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In this paper we discuss various aspects of open-closed homotopy algebras
(OCHAs) presented in our previous paper, inspired by Zwiebach’s open-closed
string field theory, but that first paper concentrated on the mathematical aspects.
Here we show how an OCHA is obtained by extracting the tree part of Zwiebach’s
quantum open-closed string field theory. We clarify the explicit relation of an
OCHA with Kontsevich’s deformation quantization and with the B-models of ho-
mological mirror symmetry. An explicit form of the minimal model for an OCHA
is given as well as its relation to the perturbative expansion of open-closed string
field theory. We show that our open-closed homotopy algebra gives us a general
scheme for deformation of open string structures (A, algebras) by closed strings
(L., algebras). © 2006 American Institute of Physics. [DOL: 10.1063/1.2171524]

I. INTRODUCTION

In this paper we discuss various aspects of open-closed homotopy algebras (OCHAs) defined
in our previous pa\per.35 They are a kind of homotopy algebra inspired by Zwiebach’s classical
open-closed string field theory74 and also related to the deformation quantization setup by
Kontsevich.*’ In Ref. 35 we showed that an OCHA actually defines a homotopy invariant alge-
braic structure and also it gives us a general scheme for deformation of open string structures (A.,
algebras) by closed strings (L., algebras).

As tree closed strings and open strings are related to the conformal plane C with punctures and
the upper half plane H with punctures on the boundary, respectively, tree open-closed strings are
related to the upper half plane H with punctures both in the bulk and on the boundary, which
appears recently in the context of deformation quantization.40 In operad theory (see Ref. 53), the
relevance of the little disk operad to closed string theory is known. The little interval operad and
associahedra are relevant to open string theory. The Swiss-cheese operad,69 that combines the little
disk operad with the little interval operad, also is inspired by Kontsevich’s approach to deforma-
tion quantization. Our OCHA should be homotopy equivalent to a part of an algebra over the
Swiss-cheese operad. It should be very interesting to investigate the remaining structures (see Ref.
23, which is related to this direction).

We first present the definition of OCHAs together with recalling two typical homotopy alge-
bras, A., algebras and L., algebras, in Sec. II.

In Sec. III, we give an alternate interpretation in terms of odd formal vector fields (often called
homological vector fields) on a supermanifold, which we believe is a more acceptable description
for physicists.
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The connection to classical open-closed string field theory by Zwiebach* is given in Sec. IV.
It is known that classical closed string field theory has an L., structure,”>***® and classical open
string field theory has an A., structure.'""*33! We show that an OCHA is obtained by extracting
the tree part of Zwiebach’s quantum open-closed string field theory. Since in general homotopy
algebras are something whose structures are governed by the underlying tree graph (operad)
structure, the structures of quantum string field theories are something beyond the ordinary ho-
motopy algebra (see loop homotopy algebras50 for quantum closed string field theories). Thus, we
can say that OCHAs are the maximal homotopy algebraic structures which string field theories
should have. Namely,

Quantum open-closed SFT D OCHA D L, ® A.,.

One of the key theorems in homotopy algebra is the minimal model theorem which was
proven for A, algebras by Kadeishvili.* It holds true also for L., algebras in a similar way, and in
our previous paper35 we stated the minimal model theorem holds for OCHAsS, too. In Sec. V we
present an explicit way of constructing a minimal model for an OCHA, and explain its relation to
the perturbative expansion of classical open-closed string field theory.

Section VI is devoted to explaining some deformation theory aspect of OCHAs. An open-
closed homotopy algebra consists of a direct sum of graded vector spaces H="H.® H,. It has an
L, structure on H, and reduces to an A, algebra if we set H,.=0. From such a viewpoint, an
open-closed homotopy algebra gives a general scheme of deformation of the A, algebra by H,,
where the deformation space is parametrized by a moduli space of the L., algebra on HC.35 In Sec.
VI A we recall this fact in a more explicit way than Ref. 35. After that, we explain the relation of
this viewpoint to various aspects of string theory; Kontsevich’s deformation quantization40 in Sec.
VI B, and open-closed B-models (cf. Ref. 26) in Sec. VIC.

Il. OPEN-CLOSED HOMOTOPY ALGEBRA

An open-closed homotopy algebra, as we proposed in our previous paper,35 is a homotopy
algebra which combines two typical homotopy algebras, an A, algebra and an L., algebra. There
are various equivalent ways of defining and/or describing strong homotopy algebras. In this paper,
we shall present them in terms of multivariable operations in this section, and in Sec. III we shall
reinterpret them in terms of the supermanifold description. For the equivalent coalgebra descrip-
tion and tree graph description, see Ref. 35. Here we recall just enough so that this paper can be
read without having to read Ref. 35. The reader familiar with A,, algebras and L., algebras can go
directly to Definition 2.8.

We first begin with recalling A.. algebras and L., algebras in Sec. Il A. The definition of
open-closed homotopy algebras are given in Sec. II B. In Sec. II C we define cyclic structures in
open-closed homotopy algebras together with explaining some background of such structures.

We restrict our arguments to the case that the characteristic of the field k is zero. We further
let k=C for simplicity.

A. A, algebras and L, algebras

Definition 2.1 [A., algebra (strong homotopy associative algebra)®*]: Let H, be a Z-graded
vector space H,=®,.yH, and suppose that there exists a collection of degree one multilinear
maps

m:= {mk:(Ho)®k - Ho}kzl .

(H,,m) is called an A, algebra when the multilinear maps m, satisfy the following relations:

k=1
> X2 Do im0y, ... ,0;,m(0j415 - 50/41),0)41415 -+ 0,) =0 (2.1
k+l=n+1 j=0

for n=1, where o; on (=1) denotes the degree of o0,. A weak A,, algebra (H,,m) consists of a

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



023506-3 OCHA in mathematical physics J. Math. Phys. 47, 023506 (2006)

collection of degree one multilinear maps m :={m;: (H,)®* — H, }=, satisfying the corresponding

relations
k=1
2 E (= D" im0y, ... ,oj’ml(ojﬂ’ ’0j+l)’0j+l+l’ 50,)=0
k+l=n+1 j=0
for n=0.

Remark 2.2: The definition above is different from the original one® in the definition of the
degree of the multilinear maps m;. Both are in fact equivalent and related by suspension.15’53 In
Ref. 64, the m; are multilinear maps on |H, where (|H,)"*'=H]; in algebraic topology the
desuspension is denoted by |, which is equivalent to [—1] in the algebraic geometry tradition:
lH,=H,[-1]. Since it might be more familiar also in mathematical physics as in Sec. VI, in this
paper we denote the suspension and desuspension by [1] and [—1], respectively.

For an A, algebra (H,,m) (in the case my=0), the first three relations of the A, condition
(2.1) are

O:m%,
0=m;(my(01,0,)) + my(m;(0,),05) + (= 1)"1my(01,m(0,)),
0 =m;(m3(01,04,03)) + m3(m(01),04,03) + (= 1)°1m3(01,m(07),03) + (= 1)°1772m3(04,0,,m,(03))

+my(my(01,07),03) + (= 1)1my(01,m5(0,,03)).

The first equation, in the physics terminology, says m; is nilpotent; (H,,n,) defines a complex on
the 7Z-graded vector space H,. The second equation says the differential m; satisfies the Leibniz
rule for the product m,. The third equation means the product m, is associative up to the term
including m5. Thus, a differential graded algebra (DGA) is described as an A., algebra on |H,
=H,[-1] with a differential m,, a product m,, and mz=my=---=0.

Definition 2.3 (A, morphism): For two A, algebras (H,,m) and (H,,m'), suppose that there
exists a collection of degree zero (degree preserving) multilinear maps

feH*F S H, k=1,

The collection {f;}=1:(H,,m)— (H,,m’) is called an A., morphism iff it satisfies the following
relations:

> mi,(fkl(ol’ ’Okl)’sz—kl(okﬁls ,01(2) "'fn—ki_l(oki_lﬂ’ ces0p))
1<k <ky...<k=n

k=1
= 2 E (_ 1)01+.“+ojfk(019 ’oj’ml(0j+la ’0j+l)’0j+l+ls e ,On) (22)
k+l=n+1 j=0

for n=1. If (H,,m) and (H,,m’) are weak A, algebras, then a weak A, morphism consists of
multilinear maps {f;};=o, where f;:C—A’, satisfying the above conditions and in addition

f1°m0=2m12(fo, —fo).

As an A, algebra can be thought of as a generalization of a differential graded algebra (DGA),
an L, algebra is a generalization of a differential graded Lie algebra (DGLA). As ordinary asso-
ciative and Lie algebras are related by skew-symmetrization and the universal enveloping con-
struction, there are corresponding relations for A, algebras and L., algebras.42

Definition 2.4 (graded symmetry): A graded symmetric multilinear map of a graded vector
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space V to itself is a linear map f: V®"— V such that, for any c; € V 1<i<n and any o € G, (the
permutation group of n elements), the relation

f(cl’ ’Cn) = (_ 1)5(”)f(ca(1)’ cee ’Ca'(n)) (23)

holds, where the sign (1) is the Koszul sign of the permutation o.

Also we adopt the convention that tensor products of functions or operators have the signs
built in; e.g., (f®g)(x®y)=(=1)"f(x) ® g(y).

Definition 2.5 [L., algebra (strong homotopy Lie algebra)*']: Let H, be a graded vector space
and suppose that a collection of degree one graded symmetric multilinear maps [:= {lk:Hf?k
—H b= is given. (H,,I) is called a weak L., algebra iff the multilinear maps satisfy the follow-
ing relations:

e( o)

E E | lk(ll(ca'(l)’ ’Ca'(l))?co(lﬂ)a e ,Co.(n)) =0 (24)
k+l=n+1 0e§,, l (

for n=0. If the relation is satisfied for n=1 without the additional map ZO:C—>H2CHC, then
(H,,") is called an L., algebra.

Remark 2.6: L, algebras are usually defined in a similar but different fashion, where the
summation for the permutation &, in Eq. (2.4) is replaced by the summation over the unshuffle
permutations (2.3). This unshuffled description would enable us to drop all the symmetrization
factors in this paper. However, we take the one with all the permutations since it fits the dual
description in the next section.

For an L,, algebra (H,,[), the first three relations of the L., condition (2.4) are

0=(1,)%,
0=1,(l5(c1,¢2) + L1 (cy),c2) + (= D Uy(cy,1(cr)),
0=1(l5(cy,c2,03) + 311 (cy) ca,03) + (= D)15(cq, 11 (c0),¢3) + (= DT 2Us(cq, 05,11 (c3))

+h(L(cp,e),03) + (= D (1) (ch,e3),01) + (= 1)L (1y(es,ey),00).

