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We consider the two-dimensional Schrodinger —operatbty(b)=-d?/dx?
+[(1/\/T1)(a/(9y)—b(x)]z—gv(x,y), whereV is a non-negative scalar potential de-
caying at infinity like (1+|x|+|y|)™, and(0,b(x)) is a magnetic vector potential.
Here, b is of the formb(x)=[}B(t)dt and the magnetic fiel® is assumed to be
positive, bounded, and monotonically increasingRoiithe Iwatsuka modgl Fol-
lowing the argument as in Refs. 15, 16, and[Raikov, G. D., Lett. Math. Phys.,
21, 41-49(199)); Raikov, G. D, Commun. Math. Physl55 415-428(1993;
Raikov, G. D. Asymptotic Anal.16, 87—-89(1998], we obtain the asymptotics of
the number of discrete spectraldf(b) crossing a real numbey in the gap of the
essential spectrum as the coupling consnénds to #o, respectively. ©2005
American Institute of Physic§DOI: 10.1063/1.1897844

I. INTRODUCTION

We consider the two-dimensional Schrodinger operator with electromagnetic field

& 1 9 2
Hy(b) = - w2 (ﬁ@ - b(X)) —gV(xy).
Here,V(x,y) is a scalar potential decaying at infinity aff@,b(x)) is a magnetic vector potential
given by the formb(x)=[3B(t)dt for a positive magnetic field, which depends only on the
variablex of (x,y) € R?.

The purpose of this paper is to investigate the number of discrete speciggofcrossing a
real number\ in the gap of the essential spectrum as the coupling constdahds to o,
respectively(the precise formulation is given belgw

We fix some notations. We denote the set of all integerZbgnd denote the set afon-
negativeintegers byN. We denote the cardinal number of geby #A. We denote botla/ 9x and
d/dx by 4, etc. We denote by¥(€,Q’) the set of allQ)’'-valued, C*-functions on(, and by
Cy(Q) the set of all compactly supported, smooth functions{®nWe use|-| to denote the
Euclidean norms and use the notatiof®=(1+|2? for any ze R" and (x;y)=(1+|x?
+|y[2)Y2 for any (x,y) e R"X R™. We denote byQ(z,r) the open cube of radius centered ar,
with sides parallel to the coordinate axes. We denote by @pdlae spectrum of any self-adjoint
operatorA, and byN(a <A< B) the dimension of the range of the spectral projectionXan the
interval (a, 8). The notationdN(A> a), N(A< B), etc., are defined similarly.

To formulate our results we make the following assumptions for the magneticiafd the
electric potentiaV.

(B.1) The magnetic fiel® is a real-valued, smooth and monotonically increasing functioRon
Moreover, there exist positive numbeBs such thatB_<B,, and lim_....B(x)=B. hold,
respectively.
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(B.2)In addition to(B.1), there exists a positive numbbt such that, for any multi-index, the
estimate|df(B(x)—B.)|<C,(x)™ holds for #=0, respectively. Here, the consta@t, is
independent ok, andB, are as in(B.1).

(V.1) The scalar potentiaV/ is a non-negative smooth function &?. Moreover, there exists a
positive numbem such that, for any multi-index, the estimatéd?V(z)| < C (2™ holds
for all ze R?. Here, the constar®, is independent of.

(V.2) There exists a positive numb€rsuch that the estimaté(z) =C(2)™™ holds for allze R?.

(V.3) Let (r,w) € [0,%) X St be the polar coordinates afe R?, i.e., r=|z] and w=2/|z. There
exists a measurable, bounded and positive functioon the unit circleS' such that
lim,_.. r'"™V(2)=v(w) holds for anyw=2/|2| € S".

(V.4) In addition to(V.1), we have the limit

lim lim supu®™Vol{z e R?(1-&)u <V(2) < (1 +&)u}=0.
€10 wlO

Here, “Vol” stands for the Euclidean volume, andis as in(V.1).

Under the assumptionéB.1) and (V.1), the operatorHy(b) is essentially self-adjoint on
C5(R?) for any ge R [see Avron, Herbst, and Simdd978]. In what follows we identify any
closable operator with its operator closure if there is no fear of confusion. lwai{d8&bH
investigated the spectral properties of the unperturbed opeigtby, which is calledthe lwatsuka
model by some authorg§Mantoiu and Purice(1997, Exner and Kovik (1999, and Shirai
(2003)]. Iwatsuka’s result says that, und@.1), the spectrum ofHy(b) is absolutely continuous
and SpetHo(b))=U;_[A,,A;] holds, where we seA;=(2n+1)B, for any ne N, respectively,
and for notational convenience, we get,=AZ;=0.

Under (B.1) and (V.1), the multiplication operatoV is relatively compact with respect to
Ho(b), so the essential spectrum ldf(b) coincides with that oH(b) for any g [see, e.g., Reed
and Simon(1978, Sec. XIll.4]. In particular, the operatdf,(b) may have discrete spectee.,
discrete eigenvalues of finite multiplicjtyn the gaps of the essential spectrum.

We make some additional notations. Lebe as in(V.3). SetS.={z=(x,y) € R?||7=1, +x
=0} and Setf)i:fsiv(w)ym dw, respectively. For anj e R\SpecHg(b)) and for anyl € N, set

1 0 ~ - —
1/|()\) = ZT(B+U+|A|+ _ )\|—2/m+ B_U_|A| _ )\| 2/m).

For any interval\, u] C R\SpecHy(b)) and for anyl € N, set

1 AP o A .
n(\ul)) = 271_m(B+U+f |A| _t| 2L dt + B—U—f |AI _t| 2 1dt)-
A A

If we assume that €A, <N<u<A,,; for some neN, the sumsZ,_y»(\) and
3 cnv([N, 1)) converge when &cm< 2, and the relationy([A, x]) =y (x) = 1(\) holds whenl
=n+1.

We denote by\l;f()\) the number of eigenvalues &f.y (b) crossing\ asg’ increases from
zero tog, i.e., Ng()\):20<g,<g dim Ker(H.4 (b)—\), respectively. Note that the sum above is
meaningful under the assumptio(®.1) and (V.2), since the standard perturbation theory shows
that for every fixedg>0 the set of values of’ € (0,9) for which dim KeXH.4 (b)-\) is not
equal to zero is finit¢see, e.g, Reed and Sim¢h978].

The main results in this paper are the following.

Theorem 1.1:Let A;_; <\ <A, for some re N. Assume that (B.1), (B.2), (V.1)—(V.4) hold.
Moreover, assume that the constant m in (V.1) sati€fiesn<2. Then we have

lim g 2™N5(N) = 2 w(n). (1.2

g— I=n

Remark 1.2: In fact, the conclusion of Theorem 1.1 is still valid under weaker conditions on
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B and V in the case of <A,. See Lemma 3.8 in Setl below

Corollary 1.3: Let A;_;<A<u<A, for some n=eN. Under the same assumption as in
Theorem 1.1, we ha\,liarng_,w g Z™N(N < Hg(b) < w) === m([\, v)).

Theorem 1.4:Let A] <\ <A_,, for some re N. Assume that (B.1), (B.2), (V.1)—(V.4) hold.
Then we havéimg ... g‘z’mN (N)=Zo<i=ny(N).

Theorem 1.5: Let A;_ 1<)\<,u,<A for some e N. Assume that (B.1), (B.2), (V.1)—(V.4)
hold. Moreover, assume that the constant m in (V.1) satisfies2mThen we have
liminfy .. g2™"N(N < Hgy(b) < ) =Zi=pm ([N, w).

At present, the author has not obtained the upper estimaté(fos Hy(b) < w) in the case of
m>2, nor the results for the case wi=2.

