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A note on regularity conditions on ideal magnetohydrodynamic
equations
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A regularity criterion for ideal magnetohydrodynamical equations is known to be given in terms of
the vorticity and the current density fields �Caflisch et al., Commun. Math. Phys. 184, 443 �1997��.
A simple argument which utilizes Weber transform associated with cross helicity invariant shows
that if the magnetic field is smooth, then so is the velocity field, thereby suggesting some room for
improving the above criterion. © 2006 American Institute of Physics. �DOI: 10.1063/1.2196242�
One of the longstanding problems of ideal, incompress-
ible fluid motion is whether it leads to formation of singu-
larities in finite time. There are many mathematical and nu-
merical works which study the possibility of such
singularities for 3D Euler equations. However, so far no con-
clusive result has been given analytically as to their presence
or absence.

As for ideal magnetohydrodynamic equations, at present
we have no mathematical theory which guarantees the exis-
tence of solutions to the system either. Some works report
numerical simulations suggesting singularity formation in fi-
nite time, for example, Ref. 1. There are some relevant the-
oretical studies,2,3 but in general cases, singularity formation
in magnetohydrodynamics remains an open problem. In the
magnetohydrodynamic cases, a satisfactory mathematical
theory is lacking to rule out singularity formation even in
two dimensions. In the studies,4,5 some flow patterns ob-
served in numerics are assumed and discuss regularity for the
restricted class of flows. The study of singularity formation
in magnetohydrodynamics is important not only mathemati-
cally, but also physically because singularity, if present, can
cause magnetic reconnection.

The purpose of this Brief Communication is to remark
about regularity conditions for ideal magnetohydrodynamic
equations. We pay attention to a correspondence between the
Eulerian and the Lagrangian representations.

With standard notations, the 3D Euler equations for the
velocity u= �u ,v� satisfy

Du

Dt
= − �p ,

� · u = 0,

where p is the pressure. It is well-known that for flows start-
ing from smooth initial conditions, as long as

�
0

T

sup
x

���dt � � ,

smoothness is guaranteed on the time interval 0� t�T as
proved by Ref. 6. In other words, the vorticity alone controls
regularity of solutions. On the other hand, the classical

Cauchy formula states that
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� = �0 ·
�

�a
x�a,t� ,

where x�a , t� denotes a position at time t of a fluid particle a.
We recall the Jacobian matrix �xi /�aj dictates the transfor-
mation between the Eulerian and Lagrangian representations
and its determinant is unity.

Combining with the above Beale-Kato-Majda criterion,
we deduce that as long as the correspondence between the
Eulerian and Lagrangian representations is nonsingular,
smooth solutions persist for 3D Euler equations.

As another example we consider 2D Boussinesq equa-
tions,

Du

Dt
= − �p + �0

�
� ,

D�

Dt
= 0,

� · u = 0.

Unlike 2D Euler equations, scalar vorticity �=�xv−�yu is
not conserved for this system

D�

Dt
=

��

�x
,

and for this reason the regularity of Boussinesq equations is
an open problem. A counterpart to the Beale-Kato-Majda cri-
terion is given by

�
0

T

sup
x

����dt � � ,

see, for example, Refs. 7 and 8. On the other hand, a coun-
terpart to the Cauchy formula is the following first integral:

��� = ��� ·
�

�a
x�a,t� ,

which is just another way of stating that � is conserved. This
states that the skew gradient of temperature ���= ��y� ,
−�x�� is represented by components of the Jacobian matrix.
Therefore, also in the case of 2D Boussinesq equations, we

deduce that as long as the correspondence between the Eu-
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lerian and Lagrangian representations is nonsingular, smooth
solutions persist.

We now consider the main system of 3D magnetohydro-
dynamic equations, which may be written as

Du

Dt
= − �p + �� � B� � B ,

DB

Dt
= B · �u ,

� · u = � · B = 0,

where B denotes the magnetic field and J=��B is the cur-
rent density. In Ref. 9, an analog of the Beale-Kato-Majda
criterion has been established which states that, as long as

�
0

T

�sup
x

��� + sup
x

�J��dt � � , �1�

smooth solutions persist.
The theorem has been proven by careful mathematical

analyses after symmetrizing the 3D magnetohydrodynamic
equations with use of Elsasser variables,

z± = u ± B .

