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Numerical study of singularity formation in a class of Euler
and Navier–Stokes flows
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We study numerically a class of stretched solutions of the three-dimensional Euler and Navier–
Stokes equations identified by Gibbon, Fokas, and Doering~1999!. Pseudo-spectral computations of
a Euler flow starting from a simple smooth initial condition suggests a breakdown in finite time.
Moreover, this singularity apparently persists in the Navier–Stokes case. Independent evidence for
the existence of a singularity is given by a Taylor series expansion in time. The mechanism
underlying the formation of this singularity is the two-dimensionalization of the vorticity vector
under strong compression; that is, the intensification of the azimuthal components associated with
the diminishing of the axial component. It is suggested that the hollowing of the vortex
accompanying this phenomenon may have some relevance to studies in vortex breakdown.
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I. ISSUES CONCERNING THE INCOMPRESSIBLE
THREE-DIMENSIONAL EULER EQUATIONS

A. Introduction

The formation of spontaneous singularities in the thr
dimensional~3D! incompressible Euler equations is one
the outstanding problems in modern fluid dynamics. Th
equations can be expressed in the usual form

]U

]t
1U•¹U52¹p, ~1!

with the velocity fieldU(x,y,z,t)5(u, v, w) subject to the
incompressibility condition divU50. Evidence for a singu-
larity in flows of finite energy has been reported in a varie
of circumstances. Kerr’s numerical integration,1 starting
from an initial state of a pair of anti-parallel vortex tube
strongly suggests that the vorticityV5curlU blows up at a
point in a finite time with uuVuu`;(t* 2t)21. Despite
progress in analytical methods, a rigorous proof that a sin
larity could develop in a finite time from certain classes
initial data has remained an open problem since the tim
Leray2 who considered the Navier–Stokes case, while
merical results are only suggestive. The result of Be
Kato, and Majda~BKM !,3 who showed that no quantity as
sociated with~1! can become singular at a timet* without

*0
t* uuV(t)uu` dt also becoming singular att* , has had a ma-

jor influence on the subject because it gives the comp
tional fluid dynamicist a benchmark against which to t
whether a singularity arising from a numerical experimen
real or a numerical artifact. Constantin, Fefferman, a
Majda4 have more recently refined this result by bringi

a!Electronic mail: ohkitani@kurims.kyoto-u.ac.jp
3181070-6631/2000/12(12)/3181/14/$17.00
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down theL`-norm in the above time integral to a finite valu
at the cost of imposing conditions on the direction of vort
ity ~see also Ref. 5!. In a different manner, Ponce6 has also
shown that the BKM result can be modified in such a w
that theuuVuu`-norm within the time integral is replaced b
uuSuu` , whereS is the strain matrix.

An alternative approach is to take advantage of the c
savings gained by using high symmetry initial conditions.7–9

Bhattacharjeeet al.10 ~see also Ref. 11! have discussed in
some detail how Euler singularities may develop from sy
metric initial conditions, such as the imposition of Kida
high-symmetry initial condition.7 By using perturbative
methods they suggest evidence for two types of possible
gular behavior ofV. Pelz and Gulak12 have also used Kida’s
initial condition to follow the development of a real-tim
singularity using Pade´ methods of analysis.

All the flows discussed above are finite in energy. In th
paper we study the possibility of singularity formation
solutions of the 3D Euler equations that have imposed u
them an infinite geometric structure in one particular dire
tion. Such flows, being infinite in one distinguished dire
tion, have infinite energy and therefore must be placed i
different category than those discussed in the above re
ences. To be specific, let us consider a class of 3D E
velocity fields whose onlyz dependence lies linearly in th
third component

U~x,y,z,t !5S u

v

w
D 5S u~x,y,t !

v~x,y,t !

zg~x,y,t !1W~x,y,t !
D . ~2!

The vorticity has two components that are linear inz and one
independent ofz
1 © 2000 American Institute of Physics
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V~x,y,z,t !5S V1

V2

V3

D 5S z
]g

]y
1

]W

]y

2z
]g

]x
2

]W

]x

v

D , ~3!

where

v~x,y,t !5
]v
]x

2
]u

]y
. ~4!

The strain matrix,S, associated with this velocity field is

S5S S11 S12 2 1
2 V2

S21 S22
1
2 V1

2 1
2 V2

1
2 V1 g

D . ~5!

This class of velocity fields is of stagnation point type an
as such, has its limitations. Clearly, it cannot be thought o
representing general 3D Euler flows of finite energy. Nev
theless, it does include several well known and import
subclasses of solutions of the Euler equations:

~1! The Burgers vortex is the most prominent member
this class;13 takeW50 and restrictg to being a function
of time only. Writing (u, v) in strain-field form with a
stream functionc5c(x,y,t) we have

u52
1

2
g~t!x1

]c

]y
, v52

1

2
g~t!y2

]c

]x
, w5zg~t!. ~6!

The Euler version of the Burgers vortex can easily
found from this formulation. This vortex, both in its Eu
ler and Navier–Stokes manifestations, is a well-kno
solution that is thought to represent tubes of vorticity
both inviscid and viscous turbulent flows.14 Clearly, if g
is chosen to be spatially uniform andW50 then V1

5V250 and the axial componentv52Dc is uniform
in the z direction. This uniformity contributes to the in
finite tube-like geometry and makes the Burgers vor
an infinite energy solution. WhenWÞ0, however, a va-
riety of other solutions have recently been shown to e
~see the discussion in Ref. 15!.

~2! A solution of the three-dimensional Euler equations t
blows up in finite time and has a double stagnation po
has been found by Stuart.16 His velocity field has a dua
linear structure and takes the formu5xū(y,t), v
5 v̄(y,t), and w5zg(y,t). This problem is more ame
nable to a Lagrangian than an Eulerian formulation,
Stuart has shown, and is appropriate for boundary la
studies.16,17 Finite time singularities have long bee
thought to play a significant role in the separation
boundary layers. The paper by Cowleyet al.18 reviews
the Lagrangian description of this type of problem.

