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We consider the two-dimensional Schrödinger operator,Hgsbd=−]2/]x2

+fs1/Î−1ds] /]yd−bsxdg2−gVsx,yd, whereV is a non-negative scalar potential de-
caying at infinity likes1+uxu+ uyud−m, and s0,bsxdd is a magnetic vector potential.
Here,b is of the formbsxd=e0

xBstddt and the magnetic fieldB is assumed to be
positive, bounded, and monotonically increasing onR sthe Iwatsuka modeld. Fol-
lowing the argument as in Refs. 15, 16, and 17fRaikov, G. D., Lett. Math. Phys.,
21, 41–49 s1991d; Raikov, G. D, Commun. Math. Phys.,155, 415–428s1993d;
Raikov, G. D. Asymptotic Anal.,16, 87–89s1998dg, we obtain the asymptotics of
the number of discrete spectra ofHgsbd crossing a real numberl in the gap of the
essential spectrum as the coupling constantg tends to ±̀ , respectively. ©2005
American Institute of Physics.fDOI: 10.1063/1.1897844g

I. INTRODUCTION

We consider the two-dimensional Schrödinger operator with electromagnetic field

Hgsbd = −
]2

]x2 + S 1
Î− 1

]

]y
− bsxdD2

− gVsx,yd.

Here,Vsx,yd is a scalar potential decaying at infinity ands0,bsxdd is a magnetic vector potential
given by the formbsxd=e0

xBstddt for a positive magnetic fieldB, which depends only on the
variablex of sx,ydPR2.

The purpose of this paper is to investigate the number of discrete spectra ofHgsbd crossing a
real numberl in the gap of the essential spectrum as the coupling constantg tends to ±̀ ,
respectivelysthe precise formulation is given belowd.

We fix some notations. We denote the set of all integers byZ and denote the set ofnon-
negativeintegers byN. We denote the cardinal number of setA by ]A. We denote both] /]x and
d/dx by ]x, etc. We denote byCksV ,V8d the set of allV8-valued,Ck-functions onV, and by
C0

`sVd the set of all compactly supported, smooth functions onV. We useu ·u to denote the
Euclidean norms and use the notationskzl=s1+uzu2d1/2 for any zPRn and kx;yl=s1+uxu2

+ uyu2d1/2 for any sx,ydPRn3Rm. We denote byQsz,rd the open cube of radiusr, centered atz,
with sides parallel to the coordinate axes. We denote by SpecsAd the spectrum of any self-adjoint
operatorA, and byNsa,A,bd the dimension of the range of the spectral projection forA on the
interval sa ,bd. The notationsNsA.ad , NsA,bd, etc., are defined similarly.

To formulate our results we make the following assumptions for the magnetic fieldB and the
electric potentialV.

sB.1dThe magnetic fieldB is a real-valued, smooth and monotonically increasing function onR.
Moreover, there exist positive numbersB± such thatB−,B+, and limx→±`Bsxd=B± hold,
respectively.
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sB.2d In addition tosB.1d, there exists a positive numberM such that, for any multi-indexa, the
estimateu]x

asBsxd−B±duøCakxl−M holds for ±xù0, respectively. Here, the constantCa is
independent ofx, andB± are as insB.1d.

sV.1d The scalar potentialV is a non-negative smooth function onR2. Moreover, there exists a
positive numberm such that, for any multi-indexa, the estimateu]z

aVszduøCakzl−m−uau holds
for all zPR2. Here, the constantCa is independent ofz.

sV.2d There exists a positive numberC such that the estimateVszdùCkzl−m holds for allzPR2.
sV.3d Let sr ,vdP f0,`d3S1 be the polar coordinates ofzPR2, i.e., r = uzu and v=z/ uzu. There

exists a measurable, bounded and positive functionv on the unit circleS1 such that
limr→` rmVszd=vsvd holds for anyv=z/ uzuPS1.

sV.4d In addition tosV.1d, we have the limit

lim
«↓0

lim sup
m↓0

m2/m VolhzP R2us1 − «dm , Vszd , s1 + «dmj = 0.

Here, “Vol” stands for the Euclidean volume, andm is as insV.1d.

Under the assumptionssB.1d and sV.1d, the operatorHgsbd is essentially self-adjoint on
C0

`sR2d for any gPR fsee Avron, Herbst, and Simons1978dg. In what follows we identify any
closable operator with its operator closure if there is no fear of confusion. Iwatsukas1985d
investigated the spectral properties of the unperturbed operatorH0sbd, which is calledthe Iwatsuka
model by some authorsfMantoiu and Purices1997d, Exner and Kovařik s1999d, and Shirai
s2003dg. Iwatsuka’s result says that, undersB.1d, the spectrum ofH0sbd is absolutely continuous
and SpecsH0sbdd=øn=0

` fLn
−,Ln

+g holds, where we setLn
±=s2n+1dB± for any nPN, respectively,

and for notational convenience, we setL−1
+ =L−1

− =0.
Under sB.1d and sV.1d, the multiplication operatorV is relatively compact with respect to

H0sbd, so the essential spectrum ofHgsbd coincides with that ofH0sbd for any g fsee, e.g., Reed
and Simons1978, Sec. XIII.4dg. In particular, the operatorHgsbd may have discrete spectrasi.e.,
discrete eigenvalues of finite multiplicityd in the gaps of the essential spectrum.

We make some additional notations. Letv be as insV.3d. Set S±
1=hz=sx,ydPR2u uzu=1, ±x

ù0j and setv̂±=eS±
1vsvd2/m dv, respectively. For anylPR \SpecsH0sbdd and for anyl PN, set

nlsld =
1

4p
sB+v̂+uLl

+ − lu−2/m + B−v̂−uLl
− − lu−2/md.

For any intervalfl ,mg,R \SpecsH0sbdd and for anyl PN, set

nlsfl,mgd =
1

2pmSB+v̂+E
l

m

uLl
+ − tu−2/m−1 dt + B−v̂−E

l

m

uLl
− − tu−2/m−1 dtD .

If we assume that 0,Ln
+,l,m,Ln+1

− for some nPN, the sums olPNnlsld and
olPNnlsfl ,mgd converge when 0,m,2, and the relationnlsfl ,mgd=nlsmd−nlsld holds whenl
ùn+1.

We denote byNg
±sld the number of eigenvalues ofH±g8sbd crossingl as g8 increases from

zero to g, i.e., Ng
±sld=o0,g8,g dim KersH±g8sbd−ld, respectively. Note that the sum above is

meaningful under the assumptionssB.1d and sV.2d, since the standard perturbation theory shows
that for every fixedg.0 the set of values ofg8P s0,gd for which dim KersH±g8sbd−ld is not
equal to zero is finitefsee, e.g, Reed and Simons1978dg.

The main results in this paper are the following.
Theorem 1.1: Let Ln−1

+ ,l,Ln
− for some nPN. Assume that (B.1), (B.2), (V.1)–(V.4) hold.

Moreover, assume that the constant m in (V.1) satisfies0,m,2. Then we have

lim
g→`

g−2/mNg
+sld = o

lùn

nlsld. s1.1d

Remark 1.2: In fact, the conclusion of Theorem 1.1 is still valid under weaker conditions on
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B and V in the case ofl,L0
−. See Lemma 3.8 in Sec.III below.

Corollary 1.3: Let Ln−1
+ ,l,m,Ln

− for some nPN. Under the same assumption as in
Theorem 1.1, we havelimg→` g−2/mNsløHgsbd,md=olùnnlsfl ,ngd.

Theorem 1.4: Let Ln
+,l,Ln+1

− for some nPN. Assume that (B.1), (B.2), (V.1)–(V.4) hold.
Then we havelimg→` g−2/mNg

−sld=o0ølønnlsld.
Theorem 1.5: Let Ln−1

+ ,l,m,Ln
− for some nPN. Assume that (B.1), (B.2), (V.1)–(V.4)

hold. Moreover, assume that the constant m in (V.1) satisfies m.2. Then we have
lim infg→` g−2/mNsløHgsbd,mdùolùnnlsfl ,mgd.

At present, the author has not obtained the upper estimate forNsløHgsbd,md in the case of
m.2, nor the results for the case ofm=2.

Remark 1.6:

s1d The study of eigenvalues in the spectral gaps of the Schrödinger operators has a long history
[see, e.g., Birman (1991), Alama, Deift, and Hempel (1989), Hempel and Levendorski�

(1998) and references therein]. In the case of constant magnetic fields (i.e., the case of B+
=B− in our notation), Raikov (1991, 1993d has obtained the strong-electric-field asymptotics
as in Theorem 1.1 and Corollary 1.3 above when the scalar potential decays slowly at
infinity (i.e., the case of0,mø2 in our situation). Moreover, for a class of nonconstant
magnetic fields which includes the Iwatsuka model, Raikov (1998, 1993) shows that the
asymptotics of Ng

+sld are Weylian, i.e., the asymptotic relationlimg→` g−1Ng
+sld

=s1/4pdeR2Vsx,yddx dy holds when the scalar potential decays rapidly (the case of m.2 in
our situation).

s2d Hempel and Levendorski� (1998) [see also Levendorski� (1995, 1996)] study the asymptotics
of Ng

±sld for the magnetic Schrödinger operators H−gV=s−Î−1¹−ad2+W−gV on L2sRnd
under rather general conditions ona,W, and V. Especially, V is not assumed to have a
definite sign. They assume, however, the existence of the density of statesrsl ,Hd
=limR→` NsHuQR

,ld /VolsQRd for the unperturbed operator H, for which the asymptotic
coefficient as in Theorem 1.1 is expressed as

lim
g→`

g−n/mNg
+sld =E

Rn
dzE

l

l+vsvdr−m

drst,Hd

when Vszd=vsvdr−m at infinity and0,m,2, for example. Here, QR is a cube of side length
R and we denote by HuQR

the Dirichlét realization of H on QR. On the contrary, the Iwatsuka
model has no canonical density of states because of lack of spacial symmetry of the magnetic
field B. Thus, at least, we need modify their argument. Indeed, although the isotropic density
of statesrsl ,H0sbdd=sB+/4pd] hl PN uLl

+,lj+sB−/4pd] hl PN uLl
−,lj for the Iwatsuka

model do exist under the assumption in Theorem 1.1, the quantity

E
R2

dx dyE
l

l+vsvdr−m

drst,H0sbdd =
B+

4p

v̂
2 o

lùn+1
uLl

+ − lu−2/m +
B−

4p

v̂
2 o

lùn+1
uLl

− − lu−2/m,

wherev̂=eS1vsvd2/m dv, does not give the correct asymptotic coefficients1.1d, which can be
expressed as

E
hxù0j

dx dyE
l

l+vsvdr−m

dr+st,H0sbdd +E
hxø0j

dx dyE
l

l+vsvdr−m

dr−st,H0sbdd,

wherer±st ,H0sbdd=sB± /4pd] hl PN uLl
± , tj, respectively.

