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Numerical study of the Eulerian–Lagrangian formulation
of the Navier–Stokes equations
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An Euler–Lagrangian analysis of the Navier–Stokes equations is performed with use of numerical
simulations. On this basis we propose a new method for capturing vortex reconnection. It is found
that the diffusive Lagrangian map becomes noninvertible under time evolution and requires resetting
for its calculation. This sets a time scale and its frequent resetting corresponds to vortex
reconnection. Another time scale defined by the connection coefficients, responsible for
noncommutativity of Euler and Euler–Lagrange derivatives, is shown to be on the same order
during reconnection. This introduces a novel singular perturbation problem of connection anomaly
underlying reconnection. ©2003 American Institute of Physics.@DOI: 10.1063/1.1608009#
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The Euler equations, a totally inviscid form of th
Navier–Stokes equations, are known to possess a numb
inviscid invariants. In particular it is well known that th
vortex lines are frozen in fluids. Topological change~recon-
nection! is not possible in smooth solutions of the invisc
flow, but is possible in the presence of viscosity. Recentl
framework of the Navier–Stokes equations that is suita
for the study of topological properties of vortex lines in vi
cous flow has been developed by one of the authors.1–3

This Eulerian–Lagrangian framework is based on a g
eralization of Weber’s transform@see Eqs.~3! and~4! below#
to viscous fluid. It incorporates nonlocal interaction and v
cous diffusion in a multiplicative fashion. This formalism h
been developed for the analytical Navier–Stokes theory1–3

Nevertheless, with purely analytical methods it is difficult
analyze long time evolution of the Navier–Stokes equati
under which vortex reconnection actually takes place.

We present here results of an Eulerian–Lagrang
analysis using numerical simulations of the Navier–Sto
equations. The question we raise here is to ask whethe
not this Eulerian–Lagrangian formalism captures vortex
connection successfully, and if yes how. More specifica
the purposes of this paper are~i! to search for characteristi
time scales associated with vortex reconnection in this
malism and~ii ! to give them a dynamical significance.
novel kind of singular perturbation problem is associa
with ~ii !, which can cover broader class of physical proble
such as fast reconnection in magnetohydrodynamics.

The Navier–Stokes equations and the continuity eq
tion read

]u

]t
1~u•¹!u52¹p1nDu, ~1!

and divu50 where with standard notationu for velocity, p

a!Electronic mail: ohkitani@kurims.kyoto-u.ac.jp
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pressure andn for kinematic viscosity. Using another depe
dent variable called impulsew, which is not incompressible
in general, we may alternatively describe time evolution
the flow by the following equations:

]w

]t
1~u•¹!w52~¹u!Tw1nDw, ~2!

whereT denotes matrix transpose.~See Refs. 5 and 8.! The
usual incompressible velocityu is obtained by solenoida
projectionP of w

u5P~w!. ~3!

This formalism is sometimes referred to as the impu
formalism.4 ~See also Refs. 6 and 7 for its application boun
ary layer flows.!

It should be noted thatw can be represented in a mult
plicative fashion as follows:

w5~¹A!Tv. ~4!

In this decomposition,A denotes the diffusive Lagrangia
label andv the virtual velocity, which obey the following
equations:1

]A

]t
1~u•¹!A5nDA ~5!

and

]v

]t
1~u•¹!v52nC:¹v1nDv, ~6!

where thei th component ofC:¹v is Cm,k; i (]vm /]xk) and
Cm,k; i5(]xj /]Ai)(]

2Am /]xj]xk). It is important to bear in
mind thatC measures noncommutativity between the Eu
and Euler–Lagrange derivatives;@¹A

i ,¹E
k #5Cm,k; i¹A

m . On
top of v(x,t)5¹3u(x,t) we define virtual vorticity by
z(x,t)5¹A3v(x,t). Equations~3!, ~4!, ~5!, and ~6! form a
closed system which is equivalent to the Navier–Sto
1 © 2003 American Institute of Physics
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equations. We note that derivatives with respect toA are
defined using (¹A)21, see Refs. 1–3 for details.

Two technical points of the numerical method th
should be mentioned are as follows. As a basic equation
have rewritten~2! as

]w

]t
52¹~w•u!1u3v1nDw, ~7!

because fast Fourier transforms can be implemented
ciently this way. Another aspect is that it is not easy
evolvev becauseC, a cubic quantity inA, is cumbersome to
handle. Instead of dealing withv directly, we have solved for
displacement vectorø5A2x. It satisfies a passive equatio

]ø

]t
1~u•¹!ø52u1nDø. ~8!

