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An Euler—Lagrangian analysis of the Navier—Stokes equations is performed with use of numerical
simulations. On this basis we propose a new method for capturing vortex reconnection. It is found
that the diffusive Lagrangian map becomes noninvertible under time evolution and requires resetting
for its calculation. This sets a time scale and its frequent resetting corresponds to vortex
reconnection. Another time scale defined by the connection coefficients, responsible for
noncommutativity of Euler and Euler—Lagrange derivatives, is shown to be on the same order
during reconnection. This introduces a novel singular perturbation problem of connection anomaly
underlying reconnection. @003 American Institute of Physic§DOI: 10.1063/1.1608009

The Euler equations, a totally inviscid form of the pressure and for kinematic viscosity. Using another depen-
Navier—Stokes equations, are known to possess a humber dént variable called impulse, which is not incompressible
inviscid invariants. In particular it is well known that the in general, we may alternatively describe time evolution of
vortex lines are frozen in fluids. Topological changecon- the flow by the following equations:
nection is not possible in smooth solutions of the inviscid
flow, but is possible in the presence of viscosity. Recently, a lVJr(u.V)W: —(Vu)Tw+ vAw, 2)
framework of the Navier—Stokes equations that is suitable t

for the study of topological properties of vortex lines in vis- \yhere T denotes matrix transposéSee Refs. 5 and BThe

cous flow has been developed by one of the autfidrs. usual incompressible velocity is obtained by solenoidal
This Eulerian—Lagrangian framework is based on a genpyojectionP of w

eralization of Weber’s transforfisee Eqs(3) and(4) below]
to viscous fluid. It incorporates nonlocal interaction and vis- U= P(w). (©)
cous diffusion in a multiplicative fashion. This formalism has This formalism is sometimes referred to as the impulse

been developed for the analytical Navier—Stokes _th_é‘o"ry. formalism? (See also Refs. 6 and 7 for its application bound-
Nevertheless, with purely analytical methods it is difficult to ary layer flows)

analyze long time evolution of the Navier—Stokes equations ~ |+ should be noted thaw can be represented in a multi-

under which vortex reconnection actually tak_es place. _ plicative fashion as follows:
We present here results of an Eulerian—Lagrangian .
analysis using numerical simulations of the Navier—Stokes W=(VA)'v. (4)

equations. The question we raise here is to ask whether qf, this decompositionA denotes the diffusive Lagrangian

not this Eulerian—Lagrangian formalism captures vortex "®1abel andv the virtual velocity, which obey the following
connection successfully, and if yes how. More Spedﬁca”y’equationéz

the purposes of this paper aii¢ to search for characteristic
time scales associated with vortex reconnection in this for-  JdA
malism and(ii) to give them a dynamical significance. A 7t TU-V)A=vAA ®)
novel kind of singular perturbation problem is associated
with (ii), which can cover broader class of physical probleménd
such as fast reconnection in magnetohydrodynamics. EY;
The Navier—Stokes equations and the continuity equa- - +(u-V)v=2vC:Vv+ Ay, (6)

tion read
where theith component ofC:Vv is Cy, i (dv,/dx,) and

Crnki = (9% 1IA) (3°An ] dx;9x). It is important to bear in
mind thatC measures noncommutativity between the Euler
_ _ _ _ and Euler—Lagrange derivativegV s ,Ve]=Cp V. On
and divu=0 where with standard notatianfor velocity, p top of w(x,t)=VXu(x,t) we define virtual vorticity by
{(x,t) =VaXv(x,t). Equations(3), (4), (5), and(6) form a
3Electronic mail: ohkitani@kurims.kyoto-u.ac.jp closed system which is equivalent to the Navier—Stokes

Ju
E+(U'V)u=—Vp+vAu, (1)
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equations. We note that derivatives with respectAtare 14 ' . - -
defined using YA) %, see Refs. 1-3 for details.

