Vp,q+1 = 
o�np,q � 1o�:�Hc��p
� �Ho���q+1� → C

r more explicitly

Vk+1�c1, . . . ,ck+1� = 
c�lk�c1, . . . ,ck�,ck+1�

nd

Vp,q+1�c1, . . . ,cp;o1, . . . ,oq+1� = 
o�np,q�c1, . . . ,cp;o1, . . . ,oq�,oq+1� .

he degree of Vk+1 and Vp,q+1 are �
c � +1 and �
o � +1. Note that the degrees of Vk+1 and Vp,q+1 are
ero when they come from odd constant symplectic structures �
c � = �
o � =−1.

Definition 2.13 �cyclic open-closed homotopy algebra�: An open-closed homotopy algebra
H ,
 , l ,n� is called a cyclic open-closed homotopy algebra �COCHA� when Vk+1 is graded
ymmetric with respect to any permutation of �Hc���k+1� and Vp,q+1 has cyclic symmetry with

��q+1�
espect to cyclic permutations of �Ho� , that is, if
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Vk+1�c1, . . . ,ck+1� = �− 1�����Vk+1�c��1�, . . . ,c��k+1��, � � Sk+1

nd

Vp,q+1�c1, . . . ,cp;o1, . . . ,oq+1� = �− 1�o1�o2+¯+oq+1�Vk+1,l�c1, . . . ,cp;o2, . . . ,oq+1,o1� .

he graded commutativity of Vp,q+1 with respect to permutations of �Hc��p, that is,

Vp,q+1�c1, . . . ,cp;o1, . . . ,oq+1� = �− 1�����Vp,q+1�c��1�, . . . ,c��p�;o1, . . . ,oq+1�, � � Sp

utomatically holds by the definition of n.
Note also that there are many situations where the inner products exist only for open strings.

his is the case for the topological string situation in the B-model we will discuss later in Sec.
I C. For instance, on the topological open string side, there often exists a natural inner product

oming essentially from an integral �trace� of products of two differential forms. The inner prod-
cts of this kind in fact turn out to be skew-symmetric �symplectic� in our suspended notation �see
ef. 34�. See also Ref. 57 for more general cyclic structures including nonskew inner products.

On the other hand, if we have 
c and 
o, nondegenerate inner products in both open and
losed string sides, we can identify H with its linear dual, then reverse the process and define
urther maps

rp−1,q+1:�Hc���p−1�
� �Ho���q+1� → Hc

ith relations amongst themselves and with the operations already defined, which can easily be
educed from their definition. In particular, for n1,0 :Hc→Ho we have r0,1 :Ho→Hc. Namely, for
he cyclic case the fundamental object is the multilinear map Vp,q+1 where np,q and rp−1,q+1 are
quivalent under the relation above.

Physically, the multilinear map Vp,q+1 is related to the �scattering� amplitudes of a disk with p
losed strings and �q+1� open strings insertions. Choosing an open string state as a root edge
nstead of a closed string state, that is, taking np,q instead of rp−1,q+1, for defining an OCHA is
elated to a standard compactification of the moduli spaces of the corresponding Riemann surface
a disk with p points interior and �q+1� points on the boundary�. Also, in the next section we shall
ee that, due to this choice of the root edge, the OCHA structure �l ,n� can be singled out to be an
dd vector field on the appropriate supermanifold.

Remark 2.14�Category version�: As an A� category is defined as a straightforward extension
f an A� algebra,9 one can extend our open-closed homotopy algebra to its category version by
eplacing Ho by the space of morphisms of a category. This category extension corresponds to
onsidering many D-branes on which open strings end. This is important for applying OCHAs to
opological string theory, see Sec. VI C.

II. THE DUAL SUPERMANIFOLD DESCRIPTION

. OCHAs and odd formal vector fields

For a graded vector space H=Hc � Ho, denote by �ec,i� a basis of Hc and by �eo,i� a basis of

o. For each ec,i�Hc represent the dual base as �i and similarly the dual base of eo,i�Ho as �i.
e set the degree of the dual basis by deg��i�=−deg�ec,i� and deg��i�=−deg�eo,i�. We consider

he formal power series ring in the variables ��i�, ��i�, and ��i�� ��i�, and denote them by C���,
���, and C�� ,��, respectively. We define ��i� to be associative and graded commutative and ��i�

o be associative but noncommutative. More precisely, in the space of the formal power series of
ssociative fields ��i�� ��i�, an element in ��i� is graded commutative with respect to all ele-
ents. Therefore, any element in C�� ,�� is represented as

a��,�� = �
k,l

ai1¯ik;j1¯jl
�� jl

¯ � j1���ik
¯ �i1� , �3.1�
here the coefficient ai1¯ik;j1¯jl
�C is graded symmetric with respect to i1¯ ik. We can call
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H ,C�� ,��� the formal supermanifold1,40 corresponding to an OCHA �H , l ,n�. Though usually
he term super indicates Z2 graded, we use it for Z graded objects. On the other hand, an A�

lgebra is described on a formal noncommutative supermanifold �Ho ,C����,31,33 and an L� alge-
ra is described on a formal graded commutative supermanifold �Hc ,C����.

For a weak OCHA �H , l ,n�, express the collection of multilinear maps

lk:�Hc��k → Hc, nk,l:�Hc��k
� �Ho�� l → Ho,

n terms of the bases,

lk�ec,i1
, . . . ,ec,ik

� = ec,jci1¯ik
j , ci1¯ik

j � C ,

nk,l�ec,i1
, . . . ,ec,ik

;eo,j1
, . . . ,eo,jl

� = eo,jci1¯ik;j1¯jl
j , ci1¯ik;j1¯jl

j � C .

orrespondingly, let us define an odd formal vector field 
ª
S+
D :C�� ,��→C�� ,��, where


S =
��

�� j c
j��� = �

k�0

1

k!

��

�� j ci1¯ik
j �ik

¯ �i1, cj��� � C���,


D =
��

�� j c
j��,�� = �

k+l�0

1

k!

��

�� j ci1¯ik;j1¯jl
j �� jl

¯ � j1���ik
¯ �i1�, cj��,�� � C��,�� .

�3.2�

e use right derivatives just for the sign problem; it is easy to relate this dual supermanifold
escription to the convention in the preceding section. Since l and n have degree one, 
 also has
egree one.

It acts on C�� ,�� as follows:


�a��,��� = �
k,l

ai1¯ik;j1¯jl�
s=1

k

�− 1��S�s−1��� jl
¯ � j1���ik

¯ 
S��is� ¯ �i1�

+ �
k,l

ai1¯ik;j1¯jl�
t=1

l

�− 1��D�t−1��� jl
¯ 
D�� jt� ¯ � j1���ik

¯ �i1� , �3.3�

here 
D�� jt�=cjt�� ,�� and 
S��is�=cis���. Then, �S�s−1� �respectively, �D�t−1�� is the sign
rising when 
S �respectively, 
D� acts from the right and passes the corresponding superfields and
s given explicitly by

�S�s − 1� = ec,i1
+ ¯ + ec,is−1

, �D�t − 1� = �ec,i1
+ ¯ + ec,ik

� + eo,j1
+ ¯ + eo,jt−1

.

he above 
�a�� ,��� is further rewritten; in the first line �’s in 
D�� jt� are brought to the right of
’s, and �’s on each line of Eq. �3.3� are treated as graded symmetric. The 
�a�� ,��� is expressed

n the form in Eq. �3.1� again but with a different coefficient. In the supermanifold language, 
 is
alled an �odd� formal vector field on the formal supermanifold. A formal manifold with such a 

s called a Q-manifold in Ref. 1 if Q=
 with Q2=0.

Lemma 3.1: The condition that �H , l ,n� is a weak OCHA is equivalent to

�
�2 = 0. �3.4�

n particular, 
 defines an OCHA if the k=0 part of 
S and k= l=0 part of 
D in Eq. �3.2� are

bsent or zero.
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The equation above can be expanded as �
S�2+ �
S ,
D�+ �
D�2=0, where �
S ,
D�=
S�
D�

D�
S�, 
S�
D�= ��� /�� j��
S�cj�� ,����. Note that 
D�
S� vanishes since 
S does not include �.
urthermore, one can see that

�
S�2 = 0, 
S�
D� + �
D�2 = 0

old independently. The first one is just the dual of the L� condition �2.4�, and the second one is
he dual description of the OCHA condition �2.6�. The pair of the equations above can also be
hought of as a deformation of 
S by 
S+
D, though we do not discuss this type of deformation in
his paper.