As in the case of an A, algebra, the first equation indicates that (H,,/;) defines a complex, while,
after a shift in grading, the second equation implies the differential /, satisfies a Leibniz rule with
respect to the Lie bracket /,, and the third equation means the bracket [, satisfies the Jacobi
identity up to the terms including /5. Thus, a differential graded Lie algebra is described as an L.,
algebra on |H.=H[—1] with a differential /;, a Lie bracket [,, and l3=1,=---=0.

Definition 2.7 (L., morphism): For two weak L, algebras (H.,[) and (H_,!"), suppose that
there exists a collection of degree zero (degree preserving) graded symmetric multilinear maps

feH* = H!, 1=0.

Here f;, is a map from C to a degree zero subvector space of H,. The collection {f;};=q:(H,,l)
—(H/.,U") is called a weak L., morphism iff it satisfies the following relations:

(-1 )e(tr) B (- 1)6(0)
> > ——f® ® 12" Doy oo sCom) = 2 > I(f. ®f
kitnsl oes, L1 (n=1)! o o ) ky+ - +kj=n oe 6, ky Viy Veeekep e jtY b0k
@ - ®fkj)(c0'(l)7 ’Ca'(n)) (25)

for n=0. In particular, when (H.[) and (H.,l’) are L. algebras, a weak L, morphism
=0t (H..0) = (H.,1") is called an L., morphism if in addition f,=0
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B. Open-closed homotopy algebra
Definition 2.8 (open-closed homotopy algebra™): Let H=H,® M, be a graded vector space

and (H,.,l) be a weak L., algebra. Consider a collection of multilinear maps
n:= {nk,l:(Hc)®k ® (Ho)®l - H()}k,léo

each of which is graded symmetric on (H,)®". We call (H,[,n) a weak open-closed homotopy
algebra (weak OCHA) when n satisfies the following relations:

(- 1)5(0)
0= E E nl+r,m(lp(crr(1)> »C(r(p))’c(r(pH)» <o 5Cq(n)3 015 - -+ »Om)
p+r=n 06,
(_ 1)#pl
S
7!
pHr=n i+s+j=m c€6,
an,i+1+j(co(1)’ <o 5Cq(p)301s - -+ ’Oi’nr,s(ca(p+l)’ <o 5Cq(n)3Oixls - ’0i+s)70i+s+17 s ’Om)'

(2.6)

Here the sign exponent w, (o) is given explicitly by

Mp,i(U) =e(o) + (Ca(l) + +ca'(p)) +(o1+ - +0)+ (0 + -+ + oi)(CO'(pH) + +Ca(n)),
(2.7)
corresponding to the signs effected by the interchanges. In particular, if /j=ny,=0, we call

(H,[,n) an open-closed homotopy algebra. We can also write the defining equation (2.6) in the
following shorthand expression:

= 1)“ r o qom
0= > — DEOn (1, @ 1E7 @ 1™ (Co1)s -+ +Con)301s -+ +0m))

\'r
p+r=n 0eQ, p:

T

pHr=n i+s+j=m 06,

p,i+1+j((1g®P ® lfl ® ny s ® lfj)(co'(l)v <o s Co(n)>015 - ,Om)),

where the complicated sign is absorbed into this expression.

Remark 2.9: For an OCHA (H,[,n), the substructure (H,.,[) is by definition an L., algebra and
(H,.{ng ) forms an A, algebra. Furthermore, the substructure (H,{n; ,},=() forms an A., module
over the A, algebra (H,,m) in the sense of Refs. 49 and 67. Also, if n,,=0 for all p=1, the
substructure (H,{n, }) makes H, an L., module over (H,,[). 42

Now, let us denote /,=d, and n, ;=d,. The first few relations which do not appear as A,, or L,
conditions are

0=d0n1’0+n150d6, (28)

0=d,ny (c;0) +ny1(c;d,(0) + 1y 1(d(c);0) +ng(ny o(c),0) + (= 1) ng (0,1, 4(c)),

(2.9)

0= do”Z,O(Cl»CZ) + nZ,O(dC(cl)»CZ) + (- 1)C'Cznz,o(dc(cz),cl) + ”1,012(6‘1,02) + (- 1)01”1,1(01,”1,0(02))

+ (= D)21*n (ez0my (c))s (2.10)
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0= d(;”1,2(0201’02) + nl,Z(dc(C) ;01,00) + (= 1)6”1,2(02610(01),02) +(- 1)”"‘”1,2(0;01,(10(02))
+ ”1,1(0,”0,2(01,02)) + nO,Z(nl,l(C;Ol)sOZ) +(- 1)01(1+C)n0,2(01snl,l(C,02)) + ”0,3("1,0(@»01,02)

+(- 1)01(1+C)”0,3(01,n1,o(0),02) +(- 1)(0‘+02)(1+C)n0,3(01,02,’11,0(0)), (2.11)

0=d,ny (c1,¢2:0) + ny1(d(cy),cp50) + (= 1)1ny 1 (c1,d (cp)30) + (= 1)17%2n, 1 (¢, ¢23d,(0))
+ny1(L(cr,cp)50) + + (= 1)y 1 (cp3ny 1(cp50)) + (= 1)62(61+1)”1,1(Cz;n1,1(01§0))
+ng5(ny0(c1,€),0) + (= 1)1 Dng (0,1, o(c1,¢2)) + (= D2V 5(ep5m (c)),0)
+ (= De2r)* ey (cr30,n o(c))) + (= 1)<Iny 5(er3n 0(c2),0)
+ (= 1)Cl+0(]+62)l’11’2(61;0,}’11,0(6'2)), R (2.12)

Equation (2.8) implies n; o is a chain map by an appropriate relative shift of the grading. On the
other hand, in the case n;=0, Eq. (2.9) is an extended Leibniz rule. Suppose that we have an
OCHA with only nonzero structures d..,d,,l,n;1,my:=ng,. In Eq. (2.11) only the second line
survives, which means that 7. acts on an algebra (H,,m,) by n; ; as derivations. Furthermore, in
Eq. (2.12) only the second line survives, which implies that H, represents a Lie algebra (H,,l,).
Then (H.d..d,.l,n; ,m,) forms what is called a g algebra or Leibniz pair (see Ref. 35 and
references there).

Definition 2.10 (open-closed homotopy algebra morphism): For two weak OCHAs (H,[,n)
and (H',l’,n’"), consider a collection f of degree zero (degree preserving) multilinear maps

fe(H)® = H! for k=0,

fir(HO®* @ (H)®' — H,  for k, =0,

where f; and f;; are graded symmetric with respect to (H,.)®*. We call §:(H,[,n)—(H',l",n’) a
weak OCHA morphism when {fi};=o: (H.,[)—(H.,l") is a weak L, morphism and {f; ;}; ;=0
further satisfies the following relations:

e(o)

( 1)) r o q0m
E 2 f1+rm((l ® 1® 1? )(C(r(l)’ 7C(r(n);01’ ’om))

p+r=n 06,

(— 1)“") :
+ 2 2 E fp l+1+j((1®p ® 1® ® Ny ® 1 )(Co(l)» < 5Co(n)3015 - »Om))

pHr=n i+s+j=m 06,

S s co
= , ni((fr, ® o ®f.®f,
(ri4+r)+(pr+--+pp)=n 06, il (rl Leeery! )(pl b ') i i Prty
(q1+ - +qj)=m
® - ®fpj,qj)(ca'(l)’ 3C0'(n);01’ ’Om))- (213)

The right-hand side is written explicitly as

ni,,j((frl @ - ®fri ®fp1,ql @ - ®fpj,qj)(c(r(])s <5 Co(n)s 015 - - ,Om))
=(- l)rﬁ.zi(o)nlf’j(frl(cg(l), ’C‘T(ﬁ))’ ,f,i(ca(;i_lﬂ), ,Cg(;i));
Xfp],q](c,,(;#l), s Co()301s +ee 50 ) - ,fpj’qj(ca 5t1)s 2 Co()307 41> ,oqj)),
where 7y =1+ + 1y, Pi=Tipit e AP =g+ +qg and 75 5(0) is given by

j-1
T5.4(0) = 2 (C(r(pk+l)+ (p‘k+1))(01 o +0(7k)-
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In particular, if (,(,n) and (H',I',n’) are OCHAs and if fo=f,,=0, we call it an OCHA
morphism.

Definition 2.11 (quasi-isomorphism): Suppose that two OCHAs (H,[,n), (H',l’,n’) and an
OCHA morphism §:(H,[,n)— (H’,l",n’) are given. { is called an open-closed homotopy algebra
quasi-isomorphism if f|:H.— H_ induces an isomorphism between the cohomology spaces of the
complexes (H,,l;) and (H,I), and further f,;:H,— H, induces an isomorphism between the
cohomology spaces of the complexes (H,,nq,;) and (H,.ng ). In particular, if fjand f,, are
isomorphisms, we call § an open-closed homotopy algebra isomorphism.

C. Cyclic structures in OCHAs

Now we consider an additional structure, cyclicity, (cf. Ref. 16) on open-closed homotopy
algebras. It is defined in terms of constant symplectic inner products. The string theory motivation
for this additional structure is that punctures on the boundary of the disk inherit a cyclic order
from the orientation of the disk and the operations are to respect this cyclic structure, just as the
L, structure reflects the symmetry of the punctures in the interior of the disk or on the sphere.
Alternatively, a typical Lagrangian of a (quantum) field theory originally has such structure and in
particular in the Batalin-Vilkovisky (BV) formalism,> such structure is defined in terms of an odd
(degree minus one) symplectic structure on the corresponding supermanifold.3’62’1’33 Both pictures
are then combined with each other in string field theory as discussed in Sec. IV.

From such background, in Ref. 33 a “cyclicity” is defined for A., algebras in terms of a degree
minus one constant symplectic inner product, and it is shown that homotopy invariant properties
of A, algebras hold true also in the category of cyclic A, algebras. However, in string theory or in
particular topological string theory, there often exist cyclic structures defined by inner products
having some different degree. For the arguments on homotopy invariant properties in Ref. 33, the
degree of the inner product is not essential. Thus, we define cyclic structures with constant
symplectic inner products of arbitrary fixed integer degrees.

Definition 2.12 (constant symplectic structure): Bilinear maps, w.:H,.® H.—C and w,:H,
®H,—C, are called constant symplectic structures when they have fixed integer degrees
|w,|,|w,| € Z and are nondegenerate and skew-symmetric. Here skew-symmetric indicates that

b}

w(cr,cp) =— (= 1) 120(cy,02),  ©,(02,01) == (= 1)°172w,(01,0,)

for any c¢,,c, e H,, 0;,0, € H,, and the degree of w,,w, implies that w.(c,,c,)=0 except for
deg(c,)+deg(c,)+|w,|=0 and w,(0,,0,)=0 except for deg(o,)+deg(0,)+|w,| =0. We further de-
note the constant symplectic structure on H=H,.®H, by w:=w.® o,.