The organization of this paper is as follows: Sec. II contains some preliminary results from
functional analysis and the theory of pseudodifferential operators. In Sec. III, we give a proof of
Theorem 1.1 in the case where the control pointl is fixed below the infimum of the essential
spectrum ofHgsbd. In Sec. IV, we recall the spectral properties of the Iwatsuka modelH0sbd and
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derive some decay estimates for the band functions and the correspondingsgeneralizedd eigen-
functions ofH0sbd. Proofs of Theorem 1.1 forl in general gaps, Theorem 1.4 and Theorem 1.5 are
given in Sec. V.

II. PRELIMINARIES

A. Variational principle

In this section we recall some results concerning the variational principle used mainly in Sec.
III. All the results are well known, so we omit proofs.

For any sesquilinear form, which is referred to asform in the sequel,q on a Hilbert space, we
denote its form domain byDsqd. For any semibounded, closable formq, there exists a unique
self-adjoint operatorAq such that the operator domainDsAqd is a form core for the form closureq̄
and the relationqfug=sAqu,ud holds for anyuPDsAqd. Throughout the paper, we identify such a
form q with the corresponding self-adjoint operatorAq, and we denote the counting function
NsAq,ld simply by Nsq,ld for any real numberl.

The following result is a consequence of the min–max principlefsee, e.g., Reed and Simon
s1978, Vol. IVd, Colin de Verdieres1986, Lemma 5.1dg.

Lemma 2.1: LetsH j ,qj ,Dsqjdd be a triplet of a Hilbert spaceH j, a semibounded, closable
form qj and the form domain Dsqjd for j =1,2 and let J be an isometry from Dsq1d to Dsq2d with
respect to norms ofH1 andH2, respectively. Suppose that there exist positive constants C1 and C2

such that q1fugùC1q2fJug−C2iuiH1

2 holds for all uPDsq1d. Then we have Nsq1,ldøNsq2

, sl+C2d /C1d for any lPR.

For anyb̃PC1sR2,Rd, we define

Hgsb̃d = −
]2

]x2 + S 1
Î− 1

]

]y
− b̃sx,ydD2

− gVsx,yd. s2.1d

In what follows, for any open subsetV in R2, we denote byHgsb̃duV the minimal self-adjoint

realization ofHgsb̃d starting fromC0
`sVd, i.e., the Dirichlét realization ofHgsb̃d on V.

Proposition 2.2: [Colin de Verdiere (1986, Theorem 1.3)] Let r be a positive number and let
L be a real number. Then we have the upper bound

Nss− `,LduH0sB0xduQs0,rdd ø
B0

2p
r2 ] hl P Nus2l + 1dB0 , Lj,

where H0sB0xd is the operator of the forms2.1d with b̃sx,yd=B0x and g=0, and the lower bound

Nss− `,LduH0sB0xduQs0,rdd ù
B0

2p
sr − r1d2 ] hl P Nus2l + 1dB0 , L − Cr1

−2j.

Here, the constant C is independent ofL ,r and r1 with 0, r1, r.
The following result is the so-called IMSsIsmagilov, Morgan, Sigal, Simond localization

formula for the magnetic Schrödinger operatorsfsee Cyconet al.g.
Lemma 2.3: LetṼ be an open subset ofR2 and let hV jj jPJ be a locally finite open covering

of Ṽ. Let hx jj jPJ be a partition of unity subject to the coveringhV jj satisfying the conditions

suppsx jd,V j ,0øx j ø1 and x j PC1sV jd for any jPJ. Moreover, o jPJx j
2=1 on Ṽ. Assume that

b̃PC`sṼ ,Rd. Then we havesHgsb̃du,ud=o jPJsHgsb̃dx ju,x jud−solPJu¹xl u2u,ud for any u

PC0
`sṼd.
The next result follows from an elementary inequality 2XYø«X2+Y2/«.

Lemma 2.4: Assume that b˜PC1sR2,Rd and 0,«,1. Then we have
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s1 − «dsH0sb̃du,ud − gsVu,ud − s1 + 1/«disb − b̃dui2 ø sHgsbdu,ud

ø s1 + «dsH0sb̃du,ud − gsVu,ud + s1 + 1/«disb − b̃dui2

for any uPC0
`sR2d.

B. Pseudodifferential operators

In this section we introduce a class of pseudodifferential operatorssCDOsd and recall some
basic results. All the results are well known in the theory ofCDOs, so we omit proofs.

For anymPR andaPC`sR2d, we say thata belongs to the class of symbols Sm if the quantity

hab
smdsad = sup

sx,jdPR2
kx;jl−m+au]x

b]j
aasx,jdu s2.2d

is finite for eacha ,bPN. The seminormshhab
smdja,b gives a Fréchet space topology on the space

Sm. We setS−`=ùmPRSm, which coincides withSsRd.
The symbol classSm is an example of the class introduced by Bealss1975d fFsx,jd

=kx;jl ,wkx,jl=1,l=logskx;jlmd and SF,w
l =Sm in his conventiong, or by Roberts1978d, Dauge

and Roberts1987d fm=kx;jlm,f=kx;jl ,w=1,Ssm;f ,wd=Sm in their conventiong. Hence, by the
standard argument as in Bealss1975d or in Hörmanders1979d fgx,jsy,hd= uyu2+ uhu2/ kx;jl2 in his
conventiong, one can find that, for anyaPSm, the associatedCDO,

Opsadusxd =E E
R2

eÎ−1sx−ydjaSx + y

2
,jDusyddy dj

is a well-defined oscillatory integral for anyuPSsRd. Here, we set dj=dj / s2pd. Moreover,Opsad
mapsSsRd to itself continuouslyfso, extends to a continuous map fromS8sRd to itself by duality
based onL2-normg. For an operatorA from S8sRd to S8sRd, we sayAPOpSm if A is expressed as
Opsad for someaPSm.

Note that the original results in Bealss1975d are formulated in terms of the standard quanti-
zationeeR2eÎ−1sx−ydjasx,jdusyddy dj. However, all the corresponding results below are still valid
for the Weyl quantization; to see this, it suffices to chase the proofs in Bealss1975d carefully, or
use the relation between the standard and the Weyl quantizations as in Theorem 4.5 in Hörmander
s1979d. For omitted proofs, we refer to Proposition 6.17, Theorems 6.1, 7.2, and 7.7 in Beals
s1975d, and for Lemma 2.7 below we refer to Proposition 26.2 in Shubins1987d. Although the
class of symbols considered in Shubin’s book is slightly defferent from the classSm above, the
proof of Proposition 26.2 in his book is valid also for symbols inSm with obvious modifications.

Lemma 2.5: Let m,m8PR. We have the following assertions.

s1d If APOpSm and BPOpSm8, then ABPOpSm+m8 and the symbol of AB has an asymptotic
expansion as usual.

s2d If APOpSm, then A* POpSm and the symbol of A* is expressed as usual.
s3d If APOpS0, then A defines a bounded operator on L2sRd. Moreover, if APOpSm for some

negative m, then A defines a compact operator on L2sRd.
s4d If m.0 and aPS−m, then there exists lPN such thatiOpsadiBsL2sRddøCoa+bølhab

s−mdsad
holds for some constant C.0, independent of a.

s5d If APOpS−`, then A mapsS8sRd to SsRd continuously.

We introduce the weighted Sobolev spaceHm as thesfinited linear hull of the sethAuuu
PL2sRd ,APOpS−mj equipped with the weakest topology which makes the mapsA:L2sRd
→Hmd continuous for allAPOpS−m. The basic properties ofHm are summarized as follows.

Lemma 2.6:

s1d The space H0 coincides with L2sRd topologically.
s2d The embeddingsSsRd,Hm,S8sRd are densely and continuously for any m.
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s3d Hm,Hm8 holds if m8,m, and sHmd8=H−m topologically for any m.

s4d If APOpSm, then A maps Hm+m8 to Hm8 continuously for all m,m8.
s5d For any m,m8, there exists APOpSm which gives a topologically isomorphism from Hm+m8

onto Hm8. In particular, Hm has the topology of a Hilbert space for any m.

Lemma 2.7: Let D0 be a dense subspace ofSsRd. Let m.0 and aPSm. Assume that Opsad is
symmetric on D0 and uasx,jduùCkx;jlm holds for some C.0. Then

s1d The operator OpsaduD0
fthe restriction of Opsad on D0g is essentially self-adjoint, and

DsOpsaduD0
d coincides withhuPL2sRd uOpsaduPL2sRdj.

s2d The space DsOpsaduD0
d equipped with graph norm coincides with Hm topologically.

The following result concerning the eigenvalue asymptotics ofCDOs of negative order plays
an important role in Sec. V.