A �weak� OCHA morphism in Definition 2.10 can also be rewritten in the same way. For the
ollection f of degree zero multilinear maps,

f l:�Hc�� l → Hc�, fk,l:�Hc��k
� �Ho�� l → Ho�,

et us now express fk and fk,l as

fk�ec,i1
, . . . ,ec,ik

� = ec,j�f i1¯ik
j� , f i1¯ik

j� � C ,

fk,l�ec,i1
, . . . ,ec,ik

;eo,j1
, . . . ,eo,jl

� = eo,j�f i1¯ik;j1¯jl
j� , f i1¯ik;j1¯jl

j� � C . �3.5�

hey define the following coordinate transformation between the two supermanifolds �H , l ,n� and
H� , l� ,n��:

� j� = f*
j���� = f j� + f i

j��i + f i1i2
j� �i2�i1 + ¯ + f i1¯in

j� �in
¯ �i1 + ¯ ,

� j� = f*
j���,�� = �

k,l�0
f i1¯ik;j1¯jl

j� �� jl
¯ � j1���ik

¯ �i1� . �3.6�

his induces a pullback from C��� ,��� to C�� ,��,

f*�a���,���� = a�f*��,��,f*���� ,

here ��i� and ��i�� are the coordinates on H and H�, respectively.
Lemma 3.2: The condition that this f is a weak OCHA morphism is then that the map between

wo formal supermanifolds f* is compatible with the actions of 
 and 
� on both sides, that is,

f*
��a���,���� = 
f*a���,��� �3.7�

olds for any a��� ,����C��� ,���. In other words, f* is a morphism between Q manifolds. If in

ddition f j�= f�;�
j� =0, f* preserves the origin of the formal supermanifolds. f* is then an OCHA

orphism in the situation that both 
 and 
� define OCHAs.
All these structures in the supermanifold description are dual to the coalgebra description

xplained in Ref. 35 in the following sense �see Ref. 33 for the A� case�. Let us introduce natural
airings

	�i�ec,j
 = 
 j
i, 	�i�eo,j
 = 
 j

i

nd also the extended pairings

	�� jl
¯ � j1���ik

¯ �i1���ec,i1�
¯ ec,ik�

� � �eo,j1�
¯ eo,jl�

�
 = �i1�¯ik�
i1¯ik
 j1�

j1
¯ 
 jk�

jk

or k+ l�1, where �i1�¯ik�
i1¯ik : =���Sk

����

i1�

i��1�
¯


ik�

i��k�. We set the pairing to be zero if the number of

lements � /� and ec /eo does not coincide. The space spanned by �ec,i1
¯ec,ik

� � �eo,j1
¯eo,jl

�, k
c
l�1, is what is denoted C�Hc� � T �Ho� in Ref. 35. As the adjoint of the product on C�� ,��, a
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oproduct � :C�Hc� � Tc�Ho�→ �C�Hc� � Tc�Ho�� � �C�Hc� � Tc�Ho�� is defined; for a ,b
C�� ,�� and x�C�Hc� � Tc�Ho�,

	b · a�x
 = �
i

	a�xi
+
 · 	b�xi

−
, � ª �
i

�xi
+

� xi
−� .

hus, C�Hc� � Tc�Ho� forms a coalgebra. Then, a codifferential l+n :C�Hc� � Tc�Ho�→C�Hc�
� Tc�Ho� is given as the adjoint of 
=
S+
D,

	a��l + n��x�
 ª 	
�a��x
 .

n a similar way, a coalgebra homomorphism f :C�Hc� � Tc�Ho�→C�Hc�� � Tc�Ho�� is obtained as
he adjoint of the pullback f* :C��� ,���→C�� ,��. Thus, the coalgebra description given in Ref.
5 is obtained as the dual of the algebra description in terms of formal power series on super-
anifolds.

. Cyclicity and constant symplectic and/or Poisson structures

Next, we discuss the cyclicity �Definition 2.13�. If cyclicity is imposed on the �i’s, we
ndicate that by C���cyc or C�� ,��cyc. Any element of C�� ,��cyc�C�� ,�� is represented in the
orm in Eq. �3.1� but the coefficient ai1¯ik;j1¯jl

is in addition graded cyclic symmetric with respect
o the indices j1¯ jl. On this algebra, a constant Poisson structure is introduced naturally by
ualizing the constant symplectic structures in Definition 2.12.

Definition 3.3 �constant Poisson structure�: Suppose Hc and Ho have constant symplectic
tructures 
c :Hc � Hc→C and 
o :Ho � Ho→C �Definition 2.12�. The corresponding Poisson
rackets are denoted by

� , �c =
��

��i
c
ij ��

�� j , � , �o =
��

��i
o
ij ��

�� j .

ere 
c
ij �C and 
o

ij �C are the inverse matrices of 
c,ijª
c�ec,i ,ec,j� and 
o,ijª
o�eo,i ,eo,j�.
hat is, 
c,ij
c

jk=
c
kj
c,ji=
i

k and 
o,ij
o
jk=
o

kj
o,ji=
i
k hold. Thus � , �c is a graded Poisson

racket for a graded commutative algebra and � , �o is a Poisson bracket for the cyclic algebra as
n Ref. 31. C���cyc and C���cyc form graded Poisson algebras with Poisson brackets � , �c and
, �o, respectively. Furthermore, these two Poisson brackets can be combined naturally and ex-

ended to one on C�� ,��cyc.
A COCHA �Definition 2.13� is dualized as follows. For the collection of multilinear maps Vk

nd Vk,l, let us define their coefficients by

Vk�ec,i1
, . . . ,ec,ik

� ª Vi1¯ik
� C, Vk,l�ec,i1

, . . . ,ec,ik
;eo,j1

, . . . ,eo,jl
� ª Vi1¯ik;j1¯jl

� C .

ote that they are graded symmetric with respect to the indices i1¯ ik and cyclic with respect to
he indices j1¯ jl. Consider further a formal sum of polynomial functions S,

S��,�� = SS��� + SD��,��, SS��� � C���, SD��,�� � C��,��cyc, �3.8�

here SS and SD are defined by

SS��� = �
l�2

1

l!
Vi1¯il

�il
¯ �i1, Vi1¯il

� C ,

SD��,�� = �
k�0,l�1,k+l�2

1

k ! l
Vi1¯ik;j1¯jl

�� jl
¯ � j1���ik

¯ �i1�, Vi1¯ik;j1¯jl
� C . �3.9�
hen one can define the formal vector field 
 acting on C�� ,��cyc as follows:
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 ª 
S + 
D, 
S = � ,SS�c, 
D = � ,SD�o. �3.10�

he condition �
�2=0 coincides with the condition that �H , l ,n� is a COCHA.

V. ZWIEBACH’S OPEN-CLOSED STRING FIELD THEORY

String field theory is defined on a fixed conformal background of a space-time �target space�
M to which world sheets of strings �Riemann surfaces� are mapped, where the conformal back-
round is a background �metric, etc., of M� in which string world sheet theory has conformal
ymmetry. There exist several classes of string field theories corresponding to the classes of
iemann surfaces. The most general one is quantum open-closed string field theory,74 which is
ssociated to the most general class of Riemann surfaces: Riemann surfaces of arbitrary genus,
ossibly with boundaries and punctures.

It includes various substring field theories: classical open string field theories—associated to
isks �one boundary and zero genus� with punctures only on the boundary, classical closed string
eld theories—associated to spheres �no boundary and genus zero� with punctures, quantum
losed string field theories—associated to Riemann surfaces with punctures �and various genera�
nd without boundary, and so on. Genera and multiboundaries relate to closed and open string
oops �in the sense of Feynman diagrams�, respectively. We use the term classical �respectively,
uantum� for theory without loops �respectively, with loops�. In this section we shall explain that,
xtracting the tree open-closed part from Zwiebach’s quantum open-closed string field theory,74

ne obtains an OCHA. Namely, an OCHA is a general homotopy algebraic structure for tree
pen-closed string field theory as L� algebras �respectively, A� algebras� are for tree closed
respectively, open� string field theories.