Suppose that an open-closed homotopy algebra (H,[,n) is equipped with constant symplectic
structures w.:H.® H.—C and w,:H,® H,— C as in Definition 2.12.

For {{i};=1 and {n,, ;},.,=1, let us define two kinds of multilinear maps by

Vk+l = wc(lk ® lc):(H(‘)®(k+l) - C9 Vﬂ,q+] = wo(n]?,q ® 10):(Hc)®p ® (H0)®(q+l) — G

or more explicitly

Vk+l(cl’ v ’Ck+]) = wc(lk(cls 9ck)9ck+l)

and

Vyae1(Cls 10301, oo ,0,00) = 0,1, 4(Chs o0 iCp301, 11 ,0,),0,401).

The degree of V;,; and V), . are || +1 and |w,| +1. Note that the degrees of Vy,; and V, ., are
zero when they come from odd constant symplectic structures |w,|=|w,|=-1.

Definition 2.13 (cyclic open-closed homotopy algebra): An open-closed homotopy algebra
(H,w,l,n) is called a cyclic open-closed homotopy algebra (COCHA) when V,,, is graded
symmetric with respect to any permutation of (H,.)®**! and Vpq4+1 has cyclic symmetry with
respect to cyclic permutations of (#,)®@*V, that is, if
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Vier(eps i) = (= I)G(U)an(cu(l)’ ’C(r(k+l))’ e Sy

and

Vyar1(Clr o sCp301, 0 0400) = (= Dozt tog)y, ey, 1Cp302s v 50441,01).

The graded commutativity of V), ,,; with respect to permutations of (H.)®P, that is,

. —_ €\o, .
Va1 (Cls o2 Cpi01, o 0,00) = (= 1) (@) gt 1(Col)s o sCo(p) 301 - 10411), O E S,

automatically holds by the definition of n.

Note also that there are many situations where the inner products exist only for open strings.
This is the case for the topological string situation in the B-model we will discuss later in Sec.
VI C. For instance, on the topological open string side, there often exists a natural inner product
coming essentially from an integral (trace) of products of two differential forms. The inner prod-
ucts of this kind in fact turn out to be skew-symmetric (symplectic) in our suspended notation (see
Ref. 34). See also Ref. 57 for more general cyclic structures including nonskew inner products.

On the other hand, if we have w. and w,, nondegenerate inner products in both open and
closed string sides, we can identify H with its linear dual, then reverse the process and define
further maps

rp—l,q+1:(Hc)®(p_l) ® (Ho)®(q+l) - Hc

with relations amongst themselves and with the operations already defined, which can easily be
deduced from their definition. In particular, for n, :'H.—H, we have r(;:H,— H, . Namely, for
the cyclic case the fundamental object is the multilinear map V, ., where n,, and r,_; .., are
equivalent under the relation above.

Physically, the multilinear map V), . is related to the (scattering) amplitudes of a disk with p
closed strings and (g+1) open strings insertions. Choosing an open string state as a root edge
instead of a closed string state, that is, taking n, , instead of r,_; .., for defining an OCHA is
related to a standard compactification of the moduli spaces of the corresponding Riemann surface
[a disk with p points interior and (¢+ 1) points on the boundary]. Also, in the next section we shall
see that, due to this choice of the root edge, the OCHA structure ([,n) can be singled out to be an
odd vector field on the appropriate supermanifold.

Remark 2.14(Category version): As an A, category is defined as a straightforward extension
of an A, algebra,9 one can extend our open-closed homotopy algebra to its category version by
replacing H, by the space of morphisms of a category. This category extension corresponds to
considering many D-branes on which open strings end. This is important for applying OCHAs to
topological string theory, see Sec. VI C.

P Tp

Ill. THE DUAL SUPERMANIFOLD DESCRIPTION
A. OCHAs and odd formal vector fields

For a graded vector space H=H.® H,, denote by {e.;} a basis of H. and by {e,;} a basis of
H,. For each e.; e H, represent the dual base as / and similarly the dual base of e,,€H,as &'
We set the degree of the dual basis by deg(y/)=—deg(e,;) and deg(¢')=—deg(e, ;). We consider
the formal power series ring in the variables {¢'}, {¢//}, and {¢'} LI{s//}, and denote them by C(¢),
C(¢), and C(, ), respectively. We define {i//} to be associative and graded commutative and {¢'}
to be associative but noncommutative. More precisely, in the space of the formal power series of
associative fields {¢'}LI{¢/}, an element in {¢/} is graded commutative with respect to all ele-
ments. Therefore, any element in C(i, ¢) is represented as

a(p.d) =2 ail--~ik;j1~-~jl(¢jl"‘ (ke ), (3.1)
.l

where the coefficient i i, e C is graded symmetric with respect to i;---i;. We can call

Jr
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(H,C(¢, ) the formal supermanifold™*® corresponding to an OCHA (H,[,n). Though usually
the term super indicates Z, graded, we use it for Z graded objects. On the other hand, an A,
algebra is described on a formal noncommutative supermanifold (H,,, C((l))),‘“’33 and an L, alge-
bra is described on a formal graded commutative supermanifold (H,, C()).

For a weak OCHA (H,[,n), express the collection of multilinear maps

Le(H)® = H,,  mp(H)® @ (H,)® — H,,

in terms of the bases,

c{ e,

lk(ec’il, e ,ecgik) = ec’jCJ ik

i ip

l’lk’l(ec’il, . ,ec’,-k;eo,jl, . ,eo’jl) = eo’jcfl'”ik;jl“'jl, cglu'ik;jl'“j] S

Correspondingly, let us define an odd formal vector field 8:= 8¢+ Sp: C(, b)) — C(¢p, 1), where

E 19 . o
8= a—wd(df):gﬁﬁ—wc{]...ikw--- Y, JY) e C),

q 19 S .
op = @0’(¢,¢)=k£0E@dl-..ik;jl...j,(w" G-y, () € C(dh).

(3.2)
We use right derivatives just for the sign problem; it is easy to relate this dual supermanifold
description to the convention in the preceding section. Since [ and n have degree one, & also has

degree one.
It acts on C(¢, ) as follows:

k
Bl =Dty 3 S (= VPG g () - )
k,l s=1

l
2 g 2 (2 DG (@) g ), (33)
k.l =1

where Sp(¢)=c/(p, ) and S5(4ffs)=c's(ih). Then, Bs(s—1) (respectively, Bp(t—1)) is the sign
arising when & (respectively, 8p) acts from the right and passes the corresponding superfields and
is given explicitly by

Bs(s - 1) = ec’il + 0+ ec’l‘s_l, BD(t_ 1) = (ec’il + 0+ ec’ik) + eo’jl + 0+ e(,’jt_l.

The above &a(¢, 1)) is further rewritten; in the first line ¢’s in &p(¢?) are brought to the right of
¢’s, and s on each line of Eq. (3.3) are treated as graded symmetric. The &a(¢, i) is expressed
in the form in Eq. (3.1) again but with a different coefficient. In the supermanifold language, & is
called an (odd) formal vector field on the formal supermanifold. A formal manifold with such a &
is called a Q-manifold in Ref. 1 if Q=8 with Q*=0.

Lemma 3.1: The condition that (H,,n) is a weak OCHA is equivalent to

(8)>=0. (3.4)

In particular, 8 defines an OCHA if the k=0 part of &g and k=1=0 part of &, in Eq. (3.2) are
absent or zero.
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The equation above can be expanded as (J)>+[ s, dp]+(8p)*=0, where [, 8p]=5(5p)
+8p(85), 55(8p)=(319¢))(85(c(h,))). Note that Sp(Js) vanishes since J does not include ¢.
Furthermore, one can see that

(5s)2 =0, d(dp)+ (51))2 =0

hold independently. The first one is just the dual of the L., condition (2.4), and the second one is
the dual description of the OCHA condition (2.6). The pair of the equations above can also be
thought of as a deformation of &g by ds+ &y, though we do not discuss this type of deformation in
this paper.

A (weak) OCHA morphism in Definition 2.10 can also be rewritten in the same way. For the
collection f of degree zero multilinear maps,

frHI® = H.,  fir(H)®* @ (H,)® — H,

let us now express f; and f;; as

fk(ec,il, e ,ec,,-k) = ec’j/ﬂl...,-k, fl'“ik S \C,
fk,l(ec,il, ,ec’ik;eo’jl, ,eo,jl):eo’jr 41...1-1(;]-1...]'1, {1...1-](;]-1...]-[ e C. (35)
They define the following coordinate transformation between the two supermanifolds (H,[,n) and
(H'", ', n"):
' =H D= ]G Ll el e

’

@ =F ()= 2 gy (P PO ). (3.6)
ki=0
This induces a pullback from C(¢', ') to C(¢b, i),

f al@', ") = alf(¢,1).f+(9),

where {¢'} and {¢/} are the coordinates on H and H’, respectively.
Lemma 3.2: The condition that this | is a weak OCHA morphism is then that the map between
two formal supermanifolds f« is compatible with the actions of 8 and &' on both sides, that is,

[0 (ale' y)) = & a(¢'.y) (3.7)
holds for any a(¢', ") e C(¢', ). In other words, f« is a morphism between Q manifolds. If in

addition f/ ‘= ij;;on, f« preserves the origin of the formal supermanifolds. f. is then an OCHA
morphism in the situation that both 6 and 6 define OCHAs.

All these structures in the supermanifold description are dual to the coalgebra description
explained in Ref. 35 in the following sense (see Ref. 33 for the A., case). Let us introduce natural
pairings

(Wleop=8, (Hle,)=4

and also the extended pairings
(@ ) (- f)|(epir i) @ (€, w€, 1)) = Vg gk
w1 s 1 Yl iy i

for k+1>1, where ezlik, : =E(,66ke(0') 52‘,’“)- . 61,‘,'(“. We set the pairing to be zero if the number of
1 k 1 k
elements ¢/ ¢ and e /e, does not coincide. The space spanned by (e -e.;) @ (e, "€, ;), k

+[=1, is what is denoted C(H,) ® T°(H,) in Ref. 35. As the adjoint of the product on C(i/, ¢), a

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



023506-11 OCHA in mathematical physics J. Math. Phys. 47, 023506 (2006)

coproduct A:C(H,)QT(H, —(C(H,)®T(H,)R(C(H,)RT(H,)) is defined; for a,b
e C(¢,¢) and x e C(H,) @ T(H,),

(b-alx)= E (alxfy-(blx7), A:= E (xF ®x7).

Thus, C(H,) ® T°(H,) forms a coalgebra. Then, a codifferential [+n:C(H,) ® T°(H,) — C(H,)
®T°(H,) is given as the adjoint of 6= &5+ O,

(a|(t+n)(x) = (Aa)l|x).