Once ø is obtained, the connection coefficientsC and all
other quantities of interest can be obtaineda posteori by
matrix inversion. In practice, we have solved~7! and ~8!
simultaneously. A 2/3-dealiased pseudospectral method
employed under periodic boundary conditions. The g
points used were 1283 and 2563. Time marching was per
formed with a fourth-order Runge–Kutta scheme.

We have chosen an initial condition of two orthogona
placed vortex tubes, which was examined numerically
study in detail vortex reconnection with conventional me
ods of analysis.9 At the Reynolds numbers covered here t
physics is not new, but we intend to give a novel diagnosis
it by the Eulerian–Lagrangian formalism.

Once ø is known we can compute¹A by ]Ai /]xj

5(] l i /]xj ) 1d i j . In inviscid fluids the determinant of¹A is
constant and its invertibility is maintained automatically u
der time evolution. In the case of viscous fluids the deter
nant is not preserved in general.1 Therefore it is possible tha
it becomes zero and the matrix can become noninvert
under time evolution of the Navier–Stokes equations.
deed, according to our numerical simulation, this actua
takes place. In order to ensure the invertibility it is necess
to resetø50 when the determinant becomes very sm
Practically we resetø if udet(¹A)u<e, wheree is a preas-
signed small parameter. Since the equation forø is passive,
the resetting procedure does not affect the evolution ou.
Also, it has been shown that properties ofø are independen
from e ~see Ref. 3!.

The values of viscosity chosen aren5431023 for 2563

grid ~case 1! n5131022 for 1283 grid ~case 2!. It turned out
that for an accurate calculation ofC we need to make the
Reynolds number lower than commonly adopted to ens
the accuracy of velocity and vorticity. More precise
kmax/kd>1.4 may be sufficient for resolvingv, but not forC.
In all the calculations presented here we havekmax/kd>2
which ensures accuracy of bothv and C. Herekmax is the
maximum wave number andkd is the Kolmogorov dissipa-
tive wave number.

In Fig. 1~a! we show the time evolution of enstroph

Q(t)[ 1
2 ^uvu2& and virtual-enstrophyQz(t)[

1
2 ^uzu2& for the

two different values of viscosity. Herê& denotes a spatia
average over@0,2p#3. With n5431023 the enstrophy in-
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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creases in time and attains its maximum aroundt59.0,
whereas withn5131022 it basically decreases with tim
monotonically. In the latter case, viscosity is too large
intense vortex stretching to take place. In both cases
virtual-enstrophy basically tracks the enstrophy well beca
of frequent resetting. The enstrophy is larger than the virtu
enstrophy for most of the time. It should be noted howe
that this is not always true, e.g.,t53.0 for the case 2.

In Fig. 1~b! time evolution of maxuvu is compared with
that of maxuzu for case 1. As in Fig. 1~a! they are tracking
with each other. These local quantities show strong pe
betweent53.5 and 5.9 During this time interval vortex re-
connection is taking place~see below!. Plots for case 2 is
similar to Fig. 1~a!, except that the peak value is smaller b
a factor of about 50~figure omitted!.

Isosurface plots ofuvu and uzu at time t53 are shown in
Fig. 2. This is the time two vortex tubes begin to for
bridges. A more careful examination reveals that there is
big difference betweenuvu and uzu, although the bridges are
more prominent inuvu than in uzu.

In Fig. 3~a! the time evolution of the mean square di

placementE,(t)5 1
2 ^uøu2& is shown for cases 1 and 2. Th

threshold is chosen ase50.01. We have checked that th

FIG. 1. Time evolution of~a! enstrophy and virtual-enstrophy and of~b!
maxuvu ~solid line! and maxuzu ~dashed line! for case 1. In~a!, Q(t) and
Qz(t) are denoted by a solid line and circles for case 1 and by dashed
and squares for case 2.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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frequent resetting occurs at the same time interval w
e50.1, 0.001. In view of an identityd vol(A)5det(¹A)
d vol(x) (d vol5a volume element in each space!, the van-
ishing of det(¹A) is interpreted roughly as unusually inten
particle diffusion, connecting infinitesimalA element with
with finite x element. In the early staget<1.5 the difference
is small between the two cases. After that, a significant
ference is seen between the two cases. The resetting int
is smaller in case 1 than case 2. Correspondingly the ma
tude is larger in case 2 than in case 1. In both cases, rese
procedure becomes very frequent around the interval 3.<t
<5, during vortex reconnection~see below!.