The quantum open-closed string field theory discussed by Zwiebach74 is defined by all pos-
ible open-closed interaction vertices together with closed and open string kinetic terms satisfying
he quantum BV master equation. The interaction term is expressed formally in the following form
Eq. �5.7� of Ref. 74�:

�4.1�

ere the kets ��
�Hc and ��
�Ho are the closed string fields and the open string fields,

espectively. Vb,m
g,n �M̄b,m

g,n is the appropriate subspace of the compactified moduli space of Rie-
ann surfaces with genus g, n-interior punctures and b boundaries S1 having m1 , . . . ,mb punctures

n them. Equivalently, it has n-closed string punctures and mi-open string insertions on the cor-

esponding boundary S1. The bra 	�� denotes a differential form on M̄b,m
g,n which takes its value in

Hc
*��n � �Ho

*��m1 � ¯ � �Ho
*��mb. This data is determined by the conformal field theory for a

xed conformal background. Then, the combination �Vb,m
g,n 	�� defines a map

�
Vb,m

g,n
	��:�Hc��n

� �Ho��m1 � ¯ � �Ho��mb → C . �4.2�

n terms of bases ec,i and eo,j of the spaces of states Hc and Ho, the kets can be expressed as
�
ª�iec,i�

i and ��
ª� jeo,j�
j, and the coordinates �i and �i play the role of fields. The degree

f each basis element ec,i or eo,j is determined by the corresponding conformal field theory on the
tring world sheet and is related to the degree of field �i or � j through the relations deg��i�

=−deg�ec,i� and deg��i�=−deg�eo,i�. The degrees deg��i� and deg��i� in turn denote the ghost
umbers in the sense of the BV-formalism for the target space field theory. The map �4.2� is
efined to be of degree zero because of a ghost number preserving condition on the string world
heets, naturally extended to the polynomials of �i and � j. Then f�Vb,m

g,n � in Eq. �4.1�, which is the
mage of ��
�n � 
k=1

b ��
�mk by the map �4.2�, belongs to a subspace of C�� ,�� whose elements

re expressed in general in the form
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a��,�� = �
k,l

1

k ! l ! �J1� ¯ �Jl�
ai1¯ik;J1,. . .,Jl

��Jl
¯ �J1���ik

¯ �i1� .

or the interaction terms, �Ji � =mi in the notation in Eq. �4.1�. Here J= �j1 , . . . , j�J�� is the multi-
ndex, �J=� j�J�

¯� j1. The coefficient ai1¯ik;J1,. . .,Jl
�C is then graded symmetric with respect to the

yclic permutations of each multi-index J= �j1 , . . . , j�J��, all the permutations of i1¯ ik, and those of

1 , . . . ,Jl. We denote the corresponding subspace by C�� ,��qocªCsym���
� Csym�C���cyc��C�� ,��, where qoc indicates quantum open-closed. Note that, by construction,
he degree of f�Vb,m

g,n � is zero. The closed string kinetic term and the open string kinetic term are
xpressed as follows:

1
2 	�,Qc�
c,

1
2 	�,Qo�
o �4.3�

hich also belong to C�� ,��qoc and have degree zero. In our notation, Qc= l1 :Hc→Hc and Qo

n0,1 :Ho→Ho. Physically, Qc �respectively, Qo� is called the BRST operator for closed �respec-
ively, open� strings, where BRST is taken in the sense of the conformal field theory on the string
orld sheet. Their cohomologies then define the physical state spaces of strings. Also, the brackets

re just the constant symplectic structures in Definition 2.12,

	 , 
c = 
c:Hc � Hc → C, 	 , 
o = 
o:Ho � Ho → C .

ince these constant symplectic structures come from the BV formalism3,4 in which string field
heories are described, the degrees of 
c and 
o are set to be minus one. In such a superfield
escription of the BV formalism, they are called odd symplectic structures62,1 since degree minus
ne implies odd in Z2 grading. The corresponding odd Poisson brackets

� , � = � , �c + � , �o, � , �c =
��

��i
c
ij ��

�� j , � , �o =
��

��i
o
ij ��

�� j

re what are called the BV brackets. Since they have degree one, ��i ,� j�c=
c
ij�0 only when the

um of the degree of �i and the degree of � j is equal to minus one. In the BV formalism,3,4 two
elds �i and � j having nonzero 
c

ij make a pair of a field and an antifield. Of course these facts
old true similarly for open string fields �see Refs. 31 and 33�. Both Poisson brackets are naturally
ombined and extended to � , � on C�� ,��qoc. Also, define second order operators as

� = �c + �o, �c =
1

2
�− 1�ec,i
c

ij ��

��i

��

�� j , �o =
1

2
�− 1�eo,i
o

ij ��

��i

��

�� j . �4.4�

ince the BV brackets have degree one, we have deg���=1, while �C��� ,�c , • , � , �c� and
C���cyc ,�o , • , � , �o� form BV algebras �see Refs. 3, 4, and 14�.

Further �C�� ,��qoc ,� , • , � , �� forms a BV algebra, where • :C�� ,��qoc � C�� ,��qoc

C�� ,��qoc is the associative product, symmetric in the �’s. We shall soon reduce them to the
ree open-closed structures, so do not stress to explain the detail of the structure on the whole
�� ,��qoc in this paper.

The action of quantum open-closed string field theory is then given by summing up the kinetic
erms �4.3� and all the interaction terms �vertices� in Eq. �4.1�,

Sqoc��,�� = � 1

n ! b ! �J1� ¯ �Jb�
Vi1¯in;J1,. . .,Jb

g ��Jb
¯ �J1���in

¯ �i1� ,

g,b,n
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Vi1¯in;J1,. . .,Jb

g
ª �

Vb,m
g,n

	���ec,i1
, . . . ,ec,in

;eo,J1
, . . . ,eo,Jb

� , �4.5�

here eo,J=eo,j1
¯eo,j�J�

for J= �j1 , . . . , j�J��, and the summation �g,b,n is taken for all g�0, b�0
nd n�0 except for the cases �g ,b�= �0,0� ,n�1, �g ,n ,b�= �0,0 ,1� , �J1 � �1 and �g ,n ,b�
�1,0 ,0�. In particular, the terms with �g ,n ,b�= �0,2 ,0� and �g ,n ,b�= �0,0 ,1� with �J1 � =2 are

he kinetic terms of closed strings and open strings, respectively.
A quantum open-closed string field theory Sqoc�� ,�� is defined so that it satisfies the quantum

aster equation

1
2 �Sqoc,Sqoc� + �Sqoc = 0. �4.6�

ote that �Sqoc is the term peculiar to the quantum string field theory. �c increases g by one and

o increases b by one for b�0. The quantum master equation splits into separate equations for
ach genus g and number of boundaries b. When we concentrate on the equations for g=0 and
=0 or 1, we get

�g,b� = �0,0�, 0 = �SS,SS�c, �4.7�

�g,b� = �0,1�, 0 = �S̃D,SS�c + 1
2 �S̃D, S̃D�o, �4.8�

here SS and S̃D consist of the corresponding terms in Sqoc in Eq. �4.5�; explicitly, SS is of the same

orm as SS in Eq. �3.9� and S̃D consists of SD in Eq. �3.9� with additional terms corresponding to
k , l�= �k ,0� below,

SS��� = �
l�2

1

l!
Vi1¯il

�il
¯ �i1 � C��� ,

S̃D��,�� = �
k�0,l�0,2k+l�2

1

k ! l
Vi1¯ik;j1¯jl

�� jl
¯ � j1���ik

¯ �i1� � C��,��cyc. �4.9�

ere we dropped the index g used in Eq. �4.5� since g=0. Namely, we denote

Vi1¯il;�
g=0 = :Vi1¯il

, Vi1¯il;J=�j1,. . .,jl�
g=0 = :Vi1¯il;j1¯jl

.

he action SS corresponds to punctured spheres �since the corresponding Riemann surfaces have

o boundary ����, whereas S̃D corresponds to disks with punctures both in the disks and on the
oundary of the disks. Equation �4.8� is often called a Maurer-Cartan equation.

A classical �tree� open-closed string field theory74 is then given by the action Stoc�� ,��
SS���+ S̃D�� ,�� satisfying Eqs. �4.7� and �4.8�, the Batalin-Vilkovisky3,4 classical open-closed
aster equations. The identity �4.7� implies that SS is just the action of the classical closed string
eld theory.73 Namely, SS has a cyclic L� structure. For the operadic construction of the classical
losed string field theory, see Ref. 38. The relevant operad is the L� operad of nonplanar trees,
here the composition of the trees corresponds to the twist-sewing of two S1’s parametrizing two

losed strings and/or boundaries in a Riemann surface picture.73,38

Just in the same way as for Eq. �3.10�, one can define the following formal vector fields acting
n C�� ,��cyc:


 ª 
S + 
D, 
S = � ,SS�c, 
D = � , S̃D�o. �4.10�

he condition �
�2=0 that �H , l ,n� is a cyclic OCHA is equivalent to the derivatives of the master

quations �4.7� and �4.8�,
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0 = � ,�SS,SS�c�c,

0 = � ,�S̃D,SS�c + 1
2 �S̃D, S̃D�o�o.

ere note that, as has been explained in Eq. �4.9�, S̃D consists of SD with the following additional
erms:

1

l!
V j1¯jl;J=��� jl

¯ � j1� �4.11�

ach of which corresponds to a disk with punctures only in the bulk �the interior of the disk� and
o punctures J=� on the boundary. However, one can see that these terms drop out in Eq. �4.10�:
, S̃D�o= � ,SD�o, since no open string field �i is included in Eq. �4.11�. This is why we do not

nclude the corresponding terms in the definition of �cyclic� OCHAs. Thus, a classical open-closed
tring field theory is a cyclic OCHA with the additional terms �4.11�.