~3! The two-dimensional model by Childresset al.19 of
blow-up in the two-dimensional~2D! Euler equations
belongs to the class of velocity fields~2!. Takingw50,
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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their velocity field is of the divergence-free form

~u, v!5~u~x,t!, 2y ux~x,t!!. ~7!

This two-dimensional problem has a single stagnat
point structure, as opposed to the double point in Stua
solution, which is three-dimensional and stretches in t
directions.16 Childresset al. use the phrase ‘‘stagnatio
point similitude’’ when referring to the linear structur
of the distinguished variable.19

Finally we add two further examples to the list of Eul
solutions that blow up. First, Constantin’s ‘‘distorted Eul
equation’’ differs from the true three-dimensional Eul
equations in that a singular integral operator with a tim
varying kernel in the equation for the velocity gradient m
trix Ui , j is replaced by its initial value.20 This system devel-
ops a finite time singularity for various initial data. Secon
Moffatt has recently constructed a singular solution of t
3D Euler equations by generalizing the Burgers vortex21

This solution, whose vorticity blows up at a point, has s
gular and unbounded straining fields in all three directio
and so has infinite energy.

B. Equations of motion for g, W, and v

Gibbon, Fokas, and Doering15 recently showed that if
the class of velocity fieldsU given in ~2! satisfies the 3D
Navier–Stokes equations then simpleseparateequations for
g(x,y,t), W(x,y,t) and the third component of vorticity
v(x,y,t) can be derived; in other words, thez dependence
can be removed from the system. With the greatest bre
we repeat this calculation in the Euler context.

Let us define the 2D velocity field part of~2! as

u~x,y,t !5~u~x,y,t !, v~x,y,t !!, ~8!

and let ¹ be the 2D gradient operator. Then, from~1!, u
satisfies

]u

]t
1u•¹u52¹p. ~9!

These arenot, however, the true 2D Euler equations becau

div u52g. ~10!

We need a pair of evolution equations forg andW. The third
velocity field w5zg1W gives this information. Recalling
that the 3D total derivative is

D

Dt
5

]

]t
1u•¹1w

]

]z
, ~11!

we can easily calculate]p/]z from the third component of
~1!

2
]p

]z
5zS ]g

]t
1u•¹g1g2D1S ]W

]t
1u•¹W1gWD .

~12!

On integration with respect toz we have
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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2p~x,y,z,t !5
1

2
z2S ]g

]t
1u•¹g1g2D

1zS ]W

]t
1u•¹W1gWD1P~x,y,t !,

~13!

whereP(x,y,t) is a function of integration. The stagnatio
point type structure shows up in a typical way. The crux
the matter lies in the following argument; because Eq.~1!
insists that the partial derivatives of the pressure,]p/]x and
]p/]y, are independent ofz, the only way to prevent a con
tradiction between this fact and the quadraticz structure inp,
is to demand that the coefficients ofz and z2 in ~13! are
independent ofx andy, although they can be arbitrary func
tions of time. The coefficient ofz can be put to zero becaus
this represents no more than an accelerating change of fr
but the coefficient ofz2 has more significance. It means th
pzz the second partialz derivative of the pressure, must be
spatially uniform arbitrary function of time; that is,pzz

5pzz(t). Hence we have

]g

]t
1u•¹g52g22pzz~ t !, ~14!

]W

]t
1u•¹W52gW. ~15!

These are two of the three equations derived in Ref. 15.
obtain the third we look at the block diagonal structure of
strain matrixSgiven in~5! and note that the third compone
of SV decouples such that

~SV!35gv, ~16!

with v defined in~4!. The vorticity version of the 3D Eule
equations shows that the third equation of the set must b

]v

]t
1u•¹v5gv. ~17!

This is the third of the three equations derived in Ref.
Very recently we discovered that in 1927 Oseen22 derived a
time independent version of these equations withW50.

So far, no domain has been specified. In Ref. 15 it w
shown that on a domain infinite in all directions, withg
restricted to being spatially uniform, then~17! can be
rescaled to the 2D Euler equations withW acting as a passive
scalar on that flow. This is a generalization of Lundgre
straining transformation23 ~see Ref. 15!. Thereg5g(t) be-
haves as a dynamical variable which affects the sys
through the scaling variables(t)5exp(*0

t g(t) dt). Through
this transformationany solution of 2D Euler~with an addi-
tional passive scalar! on an infinite domain can be mappe
back to form a solution of 3D Euler within the class of v
locity fields ~2!. The dynamics ofg are, therefore, importan
but are somewhat arbitrary because the driving funct
pzz(t) is arbitrary. To determineg requires the specification
of some boundary conditions.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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C. The equations in a tube-like domain

The coupled equations~14!, ~15!, and~17! have the ad-
vantage of being functions of only two independent va
ables, thereby enabling us to more easily undertake a
merical investigation of their properties. The postulat
linear z dependence in the full 3D Euler equations dist
guishes thez coordinate, so this must be taken into accou
when choosing boundary conditions. We choose a dom
that is unbounded in thez direction but, for simplicity, we
assume that every field is periodic inx, y on the finite cross-
sectional domainA5@0, 2p#2. The chosen domain is, there
fore, very like an infinite tube with a periodic cross sectio

Given these boundary conditions it is now clear that
continuity condition~10!

g52div u52S ]u

]x
1

]v
]y D , ~18!

tells us thatg is a mean-zero function over the cros
sectional domainA

E
A

g dx50. ~19!

Using this information in~14! fixes pzz(t) to be

pzz~ t !522^g2&522
1

~2p!2EA
g2 dx, ~20!

where the bracket̂•& stands for the square of theL2-spatial
average ofg. Hence our three equations of motion forg, W
andv are now

]g

]t
1u•¹g52g212^g2&, ~21!