Proposition 2.8: [Dauge and Robert (1987, Theorem 1.3)] Let m.0 and let aPS−m and a be
real valued. Assume that the following two estimates,

lim
«↓0

lim sup
m↓0

m2/mVolhsx,jd P R2us1 − «dm , ± asx,jd , s1 + «dmj = 0, s2.3d

are satisfied. Then we have Ns±Opsad.md=s1/2pdVolhsz,jdPR2u ±asx,jd.mj+osm−2/md as
m↓0, respectively.

Note that the conditionss2.3d imply the conditionsTd in Dauge and Roberts1987d for the
volume functions Volhzu ±aszd.mj. As an immediate consequence of Proposition 2.8, for any
m.0 and anyaPS−m, the following rough estimate,

Ns±Opsad . md = Osm−2/md, s2.4d

holds asm↓0.

III. PROOF OF THEOREM 1.1 IN THE CASE OF l<B−

A. Upper bound for N„Hg„b…<l…

1. Partition of R2 and sesquilinear forms

In this section, we give a proof of Theorem 1.1 in the case ofl,L0
−s=B−d. For generall

.L0
+ the proof of Theorem 1.1 given in Sec. V needs this special case, as in Raikovs1993d.
We introduce a partition ofR2 and a corresponding partition of unity. LetK=h0,1, + ,−j. Take

and fix positive numbersa , b, ands so that

0 , s , minH 1

4m
,

1

2 − m
,

M

ms1 + Md
,

1

2msm+ 1dJ, a =
1

m
− 2s, b =

1

m
+ s.

Note that 0,s,a,1/m,b. For any g.0, we set V0=hsx,ydPR2u uxuøga , uyuøgbj ,V±

=hsx,ydPR2ugaø ±xøgb , uyuøgbj, respectively, V1=R2\ sV0øV+øV−d and Ṽk=hz
PR2udistsz,Vkd,gsj for any kPK. Let hwkjkPK be a partition of unity subject to the open

coveringhṼkjkPK of R2 satisfying the following:

sP.1d wkPC`sṼkd, suppswkd,Ṽk and 0øwkø1 hold, and for each multi-indexg, there exists
Cg.0 such that supzPR2uwkszduøCgg−ugus holds for anykPK. Moreover,okPKwk

2=1 holds onR2.
For eachkPK, we define a formqk by qkfug=sHgsbdu,ud−solPKu¹wlu2u,ud with form domain

C0
`sṼkd. Then it follows from Lemma 2.3 thatsHgsbdu,ud=okPKqkfwkug holds for any u

PC0
`sR2d. Considering the isometryJ from L2sR2d to %kPKL2sṼkd defined byJsud= %kPKswkud,

by Lemma 2.1, we find thatNsHgsbd,ldøokPKNsqk,ld holds for anyg.0.
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2. Estimates of N „q0<l… and N „q1<l…

In what follows we use the symbolsc and C spossibly with superscripts or subscriptsd to
denote various positive constants in estimates, which may vary from line to line.

Let 0,h,1 and letJ=h j PZ2uṼ0ùQs j ,1dÞxj. Let hx jj jPJ be a partition of unity subject

to the open coveringhQs j ,1+hdj jPJ of Ṽ0 satisfying the following:
sP.2d x j PC0

`sQs j ,1+hdd, and 0øx j ø1 hold, and for each multi-indexg, there existsCg

.0, independent ofj ,h, such that supzPR2ux jszduøCgh−ugu holds for any j PJ. Moreover,

o jPJx j
2=1 holds onṼ0.

For eachj =s j1, j2dPJ, we introduce the auxiliary magnetic potentialbjsxd=e0
j1Bstddt+Bs j1d

3sx− j1d, which gives the constant magnetic fieldBs j1d.
Lemma 3.1: Let q0 and l be as above. We have Nsq0,ld=osg2/md as g→`.
Proof: By Lemmata 2.3, 2.1, 2.4 and Proposition 2.2, we have the estimate

Nsq0 , ld ø o
jPJ

Nss1 − «dH0sbjd − Cgk jl−m − Ch« , ld

ø o
j=s j1,j2dPJ

Bs j1d
2p

s1 + hd2 ] hl P Nus1 − «ds2l + 1dBs j1d , l + Cgk jl−m + Ch«j

ø Ch«ls]Jd + Ch«lgo
jPJ

k jl−m s3.1d

for any small «.0, where we usedsP.2d and the fact that the estimatesuVszduøCk jl−m and
ubsxd−bjsxduø ue j1

x sBstd−Bs j1dddtuø2s1+hdB+ hold on Qs j ,1+hd in the first inequality. By the

definition of J, there existsC.0, independent ofg, such that ]sJdøCVolsṼ0døCga+b

=osg2/md asg→`, sincea+b=2/m−s. The second term on the right-hand sidesrhsd of s3.1d is
less than or equal to

CgE
Ṽ0

kzl−m dzø 4CgE
0

ga+gs

dxE
0

gb+gs

dykx;yl−m. s3.2d

To estimate the above integral, we use the following elementary estimate: Ifm.0 and 1,A
,B, then there existsCm.0, independent ofA,B, such that

E
0

A

dxE
0

B

dykx;yl−m ø 5CmAB1−m if 0 , m, 1,

C1A log B if m= 1,

CmsAB1−m + 1d if m. 1.
6

Then, if 0,m,1, the rhs ofs3.2d is estimated from above byCmgsga+gsdsgb+gsd1−m

=osg1+a+bs1−mdd=osg2/md asg→`. Similarly, if m=1, the rhs ofs3.2d is estimated from above by
C1gsga+gsdlogsgb+gsd=osg1+a log gd=osg2/md as g→`, and if 1,m,2, the rhs ofs3.2d is
estimated from above byCmgssga+gsdsgb+gsd1−m+1d=osg1+a−bsm−1dd=osg2/md as g→`. This
completes the proof. j

Lemma 3.2: Let q1 and l be as above. We have Nsq1,ld=0 for large g.0.

Proof: For any uPC0
`sṼ1d, we have q1fug=sHgsbdu,ud−gsVu,ud−solPKu¹wlu2u,ud

ù sHgsbdu,ud−Csg1−mb+g−2sdiui2=sHgsbdu,ud−os1diui2 as g→`, where we usedsV.1d, sP.1d
and the fact that 1−mb=1−ms1/m+sd=−ms,0. Then the min–max argument yields that
Nsq1,ldøNsH0sbduṼ1

,l+os1dd holds as g→`. Hence we conclude thatNsH0sbduṼ1
,l+os1dd=0 for large g since inf SpecsH0sbduṼ1

d=infuPC0
`sṼ1d,iui=1sH0sbdu,udù inf

SpecsH0sbdds=B−.ld holds asg→` again by the min–max argument. j

052112-7 Strong-electric-field eigenvalue asymptotics J. Math. Phys. 46, 052112 ~2005!

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3. Estimate of N „q± <l…

Let 0,h,1. For anyj =s j1, j1dPZ2, we set

Qj = hsx,yd P R2u j1 , g−sx , j1 + 1,j2 , g−sy , j2 + 1j, s3.3d

Qjh = hzP R2udistsz,Qjd , hgsj s3.4d

andJ±=h j PZ2uQj ùṼ±Þxj. Let hx jj jPJ±
be a partition of unity subject to the coveringhQjhj jPJ±

of Ṽ± satisfying the following conditionssrespectively, for ±d:
sP.3d ±x j PC0

`sQjhd ,0øx j ø1, and for each multi-indexg, there existsCg.0, independent
of g,h , j , such that supzPR2u]gx jszduøCgshgsd−ugu holds for any j PJ±. Moreover, o jPJ±

x j
2=1

holds onṼ±.
In what follows, for simplicity, we omit the phrase “respectivelysfor ±d” if there is no fear of

confusion.
Let zj =sxj ,yjd be the center ofQj and we introduce the auxiliary magnetic potentials,

bj ,±sxd =E
0

xj

Bstddt + B±sx − xjd, s3.5d

which gives the constant magnetic fieldB±.
Lemma 3.3: Let jPJ±. There exists C.0, independent of j,g, and h, such thatisb−bj ,±dui

øCgs−Maiui holds for any uPC0
`sQjhd, and for any gù1.

Proof: On Qjh, we have ubsxd−bj ,±sxduø uexj

x sBstd−B±ddtuøCkga−gs−hgsl−Mux−xju
øCg−Ma+s asg→`, where we usedsB.2d in the second inequality. j

Lemma 3.4: Let jPJ±. There exists C.0, independent of j,g, and h such that s1
−Cg−sa−2sddVszdøVsz8dø s1+Cg−sa−2sddVszd holds for any z,z8PQjh. Here, Q̄ stands for the
closure of Q.

Proof: Let z,z8PQjh. If we write z=sx,yd, then

uzu ù uxu ù ga − gs − s1 + hdgs ù ga/2 s3.6d

and uzuø uz8u+ uz−z8uø uz8u+Î2s1+hdgsø uz8u+Cg−sa−sduzu hold for largeg.0, so there existsC
.0, independent ofj ,g,z,z8, such that

C−1kzl ø kz8l ø Ckzl s3.7d

holds. The first order Taylor expansion yieldsuVszd−Vsz8duø uz−z8usupwPQjh
u¹VswduøCs1

+hd2g2s supwPQjh
kwl−m−1øCs1+hd2g−sa−2sd supwPQjh

kwl−møCg−sa−2sdVszd for largeg, where we
useds3.6d in the third inequality,sV.1d, sV.2d in the second and the fourth inequalities,s3.7d in the
last inequality. Here, the constantC is independent ofj ,h ,g,z, andz8. This proves the lemma.j

Lemma 3.5: For any« satisfying0,«,1, we have

Nsq± , ld ø s1 + «d2 B±

2p
o
lPN

VolsV±
s+ds«,ldd, s3.8d

where we setV±
s+ds« , ld=hzPR2u ±xù0,s1−2«dLl

± ,l+gs1+«dVszdj. In fact, the sum on the rhs
of s3.8d terminates for each« and g.