Of course, there exist situations in which these terms �4.11� are also important physically. For
xample, the terms �4.11� contribute to a constant term for open string field theory in discussing its
eformation as in Sec. VI, and the constant term is relevant to D-brane mass, since the value of the
ction is believed to correspond to D-brane mass in open string field theory. But, it is enough to
onsider a cyclic OCHA structure in a classical open-closed string field theory at present if we
xamine its homotopy algebraic structures in the sense of the next section.

. MAURER-CARTAN EQUATION, MINIMAL MODEL, AND TREE OPEN-CLOSED
TRING AMPLITUDES

Homotopy algebras should have some homotopical properties.7,51 One of the key theorems in
omotopy algebra is the minimal model theorem. The minimal model theorem for A� algebras was
roved by Kadeishvili.30 For the construction of minimal models of A� structures, homological
erturbation theory was developed by Refs. 17, 28, 18, 21, 19, and 20, for instance, and the form
f a minimal model is then given explicitly in Refs. 54 and 41. Also, the existence of a stronger
heorem, called the decomposition theorem in Refs. 33 and 36, is mentioned in Ref. 40 and proven
y employing a kind of homological perturbation theory in Refs. 33 and 36 �see also Ref. 47�. It
s clear that the same arguments hold true for L� algebras, and in our previous paper35 we stated
hat they hold also for OCHAs.

In this section, we present the explicit form of a minimal model for an OCHA, which in the
yclic case can be thought of as the perturbative expansion of a classical open-closed string field
heory.

Definition 5.1 �minimal open-closed homotopy algebra�: An OCHA �H=Hc � Ho , l ,n� is
alled minimal if l1=0 on Hc and n0,1=0 on Ho.

Theorem 5.2 �Minimal model theorem for open-closed homotopy algebras35�: For any
CHA, there exists a minimal OCHA and an OCHA quasi-isomorphism from the minimal OCHA

o the original OCHA.
The minimal model theorem holds also for COCHAs. Namely, for any COCHA, there exists

minimal COCHA and a COCHA quasi-isomorphism from the minimal COCHA to the original
OCHA. This fact also follows from the explicit minimal model we shall construct here.

First of all, we fix a Hodge decomposition of the complex �H ,d= l1+n0,1�. Namely, for dc

l1 and do=n0,1, we give Hodge decompositions of the complexes �Hc ,dc� and �Ho ,do� sepa-
ately, by fixing degree minus one �homotopy� operators hc :Hc→Hc and ho :Ho→Ho,

dchc + hcdc + �c � �c = 1c, doho + hodo + �o � �o = 1o. �5.1�

ere, � and � indicate the projection to and the inclusion into the corresponding cohomologies.
hus, these data give a contraction �deformation retract� of H=Hc � Ho as a graded vector space
see Ref. 35�,
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�H�H��
�

�

H,h� , �5.2�

here �ª �c+ �o, �ª�c+�o and h=hc+ho.
We would like to follow the arguments in Refs. 31 and 33, where a minimal model is obtained

y a process of solving the Maurer-Cartan equation for an A� algebra. For OCHAs, the Maurer-
artan equations are defined as follows.35

Definition 5.3 �Maurer-Cartan equation�: For an OCHA �H , l ,n� and degree zero elements
�Hc and ō�Ho, we call the following pair of equations

0 = �
k

1

k!
lk�c̄, . . . , c̄�, 0 = �

k,l

1

k!
nk,l�c̄, . . . , c̄; ō, . . . , ō� �5.3�

he Maurer-Cartan equations for the OCHA �H , l ,n�.
Remark 5.4: Recall that, for the cyclic A� or L� case, the Maurer-Cartan equations are just the

quations of motions for the action �of the corresponding string field theory�.31,33 In field theory,
he equations of motions are defined by the derivatives of the action with respect to the fields. For
nstance, for classical closed string field theory with the action SS, the equations of motions are
= ��� /��i�SS for each i. Here, since the BV bracket � , �cª ��� /��i�
c

ij��� /�� j� is nondegenerate,
he equations of motions are equivalent to 0= � ,SS� �=
S�. Usually, we set degree nonzero fields
o be zero and concentrate on the solutions for the fields of degree zero. Then, further identifying
/��i with ec

i in 0=
S, one obtains the Maurer-Cartan equations for the L� algebra, which is the
rst equation in Eq. �5.3�. However, note that, for a COCHA �H ,
 , l ,n�, the zeroes of the
orresponding odd formal vector field 
=
S+
D are not the same as solutions to the equations of
otions 0= � ,S�= � ,S�c+ � ,S�o, or separately

0 =
��

��i
c
ij ��

�� j �SS + SD� = 0, 0 =
��

��i
o
ij ��

�� j SD = 0,

or the COCHA. Namely, the first equation above includes the term � ,SD�c, the corresponding
erm of which is absent in the Maurer-Cartan equations �5.3� for the COCHA.

One can see that, if one solves the equations of motions, instead of solving the Maurer-Cartan
quations, the resulting structure includes terms corresponding to b�1.

If we apply the arguments in Refs. 31 and 33 to an OCHA, the Maurer-Cartan equations for
n OCHA should be considered formally for the pair of string fields �� ,��� �Hc � Hc

* ,Ho

� Ho
*� instead of their degree zero parts �c̄ , ō�� �Hc

0 ,Ho
0�.

Then, for instance for the L� part, solving the Maurer-Cartan equation recursively one gets
rst an L� quasi-isomorphism �fk�k�1 : �H�Hc���k→Hc. This somewhat physical procedure is
losely related to the homological perturbation theory developed earlier, and in particular, fª

�kfk� �k Hom��H�Hc���k ,Hc� is just what is called a twisting cochain 	 �see Ref. 29 for the
GLA case�. Then, substituting f instead of � into the initial Maurer-Cartan equation, one obtains

n equation on H�Hc�, which is in fact the Maurer-Cartan equation for the corresponding minimal

� algebra, so one can read the minimal L� structure from the Maurer-Cartan equation. For the
ase of an OCHA, its minimal model is obtained by first considering the Maurer-Cartan equation
or the L� algebra as above and, after that, considering the Maurer-Cartan equation for n.

For an L� algebra �Hc , l�, a minimal L� algebra and an L� quasi-isomorphism
f l�l�1 : �H�Hc� , l��→ �Hc , l� are constructed as follows.

We set f1= �c :H�Hc�→Hc, and assume that we have �f l : �H�Hc��� l→Hc�l�1 for l�n−1.
hen, for c1� , . . . ,cn��H�Hc�, fn is defined by

fn�c1�, . . . ,cn�� = − hc �
k1+¯+kj=n

�
��Sn

�− 1�����

k1 ! k2 ! ¯ kj ! · j!
lj�fk1

� fk2
� ¯ � fkj

��c��1�� , . . . ,c��n�� � .
he minimal L� structure is then determined by
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ln��c1�, . . . ,cn�� = �c �
k1+¯+kj=n

�
��Sn

�− 1�����

k1 ! k2 ! ¯ kj ! · j!
lj�fk1

� fk2
� ¯ � fkj

��c��1�� , . . . ,c��n�� � ,

n particular, for l=2 one gets l2�=H�l2�ª�c � l2 � ��c��2.
Once the L� quasi-isomorphism �f l�l�1 is given, we have an OCHA �H�Hc� � Ho , l� ,n�� for

ome n�. Next we should construct �fk,l : �H�Hc���k � �H�Ho��� l→H�Ho��k+l�1 and n�
�nk,l� : �H�Hc���k � �H�Ho��� l→H�Ho��2k+l�2; these are obtained in a similar way as follows. f0,1

s given as inclusion f0,1= �o :H�Ho�→Ho. fr,s and fp,q are ordered as fr,s� fp,q if r+s� p+q or
� p for r+s= p+q. Then, a similar recursive procedure as above can be carried out also here. For

1� , . . . ,cn��H�Hc� and o1� , . . . ,om� �H�Ho�, fn,m is determined by

fn,m�c1�, . . . ,cn�;o1�, . . . ,om� �

=− ho � �− 1�����

i ! �r1 ! ¯ ri ! ��p1 ! ¯ pj ! �
ni,j�fr1

� ¯ � fri
� fp1,q1

� ¯ � fpj,qj
�

�c��1�� , . . . ,c��n�� ;o1�, . . . ,om� � ,

here the summation � runs over all r1 , . . . ,ri , p1 , . . . , pj ,q1 , . . . ,qj such that �r1+ ¯ +ri�+ �p1

¯ + pj�=n, �q1+ ¯ +qj�=m, and also all ��Sn.
Then n�= �nk,l� �2k+l�2 is obtained by replacing −ho above with �o,

nn,m� �c1�, . . . ,cn�;o1�, . . . ,om� �

= �o � �− 1�����

i ! �r1 ! ¯ ri ! ��p1 ! ¯ pj ! �
ni,j�fr1

� ¯ � fri
� fp1,q1

� ¯ � fpj,qj
�

�c��1�� , . . . ,c��n�� ;o1�, . . . ,om� � ,

here the summation � stands for the same one as above. In particular, for 2k+ l=2 one gets

0,2� =H�n0,2�ª�o �n0,2 � ��o��2 and n1,0� =H�n1,0�ª�o �n1,0 � �c. In the equation above, we used the
onvention presented in Definition 2.10.