]W

]t
1u•¹W52gW, ~22!

]v

]t
1u•¹v5gv , ~23!

together with~18!. From its definition in~4!, v can be writ-
ten ask̂v5curlu, where k̂ is a unit vector inz direction.
This allows a Helmholtz–Hodge decomposition to be used
solve for u and v. This decomposes the vector fieldu into
irrotational and solenoidal parts

u52¹~D21g!2curl ~ k̂D21v!. ~24!

Hence the velocity componentsu and v are solely deter-
mined byg andv through the inverse two-dimensional La
placianD21 as follows:

u52D21S ]v

]y
1

]g

]x D , v5D21S ]v

]x
2

]g

]y D . ~25!

Clearly the other variableW plays no part in this determina
tion, having only a passive role.

We solve Eqs.~21!–~23! numerically using a standar
pseudo-spectral method in double precision arithmetic. T
aliasing errors are suppressed by the 2/3-law and the num
of effective degrees of freedom is (2N/3)2 for a computation
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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of N2 grid points. The time marching is performed by th
fourth-order Runge–Kutta method with use of a typical tim
incrementDt51023. We have checked that the properties
the solutions do not change by increasing resolution asN is
increased from 256 to 512 and up to 1024 and 2048 in so
cases. We will typically useN5256. In contrast to solutions
of the usual 2D and 3D Euler equations, a rather low re
lution is sufficient to resolve the flow field. The reason f
this is that the Fourier spectrum of the energy keeps to
exponential fall-off close to the end of the computation~see
below!.

Clearly the key variable in the system isg; the main
issue in this paper is whetherg blows up in finite time and,
if so, what the nature of this blow-up is. The variableW, and
to a lesser degreev, can be thought of as subsidiary var
ables;g controls the growth or decay ofW andv depending
on whether its growth is positive or negative. Blow-up ing
means blow-up in at least the first two components of
vorticity vector V and in several components of the stra
matrix S. Blow-up in v depends on the sign ofg as it blows
up.

II. THE INVISCID PROBLEM

We consider whether smooth solutions of~21!–~23! per-
sist or not, beginning with the following naive observation.
we neglect the second term on the right-hand-side~rhs! of
Eq. ~21! for g, we find

]g

]t
1u•¹g52g2. ~26!

This can be trivially solved in a Lagrangian frame and
some fluid particlesg tends to2` in finite time. But, since
the second term on the rhs of~21! is positive and can becom
large, it might prevent formation of singularity. Because
this competition, it is not obvious that solutions of~21!–~23!
break down in finite time or not. Therefore, we need to stu
the problem numerically.

A. Initial condition 1

As there are no guidelines for choosing appropriate
tial conditions, we first try a simple sinusoidal one for all t
three fields:

v~x,0!5g~x,0!5W~x,0!5sinx siny. ~27!

Unlike 2D Euler equations, a time dependent solution ari
from this single mode initial condition.

We describe the global properties of the flow using s
eral norms. Denoting the spatial average by the brackets@see
~20!#, we define energy-like norms

Ev~ t !5 1
2 ^~~2D!21/2v~x,t !!2&, ~28!

Eg~ t !5 1
2 ^~~2D!21/2g~x,t !!2&, ~29!

EW~ t !5 1
2 ^~~2D!21/2W~x,t !!2& ~30!

and enstrophy-like norms

Qv~ t !5 1
2 ^v~x,t !2&, ~31!
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Qg~ t !5 1
2 ^g~x,t !2&, ~32!

QW~ t !5 1
2 ^W~x,t !2&, ~33!

with a slight abuse of terminology forQW becauseW has
dimension of velocity. None of these are conserved in tim

We show the time evolution ofEv(t), Eg(t), andEW(t)
in Fig. 1~a!. From this we see thatEv(t) does not become
large ~actually it decreases slightly! but Eg(t) and EW(t)
indeed increase rapidly and they appear to diverge at a
t51.4, or more preciselyt51.419. A similar trend is ob-
served in Fig. 1~b!, which shows evolution ofQv(t), Qg(t),
and QW(t). Again, Qg(t) and QW(t) appear to diverge a
about the same timet51.4 but Qv(t) increases only by a
small amount.

By changing the resolution, we found thatQg(t) di-
verges att51.419 withN251282 and 2562, t51.414 with
5122, t51.396 with 10242, t51.349 with 20482. The differ-
ence in the time of numerical blow up is small, that is, 3%
As long as the computation is possible, the curves ofQg(t)
collapse completely. A possible reason for slightly earl
breakdown of the numerical solutions at higher resolution
that they have less numerical dissipation.

Under the periodic boundary condition, we have

^v&50, ~34!

by ~4!. We have checked this together with the conditi
^g&50 in the computation. On the other hand,^W& is not
conserved

FIG. 1. Time evolution of the norms for the initial condition 1;~a! Ev(t)
~dash–dotted!, Eg(t) ~solid!, and EW(t) ~dashed! and ~b! Qv(t) ~dash–
dotted!, Qg(t) ~solid!, andQW(t) ~dashed!.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Downlo
FIG. 2. Time evolution of the Fourier spectra for the initial condition 1;~a!
Qv(k), ~b! Qg(k), and ~c! QW(k); at t50.8 ~solid!, 1.0 ~dotted!, 1.2
~dashed!, 1.4 ~dash–dotted!, ~d! the analyticity distanced(t), and ~e! its
details.
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dt
^W&522^gW&. ~35!

Actually, ^W& also appears to diverge to2` at t51.4 ~fig-
ure omitted!. This means that the maximum value ofuWu
also diverges in finite time. It should be noted, therefore, th
not only the velocity gradient but also the velocity itse
appear to become singular in finite time.