In a similar way, a coalgebra homomorphism f: C(H,) ® T°(H,) — C(H.) ® T°(H]) is obtained as
the adjoint of the pullback §": C(¢',¢') — C(¢b, ). Thus, the coalgebra description given in Ref.
35 is obtained as the dual of the algebra description in terms of formal power series on super-
manifolds.

B. Cyclicity and constant symplectic and/or Poisson structures

Next, we discuss the cyclicity (Definition 2.13). If cyclicity is imposed on the ¢’s, we
indicate that by C(¢).y. or C(¢b, #h).y.. Any element of C(¢,#)c,c C C(¢b, 1)) is represented in the
form in Eq. (3.1) but the coefficient i iy, is in addition graded cyclic symmetric with respect
to the indices j;---j,. On this algebra, a constant Poisson structure is introduced naturally by
dualizing the constant symplectic structures in Definition 2.12.

Definition 3.3 (constant Poisson structure): Suppose H,. and H, have constant symplectic
structures w.: H.®H,—C and w,:H,®H,— C (Definition 2.12). The corresponding Poisson
brackets are denoted by

< - - -

_9 il _9 il
(&)c_ iwc i (’ )0_ iwg i
i "o i "o
e i i ; = —
Here w/ e C an}:l w, & C are the inverse linatr]i(l:es of w,;;=w.e.;.e.;) and w,;;=w,(e,;.e, ).
That is, w, ;! =cucfwcyj,»=5f and o, ;) =a)0’w07ﬁ=5ff hold. Thus ( , ). is a graded Poisson

bracket for a graded commutative algebra and ( , ), is a Poisson bracket for the cyclic algebra as
in Ref. 31. C())y. and C(¢).y, form graded Poisson algebras with Poisson brackets ( , ). and
(', ), respectively. Furthermore, these two Poisson brackets can be combined naturally and ex-
tended to one on C(¢, ).y
A COCHA (Definition 2.13) is dualized as follows. For the collection of multilinear maps V)
and V), let us define their coefficients by
Vilegis €)= Vi € G0 Viglegi, ... eci5€,....€,5) =V e C.

1 IR

Note that they are graded symmetric with respect to the indices i,---i; and cyclic with respect to
the indices j;---j;. Consider further a formal sum of polynomial functions S,

S(¢’¢)=SS(¢I)+SD(¢7¢)’ Ss(‘ﬂ) € C(lﬂ)’ SD(¢’¢I) € C((b’w)cy(:’ (38)
where Sg and Sp, are defined by

1 . .
Ss(@)= 2 Vi W Vi € G
=20

1 . Lo .
Sp(¢. ) = > Viiwigjyo (@ W), Vi, € G0 (3.9)

k=0,1=1,k+1=2 k!l

Then one can define the formal vector field & acting on C(¢, #). as follows:
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5:= 55' + 5Da 5S = ( 7SS)C9 5D = ( 9SD)1)' (310)
The condition (8)?=0 coincides with the condition that (H,[,n) is a COCHA.

IV. ZWIEBACH’S OPEN-CLOSED STRING FIELD THEORY

String field theory is defined on a fixed conformal background of a space-time (target space)
M to which world sheets of strings (Riemann surfaces) are mapped, where the conformal back-
ground is a background (metric, etc., of M) in which string world sheet theory has conformal
symmetry. There exist several classes of string field theories corresponding to the classes of
Riemann surfaces. The most general one is quantum open-closed string field theory,74 which is
associated to the most general class of Riemann surfaces: Riemann surfaces of arbitrary genus,
possibly with boundaries and punctures.

It includes various substring field theories: classical open string field theories—associated to
disks (one boundary and zero genus) with punctures only on the boundary, classical closed string
field theories—associated to spheres (no boundary and genus zero) with punctures, quantum
closed string field theories—associated to Riemann surfaces with punctures (and various genera)
and without boundary, and so on. Genera and multiboundaries relate to closed and open string
loops (in the sense of Feynman diagrams), respectively. We use the term classical (respectively,
quantum) for theory without loops (respectively, with loops). In this section we shall explain that,
extracting the tree open-closed part from Zwiebach’s quantum open-closed string field theory,74
one obtains an OCHA. Namely, an OCHA is a general homotopy algebraic structure for tree
open-closed string field theory as L, algebras (respectively, A, algebras) are for tree closed
(respectively, open) string field theories.

The quantum open-closed string field theory discussed by Zwiebach™ is defined by all pos-
sible open-closed interaction vertices together with closed and open string kinetic terms satisfying
the quantum BV master equation. The interaction term is expressed formally in the following form
[Eq. (5.7) of Ref. 74]:

b
| Ll L
f(vi’")"[n!b!,gmk]fvg

b

b
[T @) - |®).

noEm (4.1)
Here the kets |¥) e H, and |®) e H, are the closed string fields and the open string fields,

respectively. Vﬁ:’,’nc./\_/tizz is the appropriate subspace of the compactified moduli space of Rie-

mann surfaces with genus g, n-interior punctures and b boundaries S' having m, ... ,m, punctures
on them. Equivalently, it has n-closed string punctures and m;-open string insertions on the cor-

-

responding boundary S'. The bra ()| denotes a differential form on ./\_/lﬁjz which takes its value in
(H:)®”®(H;)®’"l® ®(H:)®’"b. This data is determined by the conformal field theory for a
fixed conformal background. Then, the combination [ v (Q| defines a map

f Q:(H)®"® (H,)*™ @ -+ ® (H,)®"> — C. (4.2)

b.m

In terms of bases e.; and e, ; of the spaces of states 'H. and 'H,, the kets can be expressed as
|¥):=3 ¢/ and |®):=3 e, ¢/, and the coordinates ¢ and ¢ play the role of fields. The degree
of each basis element e ; or e, ; is determined by the corresponding conformal field theory on the
string world sheet and is related to the degree of field ¢/ or ¢/ through the relations deg(y/)
=—deg(e.,;) and deg(¢’)=—deg(e,,). The degrees deg(y) and deg(¢) in turn denote the ghost
numbers in the sense of the BV-formalism for the target space field theory. The map (4.2) is
defined to be of degree zero because of a ghost number preserving condition on the string world
sheets, naturally extended to the polynomials of ¢/ and ¢/. Then f(V§7)) in Eq. (4.1), which is the
image of |¥)®"® H,lzzl | ®)®™k by the map (4.2), belongs to a subspace of C(i, ¢) whose elements
are expressed in general in the form

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



023506-13  OCHA in mathematical physics J. Math. Phys. 47, 023506 (2006)

_ —1 o Jiooo ik eee iff1
a(¢7¢)_kEJ k ' l ' |J1| |Jl|all""k;‘ll""’J1(¢ ¢ )(W '7” )

For the interaction terms, |J;|=m; in the notation in Eq. (4.1). Here J=(jy,...,j};) is the multi-
index, ¢’= ¢/l - - ¢/1. The coefficient Qi 0, € C is then graded symmetric with respect to the
cyclic permutations of each multi-index J=(jy, ... ,j|,), all the permutations of i, - *i;, and those of
Ji,....Ji. We denote the corresponding  subspace by  C(¢,¥)goc:= Coym(¥)
® Coym(C(P)cye) C C(¢p, ), where qoc indicates quantum open-closed. Note that, by construction,
the degree of f(V},) is zero. The closed string kinetic term and the open string kinetic term are
expressed as follows:

W00, 5(0,0,0), (4.3)

which also belong to C(¢, #)q,. and have degree zero. In our notation, Q.=/,:'H,—H, and Q,
=ng:'H,—H,. Physically, Q. (respectively, Q,) is called the BRST operator for closed (respec-
tively, open) strings, where BRST is taken in the sense of the conformal field theory on the string
world sheet. Their cohomologies then define the physical state spaces of strings. Also, the brackets
are just the constant symplectic structures in Definition 2.12,

(Y=, HOH.—C, (,)=w,H,®H,— C.

Since these constant symplectic structures come from the BV formalism®* in which string field
theories are described, the degrees of w, and w, are set to be minus one. In such a superfield
description of the BV formalism, they are called odd symplectic structures®™' since degree minus
one implies odd in 7, grading. The corresponding odd Poisson brackets

(D=t (e (om0l ()= all
oy oy o Tod
are what are called the BV brackets. Since they have degree one, (i, W)C:wff # 0 only when the
sum of the degree of ¢/ and the degree of ¢/ is equal to minus one. In the BV formalism,”* two
fields ¢ and ¢/ having nonzero wij make a pair of a field and an antifield. Of course these facts
hold true similarly for open string fields (see Refs. 31 and 33). Both Poisson brackets are naturally
combined and extended to ( , ) on C(¢, )qq. Also, define second order operators as

-

1 L d 9 1 . d 4
A=A+, A=-(-D%iol——, A,==(-1)%i0l———. (4.4)
2 o 2 Il I

Since the BV brackets have degree one, we have deg(A)=1, while (C(),A.,*,(,).) and
(C(@)eye-A,,%,( 5 ),) form BV algebras (see Refs. 3, 4, and 14).

Further (C(, #)goc,A,*,(,)) forms a BV algebra, where *:C(i),})qoc® C(, )0
—C(, (j))qoC is the associative product, symmetric in the ¢’s. We shall soon reduce them to the
tree open-closed structures, so do not stress to explain the detail of the structure on the whole
C(, @) goc in this paper.

The action of quantum open-closed string field theory is then given by summing up the kinetic
terms (4.3) and all the interaction terms (vertices) in Eq. (4.1),

Sqocl ) = > (@' M) (ffn--- i),

PRI RRTACREE
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V;lgl.”in;‘ll""’Jb = f . <Q|(ec,i1, e ,ec’in;eo,‘]l, ,eon), (45)
Vim
where e, j=¢,; ‘e, for J=(ji,....j;), and the summation %, , is taken for all g=0, b=0

and n=0 except for the cases (g,b)=(0,0),n<1, (g,n,b)=(0,0,1),|J;]<1 and (g,n,b)
=(1,0,0). In particular, the terms with (g,n,b)=(0,2,0) and (g,n,b)=(0,0,1) with |J,| =2 are
the kinetic terms of closed strings and open strings, respectively.

A quantum open-closed string field theory Sq..(¢,#) is defined so that it satisfies the quantum
master equation

5(SqoesSqoc) + ASgoe=0. (4.6)

Note that AS, is the term peculiar to the guantum string field theory. A, increases g by one and
A, increases b by one for 5>0. The quantum master equation splits into separate equations for
each genus g and number of boundaries b. When we concentrate on the equations for g=0 and
b=0 or 1, we get

(8.6)=(0,0), 0=(SsSs).. 4.7)

(.6)=(0,1), 0=(Sp,Ss)e+5(5p,Sp)os (4.8)

where Sg and S p consist of the corresponding terms in S, in Eq. (4.5); explicitly, Sg is of the same

form as S in Eq. (3.9) and S, consists of S}, in Eq. (3.9) with additional terms corresponding to
(k,1)=(k,0) below,

Ss() =2 lVi]---ilW[”' e C(y),

=2 !

