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This paper introduces a simple way to evaluate the preconditioning effect in the shifted ICCG method. The proposed evaluation index
is easily calculated with little additional memory in an incomplete factorization process; thus, it can be used for setting appropriate
parameters for the solver, such as an acceleration factor and the ordering of unknowns, prior to the time-consuming iteration process.
Numerical results show that the evaluation index gives the good estimate of the number of iterations necessary for convergence.
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I. INTRODUCTION

HE solution process in a linear system of equations is the

most time consuming part in a finite-element analysis of
electromagnetic field problems. While a multigrid or multilevel
method has recently been developed for the solution step, the in-
complete Choleskey conjugate gradient (ICCG) method [1] re-
mains one of the most popular linear solvers in electromagnetic
field analyses. In an electromagnetic field analysis based on the
finite-edge element method, A- or A-V methods are often used
[2], [3]. In these methods, the global coefficient matrix is semi-
positive; therefore, the normal IC preconditioning cannot be di-
rectly applied to the coefficient matrix because of a breakdown
in the incomplete factorization process. A popular remedy for
this is to construct a preconditioning matrix through incomplete
factorization of a positive definite matrix approximate to the
original coefficient matrix [4]. The shifted IC preconditioning
(the shifted ICCG method) is one such remedy and is widely
used in electromagnetic field analyses [5].

In the shifted ICCG method, the convergence is greatly af-
fected by the acceleration factor that determines the shift quan-
tity and the ordering of unknowns [6]. Furthermore, when par-
allel orderings are used for an analysis performed in a parallel
computation environment, engineers have to be careful about
more parameters that can affect the convergence. In this paper,
we present a convergence evaluation index as a tool to assist en-
gineers to select appropriate parameters or orderings. The eval-
uation index can be easily calculated prior to an iterative solu-
tion process. The authors recently proposed an easy way to eval-
uate convergence in ILU preconditioning in structured analyses
[7], and in this paper, we further develop the method to include
unstructured analyses. The proposed evaluation index Precise
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Remainder Index (P.R.I.) can be easily computed with little
memory requirement. Numerical tests confirm the effectiveness
of the proposed method in a finite-edge element electromagnetic
field analysis.

II. ILU PRECONDITIONING

This paper deals with the following n-dimensional linear
system of equations:

Au = f. (1

While the coefficient matrix is symmetric and semi-positive def-
inite, our evaluation method is explained in a general format and
includes a nonsymmetric coefficient matrix case.

When the linear system of equations is solved by iterative
methods, preconditioning techniques are often used [8]. In this
technique, the linear system is transformed into a precondi-
tioned system

(KT'AK;') (Kyu) = K7'f @)

that accelerates the convergence of a basic iterative method. The
matrix M = KK is called a preconditioner matrix. In ILU
preconditioning, the preconditioning matrix is given by

M=LD™'U 3)

where L, D, and U are a lower triangular matrix, a diagonal
matrix, and an upper triangular matrix, respectively. These ma-
trices L, D, and U are derived from ILU factorization of the
coefficient matrix A as follows:

A= (LD 'U) - Ry, )

where Ry, is the matrix of the elements that are dropped during
the incomplete factorization.
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In the ILU preconditioned iterative method algorithm, the
transformation (2) is not performed explicitly, and the precon-
ditioning step is given by the solution of a linear system

(LD™'U)z = =. )

Since the preconditioner matrices depend on the ordering of the
unknowns, the preconditioning effect is also affected by the or-
dering. Moreover, the degree of parallelism in the solution (5)
depends on the ordering.

III. NEW EVALUATION INDEX OF CONVERGENCE

A. Remainder Matrix

A typical way to evaluate the preconditioning effect is
through checking the condition number or the eigenvalues of
the preconditioned coefficient matrix. However, as the compu-
tational cost of computing eigenvalues is generally high, the
following method proposed by Duff and Meurant is widely
used for evaluating the preconditioning effect.

Duff and Meurant’s method [9].
The effect of ILU preconditioning, is evaluated by the norm
of the remainder matrix R

R=M- A (6)

A smaller norm of R results in better convergence.