When we perform computation of the problems whic
may lead to the formation of singularity, we need to tak
special care so that the numerical solutions are sufficien
well resolved. To this end we monitor Fourier spectra of t
three fields defined by

Qv~k!5
1

2 (
k<uku,k11

uṽ~k!u2, ~36!

Qg~k!5
1

2 (
k<uku,k11

ug̃~k!u2, ~37!

and
aded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
t
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QW~k!5
1

2 (
k<uku,k11

uW̃~k!u2. ~38!

We show log-linear plots ofQv(k) in Fig. 2~a! at t
50.8,1.0,1.2, and 1.4. It should be noted that the stra
lines in the higher wave number range imply exponen
fall-offs. This suggests that the flow is well-resolved close
the end of the computation. We can also confirm thatg and
W are similarly well resolved by observing Figs. 2~b! and
2~c!.

To study the evolution of the Fourier spectrum in mo
detail, we considerQg(k) and fit it in the usual form as

Qg~k!5A~ t !kn(t) exp~22d~ t !k!, ~39!

where the constantsA(t), n(t), d(t) are determined by the
least-squares method at each time~see, for example, Ref
24!. The distanced(t) is a measure of analyticity of the
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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function g(x). We plot in Fig. 2~d! the time evolution of
d(t) for the computation withN5256, where the fitting pro-
cedure was performed in the wave number rangek>10, ex-
cluding the round-off noise. Up tot51.4, d(t) is much
larger than the mesh size 2p/N'0.025, which is a necessar
condition for the flow to be sufficiently well resolved. Bu
after t51.4, the analyticity distance appears to decre
much faster. Such a behavior is confirmed in Fig. 2~e!, where
we show a close up view ofd(t) as a function oft in 1.4
<t<1.416. We have checked that the decrease ofd(t) is
faster than an exponential function in time. The tail part
the Fourier spectra begins to turn up att51.417~not shown!,
after this time the computation becomes inaccurate. The
decrease ofd(t) suggests its vanishing near t51.416, that is,
a blowup.

We have also performed computations by varying
time stepDt for N51024. The blowup times aret51.396
for Dt5131023, t51.408 forDt55.031024, t51.413 for
Dt52.531024. Our conclusion is that at this high resolutio

FIG. 3. Perspective plots and contours ofv for the initial condition 1;~a!
t50, ~b! t50.6, ~c! t51.2, and~d! t51.4.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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of N51024 the time of numerical breakdown appears to
near t51.4. This indicates the time scale becomes incre
ingly small, consistent with a real blowup~see the note
added in proof!.

Next we study the spatial structure on the tw
dimensional periodic domainA. In Fig. 3 we show perspec
tive plots ofv at t50,0.6,1.2, and 1.4. This initial condition
has four cells. In the subregions wherev is positive this
variable undergoes a mild increase and, by the end of c
putation, its maximum is larger than the initial maximu
approximately by a factor of 6. Keeping in mind that initial
v5g, this comes from stretching by positive strain rateg. In
other subregions, the strain rateg is initially negative, and
accordinglyuvu is getting smaller and smaller. At later time
we see a large almost flat area. In either region, the growt
v is not significant.

FIG. 4. Perspective plots and contours ofg for the initial condition 1;~a!
t50, ~b! t50.6, ~c! t51.2, and~d! t51.4.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Obviously the structure ofg is of greatest interest. In
Fig. 4, we show its perspective plots in the same manne
for v. For this initial condition, we havêg2&51/4 and at
some points and the total derivative ofg is negative as can
be seen the rhs of~21!. As the above-mentioned heurist
argument suggests, the negativeg starts to decrease, growin
in its absolute value. From numerical results we see suc
process of decreasingg is prominent. It is remarkable thatg
develops almost circular dips, which are 70 times as dee
the initial values in the end. Judging from the behavior of
norms, the minima ofg become2` at aroundt51.4 lead-
ing to breakdown of the smooth solution. In Fig. 5 we a
showW in a similar manner. Likeg the negative part ofW is
intensified and actually even more strongly thang.

Now we consider the three-dimensional structure ass
ated with the three-dimensional enstrophy given by

FIG. 5. Perspective plots and contours ofW for the initial condition 1;~a!
t50, ~b! t50.6, ~c! t51.2, and~d! t51.4.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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uV~x,y,z,t !u25S z
]g

]y
1

]W

]y D 2

1S z
]g

]x
1

]W

]x D 2

1v~x!2.

~40!

We show in Fig. 6 the isosurfaces ofuVu2 in a cube 0
<x,y,z<2p at t50,0.6,1.2, and 1.4. The threshold is chos
as (maxxuVu2)/5 at each time. We also include a section
plane at z560p/64, on which the distribution of
uV(x,y,z)u2 is shown. Because of the linearz dependence in
V, uVu2 is of course larger at largerz. Unlike v, g andW,

FIG. 7. Vortex lines for the initial condition 1;~a! t50, ~b! t50.6, ~c! t
51.2, and~d! t51.4.

FIG. 6. Three-dimensional enstrophy for the initial condition 1;~a! t50, ~b!
t50.6, ~c! t51.2, and~d! t51.4. Its distribution of the sectional plane i
also shown, where darker shading denotes higher values of enstrophy
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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there are many cells inuVu2 initially, because of its quadratic
nature. At later times, prominent cells appear in the two
gions whereg is strongly negative. As we have seen abo
there the axial componentv is small. It is the azimutha
components of vorticity@parallel to the (x,y) plane# that are
stretched intensely, contributing to the large thre
dimensional enstrophy. It should also be noted that the
strophy is not uniformly distributed inside the cells, but a
highly concentrated in ring-like regions. Near the centers
enstrophy is very small. This feature is also seen by obs
ing the shape of isosurfaces. The intense vorticity regi
have a characteristic structure of semi-infinite cylinders
sociated with two-dimensionalization of the vorticity fiel
that is, hollowing vortices.