Proof: By Lemma 2.1 andsP.3d, there existsC.0, independent ofj ,g,h, such that

052112-8 Shin-ichi Shirai J. Math. Phys. 46, 052112 ~2005!

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



q±fug ù o
jPJ±

ss1 − «dsH0sbj ,±dx ju,x jud − gsVx ju,x jud − s1 + 1/«disb − bj ,±dx jui2 − Cshgsd−2ix jui2

− Cg−2six jui2d ù o
jPJ±

ss1 − «dsH0sbj ,±dx ju,x jud − g sup
Qjh

uVusx ju,x jud − os1dix jui2d
holds for anyuPC0

`sṼ±d, where we write supQuVu for supzPQuVszdu for short. Then the min–max
theorem yields that

Nsq± , ld ø o
jPJ±

Nss1 − 2«dH0sbj ,±d , l + g sup
Qjh

uVud

ø s1 + hd2g2s B±

2p
o
jPJ±

] hl P Nus1 − 2«dLl
± , l + g sup

Qjh

uVuj

= s1 + hd2g2s B±

2p
o
lPN

o
jPJ±

Fss1 − 2«dLl
± , l + g sup

Qjh

uVud s3.9d

holds for largeg, where we used Proposition 2.2 in the second inequality. Here,FsPd=0 if P is
true andFsPd=1 if P is false.

Set J̃±=h j PJ± uQj ,V±
s+ds« , ldj. We claim that, if j PJ± \ J̃±, then Fss1−2«dLl

± ,l
+g supQjh

uVud=0 holds for largeg.0 uniformly in j , l. Indeed, for suchj , there existsz̄PQj such
that z̄¹V±

s+ds« , ld, i.e.,

s1 − 2«dLl
± ù l + gs1 + «dVsz̄d. s3.10d

Note that if we writez̄=sx̄, ȳdPQj, then ±x̄ù0 since 0,s,a. Then we find that, for any«
.0 fixed, s1−2«dLl

±−l−g supQjh
uVu=s1−2«dLl

±−l−gs1+«dVsz̄d+gss1+«dVsz̄d−supQjh
uVud

ùgss1+«dVsz̄d−supQjh
uVudùgss1+«dVsz̄d−s1+Cg−sa−2sddVsz̄dd=gs«−Cg−sa−2addVsz̄dù0 holds

for large g suniformly in j , ld, where we useds3.10d in the first inequality, Lemma 3.4 in the
second inequality andsV.2d in the last. This shows the claim.

Hence, it follows that, for largeg, the rhs of s3.9d is less than or equal tos1
+hd2sB± /2pdolPNo jPJ̄±

VolsQjdø s1+hd2sB± /2pdolPN VolsV±
s+ds« , ldd. Then the lemma follows

since the setV±
s+d is empty if l is so large thats1−2«dLl

± ùl+CgsupR2 uVu. j

Lemma 3.6: Assume thatl,B−. Then we havelim supg→` g−2/mNg
+sldøolPNnlsld.

Proof: Let V±
s+ds« , ld be as in the previous lemma. SetI0=VolhzPV±

s+ds« , ld u uzuøRj and I`
±

=hz=sx,ydPV±
s+ds« , ld u ±xù0,uzuùRj. Then VolsV±

s+ds« , ldd= I0+ I`
+ + I`

−. We observe thatI0

øpR2, and I`
± ø

1

2
g2/msLl

±−ld−2/meS±
1vsvd2/m dv+Os1d as «↓0 sthe remainder term is uniformly

bounded ingd, since bysV.3d, for any small«.0, there existsR.0 such thaturmVszd−vsvdu
,« if r = uzuùR. Then, taking a limit«↓0 in s3.8d, we derive from Lemmas 3.2, 3.1, and 3.5 that
lim supg→` g−2/mNsHgsbd,ldøolPNnlsld, by Lebesgue’s dominated convergence theorem. The
lemma follows sinceNsHgsbd,ld=Ng

+sld holds if l,B− because of the non-negativity ofV. j

B. Lower bound for N„Hg„b…<l…

Let K andhVkjkPK be as in the beginning of this section. Applying Lemma 2.1 to the pair of
triplets sokPK % L2sVkd ,t1, %kPKC0

`sVkdd and sL2sR2d ,t2,C0
`sR2dd, where we sett1f%kPKvkg

=okPKsHgsbduVk
vk,vkd for %kPKsvkdP %kPKC0

`sVkd ,t2fug=sHgsbdu,ud for uPC0
`sR2d and

J: %kPKC0
`sVkd{ %kPKsvkd°okPKvkPC0

`sR2d, we have

NsHgsbd , ld ù o
kPK

NsHgsbduVk
, ld. s3.11d

As in the proof of Lemma 3.1, we can show that

052112-9 Strong-electric-field eigenvalue asymptotics J. Math. Phys. 46, 052112 ~2005!

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



NsHgsbduV0
, ld = osg2/md s3.12d

as g→`, using the upper estimate in Lemma 2.4. Also, as in the proof of Lemma 3.2, we can
show that

NsHgsbduV1
, ld ø NsH0sbduV1

, l + os1dd = 0 s3.13d

holds for largeg.0.
Lemma 3.7: For any lPN and any« satisfying0,«,1, set

V±
s−ds«,ld = hzP R2u ± x ù 0,s1 + 2«dLl

± , l + s1 − «dgVszdj,

respectively. Then for any« satisfying0,«,1, we have

NsHgsbduV±
, ld ù s1 − «d2 B±

2p
o
lPN

VolsV±
s−ds«,ldd + osg2/md

as g→`, respectively.
Proof: Let 0,h,1 and j PZ2. Let Qj and Qjh be the cubes defined bys3.3d and s3.4d,

respectively. SetJ±8=h j PZ2uQj ,Ṽ± ,Qj ùV±
s−ds« , ldÞxj, respectively. Letbj ,± be as ins3.5d.

Then, as in the proof of Lemma 3.5, it follows from Lemma 2.4, Lemma 2.1, and Lemma 2.3 that,
for any « satisfying 0,«,1,

NsHgsbduV±
, ld ù o

jPJ±8

Nss1 + 2«dH0sbduQj , l + g sup
Qjh

uVud

ù s1 − «d2 B±

2p
o
jPJ±8

VolsQjd ] hl P Nus1 + 2«dLl
± , l + g sup

Qjh

uVuj

ù s1 − «d2 B±

2p
o
lPN

o
jPJ±8

VolsQjdFss1 + 2«dLl
± , l + g sup

Qjh

uVud, s3.14d

where we used Proposition 2.2 withr1=« in the third inequality.
We claim that, ifj PJ±8, thenFss1+2«dLl

± ,l+g supQjh
uVud=1 holds for largeg.0 uniformly

in j , l. Indeed, if j PJ±8, there existsz̄PQj ùV±
s−ds« , ld, i.e., z̄PQj and s1+2«dLl

± ,l+gs1
−«dVsz̄d hold. Then, by Lemma 3.4 andsV.2d, we havel+g supQjh

uVu−s1+2«dLl
± ùgssupQjh

uVu
−s1−«dVsz̄ddùgs«−Cg−sa−2sddVsz̄d.0 for largeg.0. This shows the claim. So, for largeg.0,
the rhs ofs3.14d is bounded from below by

s1 − «d2 B±

2p
o
lPN

o
jPJ±8

VolsQjd

ù s1 − «d2 B±

2p
o
lPN

VolssV± ù V±
s−ds«,ldd \ hzP V± ù V±

s−ds«,ldudistsz,]V±d ø gsjd

ù s1 − «d2 B±

2p
o
lPN

VolsV± ù V±
s−ds«,ldd − s1 − «d2 B±

2p
o
l=0

Cg1−ma

VolhzP V± ù V±
s−ds«,ldudistsz,]V±d

ø gsj, s3.15d

where we used the fact thatsV± ùV±
s−ds« , ldd \ hzPV± ùV±

s−ds« , ld udistsz,]V±døgsj,ø jPJ±8
Qj,

where the rhs is a disjoint union, in the first inequality and used, in the last inequality, the fact that
the set V± ùV±

s−ds« , ld=hzPV± u s1+2«dLl
± ,l+s1−«dgVszdj is empty for all l satisfying s1

+2«dLl
± ùl+Cg1−ma since supV±

uVuøCkga−gsl−møCg−ma holds for largeg.
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From geometry, we have VolsV0ùV±
s−ds« , lddøVol V0øCga+b=osg2/md and VolsV7

ùV±
s−ds« , ldd=VolsV1ùV±

s−ds« , ldd=0 as g→`, where we used the fact thatV1, hzPR2u uzu
ùgbj, hzPR2u uzuù2Cg1/mj andV±

s−d, hzPR2uB−,l+Cgkzl−mj, hzPR2u uzuøCg1/mj for some
C.0. Hence, we have

VolsV± ù V±
s−ds«,ldd = VolsV±

s−ds«,ldd + osg2/md s3.16d

asg→`, and we observe that

o
l=0

Cg1−ma

VolhzP V± ù V±
s−ds«,ldudistsz,]V±d ø gsj ø Cg1−magb+s = osg2/md s3.17d

asg→`, sinceV± ùV±
s−ds« , ld,V± and 1−ma+b+s=2/m−s1/m−2sm+1dsd,2/m. Then the

lemma follows froms3.14d–s3.17d. j

Lemma 3.8: Letl,B−. Under the same assumption on B and V as in Theorem 1.1, we have
limg→` g−2/mNg

+sld=olPNnlsld.
Proof: We can deduce froms3.11d and s3.12d and Lemma 3.7 that lim infg→` g−2/mNg

+sld
ùolPNnlsld in the same way as in the proof of Lemma 3.6. Then, combining this and Lemma 3.6,
we have the result. j

Remark 3.9: Our proof shows that we can replace the assumptions on B and V in Lemma 3.8
by the following weaker assumptions.

sBd8 In addition to (B.1), there exist M.0 and C.0 such thatuBsxd−B±uøCkxl−M hold as
x→ ±`, respectively.

sVd8 The non-negative scalar potential V belongs to C1sRd, and there exist m.0 and C.0
such that0,m,2 and u]aVszduøCkzl−m−uau holds for all zPR2 and for any multi-indexa satis-
fying uauø1. Moreover, the conditions (V.2) and (V.3) hold.