Sep= S —

k=0,1=0,2k+1=2 ki1

Vil---ik;j]---jl(d)jl' o (ﬁ“)('ﬂk T '7”1) € C(¢7 l;b)cycr (4’9)

Here we dropped the index g used in Eq. (4.5) since g=0. Namely, we denote

6=0 __.y) =0 =V, ...
V0= Viiip VS iimtin = Vipigiy iy

The action S corresponds to punctured spheres [since the corresponding Riemann surfaces have
no boundary ()], whereas S}, corresponds to disks with punctures both in the disks and on the
boundary of the disks. Equation (4.8) is often called a Maurer-Cartan equation.

A classical (tree) open-closed string field theory’* is then given by the action Si.(¢b, )
=Ss())+Sp(p, ¥) satisfying Egs. (4.7) and (4.8), the Batalin-Vilkovisl<y3’4 classical open-closed
master equations. The identity (4.7) implies that S is just the action of the classical closed string
field theory.73 Namely, S has a cyclic L., structure. For the operadic construction of the classical
closed string field theory, see Ref. 38. The relevant operad is the L., operad of nonplanar trees,
where the composition of the trees corresponds to the twist-sewing of two S'’s parametrizing two
closed strings and/or boundaries in a Riemann surface picture.73’38

Just in the same way as for Eq. (3.10), one can define the following formal vector fields acting

on C(¢, ) eye:

8:= 85+ 8p,  35=(.5¢9. Sp=(.5p), (4.10)

The condition (8)?=0 that (,[,n) is a cyclic OCHA is equivalent to the derivatives of the master
equations (4.7) and (4.8),
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O = ( ) (SS’SS)c)cw

0= ( ’(§D’SS)C + %(ED’gD)())o'

Here note that, as has been explained in Eq. (4.9), S, consists of Sj, with the following additional
terms:

1 . ,

Evjl---jl;J:Q(lp”'“ ) (4.11)
each of which corresponds to a disk with punctures only in the bulk (the interior of the disk) and
no punctures J=@ on the boundary. However, one can see that these terms drop out in Eq. (4.10):
(,8p),=( ,Sp),, since no open string field ¢' is included in Eq. (4.11). This is why we do not
include the corresponding terms in the definition of (cyclic) OCHAs. Thus, a classical open-closed
string field theory is a cyclic OCHA with the additional terms (4.11).

Of course, there exist situations in which these terms (4.11) are also important physically. For
example, the terms (4.11) contribute to a constant term for open string field theory in discussing its
deformation as in Sec. VI, and the constant term is relevant to D-brane mass, since the value of the
action is believed to correspond to D-brane mass in open string field theory. But, it is enough to
consider a cyclic OCHA structure in a classical open-closed string field theory at present if we
examine its homotopy algebraic structures in the sense of the next section.

V. MAURER-CARTAN EQUATION, MINIMAL MODEL, AND TREE OPEN-CLOSED
STRING AMPLITUDES

Homotopy algebras should have some homotopical propelrties.7’51 One of the key theorems in
homotopy algebra is the minimal model theorem. The minimal model theorem for A., algebras was
proved by Kadeishvili.”" For the construction of minimal models of A., structures, homological
perturbation theory was developed by Refs. 17, 28, 18, 21, 19, and 20, for instance, and the form
of a minimal model is then given explicitly in Refs. 54 and 41. Also, the existence of a stronger
theorem, called the decomposition theorem in Refs. 33 and 36, is mentioned in Ref. 40 and proven
by employing a kind of homological perturbation theory in Refs. 33 and 36 (see also Ref. 47). It
is clear that the same arguments hold true for L, algebras, and in our previous paper35 we stated
that they hold also for OCHAs.

In this section, we present the explicit form of a minimal model for an OCHA, which in the
cyclic case can be thought of as the perturbative expansion of a classical open-closed string field
theory.

Definition 5.1 (minimal open-closed homotopy algebra): An OCHA (H=H,®H,,[,n) is
called minimal if /;=0 on H, and n, ;=0 on H,,.

Theorem 5.2 (Minimal model theorem for open-closed homotopy algebras35): For any
OCHA, there exists a minimal OCHA and an OCHA quasi-isomorphism from the minimal OCHA
to the original OCHA.

The minimal model theorem holds also for COCHAs. Namely, for any COCHA, there exists
a minimal COCHA and a COCHA quasi-isomorphism from the minimal COCHA to the original
COCHA. This fact also follows from the explicit minimal model we shall construct here.

First of all, we fix a Hodge decomposition of the complex (H,d=1I,+n ). Namely, for d,
=1, and d,=n,,, we give Hodge decompositions of the complexes (H,.,d.) and (H,,d,) sepa-
rately, by fixing degree minus one (homotopy) operators h.:H.—H, and h,: H,—H,,

dho+hd, +vom=1, dh,+hd,+u°m,=1,. (5.1)

Here, 7 and ¢ indicate the projection to and the inclusion into the corresponding cohomologies.
Thus, these data give a contraction (deformation retract) of H=",® H, as a graded vector space
(see Ref. 35),
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(HH) = H, ), (5.2)

where ¢:= .+, mi=m.+7, and h=h_+h,.

We would like to follow the arguments in Refs. 31 and 33, where a minimal model is obtained
by a process of solving the Maurer-Cartan equation for an A., algebra. For OCHAs, the Maurer-
Cartan equations are defined as follows.™

Definition 5.3 (Maurer-Cartan equation): For an OCHA (H,[,n) and degree zero elements
ceH, and 0 € H,, we call the following pair of equations

0=2, ilk(a 0, 0= lnk (T, ....C;0, ...,0) (5.3)
. k! w kU
the Maurer-Cartan equations for the OCHA (H,[,n).

Remark 5.4: Recall that, for the cyclic A, or L., case, the Maurer-Cartan equations are just the
equations of motions for the action (of the corresponding string field theory).“’3 ? In field theory,
the equations of motions are defined by the derivatives of the action with respect to the fields. For
instance, for classical closed string field theory with the action Sy, the equations of motions are
0=(8/a/)Ss for each i. Here, since the BV bracket ( , ).:= (9/d¢/)w(d/3y) is nondegenerate,
the equations of motions are equivalent to 0=( ,S) (=ds). Usually, we set degree nonzero fields
to be zero and concentrate on the solutions for the fields of degree zero. Then, further identifying
al Y with ei. in 0=Jg, one obtains the Maurer-Cartan equations for the L., algebra, which is the
first equation in Eq. (5.3). However, note that, for a COCHA (H,w,[,n), the zeroes of the
corresponding odd formal vector field 6= &g+ Jp are not the same as solutions to the equations of
motions 0=( ,8)=(,S).+( ,S),, or separately

o—iwifi(s +Sp)=0 0= oi-5,=0
_ﬂlﬂ"&zﬁs p) =Y, T oy T
for the COCHA. Namely, the first equation above includes the term ( ,Sp),, the corresponding
term of which is absent in the Maurer-Cartan equations (5.3) for the COCHA.

One can see that, if one solves the equations of motions, instead of solving the Maurer-Cartan
equations, the resulting structure includes terms corresponding to b> 1.

If we apply the arguments in Refs. 31 and 33 to an OCHA, the Maurer-Cartan equations for
an OCHA should be considered formally for the pair of string fields (¥, ®) e (H,®H,,H,
®H,) instead of their degree zero parts (¢,0) € (H?, HY).

Then, for instance for the L, part, solving the Maurer-Cartan equation recursively one gets
first an L, quasi-isomorphism {fi};=,:(H(H,)®*—H,.. This somewhat physical procedure is
closely related to the homological perturbation theory developed earlier, and in particular, f:=
®fr € ®, Hom((H(H,)®*,H,) is just what is called a twisting cochain 7 (see Ref. 29 for the
DGLA case). Then, substituting f instead of W into the initial Maurer-Cartan equation, one obtains
an equation on H(H,), which is in fact the Maurer-Cartan equation for the corresponding minimal
L, algebra, so one can read the minimal L., structure from the Maurer-Cartan equation. For the
case of an OCHA, its minimal model is obtained by first considering the Maurer-Cartan equation
for the L., algebra as above and, after that, considering the Maurer-Cartan equation for n.

For an L, algebra (H,.[), a minimal L., algebra and an L, quasi-isomorphism
{fi=1:(H(H,),l") — (H,,1) are constructed as follows.

We set f;=t,:H(H,) —H,, and assume that we have {f;:(H(H,.))® —H}~, for I<n-1.
Then, for ci,...,c, € H(H,), f, is defined by

_16(0)
A=, Sy

L(fi ®f,. ® ++ ® ¢l el ).
kyseakmn oes, ki ko Ltk ! Ve, @ iy Tig) ot o)

The minimal L., structure is then determined by
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1o ’ (_ 1)6(0-) ’ ’

et o) = ch1+.§kj=n Een ky Vhy ek ! .j!lf(fkl B fi, ® B Si)(Co - Cotn)-
in particular, for /=2 one gets [;=H(l,):=m.1,°(1.)®?.

Once the L., quasi-isomorphism {f}};~; is given, we have an OCHA (H(H_.) ®H,,l" ,n") for
some n”. Next we should construct {f;;:(H(H,))**® (H(H,)®'—H(H,)}p=1 and n’
={n;,;:(H(H,))**® (H(H,))®' — H(H,)}21+/=2; these are obtained in a similar way as follows. f;
is given as inclusion fy,=¢,: H(H,) —H,. f, and f, , are ordered as f, <f, , if r+s<p+q or
r<p for r+s=p+gq. Then, a similar recursive procedure as above can be carried out also here. For
cls....c, e H(H,) and o1, ... 0, € H(H,), f,,, is determined by

Sam(cls .oosch500, ... ,0,,)
(- D
=—h02 i (,.1 ! ey ! )(Pl ! e p; ! )niv.f('frl ® - ®f’i®fpl»fh ® - ®fﬁj,qj)
(c(',(l), ,c(',(n);oi, a0,
where the summation = runs over all ry,....7,,py,....P;.q;,...,q; such that (rj+---+7r)+(p,

++pj)=n, (q;+ - +q;)=m, and also all 0 € &,,.
Then n'={n; }», /=, is obtained by replacing —h, above with ,,

ny (cl .. cs01, ... ,0,)
(=D
=,
Ozi!(rl! e )(py ! "'Pj!)

( ’ P r)
C(r(l)’ ,CU.("),OI, cees0,),

ni,j(frl @ - ®fri®fp],q] @ - ®fpj’qj)

where the summation ¥ stands for the same one as above. In particular, for 2k+/=2 one gets
ng,=H(ng,) = m,°n9,°(1,)%* and n{ y=H(n, o) := m,°n g°1.. In the equation above, we used the
convention presented in Definition 2.10.