We show in Fig. 7 the vorticity lines which start from
planez52/6432p for the corresponding times. In the re
gions with negativeg, the vorticity lines lie on the plane
because the axial component of vorticity becomes very sm
due to strong compression onto the (x,y) plane. On the other
hand, in regions with positiveg the vorticity lines make
spirals by the nonzero axial component of vorticity. A mo
detailed analysis on the maximum maxxug(x,t)u is deferred
to Sec. III.

B. Initial condition 2

We have seen that the amplification ofugu in its negative
region is the key process leading to finite-time singularity
question arises here is what kind of properties are require
the initial conditions ofg for such singularities to form. To
study this point, we employ initial conditions which have
single maximum in the fields. The first choice of this kind

v5g5W5
1

c S 22S r

aD 2DexpS 2
1

2 S r

aD 2D , ~41!

wherer 5A(x2p)21(y2p)2. This initial condition is pro-
portional toD exp(2 1/2 (r /a)2) and has a peak atr 50.

We usea50.3, c50.2 for constants. The constanta is
chosen to makev, g, and W sufficiently small, typically
O(10216), at the boundariesr 50,2p so that it does not con
flict with periodic boundary conditions in practice. The no
malization constantc is chosen to make the norm ofg not
too small compared with the time increment.

FIG. 8. Time evolution of the norms for the initial condition 2;Eg(t)
~dashed! andQg(t) ~solid!.
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Here we take all the three fields identical so that initia
the negativeg part is not so strongly stressed. The minimu
value of g is g(2a)522e22/c'21.35, so, on the rhs o
~21! we have2g2'21.82 and 2̂g2&'0.8. Therefore, at
some points the rhs is mildly negative'21, in comparison
to the maximum ofg(0)55.

We show the time evolution isEg(t) andQg(t) in Fig.

FIG. 9. Perspective plots and contours ofg for the initial condition 2;~a!
t50, ~b! t50.2, ~c! t50.4, ~d! t50.6, and~e! t50.8.
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8. These norms ofg decrease in the very early stage, b
they start to increase later. They apparently blow up
aroundt50.83. No difference has been found between co
putations performed with 2562 and 5122 grid points. We
have checked that the Fourier spectra decay exponential
large wave numbers, close to the late stage of computa
~figures omitted!.

In Fig. 9 the perspective plots ofg are shown att
50,0.2,0.4,0.6, and 0.8. The region with negativeg has ini-
tially a small circle. As time elapses, the value ofg at the
ring-like region decreases in time, getting more and m
negative. It should also be noted that the size of this ring
getting larger and larger, consistent with the interpretat
that the underlying instability has its origin in the large-sc
components. Because of symmetry imposed as an initial c
dition, the finally singular set has a line-like structure.

FIG. 10. Three-dimensional enstrophy for the initial condition 2;~a! t50,
~b! t50.4, ~c! t50.6, and~d! t50.8.

FIG. 11. Time evolution of the norms for the initial condition 3;Eg(t)
~dashed! andQg(t) ~solid!.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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We show the corresponding three-dimensional enstro
distributionuVu2 in Fig. 10. Isosurfaces of enstrophy dens
form two cylinders, inside which the enstrophy density
very high. These ring-like structures correspond to those
negativeg in Fig. 9. They are also similar to the ones show
in Figs. 6~c! and 6~d!.

C. Initial condition 3

As a final choice of initial condition, we reverse th
signs ofg andW in ~41! to consider

v52g52W5
1

c S 22S r

aD 2DexpS 2
1

2 S r

aD 2D . ~42!

This is more singular than~41! in that it stresses the negativ
part of g. For the parameters we takea50.3, c51. We
show time evolution ofEg(t) andQg(t) in Fig. 11. Unlike

FIG. 12. Perspective plots and contours ofg for the initial condition 3;~a!
t50, ~b! t50.1, ~c! t50.3, and~d! t50.5.
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the initial condition 2, they start increasing right aftert50
and both of them appear to diverge att'0.504.

Perspective plots ofg are shown in Fig. 12 att
50,0.1,0.3,0.5. The shape ofg hardly changes in time bu
the negative peak in the initial condition ofg keeps increas-
ing in magnitude until the end of numerical calculation.

In Fig. 13 we also show three-dimensional enstrop
distribution at corresponding times. The pencil-like structu
is observed at each time and its shape does not appe
change significantly. This suggests that if there is a stron
negativeg in the initial condition, then the subsequent ev
lution is dominated by the presence of this negative pea

III. ALTERNATIVE APPROACH TO THE PROBLEM

A. Taylor series expansion in time

In the previous section we have used pseudo-spe
computations to see whether numerical solutions of the E
equations blow up in finite time. Here we study the form
tion of singularities using a different approach by tracing
evolution of norms with Taylor series expansions in tim
This well known method has been applied in the past to
conventional Euler equations.12,24,25 However, as we shal
see shortly, its application to the system of Eqs.~21!–~23!
has some distinctive features which are absent in its app
tion to the conventional problem. This method enables u
examine the apparent singularity extremely accurately.

Sinceg is the most important field, we pay special a
tention to its moments defined by:

I p~ t !5^g~x,t !p&, for p50,1,2,. . . . ~43!

It is straightforward to show thatI p(t) satisfy the following
set of infinite numbers of ordinary differential equations:

FIG. 13. Three-dimensional enstrophy for the initial condition 3;~a! t50,
~b! t50.1, ~c! t50.3, and~d! t50.5.
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dt
52~p11!I p1112pI2I p21 , for p50,1,2,. . . ,

~44!

where we defineI 2150. This set of equations is not close
but introducing a double seriesap,n as

I p5 (
n50

`

ap,ntn, ~45!

we can derive the following recursion relationship for it:

ap,n115
1

n11 S 2~p11!ap11,n12p(
l 50

n

a2,lap21,n2 l D ,

for p>0, n>0. ~46!