IV. SPECTRAL PROPERTIES OF THE IWATSUKA MODEL

A. Direct decomposition

In this section we recall from Iwatsukas1985d the spectral representation of the Iwatsuka
H0sbd. We introduce the partial Fourier transformsFudsx,hd=s2pd−1/2eRe−Î−1yhusx,yddy, which
defines a unitary operator onL2sR2d. We writeL0 for FH0sbdF−1. ThenL0 has the direct integral
decompositionL0=eR

%Lshddh acting on the Hilbert spaceeR
%L2sRddh. Here, for eachhPR, the

fiber Lshd of L0 is given by

Lshd = −
d2

dx2 + sh − bsxdd2, s4.1d

acting on the fiberL2sRd of eR
%L2sRddh.

The spectral properties ofLshd are summarized as follows.
Lemma 4.1: [Iwatsuka11, Lemmas 2.3 and 3.5)] Assume that (B.1) holds. For eachhPR, the

operator Lshd is essentially self-adjoint on C0
`sRd and has a complete orthonormal system of

eigenfunctionshwns· ,hdjnPN and the corresponding eigenvalueshlnshdjnPN so that Lshdwns· ,hd
=lnshdwns· ,hd and 0,l0shd,l1shd,l2shd, ¯→` hold for each nPN.

Moreover, the following properties (1)–(5) hold for each nPN.

s1d lnshd is nondegenerate and depends analytically onh.
s2d lnshd is monotonically increasing inh, and limh→±` lnshd=Ln

± hold, respectively.
s3d wns· ,hd belongs to DsLs0dd and depends analytically onh with respect to the graph norm

siui2+iLs0dui2d1/2.
s4d wnsx,hd is a real-valued continuous function of x andh, and moreover, wnsx,hd is infinitely

differentiable in x for eachh and is analytic inh for each x.
s5d The estimateuwnsx,hduøFnsx−b−1shdd holds for a functionFn satisfying0,F0sxd, ¯
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,Fnsxd,¯ and

Fnsxd ø HÎ2sLn
+d1/4 if uxu ø ÎLn

+/B−,

Î2sLn
+d1/4 exph− B−suxu − Lnd2/2j if uxu ù ÎLn

+/B−.
J

The next result follows easily fromsB.1d and the definition ofb.
Lemma 4.2: Under the assumption (B.1), the function b has the inverse b−1 and moreover, for

any x,y,h, we have B−ux−b−1shduø ubsxd−huøB+ux−b−1shdu and B−ux−yuø ubsxd−bsyduøB+ux
−yu.

For anykPN, we introduce the Banach spaceBk=huPS8sRd uxa]x
buPL2sRd if a+bøkj with

norm iuiBk=soa+bøkix
a]x

bui2d1/2.
Lemma 4.3: Let D0 denote either C0

`sRd or SsRd. We have the following assertions.

s1d For any kPN, the operator LshdkuD0
is essentially self-adjoint andLshdkuD0

=sLshduD0
dk.

Moreover, DsLshdkuD0
d=huPL2sRd uLshddist

k uPL2sRdj. Here, Ldist stands for the differential
operator L with domainS8sRd.

s2d The Banach space DsLshdkuD0
d equipped with the graph normLshdkuD0

coincides with the
Banach space DsLs0dkuD0

d equipped with (equivalent) norm byLs0dkuD0
.

s3d If we denote by B˜k the space as in the assertion (2) above, then B˜k coincides with Bk as a

Banach space. In particular, the spaceùkPNB̃k coincides withSsRd as a Fréchet space.

Proof: We note thatLshdPOpS2, soLshdkPOpS2k for anyh. It is easy to see that the symbol
of Lshdk satisfies the ellipticity condition as in Lemma 2.7 andLshd is symmetric onD0. Then, by
Lemma 2.7, the operatorLshdkuD0

is essentially self-adjoint andDsLshdkuD0
d=hu

PL2sRd uLshddist
k uPL2sRdj. Also, we find thatLshdkuD0

=sLshduD0
dkuD0

sinceLshd leavesD0 invari-
ant. This implies thatLshdkuD0

, sLshduD0
dk, which are both self-adjoint, so coincide. This shows

the assertions1d.
The assertions2d follows from Lemma 2.7 withOpsad=Lshdk and with Opsad=Ls0dk since

the topology of the weighted Sobolev spacesHm is independent of specificOpsad by thesoriginald
definition. As a byproduct, we find thatDsLshdkuD0

d coincides withH2k.
Finally we show the assertions3d. It is enough to show in the case ofh=0. Note thatB−uxu

ø ubsxduøB+uxu holds for allxPR by Lemma 4.2, and each derivative ofb is bounded. Then there
existsCk.0 such that

iLs0dkui2 + iui2 ø Ckiui
B2k
2 s4.2d

holds for anyuPD0. Conversely, by the assertions4d in Lemma 2.6, the operatorxb]x
a mapsH2k,

which coincides withDsLshdkuD0
d as stated above, toL2sRd continuously provideda+bø2k. This

means the inequalityixb]x
auiøCsiLs0dkui+iuid for any uPD0. The density ofD0 completes the

proof. j

B. Exponential decay of wn

In this section, using the so-called Agmon estimate, we derive an exponential decay estimates
of the eigenfunctionwn and obtain the estimates for the band functionln. To the end of this
section, we setgsx,hd=sx−b−1shdd2 for any x,hPR.

Lemma 4.4: LethPR and let Lshd be as ins4.1d. Assume that fPL2sRd and there exists
k.0 such that iekgs·,hdfi is finite. Assume thatc in DsLshdd satisfies the equationsLshd
−lnshddc= f. Then there exists Cn=Cnsk ,B−d.0, independent ofh, such that

ieags·,hdci ø Cnsiekgs·,hdf i + icid

holds if 0,a,minhk ,B−
2 /Î8j.

Proof: This is an easy consequence of the method of Agmon estimates. However, we give a
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proof for the sake of completeness. LetxPC`sf0,`dd such thatxstd= t if 0 ø tø1/2,xstd=1 if
tù2, suptù0ux8stduø1 and x is monotonically increasing. For any largeR.0, we setgRsx,hd
=R2xsgsx,hd /R2d. We can find that

ugRsx,hdu ø minhR2,gsx,hdj, u]xgRsx,hdu ø 2ux − b−1shdu s4.3d

and limR→` gRsx,hd=gsx,hd for any sx,hd.
We may assume thatc is not identically zero. The standard Agmon-type argument shows that

ReseagRsLshd−lnshddeagRdù sb−hd2−a2u]xgRu2−lnù sB−
2−4a2dux−b−1shdu2−Ln

+ holds for anya
PR, where we used Lemma 4.2 in the first inequality and “Re” stands for the real part. Then it
follows that

ieagRciieagRf i ù uRese2agRc, fdu ù seagRc,ssB−
2 − 4a2dux − b−1u2 − Ln

+deagRfd. s4.4d

TakefPC0
`sf0,`dd so thatfstd=1 if 0ø tø1,fstd=0 if tù2 andf is monotonically decreasing.

Setfhsxd=fsB−
2gsx,hd / s2Ln

+dd. Then we find that

sB−
2 − 4a2dux − b−1u2 − Ln

+ ù s1 − 8a2/B−
2dLn

+ − 6Ln
+fh s4.5d

using the fact thatgsx,hdø4Ln
+/B−

2 holds on suppfh and gsx,hdù2Ln
+/B−

2 holds on supps1
−fhd, and we find froms4.4d and s4.5d that s1−8a2/B−

2dLn
+ieagRciø ieagRfi+6Ln

+e4aLn
+/B−

2
ici,

sincegRsx,hdøgsx,hdø4Ln
+/B−

2 holds on suppfh. Taking a limit R→`, we have the conclu-
sion. j

Lemma 4.5: LetaPN. There existsk=ka,n.0 such that

sup
hPR

iekg]h
a8wnshdi , ` and sup

hPR
u]h

a8+1lnshdu , ` s4.6d

hold if 0øa8øa.
Proof: We show this by induction ona. We abbreviate the assertion toPsad. Whena=0, the

first estimate ins4.6d follows from Lemma 4.1svd. The Feynman–Hellman formula yields that

]hlnshd = swn,s]hLshddwnd = 2swn,sh − bdwnd. s4.7d

Then the second estimate ins4.6d follows from the exponential decay ofwn with respect toh
−b. This shows thatPs0d is true.

We assume thatPsad is true. First, under this assumption, we show the estimate

sup
hPR

i]h
a+1wnshdi , `. s4.8d

Differentiating the equationsLshd−lnshddwnshd=0 with respect toh in sa+1d times, we obtain

sLshd − lnshdd]h
a+1wnshd = − o

0øa8øa

Ca+1,a8]h
a+1−a8ssb − hd2 − lnshdd]h

a8wnshd. s4.9d

In the case ofj Þn, taking an inner product withw j, we obtain

sl jshd − lnshdds]h
a+1wn,w jd = − o

0øa8øa

Ca+1,a8s]h
a+1−a8ssb − hd2 − lnshdd]h

a8wn,w jd.

