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We study numerically a class of stretched solutions of the three-dimensional Euler and Navier—
Stokes equations identified by Gibbon, Fokas, and Do€i889. Pseudo-spectral computations of

a Euler flow starting from a simple smooth initial condition suggests a breakdown in finite time.
Moreover, this singularity apparently persists in the Navier—Stokes case. Independent evidence for
the existence of a singularity is given by a Taylor series expansion in time. The mechanism
underlying the formation of this singularity is the two-dimensionalization of the vorticity vector
under strong compression; that is, the intensification of the azimuthal components associated with
the diminishing of the axial component. It is suggested that the hollowing of the vortex
accompanying this phenomenon may have some relevance to studies in vortex breakdown.
© 2000 American Institute of Physids$1070-663(00)00312-3

I. ISSUES CONCERNING THE INCOMPRESSIBLE down theL”-norm in the above time integral to a finite value
THREE-DIMENSIONAL EULER EQUATIONS at the cost of imposing conditions on the direction of vortic-
A. Introduction ity (see also Ref.)5 In a different manner, Pontéas also

) ) o shown that the BKM result can be modified in such a way
_ The formation of spontaneous singularities in the thréetnat the||Q)||..-norm within the time integral is replaced by
dimensional(3D) incompressible Euler equations is one of ||g|| whereSis the strain matrix.

equations can be expressed in the usual form savings gained by using high symmetry initial conditiéns.
U Bhattacharjeeet al1° (see also Ref. J1have discussed in
—+U-VU=-Vp, (1) some d.et.a.il how E_gler singularities may dev_ellop from_ sym-
ot metric initial conditions, such as the imposition of Kida's

high-symmetry initial conditiof. By using perturbative
methods they suggest evidence for two types of possible sin-
gular behavior of2. Pelz and Gulak have also used Kida’s
initial condition to follow the development of a real-time
singularity using Padenethods of analysis.

with the velocity fieldU(x,y,z,t)=(u, v, w) subject to the
incompressibility condition diWJ=0. Evidence for a singu-
larity in flows of finite energy has been reported in a variety
of circumstances. Kerr's numerical integratibrstarting

frtcr) mn aln initial s:atteh Otf tﬁ p\?lrrt?fi arltl-pf:llrsllsll \\;vortex tl:bes, All the flows discussed above are finite in energy. In this
strongly suggests that the vorticifp=cu ows up at a paper we study the possibility of singularity formation in

. . . . . . — * _ 71 .
p?mtr n ii ﬂnm:eti t'rrﬁq mthd“ﬂnr? Et t)r 'f tﬁefp'tein solutions of the 3D Euler equations that have imposed upon
progress in analytical metnods, a rigorous proot that a SingUg, o, 5 infinite geometric structure in one particular direc-
larity could develop in a finite time from certain classes of

- . . . jon. Such flows, being infinite in one distinguished direc-
initial data has remained an open problem since the time o? 9 9

. . . ion, have infinite energy and therefore must be placed in a
Lere_xy’- who considered the Nawe_r—Stokes case, while NUgitferent category than those discussed in the above refer-
merical results are only suggestive. The result of Beale

) . ences. To be specific, let us consider a class of 3D Euler
Kato, and MajdaBKM),® who showed that no quantity as- L ' . :
) : . . . locity fiel h I lies | I th
sociated with(1) can become singular at a timi& without velocity fields whose only dependence lies linearly in the

o* . ] third component
Io [|(7)]|.. d7 also becoming singular &t, has had a ma-
jor influence on the subject because it gives the computa-

tional fluid dynamicist a benchmark against which to test u uey.b
whether a singularity arising from a numerical experimentis  U(X,y,z,t)=| v | = v(X,y,t) . 2
real or a numerical artifact. Constantin, Fefferman, and w zy(X,y, 1)+ W(X,y,t)

Majda* have more recently refined this result by bringing

The vorticity has two components that are lineaz and one
3Electronic mail: ohkitani@kurims.kyoto-u.ac.jp independent of
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dy W their velocity field is of the divergence-free form
0, “oy "y (U,0)=(U(X), Y U(X1). Y]

Qxy,zt)=| Q| = dy IW |, (3) This two-dimensional problem has a single stagnation
Q - Za_x T ox point structure, as opposed to the double point in Stuart’s

3 solution, which is three-dimensional and stretches in two

@ directions'® Childresset al. use the phrase “stagnation
point similitude” when referring to the linear structure
where of the distinguished variabf€.
v ou Finally we add two further examples to the list of Euler
o(Xy,0)=—— oy (4)  solutions that blow up. First, Constantin’s “distorted Euler

The strain matrixS, associated with this velocity field is

This class of velocity fields is of stagnation point type an
as such, has its limitations. Clearly, it cannot be thought of as
representing general 3D Euler flows of finite energy. Never-

equation” differs from the true three-dimensional Euler
equations in that a singular integral operator with a time
varying kernel in the equation for the velocity gradient ma-

trix U; j is replaced by its initial valu&’ This system devel-
Suu S -3, ops a finite time singularity for various initial data. Second,
1 Moffatt has recently constructed a singular solution of the

S= A YK ® 3D Euler equations by generalizing the Burgers voffex.
-10, 10, v This solution, whose vorticity blows up at a point, has sin-
gular and unbounded straining fields in all three directions

d'and so has infinite energy.

B. Equations of motion for y, W, and @

theless, it does include several well known and important ~ Gibbon, Fokas, and Doerifyrecently showed that if
subclasses of solutions of the Euler equations: the class of velocity field& given in (2) satisfies the 3D

D

(2

3

Navier—Stokes equations then simgkeparateequations for
v(x,y,t), W(X,y,t) and the third component of vorticity
w(X,y,t) can be derived; in other words, tlzedependence
can be removed from the system. With the greatest brevity
we repeat this calculation in the Euler context.