For a COCHA (H,w,!,n), we do this construction by starting with an orthogonal Hodge
decomposition with respect to the symplectic form w. Namely, we give a decomposition

(H(H):’LH,h)

of H in Eq. (5.2) with a homotopy & :H — H satisfying w(1®h)=w(h®1), where 1:=1,&1,. The
existence of such a homotopy 4 follows from the nondegeneracy of w and the cyclicity for the
terms w.(/; ®1,) and w,(ng; ®1,), and then w(1® (to))=w((¢o7) ®1) also holds. Then, for the
COCHA (H,w,[,n), forgetting the cyclic structure w having already used it to fix the contraction
(5.2), one can obtain a minimal model (H(H),!’,n’) as an OCHA by the construction we have
seen above. The resulting minimal OCHA (H(H),l’,n’) is in fact cyclic with respect to the
induced inner product ' :=w(¢®¢) and the OCHA quasi-isomorphism a COCHA quasi-
isomorphism.

To summarize we give the following.

Theorem 5.5: (H(H),!",n') forms a minimal OCHA and §:={{f}};=1.{fx.}kri=1} is an OCHA
quasi-isomorphism f:(H(H),l' ,n')— (H,[,n).

Theorem 5.6: For a COCHA (H,w,l,n) and an orthogonal Hodge decomposition with
respect to w, (H(H),w',l" ,n’) forms a minimal COCHA and §:={{f};=1 . {fis}rs=1} is a COCHA
quasi-isomorphism f:(H(H), ', I’ ,n')—(H,w,[,n).

Since the explicit forms are given, one can check the cyclicity directly in a similar way to that
in the A, case (see Ref. 33).

Remark 5.7 (rooted planar tree graphs): One can also present an alternate description of this
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(a) (b)

FIG. 1. (a) The k-corolla, the planar tree corresponding to the A.. structure nm;=n . (b) The k-corolla, the nonplanar tree
corresponding to the L.. structure /;.

minimal model in terms of rooted planar trees in a similar way as for A,, algebras (see Refs. 41,
31, 33, 52,7, 11, 15, 16, 27, 36, 47, 51, and 60, etc.). This is related to Feynman graphs in field
theory. For an A., algebra (H,,{ng,}), it is convenient to associate ng to the k-corolla of planar
rooted trees. An L., algebra also has such a description, where the L., structure [, is associated with
the k-corolla of nonplanar rooted trees (Fig. 1). In our OCHA, we need to introduce also n;, to
which we associate a mixed corolla as in Fig. 2. As stated previously, from a string theory
viewpoint, [, corresponds to the sphere with (k+1)-(closed string) punctures and n,; corresponds
to the disk with (k+1)-(open string) punctures on the boundary and /-(closed string) punctures in
the bulk (interior) of the disk. In fact, one may think of the tubular neighborhood of these tree
graphs as the corresponding world sheet, where we take strips and cylinders for the neighborhood
of the straight lines and meandering lines, respectively. The minimal OCHA structure /; and 7,
are then obtained by grafting corollas in all possible ways such that straight lines are grafted to
straight and wiggly to wiggly (Fig. 3), where we assign to corollas the corresponding multilinear
maps [, n, ;, and to internal edges h,, h,, and so on. Physically, /. and h, are the propagators for
closed string and open string, respectively.

Remark 5.8 (string amplitude): For a classical open-closed string field theory S=S¢+S}, the
string amplitudes are obtained as follows. Let (H,w,[,n) be the corresponding COCHA, and
suppose that its minimal COCHA (H(H),’,!",n’) is constructed as above.

By definition, string field theory is constructed so that its perturbative expansion reproduces
the corresponding world sheet string amplitudes. Thus,

Vl£+l = w:(l,; ® lc)’ Vli,l+1 = w(,)(nl;,l ® 10) (54)

just define the on-shell (k+1)-closed strings sphere amplitudes and k-closed (I+1)-open string
disk amplitudes, respectively. Moreover, the n-closed string disk amplitude, which we denote ,’1’0,

is given by composing the L., quasi-isomorphism with 1, , as follows:

o I
V=2 2 k_,V;,o(fkl ® - ®f;)

i=1 ky+ - +k=n kil k;

for f={fi};=1, the L, quasi-isomorphism.

(2) (b)

FIG. 2. (a) The (k,)-corolla corresponding to n. (b) For the open-closed case, the (k,/)-corollas include the (1,0)-corolla
corresponding to 7 q.
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(&) (b)

FIG. 3. Grafting of corollas. (a) Wiggly to wiggly. (b) Straight to straight.

Note also that we can prove the decomposition theorem for a (cyclic) OCHA,* which implies
that all classical open-closed string field theories constructed on a fixed conformal background
(the data of the conformal field theory on the Riemann surfaces) are isomorphic. From the field
theory viewpoint, an OCHA morphism is a field transformation and in particular an OCHA
isomorphism is a field redefinition. Since field theory actions related by a field redefinition are
physically equivalent, one can say the decomposition theorem can prove the equivalence of all
classical open-closed string field theories constructed on a fixed conformal background. (See Ref.
33 for the A, case.)

VIi. DEFORMATION OF A, STRUCTURES AND THE FORMALITY THEOREM

For an L, algebra (H,,[) and an A, algebra (H,,m), if there exists an OCHA (H="H,
®H,,[,n) whose subalgebra (H,,{ng ;=) coincides with (H,,{m;};=), one obtains deforma-
tions of the A,, algebra (H,,{m;};=,) parametrized by the L, algebra (H,,[). On the other hand,
the whole deformation space of the A., algebra is also described by a moduli space of the L.
algebra(Coder(T°H,), m,[ , 1)), which we denote by (H/,["). The maps {n; ;} for k=1 define an
L., morphism from (H,,[) to (H_,!"). The defining equation for an OCHA (2.6) just converts to
the defining equation for an L., morphism (2.5).% In Sec. VI A we reexplain this in a more explicit
way. Such structure appears in various aspects of mathematical physics; the relation to deforma-
tion quantization by Kontsevich® is explained in Sec. VI B, and the application to the open-closed
topological B-model® from the viewpoint of the homological mirror symmetry setup39 is dis-
cussed in Sec. VI C. Note also that, in string field theory, this picture is related to the arguments
in Sec. 8 of Ref. 74.

A. Deformations of A, structures from open-closed homotopy algebras

Definition 6.1 [(graded) Gerstenhaber bracket'?]: For H,, a Z-graded vector space, let Homy,
:=Hom'(HZ*,’H,) be the space of degree r k-linear maps, and

Hom := @, Hom’, Hom’:= @;-, Hom;.

It is known that Hom is in one-to-one correspondence with the space of coderivations on T°(H,),
Coder(Y"(H(,)).65 For two elements in Coder(7°(H,)), the commutator of any two elements in fact
belongs to Coder(7T°(H,)), and further satisfies the Jacobi identity. After a shift in degree, this
induces a graded Lie bracket on Hom, which is the Gerstenhaber bracket. For m € Hom,’(, m'

e Hom;, and oy, ...,0,4r_; € H,, the graded Lie bracket [m,m’'] € Hom;,,, | is defined by
[mm'l=mom' — (= 1) 'm' om,

k=1
! ceedp.
mom’(ol, ’0k+k/—1) = E (— 1)1 (or+ +”’)m(01, ,Oi,m,(0i+], ’Oi+k’)’0i+k’+]’ ’0k+k'—l)'
i=0

Thus, (Hom,[ , ]) forms a graded Lie algebra.'*®

In the supermanifold description in Sec. III, this Gerstenhaber bracket corresponds to the
graded Lie bracket of formal vector fields on the corresponding formal supermanifold.
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Furthermore, let us denote by 77 € Hom' the degree one element corresponding to a degree
one coderivation in (H_,[")=Coder(T(H,)), that is, an A,, structure on H,. Then, it is clear that
[m,m]=0 holds and (Hom,d,[ , ]) forms a DGLA with d=[m, ].

Remark 6.2 (suspension): A DGLA is described as an L, algebra through the suspension s. For
the DGLA (Hom,d,[ , ]), the suspension is a degree shifting operator

s:Hom — Hom[1]=:H.

c

By this, a degree r element m e Hom” is mapped to be a degree (r—1) element s(m)
e Hom[1]"'="H/"". This actually converts the degree preserving bracket [ , ]:Hom® Hom
—Hom into a degree one bilinear map 1}: H. ® H— H. defined by

L(s(m),s(m")) == s((- 1)Im,m']), m e Hom’, m' e Hom’'.

One can see that the graded anticommutativity [m’,m]=—(=1)""[m,m'] is in fact replaced by the
graded commutativity in Eq. (2.3), lé(s(m'),s(m)):(—1)("1)(”‘1)l§(s(m),s(m')), where /] is given
simply by /j=s ds™'=d. Then (H_.,1'={l},15,15=1;="--=0}) forms an L., algebra.
Now, let us express the open-closed multilinear maps as
nk,l(cl’ RIS A T 301) = (n;(ch cee ,Ck))(oh ,01),

where n,(cy,...,c;) belongs to Homzeg(qH'"+deg(ck)+1. By this, the second term of the OCHA
relation (2.6) can be rewritten as

- (_ l)(CU(I)+ +C(Y(l)+l)5[nm+l—k(CO'(l)’ e ’C(r(l))’nk(ca'(lﬂ)’ e ’Cu(n))](ol’ cee ’Om)s
which, acting further with the suspension s on the equation above, yields

1 s s
- Elé(s(nmﬂ—k)(clr(l)’ (X ’co'(l))’s(nk)(co'(Hl)a (X ’ca'(n)))(olv (XX ’Om)'

Thus, one obtains

m—k 1 (_ 1)5(0’) ) . .
k[E() 20 26 5m12(s(nin+l—k)(ca(l)’ s 7C0'(l))’s(nk)(co(l+l)’ e 7co’(n)))
J=0 p=0 0§, : N
. (_ 1)6(0) *
= 2 2 (nm)(ll(ca(l), ’CO'(I))7C0'(I+1) - ’Ca(n))' (61)

——
ses, =1 L (n=1D!

These are just the defining equations for an L., morphism (2.5). By treating the /=0 and [=n cases
separately in the first line of the equation above, it becomes just the condition that the collection
of multilinear maps s(nZ):(HC)@’*HHomk[l] forms an L, morphism from (H,,[) to (H.,[").
Here, note that /{=[m, ] and m=2-gm, the A, structure included in (H,[,n) as m;:=ng,;. From
these arguments, it is clear that the converse also holds.

Theorem 6.3 (Ref. 35): For an OCHA (H,[,n), let (H.,!") denote the DGLA Coder(T°H,,).
The OCHA structure gives an L., morphism from (H.,1) to (H_,1"). Conversely, if there exists an
L., algebra (H.,\) and an L., morphism from it to the DGLA (H_,!") of an A.. algebra (H,,m),
then one obtains an OCHA.