Then the Schwarz inequality yields that
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us]h
a+1wn,w jdu2 ø SCadn

−1 o
0øa8øa

us]h
a+1−a8ssb − hd2 − lnshdd]h

a8wn,w jduD2

ø Ca8dn
−2 o

0øa8øa

us]h
a+1−a8ssb − hd2 − lnshdd]h

a8wn,w jdu2 s4.10d

for someCa ,Ca8 .0 independent ofh. Here, we introduced a positive numberdn as

dn = HminhinfhPRsln+1shd − lnshdd, infhPRslnshd − ln−1shddj if n ù 2,

infhPRsl2shd − l1shdd if n = 1.
J

In the case ofj =n, differentiating the relationswn,wnd=1 with respect toh in sa+1d times,

we find that 2s]h
a+1wn,wnd=−o1øa8øaCa+1,a8s]h

a+1−a8wn,]h
a8wnd, where we used the reality ofwn.

Then we have

us]h
a+1wn,wndu ø Ca o

1øa8øa

i]h
a+1−a8wnii]h

a8wni s4.11d

for someCa.0 independent ofh. Hence it follows froms4.10d and s4.11d that

i]h
a+1wni2 = o

jPN

us]h
a+1wn,w jdu2 ø Ca8dn

−2 o
0øa8øa

is]h
a+1−a8ssb − hd2 − lnshddd]h

a8wni2

+ SCa o
1øa8øa

i]h
a+1−a8wnii]h

a8wniD2
, s4.12d

where we used the fact thathw js· ,hdj jPN is an ONB inL2sRd. By the assumptionPsad, all terms
on the rhs ofs4.12d are bounded uniformly inh. Thus we have proveds4.8d underPsad.

Next, we apply Lemma 4.4 tos4.9d with c=]h
a+1wn, f = fa=the rhs ofs4.9d. We may assume

that the constanta in the exponent in Lemma 4.4 is equal tok since we can takek small enough.
Then it follows that there existsCn.0 such that the estimateiekg]h

a+1wniøCnsiekgfai

+i]h
a+1wnid. The first term on the rhs is bounded uniformly inh underPsad, since the maximal

order of derivatives ofwn is less than or equal toa and the maximal order of derivatives ofln is
less than or equal toa+1 in the expression offa. The second term on the rhs is also uniformly
bounded because ofs4.8d we have already proved. Hence, we have proved the first estimate in
s4.6d for Psa+1d, assumingPsad.

Finally, we show the second estimate ins4.6d for Psa+1d, assumingPsad. Differentiating
s4.7d with respect toh in sa+1d times, we obtain

]h
a+2lnshd = 2]h

a+1swn,sh − bdwnd = 2 o
0øa8øa+1

Ca+1,a8s]h
a+1−a8wn,]h

a8ssh − bdwndd. s4.13d

Since the maximal order of derivatives ofwn on the rhs ofs4.13d is less than or equal toa+1, the
uniform boundedness of the rhs ofs4.13d with respect toh follows from the first estimate ins4.6d
for Psad and the exponential decay property of]h

a+1wn we have proved above. Thus we have
proved all the assertion ofPsa+1d, assumingPsad. This completes the induction. j

Lemma 4.6: Let bPN. For any aPN, there exists k=ksa ,b ,nd.0 such that
suphPRiekg]x

b]h
awnshdi,`.

Proof: We show this by induction onb. We abbreviate the assertion toPsbd. The assertion
Ps0d is true by Lemma 4.5.

We assume thatPsbd is true. Then, for anya, we have

iekg]x
b+1]h

awnshdi2 = − se2kg]x
b]h

a]x
2wn,]x

b]h
awnd − 4kssx − b−1shdde2kg]x

b+1]h
awn,]x

b]h
awnd

= se2kg]x
b]h

aslnshd − sb − hd2dwn,]x
b]h

awnd

− 4ks]x
b+1]h

awn,sx − b−1shdde2kg]x
b]h

awnd, s4.14d
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where we used the equationsL−lndwn=0 in the third equality. The first term on the rhs ofs4.14d
is bounded uniformly inh by the assumptionPsbd and the second estimate ins4.6d if we choose
k.0 sufficiently smallsthe choice is independent ofhd. The second term on the rhs ofs4.14d is
bounded from above by 4kiekg]x

b+1]h
awniisx−b−1shddekg]x

b]h
awniø2kiekg]x

b+1]h
awni2+2kisx

−b−1dekg]b]h
awni2, which is uniformly bounded sincePsbd is assumed to be true. j

Lemma 4.7: For any n,a ,bPN, there exists a positive constantk=ksa ,b ,nd such that
supsx,hdPR2uekg]x

b]h
awnsx,hdu,` holds.

Proof: For anygPN, we have]x
gsekg]x

b]h
awnd=o0øg8øgCg,g8s]x

g−g8ekgds]x
b+g8]h

awnd. Since each

of the functions]x
g−g8ekg is of the form “a polynomial ofsx−b−1shdd timesekg ,” we obtain the

estimate

i]x
gsekg]x

b]h
awndi ø o

0øg8øg

Cg,g8
iek8g]x

b+g8]h
awni s4.15d

for somek8.0 satisfying 0,k8,k uniformly in h. The rhs ofs4.15d is bounded uniformly inh
by Lemma 4.6 for an appropriate choice ofk ,k8. This means that thegth Sobolev norm of
ekg]x

b]h
awn is bounded uniformly inh for eachg. Hence, Sobolev’s embedding theorem yields that

sup
xPR

uekg]x
b]h

awnu ø Csiekg]x
b]h

awni + i]xsekg]x
b]h

awndid s4.16d

for someC.0. The above observation shows that the rhs ofs4.16d is uniformly bounded inh if
we choosek small enough. This shows the lemma. j

C. Decay estimate of ln

In this section, we derive the following decay estimate of the band functionln at infinity.
Lemma 4.8: Assume thatsB.2d+ holds. Then, for any nPN, there exists Cn.0 such that

uLn
+−lnsbsxdduøCnkxl−M holds if xù0. Similarly, if we assumesB.2d− then the same estimate

replacedLn
+ by Ln

− holds if xø0.
Proof: We mimic the proof of Lemma 4.1 in Iwatsukas1985d. We first consider the case of

xù0. Let n be fixed and j ,køn. Set Lcssd=−]x
2+B+

2sx−sd2 in L2sRd and a jkssd
=sLcssdw js· ,bssdd ,wks· ,bssddd. Then, using the equation sLsbssddw js· ,bssdd ,wks· ,bssddd
=l jsbssddd jk, we find that

ua jkssd − l jsbssddd jku ø E
R

uB+
2sx − sd2 − sbsxd − bssdd2iw jsx,bssddiwksx,bssddudx

ø 2B+E
R
Hux − suUE

s

x

sB+ − BstdddtUFnsx − sd2Jdx

= 2B+E
−`

−s/2HuyuUE
s

y+s

sB+ − BstdddtUFnsyd2Jdy

+ 2B+E
−s/2

` HuyuUE
s

y+s

sB+ − BstdddtUFnsyd2Jdy, s4.17d

where we used the facts thatuB+
2sx−sd2−sbsxd−bssdd2u= ues

xsB++Bstdddties
xsB+−Bstdddtuø2B+ux

−sies
xsB+−Bstdddtu holds and thatuw jsx,bssdduøFnsx−sd hold if j øn by Lemma 4.1. For any

largeNPN and any larges.0, the first term on the rhs ofs4.17d is bounded from above by
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s2B+d2E
−`

−s/2

uyu2Fnsyd2 dy ø 4B+
2E

−`

−s/2

CN,nkyl−2N dy ø CN,n8 kslN s4.18d

for some constantCN,n8 , where we used Lemma 4.1. SincesB.2d+ implies that there existss0.0
andCn.0 such that suptùs/2uB+−BstduøCnksl−N holds if s.s0, it follows that the second term on
the rhs ofs4.17d is bounded from above by

2B+Cnksl−ME
−s/2

`

uyu2Fnsyd2 dy ø Cn8B+ksl−M s4.19d

if s.s0. Hence it follows froms4.17d–s4.19d that

sup
s.s0

sMua jkssd − l jsbssddd jku ø Cn s4.20d

holds for someCn.0, if we chooses0 sufficiently large.
If we denote by Vnssd the linear subspace ofL2sRd spanned byhw js· ,bssddj jøn, then

sa jkssdd j ,køn is the Hermitian symmetric matrix ofLcssduVnssd with respect to the basis
hw js· ,bssddj jøn. Let m0ssdø ¯ ømnssd be the eigenvalues ofsa jkssdd j ,køn. Let saijd and sbijd be
n3n Hermitian matrices and leta1ø ¯ øan andb1ø ¯ øbn be their eigenvalues, respectively.
Then it is easy to see thatuak−bku2øoi,juaij −bij u2 holds for anyk. Hence it follows froms4.20d
that

sup
s.s0

sMum jssd − l jsbssddu ø Cn8. s4.21d

Then, by the variational principlefReed and Simons1978, Vol. IV, Theorem XIII.3dg, we have
L j

+øm jssd for any j øn. SinceL j
+ is the j th eigenvalue ofLcssd andl jsbssddøL j

+, we can deduce
from s4.21d that

sup
s.s0

sMuL j
+ − l jsbssddu ø Cn9 s4.22d

holds if j øn. This shows the first assertion of the lemma.
In the case ofs→−`, we have the conclusion in a similar way, replacing the objects

a jk ,Lcssd ,Lsbssdd and m jssd’s by sLsbssddc js· ,sd ,cks· ,sdd ,Lsbssdd ,−]x
2+B−

2sx−sd2 and the eigen-
values of the matrixssLsbssddc js· ,sd ,cks· ,sddd j ,køn, respectively. Here,cks· ,sd is the eigenfunction
of −]x

2+B−
2sx−sd2 corresponding to thekth eigenvalueLk

−. j

V. PROOF OF THEOREMS

A. Operators on the direct sum

To the end of this paper, we always assumesB.1d, sB.2d, sV.1d–sV.4d.
Let hwnjnPN be the eigenfunctions given in Lemma 4.1. Because of Lemma 4.1, for anyl