The seriesap,n should satisfy the following conditions:

a0,051, ~47!

a0,n50, for n51,2,3,. . . , ~48!

and

a1,n50, for n50,1,2,3,. . . . ~49!

The first two conditions are trivial, and the third one follow
from the constraint̂g&50. Since the rhs of~46! is made up
of coefficientsam,n whose indexm is less thanp, we can
solve for ap,n by iteration. In practice, we start generatin
ap,0 for 0<p<N12 with a largeN. For the specific choice
of initial condition 1, it is easy to show for the initial cond
tion 1

ap,05H S p!

2(p/2)(p/2)! D
2

for even p

0 for odd p

. ~50!

Then, by settingn51,2,3 . . . in ~46!, we obtain successively
a2,n for 0<n<N, a3,n for 0<n<N21, and in generalap,n

for 0<n<N122p. This procedure has been done by sy
bolic manipulation usingMaple V for N5500. In this way
we obtain the exact Taylor coefficients of, for examp
I 2(t)5^g2& up to O(t500).

It should be noted that such a high-order can
achieved, because in Eq.~21! for g the pressure term doe
not appear explicitly. Recall that in the case of usual Eu
equation where the Hessian matrix of pressure term cou
with vorticity and rate-of-strain, the above reduction
double series is not possible.

Using the Taylor coefficients thus rigorously obtaine
we examine the analytic structure of the momentsI p(t).
They turned out to be even~odd! functions of timet for even
~odd! p. Defining j5t2 we write

I p5 (
n50

`

ap,2njn, ~51!

for evenp and

I p5t (
n50

`

ap,2n11jn, ~52!

for odd p.
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B. The Domb–Sykes plot

Here we examine whether or not the Taylor-series
pansion analysis is consistent with the pseudo-spectral c
putations described in Sec. II and some mathematical an
sis.

We try the usual Domb–Sykes plots by fitting

ap,2n

ap,2(n21)
'

1

rp
S 11

ap21

n D as n→` ~53!

and

ap,2n11

ap,2n21
'

1

rp
S 11

ap21

n D asn→`, ~54!

respectively, for even and oddp. Here rp is the radius of
convergence andap is the strength of the singularity suc
that I p}(rp2j)2ap asj→rp .

In Fig. 14~a!, we plot the ratiosap,2n /ap,2(n21) against
1/n for p52,4,...,10, n51,2,. . . (N122p)/2 and
(ap,2n11)/(ap,2n21) against 1/n for p53,5,. . . ,9, n

FIG. 14. Detailed analyses of the case of the initial condition 1.~a! The
Domb–Sykes plot forp52,3, . . .10 together with fitted straight lines.~b!
The time evolution of (t* 2t)ugminu against t* 2t together with a fitted
straight line~dashed!. ~c! The exponentsap , together with a fitted straigh
line.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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51,2,. . . (N112p)/2. Clear straight lines are observed
large n. By using the least squares fitting inn>20, we de-
termined ap and rp for p52,3, . . ., 10 numerically~see
Table I!. More precisely, the fitting procedure was perform
after converting the exact ratios into floating point real nu
bers in double precision arithmetic. The results do not
pend significantly on the choice of interval used for fitting.
should be noted that the nearly same value are consiste
obtained for the radii of convergence at different orders.

For example, we find that 1/r2 '0.497 anda2'1.8,
which corresponds to a blow-up of the form

^g2&}
1

~ t* 2t !a2
, ~55!

at t* 5Ar2'1.42. ~Note thatj52 corresponds tot5A2.!
This is close to the timet51.419 at which the pseudo
spectral computation breaks down. It should be noted
the two completely different analyses, pseudo-spectral c
putation and Taylor series expansion, give essentially
same answer for the time of blow-up. This suggests
blow-up found in the numerics is a real one rather than
numerical artifact. This observation has fostered mathem
cal analyses of the equations. As one of mathematical res
we have the following criterion similar to BKM criterion;3 if
a smooth solution breaks down in finite timet* then we must
have

lim
t→t

*

E
0

t

max
x

ug~x,s!uds5`. ~56!

This constrains, as usual, the exponent of possible algeb
blow-up as

max
x

ug~x,t !u}
1

~ t* 2t !b , ~b>1!. ~57!

In Fig. 14~b! we show (t* 2t)maxxug(x,t)u againstt* 2t,
where we taket* 51.419. The straight line suggests that t
blow-up occurs at the marginal exponentb51. Then we try
to fit it in the form

max
x

ug~x,t !u5
a

t* 2t
1b, ~58!

by the least-squares fitting using datat50.2, 0.4,. . . ,1.2.
The values obtained area51.155 andb50.172.

In this numerical simulation, not only the local quanti
maxxug(x,t)u but also the global onêg(x,t)2& blow up si-

TABLE I. Fitted values ofap andrp in the Domb–Sykes plot.

p ap rp

2 0.497 487 024 318 61 1.811 824 367 355 5
3 0.497 483 660 060 28 2.812 581 167 136 2
4 0.497 364 309 847 26 3.821 868 029 262 0
5 0.497 376 253 330 89 4.789 051 738 580 8
6 0.497 036 319 415 14 5.891 103 991 195 2
7 0.496 737 911 577 62 6.914 319 771 225 5
8 0.496 523 643 877 92 8.023 710 541 466 9
9 0.495 669 933 977 28 9.161 946 233 513 2

10 0.495 814 094 561 95 10.227 105 857 910 9
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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multaneously in finite time. In order for this observation
be consistent with the rhs of~21!, it is necessary thata2

<2. As we have seen above, this is actually satisfied.
To characterize the singular structure ing we consider

higher-order exponentsap . In Fig. 14~c! we plot the expo-
nentsap againstp for p52,3,...,10 which displays a clea
linear behavior inp. A least-squares fitting was used to giv

ap5c1p1c2 , ~59!

wherec151.054 andc2520.385. Noting that

max
x

ug~x,t !u5 lim
p→`

~ I p!
1
p} lim

p→`

1

~rp2j!c11c2 /p
, ~60!

and thatrp is independent ofp, we find a singular behavio
of the form

max
x

ug~x,t !u}
1

~ t* 2t !c1
. ~61!