Remark 1.6

(1) The study of eigenvalues in the spectral gaps of the Schrédinger operators has a long history
[see, e.g. Birman (1991) Alama, Deift, and Hempel (1989Hempel and Levendorski
(1998) and references therein]. In the case of constant magnetic fields (i.e., the case of B
=B_ in our notation) Raikov (19911993 has obtained the strong-electric-field asymptotics
as in Theorem 1.1 and Corollary 1.3 above when the scalar potential decays slowly at
infinity (i.e., the case o@<m=2 in our situation). Moreover, for a class of nonconstant
magnetic fields which includes the Iwatsuka modRdikov (1998 1993) shows that the
asymptotics of NMN) are Weylian, i.e., the asymptotic relatioimg_... g‘lNg()\)
=(1/4m) [r2V(x,y)dx dy holds when the scalar potential decays rapidly (the case®nn
our situation)

(2) Hempel and Levendorski1998) [see also Levendorsl(&995 '1996)] study the asymptotics
of Nj(\) for the magnetic Schrodinger operators—gV=(—y- —1V-a)2+W-gV on [3(R")
under rather general conditions oa,W, and V. Especially V is not assumed to have a
definite sign. They assume, however, the existence of the density of statéd
=limg_., N(H|QR<)\)/V0I(QR) for the unperturbed operator Hfor which the asymptotic
coefficient as in Theorem 1.1 is expressed as

Mo(w)yr™™m
lim g™"™N(\) = dzf " dp(t,H)
g—x R" \

when \(2)=v(w)r ™ at infinity and0<m< 2, for example. HergQg is a cube of side length

R and we denote by|15|R the Dirichlét realization of H on @ On the contrary, the Iwatsuka
model has no canonical density of states because of lack of spacial symmetry of the magnetic
field B. Thus, at least, we need modify their argument. Indeed, although the isotropic density
of statesp(\,Ho(b))=(B,/4m) #{l € N|A) <\}+(B_/4m) #{l e N|A; <A} for the Iwatsuka

model do exist under the assumption in Theorem 1.1, the quantity

)\+0wrm
dx dy f dp(t,He(0) = —2 > |Af xl'z’”‘+—— > AT =N,
JRZ 4 2|>n+1 I 472120 !

where? = [ s (w)?™ dw, does not give the correct asymptotic coefficignt), which can be
expressed as

Mo(w)r™™ Ao(w)yr™™m
J dx dyf dp.(t,Ho(b)) + f dx dYJ dp_(t,Ho(b)),
{x=0} \ {x=<0} A

wherep.(t,Hq(b))=(B./4m) #{l e N|A] <t}, respectively
The organization of this paper is as follows: Sec. Il contains some preliminary results from
functional analysis and the theory of pseudodifferential operators. In Sec. Ill, we give a proof of

Theorem 1.1 in the case where the control painis fixed below the infimum of the essential
spectrum ofHy(b). In Sec. IV, we recall the spectral properties of the Iwatsuka mbiged) and
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derive some decay estimates for the band functions and the correspdgdimeyalizedl eigen-
functions ofHgy(b). Proofs of Theorem 1.1 for in general gaps, Theorem 1.4 and Theorem 1.5 are
given in Sec. V.

II. PRELIMINARIES

A. Variational principle

In this section we recall some results concerning the variational principle used mainly in Sec.
[ll. All the results are well known, so we omit proofs.

For any sesquilinear form, which is referred tofasn in the sequelg on a Hilbert space, we
denote its form domain b¥p(q). For any semibounded, closable fognthere exists a unique
self-adjoint operatoA, such that the operator doma{(A,) is a form core for the form closurg
and the relatiorg[u]=(Aqu,u) holds for anyu e D(A;). Throughout the paper, we identify such a
form g with the corresponding self-adjoint operatdy, and we denote the counting function
N(Aq<\) simply by N(g<\) for any real numbex.

The following result is a consequence of the min—-max prindipe, e.g., Reed and Simon
(1978, Vol. 1V), Colin de Verdierg(1986, Lemma 5.

Lemma 2.1: Le(H;,q;,D(q;)) be a triplet of a Hilbert spacét;, a semibounded, closable
form ¢ and the form domain ;) for j=1,2and let J be an isometry from(Q,) to D(q,) with
respect to norms df{, and H,, respectively. Suppose that there exist positive constangs€ G,
such that q[u]zclqz[Ju]—CzlluH%11 holds for all ue D(g;). Then we have {4; <\)<N(q,
<(A+Cy)/Cy) for anyA e R.

For anyb e C}(R2,R), we define

~ s 1 2
Hyb)=-—+ ———b —-gV(xy). 2.1
o(b) P ( 1oy (%, y)) gv(x,y) (2.
In what follows, for any open subsél in R?, we denote byHg(~b)|Q the minimal self-adjoint

realization ong(B) starting fromCg (), i.e., the Dirichlét realization ofiy(b) on €.
Proposition 2.2: [Colin de Verdiere (198@heorem 1.3)] Let r be a positive number and let
A be a real number. Then we have the upper bound

B
N((= =, A)[Ho(Bol o) < 5 % # {1  NI(@ + DBy < A},

where Hy(Bgx) is the operator of the fornmi2.1) with B(x,y):Box and g=0, and the lower bound

B
N((= 2, A)|Ho(BeX)|oor) = Z‘;(r -r)2#{l e N|(2l + 1)By < A - Cr;3}.

Here, the constant C is independent/ofr and r; with 0<r,<r.
The following result is the so-called IM8smagilov, Morgan, Sigal, Simgnlocalization
formula for the magnetic Schrodinger operatsse Cycoret al.].

Lemma 2.3: Lef) be an open subset &2 and let{€;};, be a locally finite open covering
of Q. Let {Xj}jes be a partition of unity subject to the coveriq@;} satisfying the conditions
supp()(J)CQJ ,0sx;<landy;e Cl(Q) for any je J. Moreover EJEJXJ 1 on Q. Assume that
be C°°(Q R). Then we have(Hg(b)u u)= EJEJ(Hg(b XU, XjW = (| VxI[2u,u) for any u
e CO(Q).

The next result follows from an elementary inequality¥2< eX?+Y?/¢.

Lemma 2.4: Assume th?itebcl(Rz, R) and0<e< 1. Then we have
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(1 - &)(Ho(b)u,u) = g(Vu,u) - (1 + L)l (b = b)ull? < (Hy(b)u, )
< (1+¢)(Ho(b)u,u) — g(Vu,u) + (1 + 1/e)ll(b - b)ull?
for any ue C;(R?).

B. Pseudodifferential operators

In this section we introduce a class of pseudodifferential oper@#¥0s) and recall some
basic results. All the results are well known in the theorpldOs, so we omit proofs.
For anyme R anda e C*(R?), we say that belongs to the class of symbol8iSthe quantity

Tap(@ = sup (6™t &) (2.2)
(.6 eR?

is finite for eacha, B e N. The seminorme‘enfg}aﬁ gives a Fréchet space topology on the space
S". We setS”=N,,.gS", which coincides withS(R).

The symbol classS" is an example of the class introduced by Be#ll875 [d(x, &)
=(x; &, (X, & =1 ,A=log({x; &™) and %’(P:S“ in his conventiof, or by Robert(1978, Dauge
and Rober{1987 [m=(x; ™, ¢=(x; &,¢=1,S(m; ¢, ) =S" in their convention Hence, by the
standard argument as in Be&l975 or in Hérmander1979 [gy Ay, 7) =|y|*+|7[*/(x; 2 in his
convention, one can find that, for ang e S", the associated DO,

Op(@u(x) = f f 2e\‘_l(x‘y)ga<%y,§>U(y)dy dé
R

is a well-defined oscillatory integral for amye S(R). Here, we set é=d¢/(27). Moreover,Op(a)
mapsS(R) to itself continuouslyso, extends to a continuous map fré&(R) to itself by duality
based ori.2-norm)]. For an operatoA from S’(R) to S’(R), we sayA € OpS"if A is expressed as
Op(a) for somea e S".

Note that the original results in Beal$979 are formulated in terms of the standard quanti-
zation [ [r2e' "1 Véa(x, £)u(y)dy dé. However, all the corresponding results below are still valid
for the Weyl quantization; to see this, it suffices to chase the proofs in BE3I$ carefully, or
use the relation between the standard and the Weyl quantizations as in Theorem 4.5 in Hérmander
(1979. For omitted proofs, we refer to Proposition 6.17, Theorems 6.1, 7.2, and 7.7 in Beals
(1975, and for Lemma 2.7 below we refer to Proposition 26.2 in ShyhB87. Although the
class of symbols considered in Shubin’s book is slightly defferent from the Sasbove, the
proof of Proposition 26.2 in his book is valid also for symbolsSthwith obvious modifications.

Lemma 2.5: Let nm’ € R. We have the following assertians

(1) If AcOpS"and Be OpS", then ABe OpS™™ and the symbol of AB has an asymptotic
expansion as usual

(2) If AcOpS", then A € OpS" and the symbol of ‘Ais expressed as usual

(3) If AcOp9, then A defines a bounded operator of(R). Moreover, if Ac OpS" for some
negative mthen A defines a compact operator of(R).

(4) If m>0 and ae S™, then there exists ¢ N such thaltOp(a)IIB(Lz(R))sCEmﬁsmsﬁm)(a)
holds for some constant €0, independent of a

(5) If AeOpS™, then A mapsS’'(R) to S(R) continuously

We introduce the weighted Sobolev spad® as the(finite) linear hull of the sefAu|u
eL%(R),Ac OpS™ equipped with the weakest topology which makes the mapL2(R)
—H™) continuous for allA e OpS™. The basic properties di™ are summarized as follows.

Lemma 2.6

(1) The space M coincides with B(R) topologically.
(2) The embedding§(R) CH™C S'(R) are densely and continuously for any m
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(3 H™CH™ holds if m <m, and (H™)’=H"™ topologically for any m

(4) 1f AcOpS", then A maps F*™ to H™ continuously for all mm'.