For a COCHA �H ,
 , l ,n�, we do this construction by starting with an orthogonal Hodge
ecomposition with respect to the symplectic form 
. Namely, we give a decomposition

�H�H��
�

�

H,h�

f H in Eq. �5.2� with a homotopy h :H→H satisfying 
�1 � h�=
�h � 1�, where 1ª1c � 1o. The
xistence of such a homotopy h follows from the nondegeneracy of 
 and the cyclicity for the
erms 
c�l1 � 1c� and 
o�n0,1 � 1o�, and then 
�1 � �� ����=
��� ��� � 1� also holds. Then, for the
OCHA �H ,
 , l ,n�, forgetting the cyclic structure 
 having already used it to fix the contraction

5.2�, one can obtain a minimal model �H�H� , l� ,n�� as an OCHA by the construction we have
een above. The resulting minimal OCHA �H�H� , l� ,n�� is in fact cyclic with respect to the
nduced inner product 
�ª
�� � �� and the OCHA quasi-isomorphism a COCHA quasi-
somorphism.

To summarize we give the following.
Theorem 5.5: �H�H� , l� ,n�� forms a minimal OCHA and fª ��f l�l�1 , �fk,l�k+l�1� is an OCHA

uasi-isomorphism f : �H�H� , l� ,n��→ �H , l ,n�.
Theorem 5.6: For a COCHA �H ,
 , l ,n� and an orthogonal Hodge decomposition with

espect to 
, �H�H� ,
� , l� ,n�� forms a minimal COCHA and fª ��f l�l�1 , �fk,l�k+l�1� is a COCHA
uasi-isomorphism f : �H�H� ,
� , l� ,n��→ �H ,
 , l ,n�.

Since the explicit forms are given, one can check the cyclicity directly in a similar way to that
n the A� case �see Ref. 33�.
Remark 5.7 �rooted planar tree graphs�: One can also present an alternate description of this
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inimal model in terms of rooted planar trees in a similar way as for A� algebras �see Refs. 41,
1, 33, 52, 7, 11, 15, 16, 27, 36, 47, 51, and 60, etc.�. This is related to Feynman graphs in field
heory. For an A� algebra �Ho , �n0,k��, it is convenient to associate n0,k to the k-corolla of planar
ooted trees. An L� algebra also has such a description, where the L� structure lk is associated with
he k-corolla of nonplanar rooted trees �Fig. 1�. In our OCHA, we need to introduce also nk,l, to
hich we associate a mixed corolla as in Fig. 2. As stated previously, from a string theory
iewpoint, lk corresponds to the sphere with �k+1�-�closed string� punctures and nk,l corresponds
o the disk with �k+1�-�open string� punctures on the boundary and l-�closed string� punctures in
he bulk �interior� of the disk. In fact, one may think of the tubular neighborhood of these tree
raphs as the corresponding world sheet, where we take strips and cylinders for the neighborhood
f the straight lines and meandering lines, respectively. The minimal OCHA structure lk� and nk,l�
re then obtained by grafting corollas in all possible ways such that straight lines are grafted to
traight and wiggly to wiggly �Fig. 3�, where we assign to corollas the corresponding multilinear
aps lk ,np,q, and to internal edges hc, ho, and so on. Physically, hc and ho are the propagators for

losed string and open string, respectively.
Remark 5.8 �string amplitude�: For a classical open-closed string field theory S=SS+SD, the

tring amplitudes are obtained as follows. Let �H ,
 , l ,n� be the corresponding COCHA, and
uppose that its minimal COCHA �H�H� ,
� , l� ,n�� is constructed as above.

By definition, string field theory is constructed so that its perturbative expansion reproduces
he corresponding world sheet string amplitudes. Thus,

Vk+1� ª 
c��lk� � 1c�, Vk,l+1� = 
o��nk,l� � 1o� �5.4�

ust define the on-shell �k+1�-closed strings sphere amplitudes and k-closed �l+1�-open string
isk amplitudes, respectively. Moreover, the n-closed string disk amplitude, which we denote Vn,0� ,
s given by composing the L� quasi-isomorphism with Vk,0 as follows:

Vn,0� = �
i=1

n

�
k1+¯+ki=n

1

k1 ! ¯ ki!
Vi,0�fk1

� ¯ � fki
�

or f= �fk�k�1, the L� quasi-isomorphism.

IG. 1. �a� The k-corolla, the planar tree corresponding to the A� structure mk=n0,k. �b� The k-corolla, the nonplanar tree
orresponding to the L� structure lk.

IG. 2. �a� The �k , l�-corolla corresponding to nk,l. �b� For the open-closed case, the �k , l�-corollas include the �1,0�-corolla

orresponding to n1,0.
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Note also that we can prove the decomposition theorem for a �cyclic� OCHA,35 which implies
hat all classical open-closed string field theories constructed on a fixed conformal background
the data of the conformal field theory on the Riemann surfaces� are isomorphic. From the field
heory viewpoint, an OCHA morphism is a field transformation and in particular an OCHA
somorphism is a field redefinition. Since field theory actions related by a field redefinition are
hysically equivalent, one can say the decomposition theorem can prove the equivalence of all
lassical open-closed string field theories constructed on a fixed conformal background. �See Ref.
3 for the A� case.�

I. DEFORMATION OF A� STRUCTURES AND THE FORMALITY THEOREM

For an L� algebra �Hc , l� and an A� algebra �Ho ,m�, if there exists an OCHA �H=Hc

� Ho , l ,n� whose subalgebra �Ho , �n0,k�k�1� coincides with �Ho , �mk�k�1�, one obtains deforma-
ions of the A� algebra �Ho , �mk�k�1� parametrized by the L� algebra �Hc , l�. On the other hand,
he whole deformation space of the A� algebra is also described by a moduli space of the L�

lgebra�Coder�TcHo� ,m , � , ���, which we denote by �Hc� , l��. The maps �nk,l� for k�1 define an

� morphism from �Hc , l� to �Hc� , l��. The defining equation for an OCHA �2.6� just converts to
he defining equation for an L� morphism �2.5�.35 In Sec. VI A we reexplain this in a more explicit
ay. Such structure appears in various aspects of mathematical physics; the relation to deforma-

ion quantization by Kontsevich40 is explained in Sec. VI B, and the application to the open-closed
opological B-model26 from the viewpoint of the homological mirror symmetry setup39 is dis-
ussed in Sec. VI C. Note also that, in string field theory, this picture is related to the arguments
n Sec. 8 of Ref. 74.

. Deformations of A� structures from open-closed homotopy algebras

Definition 6.1 ��graded� Gerstenhaber bracket12�: For Ho a Z-graded vector space, let Homk
r

Homr�Ho
�k ,Ho� be the space of degree r k-linear maps, and

Hom ª � r Homr, Homr
ª �k�0 Homk

r .

t is known that Hom is in one-to-one correspondence with the space of coderivations on Tc�Ho�,
oder�Tc�Ho��.65 For two elements in Coder�Tc�Ho��, the commutator of any two elements in fact
elongs to Coder�Tc�Ho��, and further satisfies the Jacobi identity. After a shift in degree, this
nduces a graded Lie bracket on Hom, which is the Gerstenhaber bracket. For m�Homk

r, m�

Homk�
r� and o1 , . . . ,ok+k�−1�Ho, the graded Lie bracket �m ,m���Homk+k�−1

r+r� is defined by

�m,m�� = m � m� − �− 1�r·r�m� � m ,

m � m��o1, . . . ,ok+k�−1� = �
i=0

k−1

�− 1�l��o1+¯+oi�m�o1, . . . ,oi,m��oi+1, . . . ,oi+k��,oi+k�+1, . . . ,ok+k�−1� .

hus, �Hom, � , �� forms a graded Lie algebra.12,65

In the supermanifold description in Sec. III, this Gerstenhaber bracket corresponds to the

FIG. 3. Grafting of corollas. �a� Wiggly to wiggly. �b� Straight to straight.
raded Lie bracket of formal vector fields on the corresponding formal supermanifold.
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Furthermore, let us denote by m̄�Hom1 the degree one element corresponding to a degree
ne coderivation in �Hc� , l��=Coder�T�Ho��, that is, an A� structure on Ho. Then, it is clear that
m̄ , m̄�=0 holds and �Hom,d , � , �� forms a DGLA with d= �m̄ , �.