This is consistent with~57! becausec1.1. Moreover it
should be noted thatc1 is close to unity. These constantsc1

andc2 are obtained fromap,n usingn>20. If we fit ap from
ap,n using n>50, we obtainc151.027, c2520.281; c1 is
obtained even closer to unity. This suggests a possibility
c1 is exactly equal to unity, which is consistent with~58!.
While we cannot conclude thatc151 because of the limited
maximum order ofI p , the Taylor series analysis in time

TABLE II. Poles of the Pade´ approximants.

Approximants Poles inj

@5,5# 29.751 524 732, 0.000 060 124 850 40, 1.950 075 7
2.170 674 366, 4.358 095 782

@10,10# 213.970 143 38,211.820 501 88, 0.102 967 790 831029,
1.999 349 184, 2.035 354 536,
2.264 591 266, 2.745 170 597, 3.742 644 283,
6.228 639 034, 23.695 275 62

@15,15# 284.056 409 48,218.402 489 70,212.845 620 99,
212.149 788 80, 0.241 594 407 8310215,

2.006 210 486, 2.019 948 936, 2.107 673 513,
2.267 992 708, 2.526 846 629,
2.931 388 994, 3.575 127 401, 4.663 375 978,
6.735 971 424, 11.777 359 94

@20,20# 252.717 754 05,220.946 152 82,214.819 840 05,
212.582 831 42,212.248 220 16,

0.628 019 151 0310221, 2.008 345 498,
2.015 440 843, 2.061 734 822, 2.143 166 740,
2.266 556 903, 2.441 942 930, 2.685 359 351,
3.022 650 991, 3.496 884 366,
4.183 872 970, 5.228 015 126, 6.936 378 207,
10.070 363 06, 16.929 900 22

@25,25# 260.784 822 75,223.965 130 20,216.756 409 47,
213.810 527 23,212.490 805 86,
212.286 066 12, 0.267 278 392 8310226, 2.009 251 038,

2.013 592 533, 2.042 501 762,
2.092 591 393, 2.166 619 817, 2.268 134 969,
2.402 372 954, 2.576 940 742,
2.802 920 690, 3.096 732 506, 3.483 402 514,
4.002 621 749, 4.720 779 646,
5.757 112 164, 7.347 644 789, 10.028 179 42,
15.251 420 79, 24.462 143 86
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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consistent with not only the pseudo-spectral computati
but also mathematical results in every aspect we h
checked.

C. Padé approximation

In order to further strengthen the result on the prese
of blow up, we apply the Pade´ approximation to theI 2(t).
We determine@M ,L#-Padéapproximants ofI 2 by represent-
ing it as a rational function ofj5t2, whose degree of de
nominator isM and that of numerator isL. Up to this point,
the computation is exact. In Table II, we document the lo
tion of poles of approximants, that is, roots of the denom
nator which are obtained by solving the algebraic equati
numerically. We also show in Table III the location of zer
of approximants, that is, roots of the numerator in a sim
manner. All the poles are found to be real inj but some of
the zeros come out in conjugate pairs of complex numbe

There are poles on the positive realj axis, whose dis-
tance to the origin is very small. For example, t
@10,10#-approximant has a pole at 0.102 967 790 831029.
However, exactly at this location there is a zero, which co
pensates the singular behavior of the apparent pole.26 This is
consistent because there should not be singular beha

,

TABLE III. Zeros of the Pade´ approximants.

Approximants Zeros inj

@5,5# 22.216 943 412, 0.000 060 124 850 41, 3.271 947 112,
16.137 581 8322.582 369 765 i,
16.137 581 8312.582 369 765 i

@10,10# 230.194 670 96,22.217 048 815, 0.102 967 790 831029,
2.203 407 075, 2.593 186 669, 3.362 981 535,
5.037 640 032, 10.145 533 84,
18.289 754 06225.908 347 67 i,
18.289 754 06125.908 347 67 i

@15,15# 232.580 580 20,216.141 031 13, n22.217 048 815,
0.241 594 407 8310215, 2.088 216 892,
2.228 341 745, 2.432 709 408256.617 588 78 i,
2.432 709 408156.617 588 78 i
2.455 370 758, 2.806 344 773, 3.351 514 526,
4.234 610 167, 5.791 686 158
9.009 345 310, 18.297 475 96

@20,20# 232.443 974 06,218.441 844 39,214.117 570 89,
24.388 434 788272.064 147 49 i,
24.388 434 788172.064 147 49 i,22.217 048 814,

0.628 019 151 0310221, 2.052 487 862,
2.125 475 460, 2.237 354 559, 2.39 670 630 2,
2.617 040 931, 2.919 720 128,
3.339 398 039, 3.934 872 487, 4.812 575 562,
6.183 157 666, 8.517 715 024,
13.048 957 94, 23.198 699 32

@25,25# 236.662 906 57,220.903 978 06,215.765 402 94,
213.444 844 93,
22.422 275 806272.035 620 73 i,
22.422 275 806172.035 620 73 i,22.217 048 815,

0.267 278 392 8310226, 2.037 117 960, 2.082 587 744
2.150 718 578, 2.244 666 576,
2.369 045 838, 2.530 502 054, 2.738 607 574,
3.007 333 373, 3.357 561 888,
3.821 584 980, 4.451 655 754, 5.337 545 534,
6.646 338 905, 8.725 034 081,
12.408 433 22, 19.723 996 57, 27.181 193 71
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close to the initial condition. Discarding these poles, the fi
relevant positive poles are located atj51.999 349 184 for
the @10,10#-approximant. Checking the location of zeros
Table III, we see that the pole is not compensated by a z
We note that these results are irrelevant to the choice
orders of approximants. Thus the analysis by Pade´ approxi-
mation also supports the presence of a real-time singula
nearj52.