(5) For any mm', there exists A& OpS" which gives a topologically isomorphism fronf™"
onto H". In particular, H™ has the topology of a Hilbert space for any m

Lemma 2.7: Let Pbe a dense subspace&fR). Let m>0 and ae S™. Assume that O@) is
symmetric on @ and |a(x, §)| = C(x; &™ holds for some G 0. Then

(1) The operator O(H)|Do [the restriction of Opa) on Dy] is essentially self-adjoint, and
D(Op(a)|D0) coincides with{u € L?(R)|Op(a)u € LA(R)}.
(2) The space ICOp(a)|DO) equipped with graph norm coincides witH"Hopologically.

The following result concerning the eigenvalue asymptotic¥biOs of negative order plays
an important role in Sec. V.

Proposition 2.8: [Dauge and Robert (1987heorem 1.3)] Let i» 0 and let ac S™and a be
real valued. Assume that the following two estimates

Iizrg Iiml%up,uZ’mVol{(x, HeRIL-eg)u< ta(x,§ <(1+e)u}=0, (2.3
e M
are satisfied. Then we have(20p(a) > u)=(1/27)Vol{(z,£) € R?| +a(x, &) > u}+o(u ™) as
w0, respectively

Note that the condition§2.3) imply the condition(T) in Dauge and Robert1987 for the
volume functions Vdiz| +a(z)> u}. As an immediate consequence of Proposition 2.8, for any
m>0 and anyae S™, the following rough estimate,

N(xOp(a) > ) = O(u™2™), (2.9
holds asu | O.

Ill. PROOF OF THEOREM 1.1 IN THE CASE OF A<B_

A. Upper bound for  N(Hy(b)<\)
1. Partition of R? and sesquilinear forms

In this section, we give a proof of Theorem 1.1 in the case afA,(=B_). For generah
> A¢ the proof of Theorem 1.1 given in Sec. V needs this special case, as in Ra%99.

We introduce a partition dR? and a corresponding partition of unity. Ll§t={0,1, +,-. Take
and fix positive numberg, B, ando so that

. 1 1 M 1 1 1
0<o<min —, , : , a=—-20, B=—+o0.
Am 2-m m(1+M) 2m(m+1) m m

Note that <o <a<1/m<p. For any g>0, we setQy={(x,y) € R?||x|<g%,|y|<0’},Q.
={(x,y) e R?|g*< +x=<g’,|y|<gf}, respectively, Q,=R2\(Q,UQ,UQ) and O.={z
e R?|dist(z,€,) <g°} for any ke K. Let {¢ ).k be a partition of unity subject to the open
covering{()k}keK of R? satisfying the following:
(P.1) ¢ e C“(ﬁk), SUpf ¢y Cﬁk and 0< ¢, <1 hold, and for each multi-indey, there exists
C,>0 such that suprz|¢(2)] < C,g 7 holds for anyk e K. Moreover,S,.x¢z=1 holds onR?.
For eactk e K, we define a forn, by g u]=(Hg(b)u,u) = (=, .«|V 4[?u,u) with form domain
c;’;('fzk). Then it follows from Lemma 2.3 thatHg(b)u,u)== _«al ¢u] holds for anyu
e C3(R?). Considering the isometry from L2(R?) to @,_¢LA(€Y) defined byd(u)=&y_x(eU),
by Lemma 2.1, we find thali(Hy(b) <\) <=, «N(gc<<\) holds for anyg> 0.
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2. Estimates of N (gyo<\) and N(q,<\)

In what follows we use the symbots and C (possibly with superscripts or subscripte
denote various positive constants in estimates, which may vary from line to line.

Let 0< <1 and letJ={j € Z?|QoN Q(j,1) # B}. Let {x;};; be a partition of unity subject
to the open coveringQ(j, 1+n)};; of (), satisfying the following:

(P.2) x;€Cy(Q(j,1+m)), and O< x;=<1 hold, and for each multi-index, there existsC,
>0, independent ofj,», such that su,QRz|Xj(z)|sC777“7‘ holds for anyjeJ. Moreover,
3j.5x=1 holds onQy. _

For eachj=(jy,j,) € J, we introduce the auxiliary magnetic potentia(x)=['B(t)dt+B(j,)
X(x=j41), which gives the constant magnetic fidddj,).

Lemma 3.1: Let gjand A be as above. We have(dy<\)=0(g?™) as g— .

Proof: By Lemmata 2.3, 2.1, 2.4 and Proposition 2.2, we have the estimate

N(go < A) < 2 N((1 —&)Ho(b) = Cg(jy ™~ C,. <\)

jed

B(i
< X %(1 +7)?#{l e N|(1-¢&)(2 + DB(j;) <A +Cg(j)™+C,.}
j=(piped T

< Cpn(#39) +C g 2 ()" (3.1)
jed
for any smalle>0, where we usedP.2) and the fact that the estimaté¥(z)|<C(j)™ and
|b(x)—bj(x)|s|f}‘1(B(t)—B(j1))dt|$2(1+7/)B+ hold on Q(j,1+%) in the first inequality. By the
definition of J, there existsC>0, independent ofg, such that ﬂ(J)$CVoI(£~)O)ng“+B
=0(g?™) asg— =, sincea+B=2/m-o. The second term on the right-hand sides) of (3.1) is
less than or equal to

B g+g”  [dP+g” ~
Cg|_ (#™™Mdz=4Cg dx dy(x;yy™. (3.2
O 0 0

To estimate the above integral, we use the following elementary estimate>d and 1<A
< B, then there exist€,,>0, independent of,B, such that

CABI™ ifo<m<1,

A B
f dxf dy(x;y)m=<1C;AlogB if m=1,
o 7o C(AB™™M+1) if m>1.

Then, if 0<m<1, the rhs of(3.2) is estimated from above bg,g(g*+g”)(gf+g’)t™
=o(gH*PI-M) = o(g?™) asg— oc. Similarly, if m=1, the rhs 0f(3.2) is estimated from above by
C,09(g*+g”)log(g?+g?) =o(g***log g)=0(g”™M as g— =, and if 1<m<2, the rhs of(3.2) is
estimated from above bg,g((g*+g%)(gf+g?)*™+1)=o(g***AM™D)=0(g¥™ as g—». This
completes the proof. |

Lemma 3.2: Let gand A be as above. We have(dy <\)=0 for large g> 0.

Proof: For any ueCg(€;), we have gj[u]=(Hg(b)u,u)~g(Vu,u)=(Z.«|V¢l2u,u)
= (Hy(b)u,u) = C(g ™ +g ) lluli?=(Hy(b)u,u) —o(1)lul* as g— =, where we usedV.1), (P.1)
and the fact that 1mB=1-m(1/m+0)=—-mo<0. Then the min—max argument vyields that
N(q1<)\)sN(Ho(b)|51<>\+o(1)) holds as g—«. Hence we conclude thaN(HO(b)|5l
<A+0(1))=0 for large g since inf Sped—|0(b)|51):infuEcg@l)‘”uuzl(HO(b)u,u)Binf
Sped¢Hqy(b))(=B_>\) holds asg— « again by the min—-max argument. |
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3. Estimate of N (g.<M\)

Let 0< <1. For anyj=(jy,j;) € Z?, we set

Q={xy) Rj; < g% <j1+1,j,<gy<j,+1}, (3.3

Qj,={z e R?[dist(z,Q)) < 79} (3.4)

andJ,={j e Z?|Q, ﬂQ + D} Let{X,}JEJ be a partition of unity subject to the coven{@m}JEJ
of Q satisfying the following conditiongrespectively, for x

(P 3) +xj € Cy(Q;,), 0=<x;=<1, and for each multi-indey, there existsC,>0, mdependent
of g,7,j, such that supg2|d”x;(2)] <C,(7g?)" holds for anyj e J,. Moreover, S x=1
holds onﬁi.

In what follows, for simplicity, we omit the phrase “respectivélgr +)” if there is no fear of
confusion.

Let z=(x;,y;) be the center oQ; and we introduce the auxiliary magnetic potentials,

b; +(x) = f ’ B(t)dt + B.(x - X;), (3.5
0

which gives the constant magnetic fied.

Lemma 3.3: Let g J,. There exists G0, independent of g, and », such thatl(b—b; ,)ull
<Cg” M|u|l holds for any ue Co(Q;,), and for any g=1.