The Burgers vortex is the most prominent member of
this class'® takeW=0 and restricty to being a function
of time only. Writing (u, v) in strain-field form with a
stream functiony= (x,y,t) we have

u:_%y(t)XJr %p, u=—%y(t)y—%ﬂ, w=z$(t). (6) Let us define the 2D velocity field part ¢2) as
The Euler version of the Burgers vortex can easily be  u(x,y,t)=(u(x,y,t), v(x,y,t)), (8)

found from this formulation. This vortex, both in its Eu-
ler and Navier—Stokes manifestations, is a well-knownand letV be the 2D gradient operator. Then, froit), u
solution that is thought to represent tubes of vorticity insatisfies

both inviscid and viscous turbulent flod&Clearly, if y

is chosen to be sp_atially uniform arWZO_ the_nQ1 a—u+u-Vu=—Vp. 9)
=(,=0 and the axial componeri= — A is uniform at

in the z direction. This uniformity contributes to the in-

finite tube-like geometry and makes the Burgers vortex! hese areot, however, the true 2D Euler equations because
an infinite energy solution. Whew=+0, however, a va-
riety of other solutions have recently been shown to exist

(see the discussion in Ref. JL5 tWe need a pair of evolution equations fpandW. The third

A solution of the three-dimensional Euler equations thaveIOCi field w=zv-+ W aives this information. Recallin
blows up in finite time and has a double stagnation pointthat ﬂ?é 3D tota_l dgrivati\?e is ' 9

has been found by StudftHis velocity field has a dual
linear structure and takes the formzxﬁ(y,t), v D ¢ J

=uv(y,t), andw=zy(y,t). This problem is more ame- Di g U Vtw—, (13)
nable to a Lagrangian than an Eulerian formulation, as

Stuart has shown, and is appropriate for boundary layefye can easily calculatep/dz from the third component of
studies®’ Finite time singularities have long been (1)

thought to play a significant role in the separation of

divu=—y. (10

boundary layers. The paper by Cowleyall® reviews ap dy 5 JW
the Lagrangian description of this type of problem. “ a7 2 EWLU'V%L s W-FU‘VW-F YW]J.
The two-dimensional model by Childresst al® of (12)

blow-up in the two-dimensional2D) Euler equations
belongs to the class of velocity field®). Takingw=0,  On integration with respect towe have
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d
—7+u-V7+y2

) C. The equations in a tube-like domain
at

The coupled equationd4), (15), and(17) have the ad-
vantage of being functions of only two independent vari-

_ 1 2
—p(x,y,z,t)—Ez

W . .
+2| — +u- YW+ yW | +P(x,y,1), ables, thereby enabling us to more easily undertake a nu-
ot merical investigation of their properties. The postulated
(13) linear z dependence in the full 3D Euler equations distin-

guishes the coordinate, so this must be taken into account
where P(x,y,t) is a function of integration. The stagnation when choosing boundary conditions. We choose a domain
point type structure shows up in a typical way. The crux ofthat is unbounded in the direction but, for simplicity, we
the matter lies in the following argument; because Bg. assume that every field is periodicny on the finite cross-
insists that the partial derivatives of the pressuf@dx and  sectional domaimd=[0, 27r]°. The chosen domain is, there-
aplay, are independent a the only way to prevent a con- fore, very like an infinite tube with a periodic cross section.
tradiction between this fact and the quadrat&tructure inp, Given these boundary conditions it is now clear that the
is to demand that the coefficients ofand z in (13) are continuity condition(10)
independent ok andy, although they can be arbitrary func-
tions of time. The coefficient af can be put to zero because y=—divu=—|—+ —
this represents no more than an accelerating change of frame, X dy
but the coefficient o_tz has more significance. It means that (g5 ys thaty is a mean-zero function over the cross-
p.. the second partia derivative of the pressure, must be a ggctional domaind
spatially uniform arbitrary function of time; that ig,,

(18)

au av)

=p,At). Hence we have f dx=0. (19
A
Jd
a—:, +u-Vy=—92—p,1), (14 Using this information in(14) fixes p,(t) to be
IW t)=—2(y%=-2 f 2 dx, (20)
—o U VW= W (15) Pz 9 2m2)a”

where the bracket- ) stands for the square of the&-spatial
These are two of the three equations derived in Ref. 15. Taverage ofy. Hence our three equations of motion far W
obtain the third we look at the block diagonal structure of theand w are now
strain matrixSgiven in(5) and note that the third component

of SQ decouples such that Y e 2 2
o U V== 2(yY), (22)
(SQ)3=yo, (16) W
with w defined in(4). The vorticity version of the 3D Euler EJFU.VW_ BRAM (22)
equations shows that the third equation of the set must be P
w
P E+U~Vw=yw, (23
E-l—u-Va):yw. (17)

together with(18). From its definition in(4), o can be writ-
ten askw=curlu, wherek is a unit vector inz direction.
This allows a Helmholtz—Hodge decomposition to be used to
solve foru andv. This decomposes the vector fialdinto
é'rrotational and solenoidal parts

This is the third of the three equations derived in Ref. 15
Very recently we discovered that in 1927 Os&atrerived a
time independent version of these equations Witk 0.

So far, no domain has been specified. In Ref. 15 it wa
shown that on a domain infinite in all directions, with u=—V(A 1y)—curl (kA lw). (24)
restricted to being spatially uniform, the(l7) can be
rescaled to the 2D Euler equations withacting as a passive Hence the velocity components and v are solely deter-
scalar on that flow. This is a generalization of Lundgren’smined byy ande through the inverse two-dimensional La-
straining transformatidd (see Ref. 15 Therey=y(t) be-  PlacianA~* as follows:
haves as a dynamical variable which affects the system do  dy
through the scaling variabls(t) =exp([yy(7) d). Through u=—Al(&—+ a—), v
this transformatiorany solution of 2D Euler(with an addi- y X
tional passive scalamon an infinite domain can be mapped Clearly the other variablgV plays no part in this determina-
back to form a solution of 3D Euler within the class of ve- tion, having only a passive role.
locity fields (2). The dynamics ofy are, therefore, important We solve Eqgs(21)—(23) numerically using a standard
but are somewhat arbitrary because the driving functiorpseudo-spectral method in double precision arithmetic. The
p,At) is arbitrary. To determine requires the specification aliasing errors are suppressed by the 2/3-law and the number
of some boundary conditions. of effective degrees of freedom is23)? for a computation