IV. THE VISCOUS PROBLEM

In this section, we compare the Euler solution with
corresponding Navier–Stokes solution. The main objectiv
to see whether or not the singularity formation found in t
inviscid case is prevented by a small amount of viscosity

The Navier–Stokes version of the class of solutions
der consideration satisfy the following set of equations:15

]v

]t
1~u•¹!v5gv1nnv, ~62!

]g

]t
1~u•¹!g52g212^g2&1nng, ~63!

and

]W

]t
1~u•¹!W52gW1nnW. ~64!

The condition^g&50 must also be satisfied.
We consider the initial condition 1 used in Sec. III

with n50.005. We compare the time evolution of the no
Qg(t) between Navier–Stokes and Euler equations in F
15. The growth of the norm is only slightly suppressed
the effect of viscosity, but it still appears to diverge appro
mately att51.433, which is slightly later than the time o
blow-up for the inviscid case. The contribution coming fro
the viscous terms works to suppress the growth of the qu
tity, as can be verified by the negative-definiteness of the
term of the following equation

dQg

dt
52

3

2
^g3&2n^u¹gu2&. ~65!

Indeed the viscous term of~65! slows down the growth of
Qg(t) but actually is not so effective to prevent the singul

FIG. 15. Time evolution ofQg(t) for the initial condition 1, the Navier–
Stokes case~solid! and the Euler case~dashed!.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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ity formation. This is consistent with the observation made
Fig. 2 that the instability come from the lower wave numb
part.

V. SUMMARY AND DISCUSSION

We have investigated numerically the class of solutio
of Euler and Navier–Stokes equations identified in Ref.
We found that for a wide class of initial conditions th
smooth Euler solutions appear to breakdown in finite tim
At this time the ansatz~2! for the 3D velocity field is no
longer valid and such a solution is no longer sustainable

As one of the structural changes which can occur
vortex flows, it is of interest to compare the singular beha
ior observed here to the phenomenon of vortex breakdo
The latter phenomenon is characterized by ‘‘the formation
an internal stagnation point on the vortex axis, followed
reversed flow in a region of limited axial extent.’’27 Indeed,
both are related with formation of a columnar vortex. In t
case of vortex breakdown, the flow lying upstream the bre
down region is called the approach flow. This flow may
typically represented by the Burgers vortex, which is a s
cial case of the class of solutions considered in this pape

The breakdown region is associated with abrupt chan
in the direction of axial velocity. This part can be well re
resented by a stationary smooth solution of the Navie
Stokes equations, see for example, Refs. 28 and 29. The
‘‘breakdown’’ refers to a reversal of axial velocity but ha
nothing to do with mathematical breakdown of solution
Downstream of the breakdown region a new vortex struct
is formed, where the variation along the axis is gradual.

Some more differences should be noted. As noted
Ref. 29, the key process in vortex breakdown is the prod
tion of a negative azimuthal vorticity. But in our case, t
axial vorticity tends to vanish in the regions whereg blows
down. Moreover, in the present case because the axial ve
ity is dominant over planar components, the streamlines
sically lie on the cylindrical surfaces in thez direction ~fig-
ures omitted!, in contrast to swirling streamlines of th
breakdown region. In view of these differences and simila
ties, it may be appropriate to categorize the hollowing vo
ces documented here as one of the typical behaviors of
vortex flow.

Furthermore, there has been some work on vortex bre
down of a different type over the last few years. One is ba
on the flow in a channel with one end as a rotating disc;
problem is not the same as ours because a lot of stress is
by authors on the boundary layer on the disc whereas
have an infinite channel.30,31 We also note that similar solu
tions of the Navier–Stokes equations have be
investigated.32 There, the problem has been reduced to o
dimension and a connection between the blow-up and
role played by convection term has been studied in deta

Finally we mention some of the open problems rega
ing the class of solutions. First, we have not studied stab
properties of the apparent singular solutions. We do
know whether the singular behavior found here may be
stable to small perturbations. Second, apparently there
multiple length scales involved in the formation of singula
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



fo
ti

ns
W
s
o

b

th
p
f

ar

g
,
c
ta
th
n
ra
F

K.
s
u

-

e,’

o

o
Es

a,’

J.

na

on

ity

l,’’

l-
ev.

o-

u-

s

or-

es

n

of
ara-

of
tag-

D

r

i-

,’’

d
id

in

ker

-

id

g

2:

dary
h.

ady
ws:

es

cati

3194 Phys. Fluids, Vol. 12, No. 12, December 2000 K. Ohkitani and J. D. Gibbon
ties in the present problem. It may be interesting to seek
quasi-self-similar solutions. These are left for future inves
gations.

As mentioned in the Introduction, this class of solutio
possesses unbounded velocity field only in one direction.
hope that this study may be regarded as an intermediate
toward understanding possible singularity formation
physically more interesting flows with better localization.

Note added in proof:According to a recent study33 by P.
Constantin, the blowup observed in this system can
proved, both for positive and negativeg. In this paper we
paid little attention to the positiveg, since its behavior was
not so prominent. However, a closer examination reveals
maxg also appears to diverge at the same time. Our com
tations are consistent with his analysis. Positive blow-up og
also means that the axial vorticityv will also diverge@see
Eq. ~17!#, as well as the azimuthal components that
driven by negative blow-up ofg.
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