Remark 6.2 �suspension�: A DGLA is described as an L� algebra through the suspension s. For
he DGLA �Hom,d , � , ��, the suspension is a degree shifting operator

s:Hom → Hom�1� = :Hc�.

y this, a degree r element m�Homr is mapped to be a degree �r−1� element s�m�
Hom�1�r−1=Hc�

r−1. This actually converts the degree preserving bracket � , � :Hom � Hom
Hom into a degree one bilinear map l2� :Hc� � Hc�→Hc� defined by

l2��s�m�,s�m��� ª s��− 1�r�m,m���, m � Homr, m� � Homr�.

ne can see that the graded anticommutativity �m� ,m�=−�−1�rr��m ,m�� is in fact replaced by the
raded commutativity in Eq. �2.3�, l2��s�m�� ,s�m��= �−1��r−1��r�−1�l2��s�m� ,s�m���, where l1� is given
imply by l1�=s ds−1=d. Then �Hc� , l�= �l1� , l2� , l3�= l4�= ¯ =0�� forms an L� algebra.

Now, let us express the open-closed multilinear maps as

nk,l�c1, . . . ,ck;o1, . . . ,ol� ¬ �nl
*�c1, . . . ,ck���o1, . . . ,ol� ,

here nl
*�c1 , . . . ,ck� belongs to Homk

deg�c1�+¯+deg�ck�+1. By this, the second term of the OCHA
elation �2.6� can be rewritten as

− �− 1��c��1�+¯+c��l�+1�1

2
�nm+1−k

* �c��1�, . . . ,c��l��,nk
*�c��l+1�, . . . ,c��n����o1, . . . ,om� ,

hich, acting further with the suspension s on the equation above, yields

− 1
2 l2��s�nm+1−k

* ��c��1�, . . . ,c��l��,s�nk
*��c��l+1�, . . . ,c��n����o1, . . . ,om� .

hus, one obtains

�
k,l�0

�
p=0

m−k

�
��Sn

1

2

�− 1�����

l ! �n − l�!
l2��s�nm+1−k

* ��c��1�, . . . ,c��l��,s�nk
*��c��l+1�, . . . ,c��n���

= �
��Sn

�
l=1

n
�− 1�����

l ! �n − l�!
s�nm

* ��ll�c��1�, . . . ,c��l��,c��l+1� . . . ,c��n�� . �6.1�

hese are just the defining equations for an L� morphism �2.5�. By treating the l=0 and l=n cases
eparately in the first line of the equation above, it becomes just the condition that the collection
f multilinear maps s�nk

*� : �Hc��*→Homk�1� forms an L� morphism from �Hc , l� to �Hc� , l��.
ere, note that l1�= �m̄ , � and m̄=�l�0mk, the A� structure included in �H , l ,n� as mlªn0,l. From

hese arguments, it is clear that the converse also holds.
Theorem 6.3 �Ref. 35�: For an OCHA �H , l ,n�, let �Hc� , l�� denote the DGLA Coder�TcHo�.

he OCHA structure gives an L� morphism from �Hc , l� to �Hc� , l��. Conversely, if there exists an

� algebra �Hc , l� and an L� morphism from it to the DGLA �Hc� , l�� of an A� algebra �Ho ,m�,
hen one obtains an OCHA.

For an L� algebra �Hc , l�, let us denote by MC�Hc , l� the solution space of the Maurer-Cartan
quation

MC�Hc,l� = �c̄ � Hc
0�0 = �

k�1
�1
k!

lk�c̄, . . . , c̄�� ,

here Hc
0 is the degree zero subvector space of Hc. In addition, we have an equivalence relation
called gauge equivalence between the solutions of the Maurer-Cartan equation. The moduli
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pace of the solution space of the Maurer-Cartan equation for �Hc , l� is defined by

M�Hc,l� = MC�Hc,l�/ � . �6.2�

uppose that we have an L� morphism f : �Hc , l�→ �Hc� , l�� between two L� algebras. Then it is
nown that the L� morphism f induces a map f :M�Hc , l�→M�Hc� , l��, and furthermore it is an
somorphism if f is an L� quasi-isomorphism �cf. Ref. 40�. Similar facts hold also for A� algebras
nd also for OCHAs,35 but what is relevant here is just the L� case.

Note that, for an L� algebra �DGLA� �Hc� , l��=Coder�TcHo� as above, its moduli space
�Hc� , l�� is the moduli space of deformations of the A� algebra in the space of weak A� algebras.

hus, we have the following.
Corollary 6.4 �A� structure parameterized by the moduli space of L� structures35�: For an L�

lgebra �Hc , l� and an A� algebra �Ho ,m�, suppose there exists an OCHA �H=Hc � Ho , l ,n�
uch that �Ho , �n0,k��= �Ho ,m�. Then, for each element c�M�Hc , l�, we have a weak A� algebra
hich is a deformation of the original A� algebra �Ho ,m�. If �n1,k�k�0 :Hc→Hc� gives a quasi-

somorphism of complexes �Hc , l1�→ �Hc� , l1��, then all the equivalence classes of deformations of
H ,m� as weak A� algebras, described by M�Hc� , l1��, are in one-to-one correspondence with the
pace M�Hc , l�.

. The construction of deformation quantization by Kontsevich

The deformation quantization problem is to construct a star product corresponding to the
oisson algebra on a manifold M. Namely, for a formal �deformation� parameter � and a given
oisson algebra �A=C��M� , · , � , ��, a bilinear, bidifferential �-linear map *:A����� � A�����
A�����,

f * g = �
r=0

�

mr�f ,g��r, f ,g � A����� �6.3�

s called a deformation quantization of M if m0�f ,g�= f ·g, the usual commutative product on
��M�, m1�f ,g�= 1

2 �f ,g� and the star product * is associative.5 �Notice here mr is still a function
f two variables and should not be confused with the ml of an A� algebra.� In Ref. 40, Kontsevich
eformulated this problem in a homotopy algebraic setup. For any associative algebra A, defor-
ations as associative multiplications are controlled by the Hochschild complex, which is essen-

ially Coder�TcA� and hence a DGLA.12 In fact, control is equally well exercised by any quasi-
somorphic DGLA or even L� algebra.60 The obstructions to existence and to equivalence are
dentified by the quasi-isomorphism. For the special case of A=C��M�, the deformations relevant
o deformation quantization are controlled by the subcomplex of multidifferential Hochschild
ochains, which we denote Dpoly�M� �Definition 6.5� and which is quasi-isomorphic to the full
ochschild complex. The smooth analog of the Hochschild-Kostant-Rosenberg theorem.25 �an

xplicit proof can be found in Ref. 22� equates the Hochschild cohomology with Tpoly�M�, the
pace of polyvector fields, which possesses a DGLA structures with d=0 and the Schouten-
ijenhuis bracket.

Kontsevich treated these DGLAs as L� algebras and obtained the existence and the classifi-
ation of deformation quantizations by constructing an L� morphism between Tpoly�M� and

poly�M�, which is in a sense a nonlinear generalization of a DGLA map. Moreover, the specific

� morphism provides a specific star product. In this setting, the space of Poisson structures and
he space of star products given by bidifferential operators are then described by the Maurer-
artan equations of the corresponding DGLAs.

In this section, we shall first present these tools and then relate them to an OCHA.
Definition 6.5 �DGLA of multidifferential operators for C��M��: For A=C��M�, denote by

poly
k �M� the space of multilinear maps from A��k+1� to A of multidifferential operators. Then

k
efine Dpoly= �k�ZDpoly by
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Dpoly
k = Dpoly

k �M��k � − 1�, Dpoly
k = 0�k � − 1� .

or d, we take the Hochschild coboundary operator. Namely, for any C�Dpoly
k , d is given by

�dC��g0, . . . ,gk+1� = g0C�g1, . . . ,gk+1� − �
r=0

k

�− 1�rC�g0, . . . ,grgr+1, . . . ,gk+1�

+ �− 1�kC�g0, . . . ,gk�gk+1.

e take for � , � the Gerstenhaber bracket.12 Namely, for C�Dpoly
k , C��Dpoly

k� , it is defined by

�C,C�� = C � C� − �− 1�kk�C� � C ,

C � C��g0, . . . ,gk+k�� = �
r=0

k

�− 1�rk�C�g0, . . . ,gr−1,C��gr, . . . ,gr+k��,gr+k�+1, . . . ,gk+k�� .

hen �Dpoly , � , � ,d� forms a DGLA.
One can see that d can be written as

�− 1�k�dC��g0, . . . ,gk+1� = �m̄,C�, C � Dpoly
k ,

here m̄ is the usual commutative product of functions m̄�f ,g�= f ·g. Though the operation �m̄ , �
s different in sign from the original d, �m̄ , � also forms a DGLA on Dpoly with � , �. So, we take
his as d. This DGLA is described as a sub-DGLA of �Hom,d , � , ��. First, set Ho