Jdow  Jdy
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of N? grid points. The time marching is performed by the 1000 - ' - - - -
fourth-order Runge—Kutta method with use of a typical time ]
incrementAt=10"3. We have checked that the properties of 100 ¢ b

the solutions do not change by increasing resolutiol &
increased from 256 to 512 and up to 1024 and 2048 in some
cases. We will typically us®l=256. In contrast to solutions

of the usual 2D and 3D Euler equations, a rather low reso-
lution is sufficient to resolve the flow field. The reason for
this is that the Fourier spectrum of the energy keeps to an
exponential fall-off close to the end of the computatisee

below). O 02 04 05 08 1 12 14
Clearly the key variable in the system 4§ the main @ t

issue in this paper is whetherblows up in finite time and,

if so, what the nature of this blow-up is. The variableand 1000 T ' 7 '

to a lesser degree, can be thought of as subsidiary vari-

ables;y controls the growth or decay o¥ andw depending 100 b

on whether its growth is positive or negative. Blow-upyin
means blow-up in at least the first two components of the
vorticity vector 2 and in several components of the strain
matrix S. Blow-up in  depends on the sign af as it blows

up. 1l

0.1
II. THE INVISCID PROBLEM 0 02 04 06 08 1 12 14

We consider whether smooth solutions(21)—(23) per- (b)
sist or not, beglnnlng with the fOllOWIﬂg nave obse:rva’uon. If FIG. 1. Time evolution of the norms for the initial condition (&) E,,(t)
we neglect the second term on the right-hand-sitie) of  (dash—dottey) E (t) (solid), and Ey(t) (dashed and (b) Q,(t) (dash—

Eq. (22 for vy, we find dotted, Q,(t) (solid), andQy,(t) (dashedl
Jd
a—ty+U~V7=—72- (26)
Q,(H= 3(¥(x,1)?), (32)

This can be trivially solved in a Lagrangian frame and for

some fluid particlesy tends to— in finite time. But, since Qu(t)= 3(W(x,1)?), (33
the second term on the rhs @) is positive and can become
large, it might prevent formation of singularity. Because of . ) : L
this competition, it is not obvious that solutions (@fl)—(23) dimension of velocity. None of these are conserved in time.

break down in finite time or not. Therefore, we need to study. We show the t|m_e evolution d, (1), E,(t), andEy(t)
: in Fig. 4(a). From this we see th& (t) does not become
the problem numerically.

large (actually it decreases slighilyout E (t) and Ey(t)
indeed increase rapidly and they appear to diverge at about
t=1.4, or more precisely=1.419. A similar trend is ob-
As there are no guidelines for choosing appropriate ini-served in Fig. {b), which shows evolution o® (1), Q.(1),
tial conditions, we first try a simple sinusoidal one for all theand Q,y(t). Again, Q,(t) and Qu(t) appear to diverge at
three fields: about the same time=1.4 butQ,(t) increases only by a
27) small amount.
By changing the resolution, we found th@t,(t) di-
Unlike 2D Euler equations, a time dependent solution arisegerges att=1.419 withN?>=12& and 256, t=1.414 with
from this single mode initial condition. 512, t=1.396 with 1024, t=1.349 with 2048. The differ-
We describe the global properties of the flow using sevence in the time of numerical blow up is small, that is, 3%.
eral norms. Denoting the spatial average by the bra¢kets  As long as the computation is possible, the curveQoft)

with a slight abuse of terminology fa®,, becauseW has

A. Initial condition 1

w(X,0)= y(x,0)=W(x,0)=sinx siny.

(20)], we define energy-like norms collapse completely. A possible reason for slightly earlier

E,(D)=1(((—A) Y2u(x,1))2) (28) breakdown of the numerical solutions at higher resolutions is
e o that they have less numerical dissipation.

E,()=3(((—=A)" "y (x,1)?, (29 Under the periodic boundary condition, we have
Ew()= 3(((—A)"YaW(x,1))?) (30) (@)=0, (34)

and enstrophy-like norms by (4). We have checked this together with the condition

(y)=0 in the computation. On the other hardly) is not

Qu(H= 3{w(x,1)?), (31)  conserved
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(b) k (e) ’
1R 1
107 L i
2
g ~20
0 | FIG. 2. Time evolution of the Fourier spectra for the initial conditior{d);
Q.(K), (b) Q,(k), and (c) Qu(k); at t=0.8 (solid), 1.0 (dotted, 1.2
10 L | (dashegl 1.4 (dash—dotteq (d) the analyticity distances(t), and (e) its
details.
0 10 20 30 40 50 60 70 80 90
{c) k
d 1 v 2
d—<W>= —2(yW). (35 Qw(k) =3 IW(k)[*. (38)
t k<|K[<k+1

Actually, (W) also appears to diverge tox att=1.4 (fig-

ure omitted. This means that the maximum value |0/  \we show log-linear plots ofQ,(k) in Fig. 2a at t

also diverges in finite time. It should be noted, therefore, that-0.8/1.0,1.2, and 1.4. It should be noted that the straight

not only the velocity gradient but also the velocity itself jines in the higher wave number range imply exponential

appear to become singular in finite time. fall-offs. This suggests that the flow is well-resolved close to
When we perform computation of the problems whichthe end of the computation. We can also confirm thand

may lead to the formation of singularity, we need to takew are similarly well resolved by observing Figs(b and
special care so that the numerical solutions are sufficiently(c).

well resolved. To this end we monitor Fourier spectra of the  To study the evolution of the Fourier spectrum in more

three fields defined by detail, we conside®, (k) and fit it in the usual form as
=1 w(k)|? 36
Qu(k)= 2 ks|k§k+1 (9%, (36 Qy(k)=A(t)k”(‘) exp(—28(1)k), (39
1 = (2
Qyk)=53 k<|k;<:k+l [y(K)[%, (37 where the constan#s(t), n(t), &(t) are determined by the
N least-squares method at each tifisee, for example, Ref.
and 24). The distances(t) is a measure of analyticity of the
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2r E
0 d
. 2
) 2n T
0
FIG. 3. Perspective plots and contourseffor the initial condition 1;(a) on
t=0, (b) t=0.6, (c) t=1.2, and(d) t=1.4. (@)

FIG. 4. Perspective plots and contoursjofor the initial condition 1;(a)

function y(x). We plot in Fig. Zd) the time evolution of =0 (P 1=06.(c)t=12, and(d) t=14.

o(t) for the computation withN =256, where the fitting pro-
cedure was performed in the wave number rakge 0, ex-
cluding the round-off noise. Up to=1.4, 5(t) is much of N=1024 the time of numerical breakdown appears to be
larger than the mesh sizer2N~0.025, which is a necessary neart=1.4. This indicates the time scale becomes increas-
condition for the flow to be sufficiently well resolved. But ingly small, consistent with a real blowufsee the note
after t=1.4, the analyticity distance appears to decreasadded in proof
much faster. Such a behavior is confirmed in Fig) 2vhere Next we study the spatial structure on the two-
we show a close up view of(t) as a function oft in 1.4  dimensional periodic domaiA. In Fig. 3 we show perspec-
<t=<1.416. We have checked that the decreas&(®j is tive plots ofw att=0,0.6,1.2, and 1.4. This initial condition
faster than an exponential function in time. The tail part ofhas four cells. In the subregions wheieis positive this
the Fourier spectra begins to turn ug atl.417(not shown,  variable undergoes a mild increase and, by the end of com-
after this time the computation becomes inaccurate. The fagutation, its maximum is larger than the initial maximum
decrease 0b(t) suggests its vanishing neat1.416, thatis, approximately by a factor of 6. Keeping in mind that initially
a blowup. =", this comes from stretching by positive strain rgtdn