Proof: On Q;,, we have [b(x)-b; +(x)|<|fX(B(t -B.)dt| < C(g*~g”~ 9% M|x~xj|
<Cg Mot asg— o, where we usedB.2) in the second inequality. |

Lemma 3.4: Let gJ,. There exists G0, independent of ,jg, and » such that (1
-Cg @ 2)V(2)<V(z') < (1+Cg*?))V(z) holds for any zz' €Q,. Here Q stands for the
closure of Q L

Proof: Let z,Z' € Q;,,. If we write z=(x,y), then

IZ=|x=g*-g7-(1+7)g”=g*2 (3.6)

and |7 <|z|+|z-Z| <|z|+V2(1+ ) g’ <|z'|+Cg @ )| hold for largeg>0, so there exist€
>0, independent of,g,z,Z’, such that

Cz)<(Z)<C2 (3.7

holds. The first order Taylor expansion yields(z)- V(z)|<|z z|sup,VEQ |VV(W)|<C(1

+7)%g%” SURveq, (W)™ < C(1+7)?g™ 2 supy. o g, W= Cg @ 29\/(z) for largeg, where we

used(3.6) in the 'third inequality(V.1), (V.2) in the second and the fourth inequaliti€3,7) in the

last inequality. Here, the consta@tis independent of, 7,9,z andz’. This proves the lemmilL
Lemma 3.5: For any satisfying0<<e <1, we have

N(g, <\) < (1+ 8)25—*2 Vol(Q(e,1)), (3.8
leN

where we Seﬂ(;)(s,”:{ZE R2|£+x=0,(1-2)Af <\ +g(1+&)V(2)}. In fact, the sum on the rhs
of (3.8) terminates for eacls and g
Proof: By Lemma 2.1 andP.3), there exist€C>0, independent of,g, », such that
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q:lul= > (1- &) (Ho(bj ) x;u, x;u) = g(Vxju, x;u) = (1 + 1/e)ll(b = by ) x;ull® = C(5g”) 2l y;ull®
jeds

-CgZlxul®) = > ((1 —&)(Ho(b; ) xju, x;u) — 9 séudv| (xu, x;u) = o(1)ll Xjunz)

jeds in
holds for anyu e C‘S’(ﬁi), where we write suglV/| for sup,.oV(2)| for short. Then the min—max
theorem yields that
N(d <N) = 2 N((1 = 28)Ho(bj.) <X\ +gsupVl)

jeds in

<@+ 7P S # {1 e N|(L-20)AF <\ +g sugVl}

27 ]EJ+ in
B, +
=(1+7/)292"2—'2 > F(<1—28>Ar<x+g%udVI) (3.9
leNjeds in

holds for largeg, where we used Proposition 2.2 in the second inequality. H&i@),=0 if P is
true andF(P) 1if Pis false.

Set J,={j e J+|QJCQ(+) (e,)}. We claim that, if jeJ\d,, then F((1- —28)Af <\
+gsupy, [V|)=0 holds for largeg>0 uniformly inj,I. Indeed, for such, there existz e Q; such
thatz & (Ti“)(s N, i.e.,

(L-28)Af =N +9(1+¢)V(2). (3.10

Note that if we writez=(x,y) € Q;, then =0 since 0<o<a. Then we find that, for any
>0 fixed, (1-2e)Aj-\- g sup,, IV|=(1-2e)Af =N =g(1+&)V(2) +g((1 +&)V(Z) -supy, |V])
=g((1+&)V(2)-sup, |V|)>g((1+s)\77 (L+Cg“2)V(2)=g(e-Cg =)V =0 holds
for large g (unlformy in j,I), where we used3.10 in the first inequality, Lemma 3.4 in the
second inequality an¢V.2) in the last. This shows the claim.

Hence, it follows that, for largeg, the rhs of (3.9 is less than or equal tql
+7;)2(B+/27T)E|ENEJEJ Vol(Q) < (1+n)4B+/2m= .y VoI(Q(+ (g,1)). Then the lemma follows
since the seQ Y is empty ifl is so large thatl-2e)Af =\+Cgsupk |V|. [ |

Lemma 3.6: Assume that<B_. Then we havéim SURy— g‘z’mN ()\)<2,6Nv|()\)

Proof: Let Q{")(e,1) be as in the previous lemma. SI@I:VOI{ZeQ Y(e,)||Z <R} and I£
={z=(x,y) eQ”(s )|£x=0,|Z=R}. Then VolQ{"(s,)=Io+IZ+I;. We observe thatl,

1
<7R? andlf< Egz’m(A,-—)\) Z’mfsiv(w )?Mdw+0(1) ase |0 (the remainder term is uniformly

bounded ing), since by(V.3), for any smalle >0, there existR>0 such thair™(z)—v(w)|

<e if r=|Zl=R. Then, taking a limits | 0 in (3.8), we derive from Lemmas 3.2, 3.1, and 3.5 that
lim supy .. g'ZImN(Hg(b)<)\)$E|ENV|()\), by Lebesgue’'s dominated convergence theorem. The
lemma follows since\I(Hg(b)<)\):Ng()\) holds if \ <B_ because of the non-negativity uf l

B. Lower bound for  N(Hy(b)<\)

Let K and{Q,},.x be as in the beginning of this section. Applying Lemma 2.1 to the pair of
triplets (. ® LA Q) , 1, ®ckCo () and (LAR?),t,,C5(R?), where we setty[ @y xvi]
_EkeK(Hg(b)|Q Vi) for @yoklvy e 69keKCo(Qk) t[u]=(Hy(b)u,u) for ueCJ(R? and
J:®kerCo (2 )5 Srek()> Sickty € Co(R?), we have

N(Hg(b) <)) = 2 N(Hg(b)g, <M). (3.1
keK

As in the proof of Lemma 3.1, we can show that
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N(Hg(b)|q, < X) = o(g*™) (3.12
asg— o, using the upper estimate in Lemma 2.4. Also, as in the proof of Lemma 3.2, we can
show that
N(Hg(b)|o, <\) = N(Ho(b)|o, <\ +0(1)) =0 (3.13

holds for largeg> 0.
Lemma 3.7: For any &€ N and anye satisfying0<<e <1, set

O0(e,)={ze R £x= 0,1+ 2s)Af <\ +(1-£)gV(2)},

respectively. Then for any satisfying0<e <1, we have

N(Hg(b)lo, <N) = (1-2)* %2 3 Vol(QC e, 1) + o(g?™)
- leN
as g— o, respectively
Proof: Let 0<7<1 andj e Z2 Let Q; and Q;, be the cubes defined b{.3) and (3.4),
respectively. Setl; ={j eZZ|QJ-CEL_,,Q]-ﬂﬂf_:)(s,l)#@}, respectively. Leth; . be as in(3.5).
Then, as in the proof of Lemma 3.5, it follows from Lemma 2.4, Lemma 2.1, and Lemma 2.3 that,
for any e satisfying 0<e <1,

N(Hg(b)lo, <N) = 2 N((1+ 28)Ho(b)|Q; < X + g sugV])

jEJL in

=>(1-g)’—= ;2 Vol(Q;) # {I e N|(1+2e)Af <\ +gsupV|}

JEJ in
=(1- s)ZZ*IE > VOl(Q)F((1 +28)A} <>\+gséunVI) (3.14
ENJ ‘]1 n

where we used Proposition 2.2 with=¢ in the third inequality.

We claim that, ifj € J;, thenF((1+2e)A} <)\+g supb |V|) 1 holds for largey> 0 uniformly
in j,l. Indeed, ifjeJ., there eXIStSZeQ]ﬂQ (s I) ie. ze Q; and (L+2e) Af <\+g(1
-¢)V(2) hold. Then, by Lemma 3.4 an@/.2), we have\+g sup, |V| (1+2e)A} =g(supy, |V|
-(1-¢)V(2)) =g(e-Cg“2)V(z) >0 for largeg>0. This shows'the claim. So, for Iarwo
the rhs 0of(3.14) is bounded from below by

(1- 8)22 E E VOI(Q]

IENJ .]_

= (1 —8)228—*2 Vol((Q, N Q7 (e,))\{z e Q. N QT(g,1)|dist(z,00.,) < g))

leN
Cl—ma
= (1-¢)? +§)vO|(Q N Q) - (1—8)2B+ 2 Vol{z e O, N O (e,1)|dist(z,00,)
27N 27
<g°, (3.19

where we used the fact thaf, N O (e,1)\{ze Q. N O (e, )| distz,00) <g°} CU; 5 Q;,
where the rhs is a disjoint union, in the first inequality and used, in the last inequality, the fact that
the set Qiﬂﬂ(j)(s,l):{ZE Q.[(L+2e) Ay <\+(1-£)gV(2)} is empty for alll satisfying (1
+28)Af =\ +Cgl™ since sup,|V|=C(g*-g”) "= Cg ™ holds for largeg.
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From geometry, we have V(cﬂzor‘nﬂ( (e,1)<Vol Qg=<Cg**P=0(g”™ and VolQ-
NO(s,1)=Vol(Q;NO(s,1)=0 asg—o, where we used the fact th&d;C{ze R?||7
>g'B}C{ZE R2||z/=2Cg"™ and Q" C {ze R?|B_<\+Cg(2 ™™ C {ze R?||Z < Cg!™} for some
C>0. Hence, we have

vol(Q, N Q(e,1) = Vol (Q)(e, 1)) + o(g?™) (3.16
asg— o0, and we observe that

c gl—ma

> Vol{z e Q. N O (e,)|dist(z,00,) < g7} < Cg ™™gk = o(g?™) (3.17)
1=0

asg—, sinceQ,NQ(e,1)CQ, and 1-ma+B+o=2/m-(1/m-2(m+1)o) <2/m. Then the
lemma follows from(3.14—3.17). [ |
Lemma 3.8: Leh <B_. Under the same assumption on B and V as in Theorem 1.1, we have
limg_.. g72™NG () == cnm (V).
Proof: We can deduce froni3.11) and (3.12 and Lemma 3.7 that limigf... g —2imN* ()\)
=3, .nv(N) in the same way as in the proof of Lemma 3.6. Then, combining this and Lemma 3.6,
we have the result. [ |
Remark 3.9: Our proof shows that we can replace the assumptions on B and V in Lemma 3.8
by the following weaker assumptions
(B)’ In addition to (B.1), there exist M0 and C>0 such that/B(x)-B.|< C(x)™™ hold as
X— + o0, respectively
(V)" The non-negative scalar potential V belongs tHR), and there exist m+0 and C>0
such thatt<m<2 and |#*V(z)| < C(z)™™ el holds for all ze R? and for any multi-index satis-
fying |a| < 1. Moreover, the conditions (V.2) and (V.3) hold