−1=A and Ho
k

0 otherwise. Then C :A��k+1�→A has degree k as defined above. Namely, Dpoly�M� is included
n the restricted subvector space Homsub= �k Homk

k−1 of Hom.
Let us state the necessary condition for the existence of a deformation quantization in the

anguage of DGLAs here. If we write the star product �6.3� as f *g=m�f ,g�, m�Hom2
1, the

ssociativity condition �f *g�*h= f * �g*h� is expressed algebraically as �m ,m�=0. This just indi-
ates that m defines a codifferential on Tc�A� as previously or, equivalently, that m is associative.
ince m should be obtained as a deformation of m̄, writing m= m̄+�, ���Dpoly�����, one gets a
aurer-Cartan equation in the DGLA ��Dpoly����� ,d , � , ��,

d� + 1
2 ��,�� = 0. �6.4�

Definition 6.6 �DGLA of polyvector fields�: For k�−1, set Tpoly
k �M�ª��M ,Ùk+1TM�, and

efine Tpoly= �kTpoly
k by

Tpoly
k = Tpoly

k �M��k � − 1�, Tpoly
k = 0�k � − 1� .

ere, when k=−1 we set Tpoly
−1 =Tpoly

−1 �M�=C��M�. The differential d is defined by d=0. Therefore,
he cohomology of the complex of Tpoly

n with respect to d coincides with Tpoly
n itself. � , � is taken

o be the Schouten-Nijenhuis bracket.61,56 For �s ,�t�Tpoly
0 =��M ,TM�, the bracket of

0Ù ¯ Ù�k , �Tpoly
k with �0Ù ¯ Ù�l�Tpoly

l , k , l�0, is defined by

��0 Ù ¯ Ù �k,�0 Ù ¯ Ù �l�

=�
i=0

k

�
j=0

l

�− 1�s+t��s,�t� Ù �0 Ù ¯ Ù �s−1 Ù �s+1 Ù ¯ Ù �k Ù �0 Ù ¯ Ù �t−1 Ù �t+1 Ù ¯ Ù �l,

−1 �
nd for k�0, h�Tpoly=C �M�, the bracket is
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��0 Ù ¯ Ù �k,h� = �
r=0

k

�− 1�r�r�h���0 Ù ¯ Ù �r−1 Ù �r+1 Ù ¯ Ù �k� .

e can define Hc
k−1

ªTpoly
k with this Schouten-Nijenhuis bracket.

Now, a bivector �=�i,j�
ij�� /�xi�Ù �� /�xj��Tpoly

1 in the local expression represents the Pois-
on bracket by �f ,g�=�i,j�

ij��f /�xi���g /�xj�, where �x1 , . . . ,xn� are local coordinates of M. This
racket by definition satisfies all the axioms of a Poisson algebra except the Jacobi identity. The
acobi identity is then described by

��,�� = 0. �6.5�

ince d=0, Eq. �6.5� is also the Maurer-Cartan equation. A bivector satisfying �6.5� is called a
oisson bivector. Similarly, a quantum deformation of the Poisson bivector is defined by ����
�Tpoly

1 ����� satisfying

�����,����� = 0. �6.6�

n the expansion ����=��1+�2�2+ ¯ , the original classical Poisson bivector � is �1. In fact,
xpanding �6.6� in terms of powers of �, one can see that the lowest identity reads ��1 ,�1�=0.

Thus, the conditions that an element in �Tpoly
1 ����� is a Poisson bracket and that an associative

roduct on C��M������ as an element in �Dpoly
1 ����� are both described by Maurer-Cartan equa-

ions for DGLAs. Let us set two L� algebras �Hc , l� and �Hc� , l�� as the suspension of DGLAs Tpoly

nd Dpoly, respectively. Namely, we have Hc
k=Tpoly

k+1 and Hc�
k=Dpoly

k+1 . The Maurer-Cartan equations
or DGLAs �6.6�, �6.4� are of course rewritten as the Maurer-Cartan equations for L� algebras
hrough the suspension in Remark 6.2.

The existence and the classification of the deformation quantization follows from the formal-
ty theorem,40 which claims the existence of an L� quasi-isomorphism f : �Hc , l�→ �Hc� , l��. Note
hat this fact implies that the DGLA of Hochschild cochains is �homotopically� formal; in particu-
ar, the higher L� structures vanish on its cohomologies. In order that f is an L� quasi-
somorphism, the chain map f1 : �Hc ,dc=0�→ �Hc� ,dc�� must be a quasi-isomorphism, that is, f1

ust induce an isomorphism on cohomologies. One may set

�f1��i1
Ù ¯ Ù �ik

���g1, . . . ,gk� =
1

k! �
��S

�− 1�������i��1�
g1� ¯ ��i��k�

gk� .

ontsevich constructs all the higher multilinear maps fk explicitly as local expressions on M
Rn in terms of Feynman graphs, which are just those derived from a certain topological open-
losed string theory as revealed explicitly by Cattaneo-Felder8 �see for review Ref. 48�.

When an L� quasi-isomorphism f= �f1 , f2 , . . . � is given, it preserves the Maurer-Cartan equa-
ions, and the deformed Poisson bivector is given by the following nonlinear map:

� = �
k=1

�
1

k!
fk�����, . . . ,����� , �6.7�

or �����M�Hc , l� and ��M�Hc� , l��. Here the L� quasi-isomorphism f : �Hc , l�→ �Hc� , l�� has
een extended by tensoring with the formal power series �C�����. If we expand the deformation
= m̄+� ,���Dpoly����� as in Eq. �6.3�:

m = m̄ + �m1 + �2m2 + ¯

ith m1= �1/2��1, Kontsevich’s quasi-isomorphism of L� algebras then provides a choice for m2

nd in fact for all the mi.
Now, let us summarize Kontsevich’s deformation quantization in terms of OCHAs. First, we

et Hc
r−2

ª��M ,ÙrTM�. It forms a formal L� algebra with l2 the Schouten-Nijenhuis bracket, and
−1 � k ¯
1= l3= ¯ =0. For Ho, we take Ho ªC �M� and Ho=0 for k�−1. The A� structure is n0,2=m,
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he usual commutative product of functions C��M�, and n0,l=0 except for l=2. The multilinear
aps of the L� quasi-isomorphism are then identified as the adjoints�nk,l : �Hc��k � �Ho�� l→Ho�
ith k�1. In particular, n1,2����� ; f ,g�= �1/2��f ,g�, and n1,k��i1

Ù ¯ Ù�ik
;g1 , . . . ,gk�

�1/k ! ����S�−1�������i��1�
g1�¯ ��i��k�

gk�. These structures form a minimal OCHA on cohomol-

gy. Corollary 6.4 then implies that, for a fixed element of MC�Hc , l�, an A� structure is obtained.
owever, in this situation, since Hom is restricted to Homsub= � Homr

r−1 and the elements of
aurer-Cartan equations, especially M�Hc� , l��are degree zero, the deformed A� structure also has

2� �Hom2�1��0 only, i.e., m1 and higher product m3 ,m4 , . . . are absent. Equivalently, when Hc is
estricted to its degree zero part Hc

0, nk,l vanishes except for �k , l�= �k ,2�. This m2 is just the star
roduct, an associative but noncommutative product C��M� � C��M�→C��M� of a deformation
uantization. The next example below is a natural extension of this situation, but in the case that
om is not restricted to Homsub.

. Open-closed B-model

A natural extension of Kontsevich’s deformation quantization setup is to the B-model side of
omological mirror symmetry.39

The mirror symmetry, a symmetry between Calabi-Yau manifolds, can be interpreted as to-
ological closed string physics. There are two types of topological string theories whose target
paces are Calabi-Yau manifolds. One is called the A-model, which depends only on the com-
lexified symplectic structure and is independent of the complex structure of the Calabi-Yau
anifold. Another one, the B-model in contrast depends only on the complex structure. For a

iven Calabi-Yau manifold M, the mirror symmetry conjecture is the existence of a mirror Calabi-

au manifold M̂ such that the A-model closed string on M̂ is equivalent to the B-model closed
tring on M and vice versa.71 Homological mirror symmetry is thought of as an open string
ersion72 of the mirror symmetry conjecture. open string theory in general includes some kind of
-branes, which form a D-brane category �see Ref. 45�; the D-branes and open strings are iden-

ified with objects and morphisms between the objects. For the tree open string A-model, the
orresponding category is Fukaya’s A� category,9 which depends only on the complexified sym-
lectic structure. On the other hand, what is constructed on the B-model side is a category of
olomorphic vector bundles or coherent sheaves more generally. The homological mirror symme-
ry conjecture39 then states that the Fukaya category on a Calabi-Yau manifold M is in some sense

quivalent to the category of coherent sheaves on the mirror dual Calabi-Yau manifold M̂. Now,
he conjecture is checked successfully in the case M is an elliptic curve,39,59,57 an Abelian
ariety,10,41 a quartic surface,63 and so on. For noncommutative two-tori, see Refs. 32, 37, and 34
nd a related work.58

One of the original motivations to argue for this homological mirror symmetry conjecture39 is
hat it might explain the �tree closed string parts of� mirror symmetry: the family �deformations� of
ree open string A- �respectively, B-� models should be in one-to-one correspondence with that of
ree closed string A-�respectively, B-� model, and the tree closed string structure should follow
rom the corresponding family of the tree open string structures. These concepts have their back-
round in the open-closed string physics in our sense. Since the A side and B side should be mirror
ual, they should have isomorphic structures in some sense. However, that which is directly
elated to us is the B-model side, since there the classical solution of string world sheet theory is
nly a constant map �no world sheet instanton� and the corresponding moduli spaces are just the
sual ones of Riemann surfaces with boundaries and punctures.71

One can see that the tree open-closed B-model is just a particular example of the arguments in
ec. VI A, and gives a natural extension of that in the preceding section. However, the mathemati-
al formulation of the tree open-closed B-model is not yet established completely, nor is there
nown the explicit formula as in the case of deformation quantization in the preceding section.