For an L., algebra (H,,[), let us denote by MC(H,.,[) the solution space of the Maurer-Cartan
equation

0=, ilk(a ,5)},

k=1 k!

MC(H,,1) = {5 e H?

where H(C’ is the degree zero subvector space of H,. In addition, we have an equivalence relation
~ called gauge equivalence between the solutions of the Maurer-Cartan equation. The moduli
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space of the solution space of the Maurer-Cartan equation for (H,.,[) is defined by

M(H, 1) = MC(H., 0/ ~ . (6.2)

Suppose that we have an L, morphism f:(H,,[)— (H_.,[") between two L., algebras. Then it is
known that the L., morphism f induces a map f: M(H,,[)— M(H/.,l’), and furthermore it is an
isomorphism if f is an L, quasi-isomorphism (cf. Ref. 40). Similar facts hold also for A., algebras
and also for OCHAs,3 3 but what is relevant here is just the L., case.

Note that, for an L. algebra (DGLA) (H_,l’)=Coder(T“H,) as above, its moduli space
M(H/,1") is the moduli space of deformations of the A., algebra in the space of weak A, algebras.
Thus, we have the following.

Corollary 6.4 (A,, structure parameterized by the moduli space of L., structures35): For an L.,
algebra (H.,1) and an A, algebra (H,,m), suppose there exists an OCHA (H=H & H,,[,n)
such that (H,,{ny;})=(H,.m). Then, for each element c € M(H,,), we have a weak A.. algebra
which is a deformation of the original A., algebra (H,,m). If {n| 1};=0: H.—H, gives a quasi-
isomorphism of complexes (H,l;)— (H_,1}), then all the equivalence classes of deformations of
(H,m) as weak A., algebras, described by M(Hé,li), are in one-to-one correspondence with the
space M(H,,1).

B. The construction of deformation quantization by Kontsevich

The deformation quantization problem is to construct a star product corresponding to the
Poisson algebra on a manifold M. Namely, for a formal (deformation) parameter v and a given
Poisson algebra (A=C*(M),-,{, }), a bilinear, bidifferential v-linear map *: A[[v]]® A[[v]]
—Al[7]],

frg=2mlf.9)v. f.ge AllV]] (6.3)
r=0

is called a deformation quantization of M if my(f,g)=f-g, the usual commutative product on
C*(M), m(f ,g):%{f ,g} and the star product * is associative.” (Notice here m, is still a function
of two variables and should not be confused with the m; of an A, algebra.) In Ref. 40, Kontsevich
reformulated this problem in a homotopy algebraic setup. For any associative algebra A, defor-
mations as associative multiplications are controlled by the Hochschild complex, which is essen-
tially Coder(7°.A) and hence a DGLA."? In fact, control is equally well exercised by any quasi-
isomorphic DGLA or even L., algebra.60 The obstructions to existence and to equivalence are
identified by the quasi-isomorphism. For the special case of A=C”(M), the deformations relevant
to deformation quantization are controlled by the subcomplex of multidifferential Hochschild
cochains, which we denote D, (M) (Definition 6.5) and which is quasi-isomorphic to the full
Hochschild complex. The smooth analog of the Hochschild-Kostant-Rosenberg theorem.” (an
explicit proof can be found in Ref. 22) equates the Hochschild cohomology with T, (M), the
space of polyvector fields, which possesses a DGLA structures with d=0 and the Schouten-
Nijenhuis bracket.

Kontsevich treated these DGLAs as L, algebras and obtained the existence and the classifi-
cation of deformation quantizations by constructing an L, morphism between T, (M) and
Dpoiy(M), which is in a sense a nonlinear generalization of a DGLA map. Moreover, the specific
L.. morphism provides a specific star product. In this setting, the space of Poisson structures and
the space of star products given by bidifferential operators are then described by the Maurer-
Cartan equations of the corresponding DGLAsS.

In this section, we shall first present these tools and then relate them to an OCHA.

Definition 6.5 [DGLA of multidifferential operators for C*(M)]: For A=C*(M), denote by
D’;Oly(M) the space of multilinear maps from A®**) to A of multidifferential operators. Then

define Dp01y=@keZD£o]y by
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Dk

poly =0(k<—1).

=Dy (M)(k==1), Di,

k

For d, we take the Hochschild coboundary operator. Namely, for any C € D,

d is given by

k
(dO)(gos -+ +81s1) = 80C(g1s -+ +8ka1) = 20 (= 1) C80s -+ 2818 1a1s - »&kr1)
r=0

+(- 1)kc(go, e 88kl

We take for [ , ] the Gerstenhaber bracket.'? Namely, for C e Df . C'eDX

polys polys 1t is defined by

[C,C'l=CoC' - (-1)* o,

k

Co C,(g07 7gk+k’) = E (_ l)rk C(g07 ’gr—l7C,(gr’ 7gr+k’)7gr+k’+l7 RN ’gk+k’)'
r=0
Then (Dpoly,[ , |,d) forms a DGLA.
One can see that d can be written as

(- DXAO) (8o, ... .8xe1) =[.Cl.  C & Djyy.

where m is the usual commutative product of functions m(f,g)=f-g. Though the operation [, ]
is different in sign from the original d, [, ] also forms a DGLA on D, with [ , ]. So, we take
this as d. This DGLA is described as a sub-DGLA of (Hom,d,[ , ]). First, set H;' =A and H];
=0 otherwise. Then C: A®**!) — A has degree k as defined above. Namely, D, (M) is included
in the restricted subvector space Homg,,=®; Homi‘1 of Hom.

Let us state the necessary condition for the existence of a deformation quantization in the
language of DGLAs here. If we write the star product (6.3) as f*g=m(f,g), m € Hom,, the
associativity condition (f*g)*h=f*(g*h) is expressed algebraically as [m,m]=0. This just indi-
cates that m defines a codifferential on T°(A) as previously or, equivalently, that m is associative.
Since m should be obtained as a deformation of 7, writing m=mi+6, 6 € vD,,[[v]], one gets a
Maurer-Cartan equation in the DGLA (vD, [[¥]].d.[ . ]),

poly

do+3[6,6]1=0. (6.4)

Definition 6.6 (DGLA of polyvector fields): For k=-1, set T*

poly
define T, ,=® kTJ;O]y by

(M):=T'(M ,A*'TM), and

oy =Tt

poly =  poly
Here, when k=—1 we set T;élyz T;ély(M )=C”(M). The differential d is defined by d=0. Therefore,
the cohomology of the complex of 7}, with respect to d coincides with 7, itself. [ , ] is taken

to be the Schouten-Nijenhuis bracket.®'® For fs,meTgO]fF(M ,TM), the bracket of

M) k=-1), T¢

polyZO(k < - l).

Eon nE, € Tﬁoly with ggA-- Ay € Ti,o]y, k,1=0, is defined by
[Son = A& - Al
ko1
=2 2 DM I G A AECI A G A T AEATIOA AT A D A AT
i=0 j=0

and for k=0, h e T;(l)ly=C°°(M), the bracket is
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k
(oA A&h]= 2 (D EM(EA - AE A A AED.
r=0

We can define Hk L Tk , With this Schouten- Nijenhuis bracket.

Now, a bivector a= E a"(&/ ax;)) A (9] dx ) e T! poly in the local expression represents the Pois-
son bracket by {f,g}=2,; a’/ (9f 1 ox )(&g/&x) Where (xl, ...,X,) are local coordinates of M. This
bracket by definition satlsﬁes all the axioms of a Poisson algebra except the Jacobi identity. The
Jacobi identity is then described by

[a,a]=0. (6.5)

Since d=0, Eq. (6.5) is also the Maurer-Cartan equation. A bivector satisfying (6.5) is called a
Poisson bivector. Similarly, a quantum deformation of the Poisson bivector is defined by af,,
€ vaoly[[v]] satisfying

[Q[V], CL’[V]] =0. (66)

In the expansion a[,,]=va1+1/2a2+-~~ , the original classical Poisson bivector « is «;. In fact,
expanding (6.6) in terms of powers of v, one can see that the lowest identity reads [«;, a;]=0.

Thus, the conditions that an element in vT Oly[[v]] is a Poisson bracket and that an associative
product on C*(M)[[»]] as an element in vD! polyL[¥]] are both described by Maurer-Cartan equa-
tions for DGLAs. Let us set two L., algebras (Hc, [) and (H_,l") as the suspension of DGLAs T, poly
and Dy, respectively. Namely, we have Hk Tﬁ:;lly and H'k D';glly The Maurer-Cartan equations
for DGLAs (6.6), (6.4) are of course rewritten as the Maurer-Cartan equations for L., algebras
through the suspension in Remark 6.2.

The existence and the classification of the deformation quantization follows from the formal-
ity theorem,*” which claims the existence of an L., quasi-isomorphism §:(H,, [)— (H.,l"). Note
that this fact implies that the DGLA of Hochschild cochains is (homotopically) formal; in particu-
lar, the higher L, structures vanish on its cohomologies. In order that | is an L. quasi-
isomorphism, the chain map f;:(H,,d.=0)— (H_,d.) must be a quasi-isomorphism, that is, f
must induce an isomorphism on cohomologies. One may set

(fi( PN /\gik))(gl’ NN AL 2 (- 1)50)(5 gl) (§ig(k)gk)-

0'66

Kontsevich constructs all the higher multilinear maps f; explicitly as local expressions on M
=R" in terms of Feynman graphs, which are just those derived from a certain topological open-
closed string theory as revealed explicitly by Cattaneo-Felder® (see for review Ref. 48).

When an L., quasi-isomorphism f={f,f,,...} is given, it preserves the Maurer-Cartan equa-
tions, and the deformed Poisson bivector is given by the following nonlinear map:

6= E k‘fk(a’[v], ae ,a[,,]), (67)
k=1
for ar,;e M(H,,[) and §e M(H_,l'). Here the L., quasi-isomorphism f:(H,,[)— (H_,[") has
been extended by tensoring with the formal power series vC[[v]]. If we expand the deformation
m=im+6, 0 vD,,,[[v]] as in Eq. (6.3):
m=m+vm; + vmy+ -

with m;=(1/2)«,, Kontsevich’s quasi-isomorphism of L., algebras then provides a choice for m,
and in fact for all the m,;.