IV. SPECTRAL PROPERTIES OF THE IWATSUKA MODEL
A. Direct decomposition

In this section we recall from lwatsukd 985 the spectral representation of the lwatsuka
Ho(b). We introduce the partial Fourier transfor(@u)(x, 7)=(2m) Y2[gre™ "Y7u(x, y)dy, which
defines a unitary operator drf(R?). We write L, for 7Hy(b).F 1. ThenL, has the direct integral
decompositiorLy=fL(7)d» acting on the Hilbert spacfiL%(R)d». Here, for eachy e R, the
fiber L(7) of L, is given by

2

o2 (1002, (4.9

L(m) =~
acting on the fibet.2(R) of [3L2(R)d7.

The spectral properties &f() are summarized as follows.

Lemma 4.1: [Iwatsulé&, Lemmas 2.3 and 3.5)] Assume that (B.1) holds. For egelR, the
operator L(7) is essentially self-adjoint on {TR) and has a complete orthonormal system of
eigenfunctiong¢,(-,7)}nen and the corresponding eigenvalu@s,(7)},.n SO that L(n) ¢+, 7)
=N en(-,m) and 0<\p(7) <Nq(7) <Ny(7) <---— 0 hold for each ne N.

Moreover, the following properties (1)—(5) hold for eacle N.

(1) A\y(m) is nondegenerate and depends analyticallyspn

(2) () is monotonically increasing i, andlim,, ... \y(7)=Aj; hold, respectively

(3 ¢n(-,m) belongs to ML(0)) and depends analytically on with respect to the graph norm
(IulP+lIL(0)ul?) 2,

(4)  @n(x, m) is a real-valued continuous function of x amdand moreovere,(x, ) is infinitely
differentiable in x for eachy and is analytic in» for each x

(5) The estimatée,(X, 7)| < ®,(x—b™Y(7)) holds for a functiond, satisfying0<®y(x)<---
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<P, (x)<---and

N (X) _ \’E(A;)lﬂ\l if |X| = \’/E/B—Y
" V2(Ap) ™ expl-B_(x| - Lp)?/2} if [x| = VAY/B-.

The next result follows easily frorB.1) and the definition ob.

Lemma 4.2: Under the assumption (B.1), the function b has the invetssb moreover, for
any xy, 7 we have Blx-b(n)|<|b(x)=7|<B.)x-b"(7)| and B|x-y|<[b(x)~b(y)|<B./x
-yl

For anyk e N, we introduce the Banach sp@&e{ue S’(R) |x“dfu e L%(R) if a+B=<k} with
norm [lullgk= (2 4 p=klIX*Pul?) /2.

Lemma 4.3: Let R denote either §(R) or S(R). We have the following assertians

(1) For any ke N, the operator I(7)"|p, is essentially self-adjoint antl(#) 5 =(L(7)|p,)*.
Moreover D(L(r;)R|DO)={u e LAR)|L(n)Kqu e LAR)}. Here, Lgq stands for the differential
operator L with domainS’(R).

(2) The Banach space (ID(77)R|D0) equipped with the graph norr‘rJ(77)'Z|D0 coincides with the

Banach space D_(O)R|DO) equipped with (equivalent) norm kh;(O)R|DO.

(3) If we denote by Bthe space as in the assertion (2) above, th&rc@incides with B as a
Banach space. In particular, the spacg.\B¥ coincides withS(R) as a Fréchet space

Proof: We note that.(7) e OpS, soL(7)Xe OpS* for any 7. It is easy to see that the symbol
of L(#)X satisfies the ellipticity condition as in Lemma 2.7 dr{dy) is symmetric orD,. Then, by
Lemma 2.7, the operatorL(7;)k|DO is essentially self-adjoint and D(L(n)k|Do):{u
e LAR)|L(7)Kqu € LAR)}. Also, we find thaL(v;)"|DO:(L(77)|Do)"|D0 sinceL(7) leavesD, invari-
ant. This implies thaL(n)k|D0C(L(1;)|DO)", which are both self-adjoint, so coincide. This shows
the assertiorfl).

The assertior(2) follows from Lemma 2.7 withOp(a)=L(#)* and with Op(a)=L(0)¥ since
the topology of the weighted Sobolev spat#sis independent of specifiop(a) by the(original)
definition. As a byproduct, we find thﬁl(L(n)k|DO) coincides withH%.

Finally we show the assertiof8). It is enough to show in the case gf=0. Note thatB_|x|
< |b(x)| <B,|x| holds for allx € R by Lemma 4.2, and each derivativelnfs bounded. Then there
existsC, >0 such that

IL(O*ul + lull? < Cllulaa 4.2

holds for anyu e D,. Conversely, by the asserti¢d) in Lemma 2.6, the operato®ss mapsH?,
which coincides witkD(L(n)R|D0) as stated above, {7(R) continuously providedr+ 8= 2k. This
means the inequalityx?d¢ull< C(IIL(0)ull+Ilull) for any u € Do. The density oD, completes the
proof. |

B. Exponential decay of ¢,

In this section, using the so-called Agmon estimate, we derive an exponential decay estimates
of the eigenfunctionp, and obtain the estimates for the band functign To the end of this
section, we seg(x, 7)=(x—b%(#))? for anyx, neR.

Lemma 4.4: Letye R and let () be as in(4.1). Assume that & L2(R) and there exists
x>0 such thatlle<9“?f| is finite. Assume thaiy in D(L(7)) satisfies the equatioriL(7)
-\n(m)¥=£f. Then there exists (&C,(«,B_.) >0, independent of;, such that

6?90yl < C,(1le 9 PF ] + [l )

holds if0< a< min{x,B2/8}.
Proof: This is an easy consequence of the method of Agmon estimates. However, we give a
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proof for the sake of completeness. Lege C*([0,)) such thaty(t)=t if 0 <t<1/2 x(t)=1 if
t=2, sup-o/x’(t)|=<1 andy is monotonically increasing. For any large>0, we setgg(X, 7)
=R%x(g(x, 7)/R?). We can find that

lor(x, 7| = min{RZ,g(x, n)}, |, 9r(X, 1) < 2Jx— b (n)| (4.3

and limg_... gr(X, 7)=9g(x, 5) for any (x, 7).

We may assume thatis not identically zero. The standard Agmon-type argument shows that
Re(e“%R(L(7) = \q(7))e°%) = (b= 7)?~ a?|,grl*~ = (B2~ 4a?)|x—b(7)|?~ A, holds for anya
e R, where we used Lemma 4.2 in the first inequality and “Re” stands for the real part. Then it
follows that

le*RyllledRfll = [Re(€2°%Ry, )| = (e°9Ry, (B2 - 4a®)|x b= ADeRf). (4.4
Take ¢ e C3([0,%)) so thatp(t)=1 if 0<t<1,¢(t)=0 if t=2 and¢ is monotonically decreasing.
Set ¢, (x)=p(B2g(x, )/ (2A})). Then we find that
(B2 - 4a?)|[x - b 2= A} = (1 - 82%/BY)A; - 6A o, (4.5

using the fact thag(x, 7) <4A./B? holds on supp¢,, andg(x, 7)=2A}/B? holds on supp1

-¢,), and we find from(4.4) and (4.5) that (1—8a2/B§)A;||e“9Rz,MI$||e“9Rf||+6A;e“”‘A;’BEII1MI,

sincegg(X, 7) <g(X, 77)<4A;/B§ holds on suppé¢,. Taking a limitR— o, we have the conclu-

sion. |
Lemma 4.5: Lex € N. There existsc=«,,> 0 such that

suple"gaj“]’@n(n)ll <o and suﬂ)ﬁi‘,’”)\n(nﬂ <o (4.6)
neR neR

hold if 0o’ < a.
Proof: We show this by induction on. We abbreviate the assertion o). Whena=0, the
first estimate in(4.6) follows from Lemma 4.1(v). The Feynman—Hellman formula yields that

I (1) = (@0, (9,L(1) @n) = 2(@n, (7= D) pp) . (4.7

Then the second estimate {4.6) follows from the exponential decay af, with respect tozn
—b. This shows thaP(0) is true.
We assume tha®(e) is true. First, under this assumption, we show the estimate

supll 95" en(n) | < oo (4.8
neR

Differentiating the equatiofiL(7)—\,(7))¢,(7)=0 with respect top in (a+1) times, we obtain

(L) =MD () == 2 Coua ™ (b= )2 =N (7). (4.9
0<a'=a
In the case of # n, taking an inner product witkp;, we obtain
D) =M@ o @) == 2 Conrw (057 (b= )%= Ne() T 0@y
0<da'<a

Then the Schwarz inequality yields that
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_ ’ 2
(o)< (Cusit D (2 (b= )%= A7) qon,<pj)|)

s (T2 (b= 72~ Mol )T @) 2 (4.10

for someC,,C/,>0 independent of;. Here, we introduced a positive numb&ras

5 {min{inanR(xm( 7 = (), inf crn(7) = Npea(9)} i n=2,
! nf,crOa(7) = Ny(7m) if n=1.