Note that a curl of z+ suggests the integrand in the criterion
in �1�. A well-known analog of the Cauchy formula is

B = B0 ·
�

�a
x�a,t� , �2�

which states that magnetic lines are frozen in fluids. It im-
plies that as long as the magnetic field is regular, the corre-
spondence between the Eulerian and Lagrangian representa-
tions is smooth.

In view of experiences with the two previous examples,
we are tempted to infer that the magnetic field alone controls
regularity. However, in Ref. 9, to ensure regularity, condi-
tions are required both on the velocity �vorticity� field and
the magnetic �current density� field.

A natural question is the following: is the magnetic field
not sufficient for regularity of 3D magnetohydrodynamic
equations? While at present we are not able to show a crite-
rion like Beale-Kato-Majda’s solely in terms of B, we show
by taking into account conservation laws appropriately that if
the magnetic field is smooth, so is the velocity field. The
essential point in the argument is utilization of all the known
first integrals.

On top of total energy, the magnetohydrodynamic equa-
tions conserve two more invariants, that is, two kinds of
helicities. One is magnetic helicity,

� A · Bdx

and the other one is cross helicity,

u · Bdx .
�
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To each helicity conservation there corresponds respec-
tive Weber transform. Weber transform for magnetic helicity
is well-known and straightforward. To see this, it suffices to
write down the equations for vector potentials A for the mag-
netic field,

DA
Dt

= − A��u�T − �� .

It follows that the corresponding Weber transform takes the
following form:

A = P�A0��a�T� ,

where P is solenoidal projection.
The lesser-known Weber transform for cross helicity is

due to Refs. 10 and 11 �see also Ref. 12�. We briefly describe
it following the treatment of Ref. 11. We introduce m by

Dm

Dt
= m · �u + J ,

�3�
� · m = 0.

It follows from this definition that

D�m · �S�
Dt

= J · �S ,

thus m has a meaning of a current flux across unit area per
unit time.

If we define a generalized velocity by

ũ 	 u + B � m ,

then after some manipulations we obtain

D

Dt
�ũ ·

�x

�ai
� =

�

�ai
� �u�2

2
− p� .

It is readily verified that

u = P�ũ0�a���a�T + m � B� .

The fact that ũ enjoys Weber transform implies that corre-
sponding generalized vorticity defined by

�̃ = � � ũ

satisfies

D�̃

Dt
= �̃ · �u .

Using this, we are going to show that if the magnetic field B
is smooth with respect to a, then so is the velocity u.13 In
view of �2� we find that �xi /�aj should be smooth except for
a slim possibility that the dot product cancels singular con-
tributions. Then, by

�̃ = �̃0 ·
�

�a
x�a,t� ,

we find that �̃ is also smooth.
We consider each term on the right-hand side of

˜
� = � − � � �B � m� . �4�
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Equation �3� can be solved by a method of variation of
constant as

mi�t� = �mj�0� + �
0

t

Jk�t��
�ai

�xk
dt�� �xi

�aj
. �5�

By

�

�xi
=

�aj

�xi

�

�aj
,

smoothness with respect to a implies smoothness with re-
spect to x. Then, J is also smooth since J=��B. Because of
the incompressibility condition

��x1,x2,x3�
��a1,a2,a3�

= 1��0� ,

the Jacobian matrix �xi /�aj is invertible and the inverse ma-
trix is also smooth. We see that m is smooth since each term
in �5� is smooth. Therefore, each term in �4� is smooth, and
we deduce that vorticity remains smooth.

We have seen that as long as the magnetic field is
smooth, no singularity can show up in the vorticity field.
This suggests that we need to monitor growth of the mag-
netic field in numerical studies purporting singularity forma-
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tion. In Ref. 9, while the condition is imposed both on the
velocity and the magnetic fields, it concerns only their first
derivatives, that is, the vorticity field and the current density.
Here, our assumption is made only on the magnetic field, but
higher derivatives are required. It may be of interest to try to
obtain a functional analytic bound by dealing with the mag-
netic field only.
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