PN, we can define a partial isometryTl from L2sRd into L2sR2d by sTl fdsx,hd=wlsx,hdfshd for
any f PL2sRd. The adjoint operatorTl

* from L2sR2d onto L2sRd is given by sTl
*Fdshd

=eRwlsx,hdFsx,hddx for any FPL2sR2d. We now extendTls to an operator on the direct sum of
Hilbert spacesolPN % L2sRd, more precisely, we define a partial isometryT from olPN % L2sRd
into L2sR2d by Ts% lPNsf ldd=olPNTl f l for any % lPNsf ldPolPN % L2sRd. The unitarity ofT follows
from theL2-orthogonality ofwl’s with respect to the first variable. The adjoint operatorT* from
L2sR2d onto olPN % L2sRd is given byT*F= % lPNTl

*F for any FPL2sR2d. We set

W = T*FWF*T s5.1d

for any multiplication operatorW on L2sR2d and setHg=T*FHgsbdF*Ts=H0−gVd, both acting on
the Hilbert spaceolPN % L2sRd, whereF is the partial Fourier transform as in the preceding
section andV is the operators5.1d with W=V.
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For an operatorA acting on the spaceolPN % L2sRd, we sayA belongs to OpSm if all the
matrix elementsAjks j ,kPNd of A swith respect to the direct sum decompositiond belong to the
classOpSm. When all the matrix-valuedCDOs under consideration have finitely many nonzero
components, the standardCDO calculus as in Sec. II B is applicable also for the matrix-valued
CDOs. In particular, Proposition 2.8 remains valid for the matrix-valuedCDO with obvious
modificationsse.g., we regard the product of symbols as the usual matrix product, etc.d.

In the rest of this section we are concerned with the matrix-valuedCDO V=T*FVF*T.
Lemma 5.1: Let m.0 be as in (V.1). We have the following assertions.

s1d The operator Tn
*FVF*Tn on L2sRd belongs to OpS−m for any nPN, and moreover, for any

a ,bPN, there exists Cab.0 such that the Weyl symbol pV of Tn
*FVF*Tn on L2sRd satisfies

the estimate

hab
s−mdspVd ø Cabhab

s−mdsVd. s5.2d

Here, hab
smd is the seminorm as ins2.2d.

s2d A principal symbol qV of Tn
*FVF*Tn is given by qVsh ,h*d=Vsb−1shd ,−h*d, and moreover, for

any a ,bPN, there exists Cab.0 such that the remainder estimates

hab
s−m−1dspV − qVd ø Cabhab

s−m−1ds¹Vd s5.3d

holds. Here, we denote by¹V the first order derivatives of V.
s3d The operator Ti

*FVF*Tj on L2sRd belongs to OpS−m−1 for any i, j PN satisfying iÞ j , and
moreover, for anya ,bPN, there exists Cab.0 such that the Weyl symbol rV of Ti

*FVF*Tj
on L2sRd satisfies the estimate

hab
s−m−1dsrVd ø Cabhab

s−m−1ds¹Vd. s5.4d

Proof: First, assuming further thatVPSsR2d, we show the assertionss1d–s3d. For any i , j
PN, we find that the operator Ti

*FVF*Tj has the integral kernel Ksh ,h8d
=eeR2wisx,hdw jsx,h8dVsx,yde−Î−1ysh−h8d dxd-y, which converges absolutely for eachh ,h8, and so
the Weyl symbolpV is given by

pVsh,h*d =E
R

e−Î−1wh*
Ksh + w/2,h − w/2ddw

=E E E
R3

dx d-w dz e−Î−1wzwisx,h + w/2dw jsx,h − w/2dVsx,z− h*d, s5.5d

where we changed the variablez=y+h* in the last line. An integration by parts yields that the rhs
of s5.5d is equal to

E E E
R3

d̀x d-w dzkzl−2Ne−Î−1wzkDwl2Nswnsx,h + w/2dwnsx,h − w/2ddVsx,z− h*d s5.6d

for any NPN. Using the estimatekh ;h*løCkx;z−h*lkh−bsxdlkzl, we find that, for anya ,b,

kh;h*lm+au]h
b]h*

a pVsh,h*du

ø CE E E
R3

dx d-w dzkzl−2N+m+akh − bsxdlm+a

3 u]h
bkDwl2Nswisx,h + w/2dw jsx,h − w/2ddukx;z− h*lm+a

u]h*
a Vsx,z− h*du
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ø C8ha0
s−mdsVd E E

R2
dx d-wkh − bsxdlm+au]h

bkDwl2Nswisx,h + w/2dw jsx,h − w/2ddu

s5.7d

if we takeN so that 2N−m−a.1. By Lemma 4.7, we have

u]h
bkDwl2lswisx,h + w/2dw jsx,h − w/2ddu

ø CbN o
0øb8øb

o
0øN8ø2N

u]h
b−b8+2N−N8wisx,h + w/2d]h

b8+N8w jsx,h − w/2du

ø CbN8 exps− cssbsxd − h − w/2d2 − sbsxd − h + w/2d2dd = CbN8 exps− 2csbsxd − hd2 − cw2/2d

Hence, the integral on the rhs ofs5.7d converges absolutely, because of Lemma 4.2. Especially,
when i = j =n, this proves the assertions1d under the temporal assumption onV.

We show the assertionss2d and s3d. The first order Taylor expansion yields that

Vsx,z− h*d = Vsb−1shd,− h*d + sx − b−1shddE
0

1

s]1Vdsux + s1 − udb−1shd,usz− h*d − s1 − udh*ddu

+ zE
0

1

s]2Vdsux + s1 − udb−1shd,usz− h*d − s1 − udh*ddu, s5.8d

where ] jV denotes the derivative ofV with respect to thej th variable. In s5.5d, the symbol
corresponding to the first term on the rhs ofs5.8d is given by

E E E
R3

dx d-w dz e−Î−1wzwisx,h + w/2dw jsx,h − w/2dVsb−1shd,− h*d

=E
R

wisx,hdw jsx,hddx Vsb−1shd,− h*d = Vsb−1shd,− h*ddi j ,

where we used the Fourier inversion formula. We can derive the estimates5.3d for the symbols
corresponding to the second and the third terms on the rhs ofs5.8d in the same way as in the proof
of s5.2d, using the facts thatu]h

asx−b−1shdduøCakx−b−1shdl, which follows from sB.2d, and that
kh ;h*løCkb−1shd ;−h*løC8kux+s1−udb−1shd ;usz−h*d−s1−udh*lkx−b−1shdlkzl. Then we have
the assertionss2d and s3d whenVPSsR2d.

Finally, we give a proof for generalVs. We consider only the case ofi = j =n, since the case of
i Þ j is similar. Since the spaceSsRd is dense inS−k for any k.0, we can approximateV by an
appropriate sequencehVljl=1

` s,SsR2dd in S−k for any k.0. We consider the equality

Tn
*FVlF*Tn = OpsqV1

d + Rs¹Vld, s5.9d

whereRs¹Vld stands for the remainder term. Then it follows from Lemma 2.5,s5.2d ands5.3d that
the rhs ofs5.9d converges toOpsqVd+Rs¹Vd asl →` in the norm operator topology. On the other
hand, the left-hand sideslhsd of s5.9d converges toTn

*FVF*Tn as l →` in the weak operator
topology by definition. Thus, the lemma is true for generalV’s. j

The next lemma follows immediately from Lemma 5.1 if we replaceV by Va.
Lemma 5.2: LetV be the operators5.1d with W=V. Let a.0. SetVi j

a =TiFVaF*Tj for any
i , j PN. If we regardVi j

a as an operator from the jth component to the ith component ofolPN
% L2sRd, thenVi j

a is aC DO whose symbol is given by the form Vsb−1shd ,−h*ddi j +OpS−ma−1.
We need the following result in the place where we use Proposition 2.8.
Lemma 5.3: LetlPR \SpecsH0sbdd and letnl be as in Sec. I. For any lPN, we have

limg→` g−2/m Volhsx,jdPR2uVsb−1sxd ,−jd.g−1ullsxd−luj=nlsld.
Proof: Note thatullsbsxdd−luùCl.0 holds for someCl, independent ofl ,x. For simplicity,
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we set Fl =hsx,jdPR2uVsb−1sxd ,−jd.g−1ullsxd−luj ,Fl8=hsx,jdPR2uVsx,jd.g−1ullsbsxdd−luj
for any l PN. By changing the variablessx,jd→ sbsxd ,−jd, we find that s1/2pdVolsFld
=eeFl8

Bsxddx d-j=J0+J++J−, where we set

J0 = E E
Fl8ùhuxuøg1/2mj

Bsxddx d-j, J± = E E
Fl8ùh±xùg1/2mj

Bsxddx d-j,

respectively. We first consider the integralJ0. By sB.1d, sV.1d, there existsC.0 such thatJ0

øB+ Volhsx,jdPR2uCkx,jl−m.Clg−1, uxuøg1/2mj=osg2/md holds asg→`. Next, we consider the
integralJ+. We divideJ+=J+,1+J+,2 with

J+,1 = E E
Fl8ùhxùg1/2mj

sBsxd − B+ddx d-j,

J+,2 =
B+

2p
Volhsx,jd P R2uVsx,jd . g−1ullsbsxdd − lu,x ù g1/2mj.