In the case of =n, differentiating the relatiorie,, ¢,) =1 with respect toy in (a+1) times,

we find that Z&j;”(pn,zpn):—Elga,gaCaJ,l’a/(a‘;"l‘“'<pn,&ﬁ;'q:n), where we used the reality of,,.
Then we have

(05 @) <Cp 2 105 glll a2 gl (4.11)

1<d'<a

for someC,>0 independent of;. Hence it follows from(4.10 and(4.11) that

155" a2 = 2 (05 o @) P < CLa2 2 1™ (b= 7P = () nl?

jeN O<d'<a

+<ca > 1 gl (pnll) (4.12)

1<a'<a

where we used the fact thép;(-,7)}j.n is an ONB inL%(R). By the assumptiof®(«), all terms
on the rhs 0f(4.12) are bounded uniformly im. Thus we have prove.8) underP(a).

Next, we apply Lemma 4.4 t¢4.9) with = a‘;*l%,f:fa:the rhs of(4.9). We may assume
that the constant in the exponent in Lemma 4.4 is equal#asince we can take small enough.
Then it follows that there exist€C,>0 such that the estlmatee"gaa+lgonll<Cn(||e"9f Il
+||o7a+1(pn||) The first term on the rhs is bounded uniformly snunderP(«), since the maximal
order of derivatives ofp, is less than or equal ta and the maximal order of derivatives ®f is
less than or equal ta+1 in the expression of,,. The second term on the rhs is also uniformly
bounded because ¢#.8) we have already proved. Hence, we have proved the first estimate in
(4.6) for P(a+1), assumingP(«).

Finally, we show the second estimate (#16) for P(a+1), assumingP(«). Differentiating
(4.7) with respect toy in (a+1) times, we obtain

PN = 285 @ (7=D)@) =2 D Coar (05 0 0% (7= b)), (4.13

O<a'<a+l

Since the maximal order of derivatives @f on the rhs 0f4.13) is less than or equal ta+1, the
uniform boundedness of the rhs @.13 with respect toy follows from the first estimate i(4.6)
for P(a) and the exponential decay property &jf 1o, we have proved above. Thus we have
proved all the assertion d(a+1), assumingP(«). This completes the induction. |

Lemma 4.6: LetBeN. For any aeN, there exists k=«(a,8,n)>0 such that
sup, < RlI€9HEIxon(7)ll <.

Proof: We show this by induction o. We abbreviate the assertion R§S). The assertion
P(0) is true by Lemma 4.5.

We assume tha®(g) is true. Then, for anyy, we have

19 2t pn(m) 17 = = (€29 ifeon, A yepn) = Ar((X = b~ (7)) €9 s on, K rpr)
= (9L (Nol(m) = (0= 1)) @, K0y
— 4k(3 ™ 3epn, (X = b)) €295 3 01), (4.14
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where we used the equati¢b-\,)¢,=0 in the third equality. The first term on the rhs(df14)
is bounded uniformly inp by the assumptio(8) and the second estimate .6) if we choose
x>0 sufficiently small(the choice is independent @f). The second term on the rhs @.149) is
bounded from above by e 93 eqlll(x—b(7))e9HK I el < 2wl€ 93 2+ 2xl(X
—b‘l)e"gﬁﬂ&fygonllz, which is uniformly bounded sincB(B) is assumed to be true. |

Lemma 4.7: For any nw,Be N, there exists a positive constart=«(a,3,n) such that
SURy, ) cr2l€9 % @q(X, 7)| <o holds

Proof: For anyy e N, we haveag(e"gafaj;gon):Eogy,sycw,(ﬁf Vre"g)(ﬁf”/&ggon). Since each
of the functionsd} ” &9 is of the form “a polynomial ofix—b™()) timese*9 ,” we obtain the

estimate

I (el < X C,plle S gl (4.15

OSy’Sy

for somex’ >0 satisfying 0< k' < « uniformly in #. The rhs of(4.15 is bounded uniformly iny
by Lemma 4.6 for an appropriate choice ®f«’. This means that theth Sobolev norm of

e"gafa’j‘]gon is bounded uniformly iny for eachy. Hence, Sobolev’'s embedding theorem yields that

Xsugekgafa;<pn| < CIe 9 pull + 39 ) ) (4.16

for someC>0. The above observation shows that the rh$40f6) is uniformly bounded iny if
we choosex small enough. This shows the lemma. |

C. Decay estimate of A\,

In this section, we derive the following decay estimate of the band funatjaat infinity.

Lemma 4.8: Assume thdB.2), holds. Then, for any & N, there exists >0 such that
|A;=N\n(b(X)| <C(x)™ holds if x=0. Similarly, if we assuméB.2)_ then the same estimate
replacedA,, by A, holds if x<0.

Proof: We mimic the proof of Lemma 4.1 in lwatsuka985. We first consider the case of
x=0. Let n be fixed and jks<n. Set L(s)=-d+Bi(x-s)? in L%R) and ay(s)
=(L(9)g;(+,b(9), ¢(-,b(s))).  Then, using the equation (L(b(s))e;(-,b(s)), k(- ,b(s)))
=\;(b(s)) 5, we find that

lai(s) = \j(b(s)) S| < f BZ(x = 9)% = (b(x) = b(9))2 ¢;(x, b(S)) ll(X, b(S))|dx
R

SZB,J {|x—s|
R
-s/2 y+s
=2B, f Iyl f (B, = B(t))dt
o y+s
+2B, f {Iyl ‘ f (B, - B(t))dt
-s/2 s

where we used the facts thiBZ(x—s)?—(b(x)—b(s))?|=|%(B,+B(t))dtll/%(B, - B(t))dt| < 2B,|x
—9|/(B,~B(t))dt| holds and tha{e;(x,b(s))|<P(x—s) hold if j<n by Lemma 4.1. For any
largeN e N and any larges> 0, the first term on the rhs @#.17) is bounded from above by

JX (B, — B(t))dt | ®,(x— S)Z}dx

CDn(y)z}dy

<I>n(y)2} dy, (4.17)
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-s/2 -s/2
(2B,)? f ly2d,(y)? dy < 4B2 J Crnlyy ™M dy < C{ (s (4.18

0 —00

for some constarﬂ:,’“’n, where we used Lemma 4.1. Sin@. 2), implies that there exists,>0
andC,> 0 such that sypg,|B,—B(t)| <C.(s)™ holds if s> s, it follows that the second term on
the rhs 0of(4.17) is bounded from above by

2B,C (5™ f ly[?®,(y)? dy < C/B(s)™ (4.19
-s/2

if s>s,. Hence it follows from(4.17—(4.19 that

sups""|alk(s) \j(b(9) 8| =< C, (4.20

holds for someC,> 0, if we chooses, sufficiently large.

If we denote byV,(s) the linear subspace of?R) spanned by{e;(-,b(8)}j<n, then
(aj(9))jk=n is the Hermitian symmetric matrix oﬁ_c(s)|vn<s) with respect to the basis
{@j(-,b(9)}j<n. Let ug(s)<---<uy(s) be the eigenvalues dixj(s));x<n- Let (a;) and (b;) be
n X n Hermitian matrices and let; < --- < o, and B, < - - - < 3, be their eigenvalues, respectively.
Then it is easy to see thik—B/><3; j|a; —by|? holds for anyk. Hence it follows from(4.20
that

SS>USESM|M1(S) - \i(b(9))| < C}. (4.21)

Then, by the variational principlEReed and Simoii1978, Vol. 1V, Theorem XII1.3], we have
A]f“$,uj(s) foranyj=<n. SinceAJ-+ is the jth eigenvalue ot (s) andX;(b(s)) <A}, we can deduce
from (4.21) that

supsM|AS = \j(b(s))] < C, (4.22
S>SO

holds if j<n. This shows the first assertion of the lemma.