Now, let us summarize Kontsevich’s deformation quantization in terms of OCHAs. First, we
set H"z =I'(M ,AN"TM). 1t forms a formal L, algebra with /, the Schouten-Nijenhuis bracket, and
ly=l3="--=0. For H,, we take H,":= C*(M) and HX=0 for k#—1. The A., structure is ng,=1,
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the usual commutative product of functions C*(M), and n,;=0 except for /=2. The multilinear
maps of the L., quasi-isomorphism are then identified as the adjoints{n;: (H.)®*® (H,)®'—H,}
with  k=1. 1In particular, n,(ap,;f,8)=(1/2){f,g}, and nl,k(gi]/\---/\gik;gl, )
=(1/ k!)Egeg(—l)e(”)(fia(l)gl)'"(5,-”<k)gk). These structures form a minimal OCHA on cohomol-

ogy. Corollary 6.4 then implies that, for a fixed element of MC(H,,[), an A, structure is obtained.
However, in this situation, since Hom is restricted to Homg,,= EBHom:_1 and the elements of
Maurer-Cartan equations, especially M (H_,")are degree zero, the deformed A., structure also has
my € (Hom,[1])? only, i.e., m, and higher product ms,m,, ... are absent. Equivalently, when . is
restricted to its degree zero part H’, ny,, vanishes except for (k,[)=(k,2). This m, is just the star
product, an associative but noncommutative product C*(M)® C*(M)— C*(M) of a deformation
quantization. The next example below is a natural extension of this situation, but in the case that
Hom is not restricted to Homg,,.

C. Open-closed B-model

A natural extension of Kontsevich’s deformation quantization setup is to the B-model side of
homological mirror symmetry.39

The mirror symmetry, a symmetry between Calabi-Yau manifolds, can be interpreted as to-
pological closed string physics. There are two types of topological string theories whose target
spaces are Calabi-Yau manifolds. One is called the A-model, which depends only on the com-
plexified symplectic structure and is independent of the complex structure of the Calabi-Yau
manifold. Another one, the B-model in contrast depends only on the complex structure. For a
given Calabi-Yau manifold M, the mirror symmetry conjecture is the existence of a mirror Calabi-

Yau manifold M such that the A-model closed string on M is equivalent to the B-model closed
string on M and vice versa.’! Homological mirror symmetry is thought of as an open string
version'” of the mirror symmetry conjecture. open string theory in general includes some kind of
D-branes, which form a D-brane category (see Ref. 45); the D-branes and open strings are iden-
tified with objects and morphisms between the objects. For the tree open string A-model, the
corresponding category is Fukaya’s A., category,9 which depends only on the complexified sym-
plectic structure. On the other hand, what is constructed on the B-model side is a category of
holomorphic vector bundles or coherent sheaves more generally. The homological mirror symme-
try conjecture39 then states that the Fukaya category on a Calabi-Yau manifold M is in some sense

equivalent to the category of coherent sheaves on the mirror dual Calabi-Yau manifold M. Now,
the conjecture is checked successfully in the case M is an elliptic curve,”*”7 an Abelian
variety,10’4] a quartic surface,63 and so on. For noncommutative two-tori, see Refs. 32, 37, and 34
and a related work.”®

One of the original motivations to argue for this homological mirror symmetry conjecture39 is
that it might explain the (tree closed string parts of) mirror symmetry: the family (deformations) of
tree open string A- (respectively, B-) models should be in one-to-one correspondence with that of
tree closed string A-(respectively, B-) model, and the tree closed string structure should follow
from the corresponding family of the tree open string structures. These concepts have their back-
ground in the open-closed string physics in our sense. Since the A side and B side should be mirror
dual, they should have isomorphic structures in some sense. However, that which is directly
related to us is the B-model side, since there the classical solution of string world sheet theory is
only a constant map (no world sheet instanton) and the corresponding moduli spaces are just the
usual ones of Riemann surfaces with boundaries and punctures.71

One can see that the tree open-closed B-model is just a particular example of the arguments in
Sec. VI A, and gives a natural extension of that in the preceding section. However, the mathemati-
cal formulation of the tree open-closed B-model is not yet established completely, nor is there
known the explicit formula as in the case of deformation quantization in the preceding section.

An interesting attempt and a partial result can be found in Hofman’s work.?® We can identify
some set of multilinear maps {lk,np’q} on open and closed string observables for this situation. Of
course we could have an infinite number of homotopy equivalent open-closed homotopy struc-
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tures. For instance, for the tree closed string part, the world sheet action of the B-twisted topo-
logical string theory as given in Ref. 71 has the space of observables which is identified with the
cohomology of &, ,I'(M,A"TM ® AYT"M) with respect to the Dolbeault operator J and hence, in
principle, one can compute closed string (k+ 1)-point functions (=scattering amplitudes) related to
I,. However, in general this is complicated; it is better if one can find a corresponding string field
theory in a simple form. Such a string field theory is given by Ref. 6, where the B-twisted
topological closed string field theory action consists of the kinetic term and a three point vertex
only, and so a DGLA structure is associated to it. Note that the equations of motions are just the
Maurer-Cartan equations defining deformations of the complex structures, with additional ex-
tended directions mentioned below. The string field theory gives, at least for tree level (genus
zero), a simple way of calculating (k+ 1)-point functions in terms of Feynman rules, and this
procedure just coincides with taking a minimal model of the DGLA from a homotopy algebraic
point of view. (However, for the action given in Ref. 6, they use an inner product which is not
nondegenerate in our sense. In particular, it vanishes on the cohomology. Together with an addi-
tional structure called a differential Gerstenhaber structure, the pull-back of this action with
respect to the L., quasi-isomorphism, or equivalently the superpotential or the collection of tree
closed string amplitudes, has a Frobenius structure,? even though the minimal L, structure is
trivial, all /,=0. We do not deal with this Frobenius structure in this paper.)

In a similar way, one can also consider open strings in the B-twisted topological string theory,
and, in a similar spirit, one can construct a particular open string topological string field theory
action,n6 called a holomorphic Chern-Simons action, a holomorphic version of the usual Chern-
Simons action or Witten’s bosonic open string field theory.70 Thus, it has a structure of a differ-
ential graded associative algebra (DGA) with cyclicity, a cyclic A, structure. Again, tree open
string world sheet scattering amplitudes are obtained by taking the minimal model of the DGA.

Although the B-twisted topological string is controlled by such a simple DGLA or DGA for
the closed or open string case, respectively, it is known that the same story does not hold for tree
open-closed string in general.74 Therefore, we consider here a minimal OCHA structure whose
purely closed string part {/;} and purely open string part {m;=n,} are given by taking the minimal
models of the DGLA and DGA, respectively. For the closed string side, the corresponding DGLA
structure is (D(M ,A*TM @ A*T°M),3,[ , 1), where [, ] is the Schouten-Nijenhuis bracket, the
one in Definition 6.6 extended to T°M naturally. However, for closed strings, the 99 lemma and the
Tian-Todorovs lemma lead to the corresponding minimal L., structure, given by the procedure in
Sec. V, being trivial (see Refs. 6 and 2). Thus, we have [;=0 fork=1 for Hlj=
@ psg-2=(APTM), and the corresponding moduli space is itself,

M(H,, 1) =H.

Here, we restrict H, to its degree zero part only. It might be reasonable to think that one can
deform in these 'HS directions finitely in principle and that the other Hf directions provide fibers
of an infinitesimal neighborhood. In fact, the whole deformation space H, is called the extended
moduli space in Barannikov-Kontsevich.” Note that H'(A'TM) e Hg describes the complex struc-
ture deformations. This is the original deformation theory of complex structures, and the
Barannikov-Kontsevich’s setup can be thought of as an extension of it.

Next, for pure open string structure, we should stress what is taken for H,. The open string
theory forms a D-brane category, which should be treated as an A,, category in our context. The
objects, B-type D-branes, are the coherent sheaves on M. Thus, H,, is identified with the space of
morphisms between them. A general construction of a minimal model in this situation is found in
Refs. 44, 46, 68, and 45, and See Ref. 34 for an explicit construction in the noncommutative
two-tori case. However, for simplicity, here we consider the case that the object is only the
structure sheaf O(M). One can see that this simplified situation is enough for our purpose here
under some appropriate assumptions. The differential is then simply d, and one obtains a minimal
model of DGA (0% (M),d,A), which we denote by (H,,m={ngli=,), where H’f,_l
=HN O (M)).
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For this particular choice of H,, let us consider the space of multilinear maps Hom:=
® Homy,

Homj = Hom'(HZ%,H,,).

Again, the result of Gerstenhaber—Schack,13 in a similar way as the Hochschild-Konstant-
Rosenberg theorem does in the preceding section, implies that the cohomology of Hom=
@, Homy, coincides with H,. itself (see Ref. 39).

Alternatively, the existence of an L., quasi-isomorphism from (H,,[) to (H_,’) is guaranteed
at least physically, since {n;;} can be constructed as open-closed disk amplitudes of the open-
closed B-model, where the string world sheet action is of the same form as the one for pure closed
strings, and the space of observables are just those used in separate open-closed B-model. An
open-closed disk amplitude is then obtained by the integral of a disk correlation function, calcu-
lated in the usual way in physics, over the moduli space of the corresponding disk with punctures,
both in the interior and on the boundary.

Moreover, it was checked in Ref. 26 that n, , given by this physical argument in fact gives the
linear part of the L., quasi-isomorphism f,

1
nl,k(§i1 ZAYRRRERAN §ik,f19 )= E (- 1)5(0)(§i0(1,f1) te (gig(kfk),

k!(rEG

where & e TM acts on f; € H, as the Lie derivative. Also, in the spirit of homological mirror
symmetry, since the collection {n; ;} gives an L., quasi-isomorphism even with the restriction to the
category of coherent sheaves to O(M), it does also in case the full category would be treated for
the open string side.

To summarize, we set H'= B s gaHUN'TM), H =HNO%"(M)), and  Hom,
=Hom'(H%*,H,). Then we have [,=0 on H, and ng, is the minimal A, structure of DGA
(O%"(M),d, A). The operation I’ is defined as in Sec. VI A, that is, I{=[i, | with m=2_n, ,and
[} is related to the commutator [ , ] through the suspension.

The corresponding OCHA structure in this case reduces to the generalized WDVV relation
discussed in Ref. 24. Namely, it corresponds to a minimal OCHA with trivial L., structure. At
present, the explicit form of multilinear maps n, , of p=2 and ¢=0 are not known in general,
though physically existence is guaranteed by the open-closed scattering amplitudes of disks in
B-twisted topological string theory. There is an interesting restriction where we can understand the
form of n; ;. Hofman discussed in Ref. 26 that if we restrict H,. to APTM, the situation reduces to
a complex version of Kontsevich’s deformation quantization and hence n, , are obtained in a
similar way.

An interesting difference from the deformation quantization setup in the preceding section is
that, since Hom= @ Hom; is not restricted to Homg,, even if r=1 we can have nontrivial de-
formed m,. In particular, we could in general obtain a deformation of the A., structure /m to a weak
A, structure, which should be one of the interesting future directions to be investigated.

In this case, for the closed string part, the L., structure is trivial, including the bracket, and
hence the obstructions vanish. In a more general model, however, it should not be trivial, as
discussed by Huebschmann-Stasheff.” It should be interesting to find such models which can be
calculated explicitly.
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