We have also performed computations by varying theother subregions, the strain rageis initially negative, and
time stepAt for N=1024. The blowup times are=1.396  accordingly|w| is getting smaller and smaller. At later times
for At=1x10 3, t=1.408 forAt=5.0x 10" 4, t=1.413 for  we see a large almost flat area. In either region, the growth of
At=2.5x10"%. Our conclusion is that at this high resolution o is not significant.
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(C)

FIG. 6. Three-dimensional enstrophy for the initial conditiorialt=0, (b)
t=0.6, (c) t=1.2, and(d) t=1.4. Its distribution of the sectional plane is
also shown, where darker shading denotes higher values of enstrophy.

2r
o ol ay+aW2 dy IW 2+ )
| (X,y,Z, )| - Z&y (7y Z(?X IX w(X) .
(40)
50w We show in Fig. 6 the isosurfaces 0€|? in a cube 0
0 <x,y,z<2m att=0,0.6,1.2, and 1.4. The threshold is chosen
1‘38 as (max|Q|?)/5 at each time. We also include a sectional
:150 plane at z=607/64, on which the distribution of
200 ) |Q(x,y,2)|? is shown. Because of the lineadependence in
/4

Q, |Q|? is of course larger at larger Unlike », y andW,

FIG. 5. Perspective plots and contours\iffor the initial condition 1;(a)
t=0, (b) t=0.6,(c) t=1.2, and(d) t=1.4.

Obviously the structure ofy is of greatest interest. In
Fig. 4, we show its perspective plots in the same manner a
for w. For this initial condition, we havéy?)=1/4 and at
some points and the total derivative pfis negative as can (a)
be seen the rhs of21). As the above-mentioned heuristic
argument suggests, the negativetarts to decrease, growing
in its absolute value. From numerical results we see such i
process of decreasingis prominent. It is remarkable that
develops almost circular dips, which are 70 times as deep a
the initial values in the end. Judging from the behavior of the
norms, the minima ofy become—c at aroundt=1.4 lead-
ing to breakdown of the smooth solution. In Fig. 5 we also
showW in a similar manner. Likey the negative part olVis
intensified and actually even more strongly than

Now we consider the three-dimensional structure assoCirig. 7. vortex lines for the initial condition 1a) t=0, (b) t=0.6, (c) t
ated with the three-dimensional enstrophy given by =1.2, and(d) t=1.4.

(b)
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1000

100

10

1

0001 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 08
t

FIG. 8. Time evolution of the norms for the initial condition E,(t)
(dasheglandQ,(t) (solid).

there are many cells if2|? initially, because of its quadratic
nature. At later times, prominent cells appear in the two re-
gions wherey is strongly negative. As we have seen above,
there the axial componend is small. It is the azimuthal
components of vorticityparallel to the X,y) plang that are
stretched intensely, contributing to the large three-
dimensional enstrophy. It should also be noted that the en-
strophy is not uniformly distributed inside the cells, but are
highly concentrated in ring-like regions. Near the centers the
enstrophy is very small. This feature is also seen by observ-
ing the shape of isosurfaces. The intense vorticity regions
have a characteristic structure of semi-infinite cylinders as-
sociated with two-dimensionalization of the vorticity field,
that is, hollowing vortices.

We show in Fig. 7 the vorticity lines which start from a
planez=2/64x 2 for the corresponding times. In the re-
gions with negativey, the vorticity lines lie on the plane,
because the axial component of vorticity becomes very small
due to strong compression onto they) plane. On the other
hand, in regions with positivey the vorticity lines make
spirals by the nonzero axial component of vorticity. A more
detailed analysis on the maximum mpx(x,t)| is deferred
to Sec. lll.

B. Initial condition 2

We have seen that the amplification|ef in its negative
region is the key process leading to finite-time singularity. A
guestion arises here is what kind of properties are required in
the initial conditions ofy for such singularities to form. To
study this point, we employ initial conditions which have a
single maximum in the fields. The first choice of this kind is

1
ex E

wherer = \/(x— 7)*+ (y— m)2. This initial condition is pro-

portional toA exp(— 1/2 (r/a)?) and has a peak at=0. Here we take all the three fields identical so that initially
We usea=0.3, c=0.2 for constants. The constamis the negativey part is not so strongly stressed. The minimum

chosen to makew, v, and W sufficiently small, typically value of y is y(2a)=—2e 2/c~—1.35, so, on the rhs of

0O(10 19, at the boundaries= 0,27 so that it does not con- (21) we have—y?~—1.82 and 2y?)~0.8. Therefore, at

flict with periodic boundary conditions in practice. The nor- some points the rhs is mildly negative— 1, in comparison

malization constant is chosen to make the norm gfnot  to the maximum ofy(0)=5.

too small compared with the time increment. We show the time evolution iE,(t) andQ,(t) in Fig.

FIG. 9. Perspective plots and contoursjofor the initial condition 2;(a)
(42) t=0, (b) t=0.2,(c) t=0.4,(d) t=0.6, and(e) t=0.8.

2 2

r

a

r

a

1
w=y=W=|2-
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2n

(d)

FIG. 10. Three-dimensional enstrophy for the initial condition&@;t=0,
(b) t=0.4,(c) t=0.6, and(d) t=0.8.

8. These norms ofy decrease in the very early stage, but
they start to increase later. They apparently blow up at
aroundt=0.83. No difference has been found between com-
putations performed with 256and 512 grid points. We
have checked that the Fourier spectra decay exponentially at
large wave numbers, close to the late stage of computation
(figures omittegl

In Fig. 9 the perspective plots of are shown att
=0,0.2,0.4,0.6, and 0.8. The region with negatjv@as ini-
tially a small circle. As time elapses, the value pfat the
ring-like region decreases in time, getting more and more
negative. It should also be noted that the size of this ring is
getting larger and larger, consistent with the interpretation

3189

that the underlying instability has its origin in the large-scaleFIG. 12. Perspective plots and contoursyofor the initial condition 3;(a)

components. Because of symmetry imposed as an initial co=0: (b) t=0.1,(c) t=0.3, and(d) t=0.5.
dition, the finally singular set has a line-like structure.