In the case ofs—-«, we have the conclusion in a similar way, replacing the objects
aj,Lo(9),L(b(s)) and u;(9)'s by (L(b()#(-,9), ta(-,9)),L(b(s)),~d%+B2(x—s)? and the eigen-
values of the matrix(L(b(s))#;(-,9), #i(-,9))); k=n, respectively. Hereys (- ,s) is the eigenfunction
of —32+B?(x—s)? corresponding to thith eigenvalue\,. [ |

V. PROOF OF THEOREMS
A. Operators on the direct sum

To the end of this paper, we always assuiBdl), (B.2), (V.1)—(V.4).

Let {¢nfhen be the eigenfunctions given in Lemma 4.1. Because of Lemma 4.1, fot any
e N, we can define a partial isometfly from L2(R) into L%(R?) by (T,f)(x, 7)=¢(X, n)f(n) for
any fel?R). The adjoint operatorT; from L%(R? onto L%R) is given by (T,F)(#)
= [re (X, n)F(X, p)dx for any F e L%(R?). We now extendr;s to an operator on the direct sum of
Hilbert spacesX, .\ @& L2(R), more precisely, we define a partial isomeliyfrom =, _\ @ L%(R)
into L2(R?) by T(®, n(f) ==, cnTif) for any @, (f) € = .y @ L3(R). The unitarity ofT follows
from the L2-orthogonality of¢,’s with respect to the first variable. The adjoint operaforfrom
L2(R?) onto 2, _y®LA(R) is given by T'F=@,_\T,F for any F e L%(R?). We set

W=TFWFT (5.1)

for any multiplication operatoW onL3(R? and setHy=T mg(b)ﬁT( Ho—9V), both acting on
the Hilbert spaceX, .y ®L2%(R), where F is the partlal Fourier transform as in the preceding
section andV is the operator5.1) with W=V.
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For an operatoA acting on the spacg, .y ® L%R), we sayA belongs to OpSif all the
matrix elementsA;(j,k e N) of A (with respect to the direct sum decomposilidielong to the
classOpS". When all the matrix-valued?’DOs under consideration have finitely many nonzero
components, the standa#DO calculus as in Sec. Il B is applicable also for the matrix-valued
WDOs. In particular, Proposition 2.8 remains valid for the matrix-valdedO with obvious
modifications(e.g., we regard the product of symbols as the usual matrix produdt, etc.

In the rest of this section we are concerned with the matrix-valud® V=T FVF T.

Lemma 5.1: Let i+ 0 be as in (V.1). We have the following assertions

(1) The operator JFVF T, on L%R) belongs to Op3" for any ne N, and moreover, for any
a,B e N, there exists Gz>0 such that the Weyl symboy, jof T.FVF T, on L%(R) satisfies
the estimate

T (V) < Copi” (V). (5.2

Here, 77 B is the seminorm as if2.2).
(2) A principal symbol g of T, FVF T, is given by g(7, 7')=V(b™(7),-7"), and moreover, for
any a, 8 € N, there exists ;>0 such that the remainder estimates

,3m_l)(pv av) < Caﬁ%ﬁm_l)(vv) (5.3

holds. Here, we denote ByV the first order derivatives of.V

(3) The operator T/VF T, on L%R) belongs to OpS™ for any i,j e N satisfying i j, and
moreover, for anyy, 8 € N, there exists ;>0 such that the Weyl symba| of ffo*T
on LAR) satisfies the estimate

7o P (ry) < Copnifm P (VV). (5.4

Proof: First, assuming further that € S(R?), we show the assertionld)—(3). For anyi,j
eN, we find that the operator TTJ’EV]-‘*Tj has the integral kernel K(#,7')

= [ [regi(X, 1) @j(X, 7 )V(x,y)e ") dxdy, which converges absolutely for eaghz’, and so
the Weyl symbolpy, is given by

pv(m7) = f &I K (5 + W2, 57— wi2)dw
R

=JJf3dx dw dz e'“'_lwzsvi(x,n+w/2)qoj(x,n—W/Z)V(x,z— 7), (5.5
R

where we changed the variatdey+ 7" in the last line. An integration by parts yields that the rhs
of (5.5 is equal to

f f f . dx dw dz(2)"Ne "D AN(g (x, 7+ WI2) @ (X, - WI2)NV(X,2— 7)) (5.6)
R
for any N e N. Using the estimatéy; ') < C(x;z— 5 }(7—b(x)){2), we find that, for anyx, 3,
(s )™ o )|
<C f f J ; dx dw dz(z) 2NMe 5 — p(x))MHe
R

X [#Dwy™M(@i(X, 7+ WI2)@j(X, 7 = WI2))[(X; = 77 )™
|(9?7*V(X,Z - 7]*)|
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=Cri 0 | [ cxntr= )™ 1550, e m + w21, 06w
R

(5.7

if we takeN so that N-m-a>1. By Lemma 4.7, we have

| (D) (@i(X, 7+ WI2) @j(x, 7~ WI2))|

= Cpy > > |5§_5/+2N_N,<Pi(xy77+W/2)(77ﬁ7,+N/<Pj(X,7)_W/2)‘
0<p'<p 0<=N'=2N

< Cpy exp(= c((b(x) = 7= w/2)* = (b(x) = 7 +W/2)%)) = Cppy exp(= 2¢(b(X) = 7)* — cW/2)

Hence, the integral on the rhs (8.7) converges absolutely, because of Lemma 4.2. Especially,
wheni=j=n, this proves the assertidd) under the temporal assumption ¥n
We show the assertionl®) and(3). The first order Taylor expansion yields that

1
V(x,z=7)=V(b™(n),-7) + (x- b"l(n))J (V) (0x+ (L= 0)b™(9),0(z= 7)) = (1 - 6)n)do
0

1
+ zf (V) (Ox+ (1 - )b Y(7),8(z- 1) - (1-6)75)dé, (5.9
0

where gV denotes the derivative df with respect to thejth variable. In(5.5), the symbol
corresponding to the first term on the rhs(6f8) is given by

f f f dxdhw dz &0, (x, 7+ WI2) (X, 7~ WI2)V(b™Y(7),~ 7)
R

=f @i(X, Mej(x, Pdx (b~ (), %) =V(b™ (), 7) 4,
R

where we used the Fourier inversion formula. We can derive the estim&@efor the symbols
corresponding to the second and the third terms on the ri&&fin the same way as in the proof
of (5.2), using the facts thalt?f;(x—b‘l(n))| <C_(x-b™(#)), which follows from(B.2), and that
(m;7)<CoXn); =7 )<C'(x+(L-Ob X (7); 8(z—7") - (1-6) 7" }x—b"X7))2). Then we have
the assertion$2) and (3) whenV e S(R?).

Finally, we give a proof for generadls. We consider only the caseisfj=n, since the case of
i # ] is similar. Since the spac&(R) is dense inS™ for any k>0, we can approximat¥ by an
appropriate sequenPé}iz;(CS(R?)) in S* for anyk>0. We consider the equality

TWFVIE To=0play,) + R(VV)), (5.9

whereR(VV,) stands for the remainder term. Then it follows from Lemma &%) and(5.3) that
the rhs of(5.9) converges t@p(qgy) +R(VV) asl — « in the norm operator topology. On the other
hand, the left-hand sidéhs) of (5.9) converges toT::]fV]f"Tn as|—« in the weak operator
topology by definition. Thus, the lemma is true for genéaral |

The next lemma follows immediately from Lemma 5.1 if we replacby V<.

Lemma 5.2: Le® be the operator(5.1) with W=V. Let a>0. SetVﬁ-':Ti}‘VaﬁTj for any
i,j eN. If we regardV;j as an operator from thetfi component to theth component of,_y
®LA(R), thenVy is al DO whose symbol is given by the fornioV'(z), ") §;+OpS™* .

We need the following result in the place where we use Proposition 2.8.

Lemma 5.3: LetA e R\Spec¢Hy(b)) and lety be as inSec. I.For any le N, we have
limg.. 7™ Vol{(x, £) e RZV(b™H(x), =8 > g YN (X) - A[}=n(M).

Proof: Note that|\;(b(x))—\|=C, >0 holds for someC,, independent of,x. For simplicity,
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we set Fi={(x,8 e R?|V(b™(x),=&) > g™\ () = A[}, F{ ={(x, &) e R?|V(x, ) >g I\ (b(x)) -\ [}
for any | e N. By changing the variablegx, &) — (b(x),—¢), we find that (1/27)Vol(F))
:ffFl/B(x)dx dé=Jy+J,+J_, where we set

Jo= ff B(x)dx d¢, J.= ff B(x)dx dé,

Fl N{x/=g*2m Fl N{xx=gl2m
respectively. We first consider the integial By (B.1), (V.1), there existsC>0 such that],
<B, Vol{(x, &) € R?|C(x, &)™ ™>C,g %, |x| < g"*™=0(g>™) holds asg— . Next, we consider the
integral J,. We divideJ,=J, 1+J, , with

3= f J (B - B.)dX T,

Fl N{x=g2my

B, _
Ji27 5 Vol{(x¢) e RV(x,&) > g\ (b(x) = N, x = gH2™.