Using sB.2d we find thatuJ+,1u is bounded from above by

C E E
Fl8ùhxùg1/2mj

kxl−M dxd-j ø Cg−M/2m Volhsx,jd P R2ukx;jl−m . Clg−1,x ù g1/2mj,

which is of orderosg2/md as g→`. If xøg1/2m, then ullsbsxdd−luù uLl
+−lu− ullsbsxdd−Ll

+u
ù uLl

+−lu−Ckxl−M ù uLl
+−lu−Cg−M/2m holds because of Lemma 4.8. Then we find thatJ+,2

=sB+/4pduLl
+−lu−2/mv̂+g2/m+osg2/md asg→` in the same way as in the proof of Lemma 3.6. We

can estimate the integralJ− similarly. j

B. Preliminary estimates

The proofs of Theorems 1.1, 1.4, and 1.5 given below are essentially the same as those of
Theorems 1.2, 1.1 in Raikovs1993d and that of Theorem 2.2 in Raikovs1998d, respectively.
However, we reproduce the proofs of Theorems 1.1–1.5 for the sake of completeness.

Let Ln−1
+ ,l,Ln

−. Take an integerN0 greater thann and setI−=h−1,0,… ,n−1j ,I+=hn,n
+1,… ,N0j. Define the orthogonal projectionsP+,P−,P`, and P−

c on the spaceolPN % L2sRd by
P±=olPI±

% idL2sRd, respectively,P`=id−P−−P+ andP−
c =P++P`=id−P−. Here, “id” stands for

the identity operator. These projectionsP± ,P` commute with each other and with the operatorH0.
Lemma 5.4: We have the asymptotic relations

lim
g→`

g−2/mNsg−1 , V1/2P±uH0 − lu−1V1/2d = o
lPI±

nlsld, s5.10d

lim
g→`

g−2/mNsg−1 , P±V1/2P±uH0 − lu−1V1/2P±d = o
lPI±

nlsld, s5.11d

respectively. Here, the operatorsH0 and V are as in Sec.V A.
Proof: It follows from SpecsA*Ad \ h0j=SpecsAA*d \ h0j that

Nsg−1 , V1/2P±uH0 − lu−1V1/2d = Nsg−1 , uH0 − lu−1/2P±VP±uH0 − lu−1/2d.

The operatorsuH0−lu−1P± are matrix-valuedCDOs on olPI±
% L2sRd and have the symbol

sullshd−lu−1di jdi,jPI±
, which belong to the classOpS0 by Lemma 4.5, and the operatorsuH0

−lu−1/2P±VP±uH0−lu−1/2 are matrix-valuedCDOs whose principal symbols are given bysullshd
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−lu−1Vsb−1shd ,h*ddi jdi,jPI±
, respectively, because of Lemma 5.2. Thens5.10d follows from a

matrix-valuedCDO version of Proposition 2.8. The proof ofs5.11d is similar. j

Lemma 5.5: We have the asymptotic relations

lim
m↓0

m2/mNsm , P−
cV1/2P−uH0 − lu−1V1/2P−

cd = 0, s5.12d

lim
m↓0

m2/mNsm , P−V1/2P+uH0 − lu−1V1/2P−d = 0, s5.13d

lim
N0→`

lim sup
m↓0

m2/mNsm , P−V1/2P`uH0 − lu−1V1/2P−d = 0. s5.14d

Proof: Since P−V1/2P−
cV1/2P−=P−V1/2sid−P−dV1/2P−=P−VP−−sP−V1/2P−d2, we can deduce

from Lemma 5.2 thatP−V1/2P−
cV1/2P− belongs toOpS−m−1. Then it follows froms2.4d that Nsm

, uH0−lu−1/2P−V1/2P−
cV1/2P−uH0−lu−1/2d=Osm−2/sm+1dd=osm−2/sm+1dd as m↓0. This provess5.12d

since SpecsA*Ad \ h0j=SpecsAA*d \ h0j.
The operatorP−V1/2P+ belongs toOpS−m/2−1 by Lemma 5.2 sinceolPI−

% L2sRd and olPI+
% L2sRd are orthogonal, andP+V1/2P−V1/2P+=sP−V1/2P+d*sP−V1/2P+d belongs toOpS−m−2. Then
s2.4d provess5.13d.

By the definition ofP` and the min–max argument, we have

Nsm , P−V1/2P`uH0 − lu−1V1/2P−d ø NssLN0+1
− − ldm , P−VP−d ø CsLN0+1

− − ld−2/mm−2/m,

where we used the fact thatP−VP−POpS−m ands2.4d in the last inequality. SinceLN0+1

− tends to
infinity as N0→`, we have the conclusion. j

Lemma 5.6: We havelimN0→` lim supm↓0 m2/mNsm,V1/2P`uH0−lu−1V1/2d=0.
Proof: If we chooseN0.0 so large thatløLN0+1

− /2 holds, thenL jshd−lùl jshd−LN0+1
− /2

ù sl jshd+LN0+1
− d /4 holds for any j ùN0+1 and for anyhPR, from which we haveP`uH0

−lu−1ø4sH0+LN0+1
− d−1. Then the variational principle yields the estimateNsm,V1/2P`uH0

−lu−1V1/2døNsm,4V1/2sH0+LN0+1
− d−1V1/2d=NsH4/msbd,−LN0+1d=olPNnls−LN0+1

− ds4/md2/ms1
+os1dd asm↓0, where we used Theorem 1.1 proved in Sec. III in the last inequality. Finally, the
lemma follows from the asymptotic relation limN0→`olPNnls−LN0+1

− d=0. j

C. Proof of Theorem 1.1

Using the inequalityV1/2sH0−ld−1V1/2øV1/2P−
cuH0−lu−1V1/2, we have, for any small«.0,

Ng
+sld ø Nsg−1 , V1/2P−

cuH0 − lu−1V1/2d ø Nss1 − «dg−1 , V1/2P+uH0 − lu−1V1/2d

+ Ns«g−1 , V1/2P`uH0 − lu−1V1/2d,

where we used thesgeneralizedd Birman–Schwinger principlefsee, e.g., Alama, Deift, and
Hempels1989d, Birmans1991dg and the Weyl–KyFan inequality. Then by Lemma 5.4 and Lemma
5.6, we obtain the upper bound lim supg→` g−2/mNg

+sldøolPI+
nlsld, taking a limit «↓0 andN0

→`. Next, we obtain the lower bound. For any small«.0, we have

P−
cV1/2sH0 − ld−1V1/2P−

c = P−
cV1/2P−sH0 − ld−1V1/2P−

c + P−
cV1/2P−

csH0 − ld−1V1/2P−
c

ù P−
cV1/2P−sH0 − ld−1V1/2P−

c + V1/2P−
csH0 − ld−1V1/2

− 2 ResP−V1/2P−
csH0 − ld−1V1/2d ù s1 − «dV1/2P−

cuH0 − lu−1V1/2

− P−
cV1/2P−uH0 − lu−1V1/2P−

c − «−1P−V1/2P−
cuH0 − lu−1V1/2P−,

where we used the inequalityP−V1/2P−
csH0−ld−1V1/2P−ù0 in the first inequality and used the

estimate 2usu,V1/2P−
csH0−ld−1V1/2P−uduø«iuH0−lu−1/2P−

cV1/2ui2+«−1iP−
cuH0−lu−1/2V1/2P−ui2 in
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the second inequality. Then, by a variational argument similar to that used in the case of the upper
bound, we can derive the lower bound lim infg→` g−2/mNg

+sldùolPI+
nlsld, using Lemma 5.4 and

Lemma 5.5. This completes the proof of Theorem 1.1.

D. Proof of Theorem 1.4

By the Birman–Schwinger principle, we have the upper bound

Ng
−sld = Nsg−1 , − V1/2sH0 − ld−1V1/2d ø Nsg−1 , V1/2P−uH0 − lu−1V1/2d

ø o
lPI−

nlsldg−2/ms1 + os1dd

as g→`, where we used the inequality −V1/2sH0−ld−1V1/2=V1/2P−uH0−lu−1V1/2−V1/2P−
cuH0

−lu−1V1/2øV1/2P−uH0−lu−1V1/2 in the first inequality and useds5.10d in the last inequality. Next,
for any small«.0, there existsC«.0, independent ofg,N0, such that

Ng
−sld ù Nsg−1 , − P−V1/2sH0 − ld−1V1/2P−d ù Nss1 + «dg−1 , P−V1/2P−uH0 − lu−1V1/2P−d

− NsC«g
−1 , P−V1/2P−

cuH0 − lu−1V1/2P−d ù Nss1 + «dg−1 , P−V1/2P−uH0 − lu−1V1/2P−d

− NsC«8g
−1 , P−V1/2P+uH0 − lu−1V1/2P−d − NsC«8g

−1 , P−V1/2P`uH0 − lu−1V1/2P−d

ù o
lPI−

nlsldsg/s1 + «dd2/ms1 + os1dd

asg,N0→`, where we used the Weyl–KyFan inequality in the second and the third inequalities
and Lemma 5.4 in the last line. This gives the lower bound and we complete the proof.

E. Proof of Theorem 1.5

Let Ln−1
+ ,l,m,Ln

−. Set g=sm+ld /2 ,t=sm−ld /2 and setP+
c =P−+P`. Since P+sHg

−gd2P+=sP+sHg−gdP+d2−g2P+VP+
cVP+, we have, for small «.0, NsløHgsbd,md

ùNssHg−gd2,t2dùNsP+sHg−gd2P+,t2dùNssP+sHg−gdP+d2,t2−«d−NsC«,g2P+VP+
cVP+d

=NssP+sHg−gdP+d2,t2−«d+osg2/md as g→`. Here, we used the fact that the operator
P+VP+

cVP+=P+V2P+−sP+VP+d2 is a matrix-valuedCDO of the classOpS−2m−1. Settingl1=g
−Ît2−« and m1=g+Ît2−«, we haveNsl1, P+HgP+,m1dùNsg−1,V1/2P+sH0−m1d−1P+V1/2d
−Nsg−1,V1/2P+sH0−l1d−1P+V1/2d=olPI+

nlsfl1,m1gdg2/ms1+os1dd as g→`, where we used the
Birman–Schwinger principle and Theorem 1.1. Finally, we have Theorem 1.5 from these, letting
«↓0 andN0→`.
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