We show the corresponding three-dimensional enstrophy
distribution| 2|2 in Fig. 10. Isosurfaces of enstrophy density

10000
1000
100
10

in Figs. 6c) and Gd).

3 C. Initial condition 3

form two cylinders, inside which the enstrophy density is
] very high. These ring-like structures correspond to those of
negativey in Fig. 9. They are also similar to the ones shown

0.1 7 As a final choice of initial condition, we reverse the
0.01 ] signs of y andW in (41) to consider
0.001 1 1 r\2 1(r\2
0.0001 ) ) ) ) ) w——’y——W—E 2— 5 ex —E a . (42)
0 01 02 03 04 05 06
! This is more singular tha#1) in that it stresses the negative
FIG. 11. Time evolution of the norms for the initial condition B;(t) part of y. For the parameters we take=0.3, c=1. We
(dashedland Q (t) (solid). show time evolution oE (t) andQ,(t) in Fig. 11. Unlike
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dl
d—t”: —(p+1)lpe1+2plyly g, for p=0,12, ..,

(44)

where we definé _;=0. This set of equations is not closed,
but introducing a double serieg, , as

=2 apat", (45)

we can derive the following recursion relationship for it:

n

1
ap,n+1:m _(p+l)ap+1,n+2p|220 a2,Iapfl,nfl )

for p=0, n=0. (46)
The seriesa,, , should satisfy the following conditions:
%00~ 1, (47)
=0, for n=123, .., (48)
() and
a;p=0, for n=0,1,23,... (49)

FIG. 13. Three-dimensional enstrophy for the initial condition&;t=0,
(b) t=0.1, (c) t=0.3, and(d) t=0.5. The first two conditions are trivial, and the third one follows
from the constrain{y)=0. Since the rhs of46) is made up
of coefficientsa,, , whose indexm is less thanp, we can
the initial condition 2, they start increasing right after 0 solve fora, , by iteration. In practice, we start generating
and both of them appear to divergetat0.504. ap o for O=<p=<N+2 with a largeN. For the specific choice
Perspective plots ofy are shown in Fig. 12 at of initial condition 1, it is easy to show for the initial condi-
=0,0.1,0.3,0.5. The shape of hardly changes in time but tion 1

the negative peak in the initial condition ¢fkeeps increas- ol 2
ing in magnitude until the end of numerical calculation. (_(7_h ) for evenp
In Fig. 13 we also show three-dimensional enstrophy — apo=1 |2 P2(p/2)! : (50)

distribution at corresponding times. The pencil-like structure 0 for odd p
is observed at each time and its shape does not appear L . . .
change significantly. This suggests that if there is a stronglj%en’ by setting1=1,23.. . in (46), we obtain successively

negativewy in the initial condition, then the subsequent evo- ?Ozfngirnoj'\?le\l_’ s&q_:]?; gzg;':r; %éznbdelenng deonneerag;gym-
lution is dominated by the presence of this negative peak. bolic manipulation usingiaple V for N=500. In this way

we obtain the exact Taylor coefficients of, for example,
Il. ALTERNATIVE APPROACH TO THE PROBLEM I5(t)={¥?) up to O(t>9).
It should be noted that such a high-order can be
achieved, because in E1) for y the pressure term does
In the previous section we have used pseudo-spectralot appear explicitly. Recall that in the case of usual Euler
computations to see whether numerical solutions of the Eulesquation where the Hessian matrix of pressure term couples
equations blow up in finite time. Here we study the forma-with vorticity and rate-of-strain, the above reduction to
tion of singularities using a different approach by tracing thedouble series is not possible.
evolution of norms with Taylor series expansions in time. Using the Taylor coefficients thus rigorously obtained,
This well known method has been applied in the past to theve examine the analytic structure of the momehjt).
conventional Euler equatiort$?*2° However, as we shall They turned out to be eveiodd) functions of timet for even
see shortly, its application to the system of E(&)—(23)  (odd) p. Defining é=t2 we write
has some distinctive features which are absent in its applica- w
tion to the conventional problem. This method enables us to = n
. . . Ip ap,2n§ ’ (51)
examine the apparent singularity extremely accurately. n=0
Since y is the most important field, we pay special at-
tention to its moments defined by:

|p(t)=<'y(x,t)p>, for p=O,1,2,. Ce (43) Ip:ti ap’2n+1§n' (52)
n=0

It is straightforward to show thdt(t) satisfy the following
set of infinite numbers of ordinary differential equations:  for odd p.

A. Taylor series expansion in time

for evenp and
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0.75 T T T T 10 TABLE |. Fitted values ofa,, andp, in the Domb-Sykes plot.
07} LI L 9
Op2n-l)  Op2n-l 8 p ap Pp
0.65 7 2 0.497 487 024 318 61 1.811 824 367 3555
06 6 3 0.497 483 660 060 28 2.812581 167 136 2
3 4 0.497 364 309 847 26 3.821 868029 2620
0.55 3 5 0.497 376 253 330 89 4.789 051 738580 8
3 6 0.497 036 319 415 14 5.891 103 991 1952
05 7 0.496 737 911 577 62 6.914 3197712255
0.45 8 0.496 523 643 877 92 8.023 710 541 466 9
0 9 0.495 669 933 977 28 9.161 946 2335132
@) 10 0.495 814 094 561 95 10.227 105857 9109
1.45
14+
TE 135% =1,2,...(N+1-p)/2. Clear straight lines are observed at
_£ 13l large n. By using the least squares fitting ir=20, we de-
£ ' termined a, and p, for p=2,3,...,10 numerically(see
& 125¢ Table ). More precisely, the fitting procedure was performed
1ok after converting the exact ratios into floating point real num-
bers in double precision arithmetic. The results do not de-
M 2 040608 1 121416 pend significantly on the choice of interval used for fitting. It
(b) t+-1 should be noted that the nearly same value are consistently
11 - obtained for the radii of convergence at different orders.
10 - For example, we find that A4 ~0.497 anda,~1.8,
9t which corresponds to a blow-up of the form
8 1
7 Ny
s 6 (v9) (t*—t)az' (55
5
4 att, =p,~1.42. (Note that¢=2 corresponds td=+/2.)
3t This is close to the time=1.419 at which the pseudo-
?1 . spectral computation breaks down. It should be noted that