In order to extract the time scale associated with
resetting more quantitatively, we define the resetting in
valsDt j5t j2t j 21 , for j 51,2, . . . where 0,t1,t2,¯ are
times at which resetting occurs. In Fig. 3~b! the time inter-
vals of resetting are shown. For case 1 there are two dip
time intervals att54 and t59. The former corresponds t
vortex reconnection and the latter to the maximum of to
enstrophy. Resetting occurs quite frequently around th
times and the time scale is 0.05,Dt,0.1. For case 2, a dip
aroundt54.5 is also noticeable with a time scale of abo
0.2. It is interesting to note that more frequent resettin
occur with a smaller value of viscosity, reflecting that vort
reconnection is not a purely viscous phenomenon.

It may be in order to compare the above findings w
those described in Ref. 9. There, the start of vortex rec
nection is defined as the time when two vortices form a lo
dipole at t'3. The jet velocity associated with the dipo
attains maximum att'3.6 ~formation of bridge!. The vortic-
ity attains a maximum att'4.3 ~formation of new topology!.
The local maximum is no longer located in the remna
contact zone att'5.2. It should be noted that the very fre
quent resetting takes place between the formation of bri
and that of new topology. This suggests that the pres
method captures cut-and-connect type reconnection suc
fully.

FIG. 2. Isosurfaces plots ofuvu ~darker gray! and uzu ~lighter gray! at t53
for case 1.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Now, we consider the connection coefficientsC which
control the viscous effect on the evolution ofv. They are
related with the curvature of particle trajectories in the flo
Noting that C has a dimension of inverse length, we m
form an inverse time scale as (tC)215(n/27) (maxxuCu)2.
Here uCu25Cm,k; iCm,k; i and the prefactor 1/27 comes from
the number of components ofC. The inverse time scale
(tC)21 was examined for the two cases~figure omitted!. It
fluctuates violently in time, ranging from 0.01 to 100. It
difficult to tell when reconnection happens by solely looki
at it. Nevertheless, aroundt54 and 5,tC'0.1, which is on
the order of resetting time interval found above. It should
noted that (tC)21 fluctuates aroundO(1), in spite of a small
value of viscosity. This suggests a new phenomenon of c
nection anomaly, i.e., finiteness ofn supx,t0 ,dt* t0

t01dtuCu2 dt

whenn→0 is underlying the reconnection process. It is sim
lar to dissipation anomaly~i.e., finite energy dissipation
whenn→0!, a key issue in turbulence.

We note that the reciprocal Kolmogorov time sca
(tkd

)215Aedis/n5A2Q(t)'4, that is,tkd
'0.25 att54 for

case 1, whereedis is the total dissipation rate of energy.
should be noted that this time scale, formed from the to
enstrophy, is comparable to, but smaller than (tC)21 at

FIG. 3. Time evolution of~a! the spatial averageE,(t) of the displacement
and of~b! time intervals of resettingDt j againstt j . Case 1 is denoted by a
solid line and case 2 by a dashed line.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



-
to
n

n
in
y

e
o
ti
m

tifi
o

o
a
se
r

e

yp

een
his
nec-
ts
vi-

the
al
on
ce.
fic
ts,
os.

kes

flu-

ns:

in

c.

nd-

er–

ally
ca-

.
id

h.

-

of

3254 Phys. Fluids, Vol. 15, No. 10, October 2003 K. Ohkitani and P. Constantin
t54. To summarize, during the reconnection we haveDt
<tC,tkd

.
Finally, we show the isosurface plots ofuCu in Fig. 4.

The regions with highuCu form layer-like structures, sur
rounding the vortex tubes. This shows that particle trajec
ries undergo strong deformation in ambient region arou
vortex tubes.

We have numerically identified two time scales releva
to vortex reconnection in this formalism; one is the resett
time scale and the other one is connected with anomal
the connection coefficients. It is found that the first tim
scale correctly captures vortex reconnection and the sec
is on the same order during vortex reconnection, sugges
that connection anomaly is underlying reconnection. In su
mary, this method provides not only an automated iden
cation of reconnection but also a dynamical significance t
by extracting a novel singular perturbation problem.

The present method has been applied to a tw
dimensional magnetohydrodynamics problem, where m
netic reconnection is captured successfully by frequent re
ting. It has also been applied to the problem of the Taylo
Green vortex.10 In this flow vortex layers are formed in th
early stage, followed by their rolling-up by Kelvin–
Helmholtz instability, a process where cut-and-connect t

FIG. 4. Isosurfaces plots ofuvu ~darker gray! and uCu ~lighter gray! at t
53 for case 1.
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reconnection is absent. Consistently, no resetting has b
observed during the disintegration of these layers. T
shows that the present method distinguishes vortex recon
tion from other effects of vorticity diffusion. These resul
will be reported elsewhere. Detailed comparison with pre
ous studies11–13 will also be reported in the future.
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