Two technical points of the numerical method that
should be mentioned are as follows. As a basic equation, we
have rewritten2) as

ow

2= V(W u)+uXe+vaw, @)

0(1),01)

because fast Fourier transforms can be implemented effi-
ciently this way. Another aspect is that it is not easy to
evolvev becauseéC, a cubic quantity irA, is cumbersome to
handle. Instead of dealing withdirectly, we have solved for

displacement vectof=A—x. It satisfies a passive equation 0 : p o p 10
(@) t

o€
— UV e=—ut AL (8)

140

Once ¢ is obtained, the connection coefficien@sand all 120 |
other quantities of interest can be obtaing@dosteoriby
matrix inversion. In practice, we have solvéd and (8) S 100
simultaneously. A 2/3-dealiased pseudospectral method was &
employed under periodic boundary conditions. The grid £
points used were 138and 256. Time marching was per- S
formed with a fourth-order Runge—Kutta scheme. 3
We have chosen an initial condition of two orthogonally &
placed vortex tubes, which was examined numerically to
study in detail vortex reconnection with conventional meth-
ods of analysi€.At the Reynolds numbers covered here the 0 . . , .
physics is not new, but we intend to give a novel diagnosis of (b) 0 2 4 6 8 10
it by the Eulerian—Lagrangian formalism.
Once ¢ is known we can comput& A by JA, /0"Xj FIG. 1. Time evolution of(a) enstrophy and virtual-enstrophy and ()
=(dli/ax;) + & . Ininviscid fluids the determinant &fA is maxXw| (solid line) and maf(| (dashed ling for case 1. In(a), Q(t) and
constant and its invertibility is maintained automatically un- Q.(t) are denoted by a solid line and circles for case 1 and by dashed line
der time evolution. In the case of viscous fluids the determja"d sauares for case 2.
nant is not preserved in genefalherefore it is possible that
it becomes zero and the matrix can become noninvertible
under time evolution of the Navier—Stokes equations. Increases in time and attains its maximum arourd9.0,
deed, according to our numerical simulation, this actuallywhereas withv=1x10" 2 it basically decreases with time
takes place. In order to ensure the invertibility it is necessarynonotonically. In the latter case, viscosity is too large for
to reset€=0 when the determinant becomes very small.intense vortex stretching to take place. In both cases the
Practically we reset if |det(VA)|<e, wheree is a preas- virtual-enstrophy basically tracks the enstrophy well because
signed small parameter. Since the equation{fds passive, of frequent resetting. The enstrophy is larger than the virtual-
the resetting procedure does not affect the evolutiom.of enstrophy for most of the time. It should be noted however
Also, it has been shown that propertiestodire independent that this is not always true, e.d5 3.0 for the case 2.
from € (see Ref. R In Fig. 1(b) time evolution of majw| is compared with
The values of viscosity chosen are=4x 102 for 256 that of ma¥| for case 1. As in Fig. (B) they are tracking
grid (case 1 v=1x10"2for 128 grid (case 2. It turned out  with each other. These local quantities show strong peaks
that for an accurate calculation 6 we need to make the betweent=3.5 and 5 During this time interval vortex re-
Reynolds number lower than commonly adopted to ensureonnection is taking placésee below. Plots for case 2 is
the accuracy of velocity and vorticity. More precisely, similar to Fig. 1a), except that the peak value is smaller by
kmax/Ks=1.4 may be sulfficient for resolvin@, but not forC.  a factor of about 5@figure omitted.
In all the calculations presented here we hayg,/k=2 Isosurface plots ofw| and|{| at timet=3 are shown in
which ensures accuracy of both and C. HereKk,,, is the  Fig. 2. This is the time two vortex tubes begin to form
maximum wave number arkj, is the Kolmogorov dissipa- bridges. A more careful examination reveals that there is no

60 r

tive wave number. big difference betweetw| and|¢, although the bridges are
In Fig. 1(a we show the time evolution of enstrophy more prominent ife| than in|Z|.
Q(t)= 3(Je|?) and virtual-enstroph®,(t)= (14> for the In Fig. 3@ the time evolution of the mean square dis-