5 3 ;1 5 é 7 é é 10 the two completely different analyses, pseudo-spectral com-

p putation and Taylor series expansion, give essentially the
FIG. 14. Detailed analyses of the case of the initial conditiorial.The E?me anfswe:j f.OI’ ;he time .Of pIOW_Up'l This SuﬁgeSLS the
Domb-Sykes plot fop=2,3,.. .10 together with fitted straight line) ow-u_p Oun. int e. numerics .|S a real one rather than a
The time evolution of {, —t)| ymnl againstt, —t together with a fited ~Numerical artifact. This observation has fostered mathemati-
straight line(dashedl (c) The exponentsy, , together with a fitted straight ~cal analyses of the equations. As one of mathematical results

(c)

line. we have the following criterion similar to BKM criteriohif
a smooth solution breaks down in finite timethen we must
have
B. The Domb-Sykes plot .
Here we examine whether or not the Taylor-series ex- t“r? fomaﬂ y(x,s)|ds=00. (56)
— 1l X

pansion analysis is consistent with the pseudo-spectral com-

putations described in Sec. Il and some mathematical analythis constrains, as usual, the exponent of possible algebraic
sis. blow-up as

We try the usual Domb—Sykes plots by fitting 1
max y(x,t)[* ———5, (B=1). (57)
apm 1 ( ap—1 x (ti—0)

—~—| 1+ as n—o (53

Ap2mn-1) Pp In Fig. 14b) we show ¢, —t)max]y(x,t)| againstt, —t,
and where we take, =1.419. The straight line suggests that the

blow-up occurs at the marginal exponght 1. Then we try

8pan+1 i( 1+ ap—1 asn— oo, (54)  tofititin the form

Q-1 Pp a
respectively, for even and odal Here p,, is the radius of max y(x,t)| = ﬁer, (58)
convergence and, is the strength of the singularity such x *
that |y (p,— €) P asé—pp. by the least-squares fitting using ddta0.2, 0.4, ..,1.2.

In Fig. 14@), we plot the ratiosa, ,n/a, »(—1) @gainst  The values obtained aee=1.155 ando=0.172.
1/n for p=24,..,10, n=12,...(N+2-p)/2 and In this numerical simulation, not only the local quantity

(apon+1)/(ap2n—1) against I for p=35...,9, n  max|y(xt)| but also the global onéy(x,t)?) blow up si-
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TABLE Il. Poles of the Padapproximants.

K. Ohkitani and J. D. Gibbon

TABLE lIl. Zeros of the Padepproximants.

Approximants

Poles ig

Approximants

Zeros it

[5,5] —9.751524 732, 0.000 060 124 85040, 1.950075 790,[5,5] —2.216 943 412, 0.000 060 124 850 41, 3.271 947 112,
2.170 674 366, 4.358 095 782 16.137 581 83-2.582 369 765 |,
[10,10 —13.970 143 38~11.820 501 88, 0.102 967 790<8L0"°, 16.137 581 83-2.582 369 765 i
1.999 349 184, 2.035 354 536, [10,10 —30.194 670 96,-2.217 048 815, 0.102 967 790810 °,
2.264 591 266, 2.745 170597, 3.742 644 283, 2.203 407 075, 2.593 186 669, 3.362 981 535,
6.228 639 034, 23.695 275 62 5.037 640 032, 10.145 533 84,
[15,15 —84.056 409 48,—18.402 489 70,—12.845 620 99, 18.289 754 06-25.908 347 67 i,
—12.149 788 80, 0.241 594 40380 5, 18.289 754 06-25.908 347 67 i
2.006 210 486, 2.019 948 936, 2.107 673 513, [15,15 —32.580 580 20,—16.141 031 13, 1 2.217 048 815,
2.267 992 708, 2.526 846 629, 0.241 594 407 & 10715, 2.088 216 892,
2.931 388994, 3.575127 401, 4.663 375978, 2.228 341 745, 2.432 709 40%6.617 588 78 i,
6.735971 424, 11.777 359 94 2.432 709 40856.617 588 78 i
[20,20 —52.717 754 05,—20.946 152 82,—14.819 840 05, 2.455 370 758, 2.806 344 773, 3.351 514 526,
—12.582 831 42,—12.248 220 16, 4.234610 167, 5.791 686 158
0.628 019 151 & 10~2%, 2.008 345 498, 9.009 345 310, 18.297 475 96
2.015440843, 2.061734822, 2.143 166 740, [20,20 —32.443 974 06,—18.441 844 39;14.117 570 89,
2.266 556 903, 2.441 942 930, 2.685 359 351, —4.388 434 788-72.064 147 49 i,
3.022 650 991, 3.496 884 366, —4.388 434788 72.064 147 49 i-2.217 048 814,
4.183872 970, 5.228 015 126, 6.936 378 207, 0.628 019 151 & 10~ 2%, 2.052 487 862,
10.070 363 06, 16.929 900 22 2.125 475 460, 2.237 354 559, 2.39 670 630 2,
[25,25 —60.784 822 75,—23.965 130 20,—16.756 409 47, 2.617 040 931, 2.919 720 128,
—13.810 527 23-12.490 805 86, 3.339398 039, 3.934 872487, 4.812 575562,
—12.286 066 12, 0.267 278 3928025, 2.009 251 038, 6.183 157 666, 8.517 715 024,
2.013 592 533, 2.042 501 762, 13.048 957 94, 23.198 699 32
2.092 591 393, 2.166 619817, 2.268 134 969, [25,25 —36.662 906 57,—20.903 978 06,—15.765 402 94,

2.402 372954, 2.576 940 742,
2.802 920 690, 3.096 732 506, 3.483 402514,
4.002 621 749, 4.720 779 646,
5.757 112 164, 7.347 644 789, 10.028 179 42,
15.251 42079, 24.462 143 86

—13.444 844 93,
—2.422 275 806-72.035 620 73 i,
—2.422 275 806-72.035 620 73 i~2.217 048 815,
0.267 278392 & 10726, 2.037 117 960, 2.082 587 744,
2.150 718 578, 2.244 666 576,
2.369 045 838, 2.530 502 054, 2.738 607 574,
3.007 333373, 3.357 561 888,
3.821584 980, 4.451 655 754, 5.337 545 534,
6.646 338 905, 8.725 034 081,
12.408 433 22, 19.723 996 57, 27.181 193 71

multaneously in finite time. In order for this observation to
be consistent with the rhs 1), it is necessary that,
=<2. As we have seen above, this is actually satisfied.