Using (B.2) we find that|J, 4| is bounded from above by

C f J (M dxdé < Cg™?™Vol{(x,&) e R%(x;&™™> C,g~!,x= g'?™,
F N{x=gl/2m

which is of ordero(g?/m) as g—oe. If x<g'?", then |\ (b(x))—\|=|A; =\~ [N\ (b(X) - A
=|A=N-C(x)™M=|A-\|-Cg ™2™ holds because of Lemma 4.8. Then we find tdat
=(B,/4m)| A =\["2Mp +g?M+0(g?™ asg— = in the same way as in the proof of Lemma 3.6. We
can estimate the integrdl similarly. |

B. Preliminary estimates

The proofs of Theorems 1.1, 1.4, and 1.5 given below are essentially the same as those of
Theorems 1.2, 1.1 in Raiko{1993 and that of Theorem 2.2 in Raiko{d998, respectively.
However, we reproduce the proofs of Theorems 1.1-1.5 for the sake of completeness.

Let A;_;<A<A,. Take an integeN, greater tham and setl_={-1,0,...,n=1},1,={n,n
+1,...,Ng}. Define the orthogonal projectior®,,P_,P.,, andP° on the spac&,_y®L%R) by
P.=3,_, @idLAR), respectivelyP.,=id-P_-P, and P =P, +P,=id-P_. Here, “id" stands for
the identity operator. These projectioRs, P., commute with each other and with the operatty

Lemma 5.4: We have the asymptotic relations

lim g 2™N(g™ < V2P, Ho = A"V = X y(0), (5.10
g—x lel,
lim g™2™N(g™ < P,VY2P,|Ho - \WY2P,) = 2, y(\), (5.11)
g—> lEIt

respectively. Here, the operatotg, and V are as in SecV A.
Proof: It follows from Spe¢A’A)\{0}=Spec¢AA)\{0} that

N(G™ < V2P| Ho = N™VH2) = N(G™ < [Ho = N /2P VP Ho = A

The operatordH,—\|"'P, are matrix-valued?DOs on g, ® L%R) and have the symbol
(IN(m) =N[728))i <1, which belong to the clas®pS by Lemma 4.5, and the operatof&,
—-\Y2P, VP, |[Hy—\|"Y2 are matrix-valued?DOs whose principal symbols are given @i;(7)
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=NV ™(9),7)8))ijc1,. respectively, because of Lemma 5.2. Th@n10 follows from a
matrix-valued¥?DO version of Proposition 2.8. The proof (5.11) is similar. |
Lemma 5.5: We have the asymptotic relations

lim w?™N(u < PSVY2P_|Hy— N|"2WY2P%) = 0, (5.12
©l0
lim 2 ™N(w < P_VY2P, | Ho— N[ WY2P) = 0, (5.13
w©l0
lim lim sup u®™N(u < P_VY?P,|Ho - N[ WVY2P)) = 0. (5.14
No—=  «l0

Proof: Since P_VY2PSV12p_=p_V3(id-P_)V2P_=P_VP_-(P_V'?P_)?, we can deduce
from Lemma 5.2 thaP_VY2PSVY2P_ belongs toOpS™ . Then it follows from(2.4) that N(u
<|Ho=NY2P_VY2PeVI2P_|H = N2 =O(u ™) = 0(u 2 (™D) as | 0. This proves(5.12
since Spe@\"A)\{0}=Spe¢AA")\{0}.

The operatorP_V'/?P, belongs toOpS™?~! by Lemma 5.2 sinc&, .| ®L%R) and X,

@ L?(R) are orthogonal, an®,VY2P_V2pP, =(P_V?P,)"(P_VY?P,) belongs toOpS™2. Then
(2.4) proves(5.13.
By the definition ofP., and the min—-max argument, we have

N(p < P-VY2P[Ho = NTWH2P) < N((Ay i1 = M), < PVP) < C(AR o = N) 2,

where we used the fact thRtVP_ e OpS™ and(2.4) in the last inequality. SincA,(‘0+1 tends to
infinity as Ny— 0, we have the conclusion. |
Lemma 5.6: We havimy__... lim sup, o u®™N(u < V2P |Ho—\"V"2)=0.
Proof. If we chooseNO>0 so large thah <Ay +1/2 holds, thenAj(n) -A=N\j(7) - AN /2
=(\ (7;)+AN +1)/4 holds for anyj=Ny+1 and f0r anyzeR, from which we haveP [Ho
-\ l<4(7-(0+AN ) L Then the variational principle yields the estimau<VY?P.|H,
~N[TV2) < N(w < APV g Ay L) VD =N(Hgy0) < = Ao =2 et (=Ajy ) (41 0)27(L
+0(1)) asu | 0, where we used Theorem 1.1 proved in Sec [ll'in the last mequallty Finally, the
lemma follows from the asymptotic relation IungZwNw(—A@Oﬂ):O. |

C. Proof of Theorem 1.1
Using the inequalityh)2(Hy—\) " W2< VY2PC|H -\ |1V, we have, for any smak >0,
Nj(\) < N(g™ < V2P Ho = VM) < N((1 - £)g™ < V2P, [Ho — A VH9)
+N(eg™ < VY2P..[Ho - N[V,

where we used thdgeneralizegl Birman—Schwinger principldsee, e.g., Alama, Deift, and
Hempel(1989, Birman(1991)] and the Weyl-KyFan inequality. Then by Lemma 5.4 and Lemma
5.6, we obtain the upper bound Iim%g‘z’mNg()\)sE|E|+v,()\), taking a limite |0 and N,

— o0, Next, we obtain the lower bound. For any sma 0, we have

PEVYA(Ho = N)TWYPPE = PEVY2P_(Ho = \)TWYPE + PEVYAPE(H — N) TVY2PS
= PEVYPP_(Ho = N)TWYPE + VY2PE(H o — N) VY2
— 2 REP_VM2PE(Ho = N) W) = (1 - £) V2P| Ho — N[THVH2
= PSVY2P_|[Ho = N[TVYPPE — 7 'P_VYAP Ho - A[TVYAP,

where we used the inequali§_VY2P°(Ho—\)""WY2P_=0 in the first inequality and used the
estimate Au, VY2PS(Ho—\)"WY2P_u)| < &ll|Ho— N[ TY2PE VYUl + £ 4IPS [ Ho— N Y2VY2P_uli? in
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the second inequality. Then, by a variational argument similar to that used in the case of the upper
bound, we can derive the lower bound limgnf. g"™Nj(\) =X, ., »(\), using Lemma 5.4 and
Lemma 5.5. This completes the proof of Theorem 1.1.

D. Proof of Theorem 1.4

By the Birman—Schwinger principle, we have the upper bound
Ng(h) = N(g™ < = VAo - N ™M) < N(g™ < V2P| Mo - A1)
< 2 n(Mg M1 +0(1))

lel_

as g—o, where we used the inequalityVX2(Hy—N\)"WY2=VL2p_| 1 —\|"1W2- V2P| H,,
=N "W2<VY2P_|H - \|"YWY2 in the first inequality and use@.10 in the last inequality. Next,
for any smalle >0, there exist, >0, independent ofj, Ny, such that

Ng(A) = N(g™! < = P_VM(Ho = \)™VY2P]) = N((1 +2)g™ < PVYP_|Ho - N[ VYR
= N(C.g™* < P_VY2PS[H = A "VY2P) = N((1 +£)g™ < P_VY2P_|Ho - A "VY2P)
= N(Cig™ < P V2P, [Ho = \|TWY2P) = N(Clg™ < PLVYP.[Ho - A\[TVV2P)
= 2 (N(G/(1 +2))P™(1 +0(1))

lel_

asg,Ny— o, where we used the Weyl-KyFan inequality in the second and the third inequalities
and Lemma 5.4 in the last line. This gives the lower bound and we complete the proof.

E. Proof of Theorem 1.5

Let Al ;<A<u<A,. Set y=(u+\)/2,7=(u~\)/2 and setP{=P_+P.,. Since P.(H,
~ )P, =(P.(Hg=y)P,)*-g?P,VP{VP,, we have, for small £>0, NOA<Hgb)<pu)
=N((Hg=7)?< ) =N(P.(Hg=7)*P. < ) = N((P,(Hy—y)P,)*< &) -N(C, < g°P,VP{VP,)
=N((Ps(Hy=y)P,)?>< ?-¢)+0(g”™ as g—x. Here, we used the fact that the operator
P+MP+:P+V2P+—(M+)2 is a matrix-valued¥DO of the classOpS?™?. Settingh;=7y
-V7-¢ and py=y+\7?-¢, we haveN(\; <P, H P, < 1) =N(g < V2P, (Ho— uy) *PIVY?)
=N(g <VY2P,(Ho=N) PV =3, ) mi([Ag, 1])g7™(1+0(1)) as g—<, where we used the
Birman—Schwinger principle and Theorem 1.1. Finally, we have Theorem 1.5 from these, letting
e 0 andNgy— ce.
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