two different values of viscosity. Herg) denotes a spatial placementE,(t) = 3(|€|?) is shown for cases 1 and 2. The
average ovef0,27]3. With »=4x10 3 the enstrophy in- threshold is chosen as=0.01. We have checked that the
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FIG. 2. Isosurfaces plots dé)| (darker gray and|{] (lighter gray att=3
for case 1. 0.8 r
0.7
- 0.6
frequent resetting occurs at the same time interval with<1 05}
e=0.1, 0.001. In view of an identityd vol(A)=det(VA) 04}
d vol(x) (dvol=a volume element in each spacthe van- 03 |
ishing of detyA) is interpreted roughly as unusually intense 0o b
particle diffusion, connecting infinitesima element with 0'1 I
with finite x element. In the early stage<1.5 the difference '
is small between the two cases. After that, a significant dif- 0
. T 0 1t 2 3 4 5 6 7 8 9 10
ference is seen between the two cases. The resetting interv (®) t

is smaller in case 1 than case 2. Correspondingly the magni- ) ) ) )

tude is larger in case 2 than in case 1. In both cases, resetti h- 3. Time evolution ofa) the spatial averag, (1) of the displacement
9 . ! QQd of(b) time intervals of resettindt; against; . Case 1 is denoted by a

procedure becomes very frequent around the intervatB.5 sojid line and case 2 by a dashed line.

<05, during vortex reconnectiofsee below.

In order to extract the time scale associated with the
resetting more quantitatively, we define the resetting inter-
valsAtj=tj—t;_q, forj=1,2,... where &t;<t,<--- are
times at which resetting occurs. In Figb3 the time inter-
vals of resetting are shown. For case 1 there are two dips
time intervals at=4 andt=9. The former corresponds to f
vortex reconnection and the latter to the maximum of total
enstrophy. Resetting occurs quite frequently around the
times gnij the .t'm? scale_ IS O§5\t.<k(]).l. For Cas? 2,fa %'p () ! was examined for the two caséigure omitted. It
aroundt=4.5 is also noticeable with a time scale of a Outfluctuates violently in time, ranging from 0.01 to 100. It is

0.2t 'S Interesting to note t_hat more freql_Jent resettlr‘gsdiﬁ‘icult to tell when reconnection happens by solely looking
occur with a smaller value of viscosity, reflecting that vortex

reconnection is not a purelv Viscous bhenomenon at it. Nevertheless, arourtd=4 and 5,7-~0.1, which is on
X purely P - ... the order of resetting time interval found above. It should be
It may be in order to compare the above findings with

noted that ¢c) ~* fluctuates aroun®(1), in spite of a small

thos_e d_escnped in Ref. 9 There, the start .Of vortex reCONgalue of viscosity. This suggests a new phenomenon of con-
nection is defined as the time when two vortices form a local o oY 012 gt

dipole att~3. The jet velocity associated with the dipole hection anomaly, i.e., finiteness ﬁ’fsun‘"o'&f‘o
attains maximum at~ 3.6 (formation of bridge. The vortic-  Whenv»—0 is underlying the reconnection process. It is simi-
ity attains a maximum dt= 4_3(formation of new top0|ogy lar to dissipation anomaI}(i.e., finite energy dissipation
The local maximum is no longer located in the remnantvhen»—0), a key issue in turbulence.

contact zone at~5.2. It should be noted that the very fre- ~ We note that the reciprocal Kolmogorov time scale
quent resetting takes place between the formation of bridgér,) "= Veqs/ v=v2Q(t)~4, that is,r, ~0.25 att=4 for
and that of new topology. This suggests that the presertase 1, wheres is the total dissipation rate of energy. It
method captures cut-and-connect type reconnection successiould be noted that this time scale, formed from the total
fully. enstrophy, is comparable to, but smaller thar)(! at

Now, we consider the connection coefficiel@swhich
control the viscous effect on the evolution of They are
rFIated with the curvature of particle trajectories in the flow.
oting thatC has a dimension of inverse length, we may
orm an inverse time scale asd) = (v/27) (max/C|)2.
Here |C|?=Cp,.iCmi and the prefactor 1/27 comes from
fhe number of components @. The inverse time scale
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reconnection is absent. Consistently, no resetting has been
observed during the disintegration of these layers. This
shows that the present method distinguishes vortex reconnec-
tion from other effects of vorticity diffusion. These results
will be reported elsewhere. Detailed comparison with previ-
ous studie¥ " will also be reported in the future.
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