To characterize the singular structurenwe consider

higher-order exponenis,,. In Fig. 14c) we plot the expo- ¢, qistent with not only the pseudo-spectral computations

nentsa, againstp for p=23,...,10 which displays a clear y, 5155 mathematical results in every aspect we have
linear behavior irp. A least-squares fitting was used to give checked

ap=C1p+Cy, (59
wherec,=1.054 andc,= —0.385. Noting that

C. Padé approximation

In order to further strengthen the result on the presence
of blow up, we apply the Padapproximation to thd ,(t).
(600 we determind M, L]-Padeapproximants of , by represent-
ing it as a rational function of=t?, whose degree of de-
nominator isM and that of numerator ik. Up to this point,

max y(x,t)|= lim (I p)%oc lim

poe poe pp_g)cl-%—czlp

and thatp, is independent op, we find a singular behavior

of the form the computation is exact. In Table I, we document the loca-
tion of poles of approximants, that is, roots of the denomi-
nator which are obtained by solving the algebraic equations

m;'»d Y B (t—por 61 humerically. We also show in Table Il the location of zeros

of approximants, that is, roots of the numerator in a similar
manner. All the poles are found to be realdrbut some of

the zeros come out in conjugate pairs of complex numbers.
andc, are obtained frona,, , usingn=20. If we fit «, from There are poles on the positive reakxis, whose dis-
@, Usingn=50, we obtainc;=1.027,c,=—-0.281;c, is tance to the origin is very small. For example, the
obtained even closer to unity. This suggests a possibility thgt10,10-approximant has a pole at 0.102 967 79080 °.

c, is exactly equal to unity, which is consistent wits8). However, exactly at this location there is a zero, which com-
While we cannot conclude thai =1 because of the limited pensates the singular behavior of the apparent Fdléis is
maximum order ofl ,, the Taylor series analysis in time is consistent because there should not be singular behavior

This is consistent with(57) becausec,>1. Moreover it
should be noted that; is close to unity. These constarts
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1000 — — ity formation. This is consistent with the observation made in
Fig. 2 that the instability come from the lower wave number

100 L part.

10 L V. SUMMARY AND DISCUSSION

We have investigated numerically the class of solutions
_ of Euler and Navier—Stokes equations identified in Ref. 15.
We found that for a wide class of initial conditions the
smooth Euler solutions appear to breakdown in finite time.
01 o2 o4 06 08 1 12 14 1s At this time the ansat#2) for the 3D velocity field is no
r longer valid and such a solution is no longer sustainable.
FIG. 15. Time evolution oRQ,(t) for the initial condition 1, the Navier— As one O_f _the S_trUCtural changes WhICh_ can occur 1o
Stokes casésolid) and the Euler casélashedl vortex flows, it is of interest to compare the singular behav-
ior observed here to the phenomenon of vortex breakdown.
The latter phenomenon is characterized by “the formation of
close to the initial condition. Discarding these poles, the firstan internal stagnation point on the vortex axis, followed by
relevant positive poles are located &t1.999 349184 for reversed flow in a region of limited axial extent”’Indeed,
the [10,1(-approximant. Checking the location of zeros in both are related with formation of a columnar vortex. In the
Table Ill, we see that the pole is not compensated by a zer@ase of vortex breakdown, the flow lying upstream the break-
We note that these results are irrelevant to the choice aflown region is called the approach flow. This flow may be
orders of approximants. Thus the analysis by Pajleroxi-  typically represented by the Burgers vortex, which is a spe-
mation also supports the presence of a real-time singularitgial case of the class of solutions considered in this paper.

nearé=2. The breakdown region is associated with abrupt changes
in the direction of axial velocity. This part can be well rep-
IV. THE VISCOUS PROBLEM resented by a stationary smooth solution of the Navier—

Stokes equations, see for example, Refs. 28 and 29. The term

In this section, we compare the Euler solution with a“preakdown” refers to a reversal of axial velocity but has
corresponding Navier—Stokes solution. The main objective igothing to do with mathematical breakdown of solutions.
to see whether or not the singularity formation found in thepownstream of the breakdown region a new vortex structure
inviscid case is prevented by a small amount of viscosity. s formed, where the variation along the axis is gradual.

The Navier—Stokes version of the class of solutions un- Some more differences should be noted. As noted in
der consideration satisfy the following set of equatidhs:  Ref. 29, the key process in vortex breakdown is the produc-
Jw tion of a negative azimuthal vorticity. But in our case, the
H-i—(u'V)w: yo+rvAw, (62)  axial vorticity tends to vanish in the regions wheyelows

down. Moreover, in the present case because the axial veloc-
dy 5 5 ity is dominant over planar components, the streamlines ba-

S T V) y=—y"+2(y)+viy, (63 sically lie on the cylindrical surfaces in tredirection (fig-

ures omittegl in contrast to swirling streamlines of the
and breakdown region. In view of these differences and similari-
ties, it may be appropriate to categorize the hollowing vorti-
+(U-V)W=—yW+vAW. (64)  ces documented here as one of the typical behaviors of the
vortex flow.
The condition(y)=0 must also be satisfied. Furthermore, there has been some work on vortex break-

We consider the initial condition 1 used in Sec. llIA down of a different type over the last few years. One is based
with »=0.005. We compare the time evolution of the normon the flow in a channel with one end as a rotating disc; the
Q,(t) between Navier—Stokes and Euler equations in Figproblem is not the same as ours because a lot of stress is laid
15. The growth of the norm is only slightly suppressed byby authors on the boundary layer on the disc whereas we
the effect of viscosity, but it still appears to diverge approxi-have an infinite channéf:* We also note that similar solu-
mately att=1.433, which is slightly later than the time of tions of the Navier—Stokes equations have been
blow-up for the inviscid case. The contribution coming from investigatec? There, the problem has been reduced to one
the viscous terms works to suppress the growth of the quartimension and a connection between the blow-up and the
tity, as can be verified by the negative-definiteness of the lasple played by convection term has been studied in detail.