An interesting attempt and a partial result can be found in Hofman’s work.26 We can identify
ome set of multilinear maps �lk ,np,q� on open and closed string observables for this situation. Of

ourse we could have an infinite number of homotopy equivalent open-closed homotopy struc-
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ures. For instance, for the tree closed string part, the world sheet action of the B-twisted topo-
ogical string theory as given in Ref. 71 has the space of observables which is identified with the
ohomology of � p,q��M ,ÙpTM � ÙqT*M� with respect to the Dolbeault operator �̄ and hence, in
rinciple, one can compute closed string �k+1�-point functions �=scattering amplitudes� related to

k. However, in general this is complicated; it is better if one can find a corresponding string field
heory in a simple form. Such a string field theory is given by Ref. 6, where the B-twisted
opological closed string field theory action consists of the kinetic term and a three point vertex
nly, and so a DGLA structure is associated to it. Note that the equations of motions are just the
aurer-Cartan equations defining deformations of the complex structures, with additional ex-

ended directions mentioned below. The string field theory gives, at least for tree level �genus
ero�, a simple way of calculating �k+1�-point functions in terms of Feynman rules, and this
rocedure just coincides with taking a minimal model of the DGLA from a homotopy algebraic
oint of view. �However, for the action given in Ref. 6, they use an inner product which is not
ondegenerate in our sense. In particular, it vanishes on the cohomology. Together with an addi-
ional structure called a differential Gerstenhaber structure, the pull-back of this action with
espect to the L� quasi-isomorphism, or equivalently the superpotential or the collection of tree
losed string amplitudes, has a Frobenius structure,6,2 even though the minimal L� structure is
rivial, all lk=0. We do not deal with this Frobenius structure in this paper.�

In a similar way, one can also consider open strings in the B-twisted topological string theory,
nd, in a similar spirit, one can construct a particular open string topological string field theory
ction,72,6 called a holomorphic Chern-Simons action, a holomorphic version of the usual Chern-
imons action or Witten’s bosonic open string field theory.70 Thus, it has a structure of a differ-
ntial graded associative algebra �DGA� with cyclicity, a cyclic A� structure. Again, tree open
tring world sheet scattering amplitudes are obtained by taking the minimal model of the DGA.

Although the B-twisted topological string is controlled by such a simple DGLA or DGA for
he closed or open string case, respectively, it is known that the same story does not hold for tree
pen-closed string in general.74 Therefore, we consider here a minimal OCHA structure whose
urely closed string part �lk� and purely open string part �mk=n0,k� are given by taking the minimal
odels of the DGLA and DGA, respectively. For the closed string side, the corresponding DGLA

tructure is ���M ,Ù�TM � Ù�T*M� , �̄ , � , ��, where � , � is the Schouten-Nijenhuis bracket, the
ne in Definition 6.6 extended to T*M naturally. However, for closed strings, the ��̄ lemma and the
ian-Todorovs lemma lead to the corresponding minimal L� structure, given by the procedure in
ec. V, being trivial �see Refs. 6 and 2�. Thus, we have lk=0 fork�1 for Hc

k=
� p+q−2=kH

q�ÙpTM�, and the corresponding moduli space is itself,

M�Hc,l� = Hc
0.

ere, we restrict Hc to its degree zero part only. It might be reasonable to think that one can
eform in these Hc

0 directions finitely in principle and that the other Hc
k directions provide fibers

f an infinitesimal neighborhood. In fact, the whole deformation space Hc is called the extended
oduli space in Barannikov-Kontsevich.2 Note that H1�Ù1TM��Hc

0 describes the complex struc-
ure deformations. This is the original deformation theory of complex structures, and the
arannikov-Kontsevich’s setup can be thought of as an extension of it.

Next, for pure open string structure, we should stress what is taken for Ho. The open string
heory forms a D-brane category, which should be treated as an A� category in our context. The
bjects, B-type D-branes, are the coherent sheaves on M. Thus, Ho is identified with the space of
orphisms between them. A general construction of a minimal model in this situation is found in
efs. 44, 46, 68, and 45, and See Ref. 34 for an explicit construction in the noncommutative

wo-tori case. However, for simplicity, here we consider the case that the object is only the
tructure sheaf O�M�. One can see that this simplified situation is enough for our purpose here
nder some appropriate assumptions. The differential is then simply �̄, and one obtains a minimal
odel of DGA �O0,*�M� , �̄ , Ù �, which we denote by �Ho , m̄= �n0,k�k�2�, where Ho

k−1

k 0,*
H �O �M��.
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For this particular choice of Ho, let us consider the space of multilinear maps Homª

� Homk
r,

Homk
r = Homr�Ho

�k,Ho� .

gain, the result of Gerstenhaber-Schack,13 in a similar way as the Hochschild-Konstant-
osenberg theorem does in the preceding section, implies that the cohomology of Hom=

�k,r Homk
r coincides with Hc itself �see Ref. 39�.

Alternatively, the existence of an L� quasi-isomorphism from �Hc , l� to �Hc� , l�� is guaranteed
t least physically, since �nk,l� can be constructed as open-closed disk amplitudes of the open-
losed B-model, where the string world sheet action is of the same form as the one for pure closed
trings, and the space of observables are just those used in separate open-closed B-model. An
pen-closed disk amplitude is then obtained by the integral of a disk correlation function, calcu-
ated in the usual way in physics, over the moduli space of the corresponding disk with punctures,
oth in the interior and on the boundary.

Moreover, it was checked in Ref. 26 that n1,q given by this physical argument in fact gives the
inear part of the L� quasi-isomorphism f1,

n1,k��i1
Ù ¯ Ù �ik

, f1, . . . , fk� =
1

k! �
��S

�− 1�������i��1�
f1� ¯ ��i��k�

fk� ,

here �i�TM acts on f i�Ho as the Lie derivative. Also, in the spirit of homological mirror
ymmetry, since the collection �nk,l� gives an L� quasi-isomorphism even with the restriction to the
ategory of coherent sheaves to O�M�, it does also in case the full category would be treated for
he open string side.

To summarize, we set Hc
k= � p+q−2=kH

q�ÙpTM�, Ho
k−1=Hk�O0,*�M��, and Homk

r

Homr�Ho
�k ,Ho�. Then we have lk=0 on Hc and n0,q is the minimal A� structure of DGA

O0,*�M� , �̄ , Ù �. The operation l� is defined as in Sec. VI A, that is, l1�= �m̄ , � with m̄=�0,qn0,qand

2� is related to the commutator � , � through the suspension.
The corresponding OCHA structure in this case reduces to the generalized WDVV relation

iscussed in Ref. 24. Namely, it corresponds to a minimal OCHA with trivial L� structure. At
resent, the explicit form of multilinear maps np,q of p�2 and q�0 are not known in general,
hough physically existence is guaranteed by the open-closed scattering amplitudes of disks in
-twisted topological string theory. There is an interesting restriction where we can understand the

orm of nk,l. Hofman discussed in Ref. 26 that if we restrict Hc to ÙpTM, the situation reduces to
complex version of Kontsevich’s deformation quantization and hence np,q are obtained in a

imilar way.
An interesting difference from the deformation quantization setup in the preceding section is

hat, since Hom= � Homk
r is not restricted to Homsub, even if r=1 we can have nontrivial de-

ormed mk. In particular, we could in general obtain a deformation of the A� structure m̄ to a weak

� structure, which should be one of the interesting future directions to be investigated.
In this case, for the closed string part, the L� structure is trivial, including the bracket, and

ence the obstructions vanish. In a more general model, however, it should not be trivial, as
iscussed by Huebschmann-Stasheff.29 It should be interesting to find such models which can be
alculated explicitly.
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