3

term of the following equation Finally we mention some of the open problems regard-
dQ 3 ing the class of solutions. First, we have not studied stability
d—t7=—§(y3)—v<|Vy|2). (65  properties of the apparent singular solutions. We do not

know whether the singular behavior found here may be un-
Indeed the viscous term @65) slows down the growth of stable to small perturbations. Second, apparently there are
Q,(t) but actually is not so effective to prevent the singular-multiple length scales involved in the formation of singulari-

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



3194 Phys. Fluids, Vol. 12, No. 12, December 2000 K. Ohkitani and J. D. Gibbon

ties in the present problem. It may be interesting to seek for and Kolmogorov spectrum in a symmetric three-dimensional model,”

quasi-self-similar solutions. These are left for future investi- Phys. Rev. E52, 5110(1995.
gations 1A, Bhattacharjee and X. Wang, “Finite time vortex singularity and Kol-

. . . . . mogorov spectrum in a symmetric three-dimensional model,” Phys. Rev.
As mentioned in the Introduction, this class of solutions | ¢ 69 2196(1992.

possesses unbounded velocity field only in one direction. W&R. B. Pelz and Y. Gulak, “Evidence for a real-time singularity in hydro-
hope that this study may be regarded as an intermediate st%@ynamics from time series analysis,” Phys. Rev. L@@, 4998(1997.
toward understanding possible singularity formation of J. M. Burgers, “A mathematical model illustrating the theory of turbu-

hvsicall . ing fl ith b | lizati lence,” Adv. Appl. Mech.1, 171(1948.
physically more interesting flows wit etter localization. 1H. K. Moffatt, S. Kida, and K. Ohkitani, “Stretched vortices—the sinews

Note added in proofAccording to a recent studyby P. of turbulence; large-Reynolds-number asymptotics,” J. Fluid M&&S,
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driven by negative blow-up of. 183, J. Cowley, L. L. van Dommelen, and S. T. Lam, “On the use of
Lagrangian variables in descriptions of unsteady boundary-layer separa-
ACKNOWLEDGMENTS tion,” Philos. Trans. R. Soc. Lond., Ser. 233 343(1990.

193, Childress, G. R. lerly, E. A. Spiegel, and W. R. Young, “Blow-up of
This work was done while the authors were attending a unsteady two-dimensional Euler and Navier—Stokes solutions having stag-
. _ nation point form,” J. Fluid Mech203 1 (1989.

research programurbulence held_durmg January 4 T]UIy 2, . 20p. Constantin, “Note on the loss of regularity for solutions of the 3D
1999, at the Isgac New’[on. Institute fqr Mathematical Sci- jncompressible Euler and related equations,” Comm. Math. Pbgd,
ences, University of Cambridge. A major part of computa- 311(1986.
tions were carried out on workstations there. We thank théH. K. Moffatt, “The interaction of skewed vortex pairs: A model for

: FH : blow-up of the Navier—Stokes equations,” J. Fluid MedB9, 51 (2000.
Isagc Newton InStiItUte forhproyldiﬂg us Wlith al‘? eii(ce”em 22C. W. Oseen, “Exakte Lsungen der hydrodynamischen Differentialglei-
environment and pleasant hospitality. We_a so thank J. _Bras-chungen. 11" Ark. Mat., Astronom. Fys20A, 1 (1927.
seur, P. Constantin, Y. Couder, C. Doering, B. Galanti, F2T. Lundgren, “Strained spiral vortex model for turbulent fine structure,”
Hussain, R. M. Kerr, T. S. Lundgren, S. Malham, H. K. Phys. Fluids25, 2193(1982. _
Moffatt, H. Okamoto, and J. C. Vassilicos for helpful discus-~ M- E: Brachet, D. I Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and

. U. Frisch, “Small-scale structure of the Taylor—Green vortex,” J. Fluid
sion. We are also grateful to an anonymous referee for sug-y,.., 130, 411(1983

gesting useful comments. R. H. Morf, S. A. Orszag, and U. Frisch, “Spontaneous singularity in
three-dimensional inviscid incompressible flow,” Phys. Rev. L44{.572

IR. M. Kerr, “Evidence for a singularity of the three-dimensional, incom- (1980.

pressible Euler equations,” Phys. Fluids5A 1725 (1993. This phenomen_on is known as “defects.” See, for examp!e, G. A. Baker
2. Leray, “Sur le mouvement d’un liquide visqueux emplissant I'espace,” and P G_-Mgrns,Pa_cfeApprommants 2nd gd.,EncycIop_edla of Math-
Acta Math.63, 193 (1934. ematics and its Applicationd/ol. 59 (Cambridge University Press, Cam-

33, T. Beale, T. Kato, and A. Majda, “Remarks on the breakdown of __Pridge, England, 1996

i i ” 273, Liebovich, “The structure of vortex breakdown,” Annu. Rev. Fluid
smooth solutions for the 3D Euler equations,” Commun. Math. PB¥s. ) )
61 (1984. Mech. 10, 221 (1978.
4p. Constantin, Ch. Fefferman, and A. Majda, “Geometric constraints on’ J- M. Lopez, “Axisymmetric vortex breakdown Part 1: Confined swirling
potentially singular solutions for the 3D Euler equations,” Comm. PDEs _flow,” J. Fluid Mech. 221, 533(1990.

21, 559(1996. 29G. L. Brown and J. M. Lopez, “Axisymmetric vortex breakdown Part 2:
5P. Constantin, “Geometric statistics in turbulence,” SIAM R&6, 73 Physical mechanisms,” J. Fluid Mec@21, 553 (1990.

(1994. 30K. Stewartson, C. J. Simpson, and R. J. Bodonyi, “The unsteady boundary
5G. Ponce, “Remarks on a paper by T. Beale, T. Kato and A. Majda,” layer on a rotating disk in a counter rotating fluid. Part 2,” J. Fluid Mech.
Commun. Math. Phys98, 349(1985. 121, 507 (1982.

’S. Kida, “Three-dimensional periodic flows with high symmetry,” J. *'P. Hall, P. Balakumar, and D. Papageorgiu, “On a class of unsteady
Phys. Soc. Jprb4, 2132(1985. three-dimensional Navier—Stokes solutions relevant to rotating disc flows:
8R. Grauer and T. Sideris, “Numerical computation of three-dimensional Threshold amplitudes and finite-time singularities,” J. Fluid Me2B8
incompressible ideal fluids with swirl,” Phys. Rev. Le#{7, 3511(1991). 297 (1992.

0. N. Boratav and R. B. Pelz, “Direct numerical simulation of transition 3?H. Okamoto and J. Zhu, “Some similarity solutions of the Navier—Stokes
to turbulence from a high-symmetry initial condition,” Phys. Fluieis equations and related topics,” Taiwanese J. of M&{t65 (2000.

2757 (1994). 33p, Constantin, “The Euler equations and non-local conservative Riccati

1A, Bhattacharjee, C. S. Ng, and X. Wang, “Finite time vortex singularity equations,” Internat. Math. Res. Noticé8RN) 9, 455 (2000.

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