In the ILU preconditioning case, it holds that

R = Ry,. )

Duff and Meurant used the Frobenius norm of the remainder ma-
trix and their numerical tests of finite-difference analyses con-
firmed the effectiveness of their method [9]. However, when the
ILU preconditioning technique is applied to a general sparse co-
efficient matrix, the additional memory requirement and com-
putational cost for computing the Frobenius norm of the re-
mainder matrix are not small compared with the iterative so-
lution process. Therefore, another practical method is required
for evaluating preconditioning effects in unstructured analyses.

B. PR.IL

In this section, we describe a new evaluation index, which
is called P.R.I. [7]. To construct a new evaluation index, we
consider the remainder matrix in ILU preconditioning. The re-
mainder matrix R can be computed by using the algorithm as-
sociated with ILU factorization as shown in Fig. 1. When we
focus on an arbitrary element 7 ; i in the algorithm, the element
is updated several times depending on the non-zero element pat-
tern of the coefficient matrix. Since these update quantities are
different from each other, storing all dropped fill-ins is neces-
sary for computing the exact remainder matrix entries. Thus,
in the P.R.I. evaluation, we use a summation of the absolute
values of the updates of the remainder matrix. The algorithm
for calculating the P.R.I. value I,,, is shown in Fig. 1. The ad-
ditional memory requirement for the calculation is for only one
variable. Moreover, the computational cost is generally much
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R=0
I, =0
forI=1ton—-1
forJd=I1I+1ton
for K=1I+1ton
Zf a/J,l ;ﬁ 0& 64,}( # 0& ZlJ,K # 0 then
ajx =@,k —aj1*ar,x/arr
// (ILU factorization)
endif
Zf flJ,j 75 0& 64,1( # 0& ELJ,K =0 then
TIK =TJK + a0 % ar,k /a1
// (Computation of R)
I, =Ip+ |Gy *ar,k/ar1|
// (Computation of P.R.I.)
endif
end for
end for
end for

Fig. 1. Algorithm for ILU factorization with computing of the remainder ma-
trix and the P.R.I.

smaller than the iteration process. When all diagonal entries of
A have the same signs and all off-diagonal entries of A also have
the identical signs, a simple relationship between the remainder
matrix norm and the P.R.I. is obtained as follows:

||R||A = Irp (8)

where ||R]| 4 is defined as a sum of the absolute values of all
entries of R, and is given by

IRla =" Irrsl. )
1J
The operator || - || 4 satisfies the definition of the matrix norm

shown in [10]. For example, the relationship (8) is satisfied in
a finite-difference analysis of a Poisson equation. In a general
coefficient matrix case, since the dropped fill-ins may have dif-
ferent signs

[B]la < I (10)

is obtained. Moreover, the Frobenius norm of the remainder ma-
trix | R||r and || R|| 4 have the following relationship:

2

IRIF =D (rin)> < [ D Iriul | =IRIZ. (AD
ik

3.k
Consequently, the P.R.I. gives an upper bound of the Frobenius
norm of the remainder matrix as follows:

||R||F S Irp- (12)

C. PR.IL for Variants of ILU Preconditioning

In practical analyses, ILU factorization can fail due to pivot
breakdown. One remedy for such a breakdown is the modifica-
tion of the coefficient matrix before factorization; for example,
diagonal sifts [5], [11]. Let Aa,, be a modification term, then
the modified factorization is given by

A+ Aam = (LmD,,'Up) — Rijum. (13)
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TABLE I
DISCRETIZATION DATA
Number of volume elements | 327680
Number of nodes 342225
Number of unknowns 1011920
Time step 1 msec

For this factorization, the remainder matrix is written as follows:

R = Ryjym + AAm~ (14)

Here, we define the P.R.I. value for the factorization (13) as

Irpm = 4rpo + ||AAm||4 (15)
In (15), I is the I}, value calculated in the algorithm shown
in Fig. 1.

In the shifted ICCG method, the modification term is given
as follows:

Apnn = diag(A) - « (16)

where diag() means the diagonal part of a matrix and « is a
positive scalar value, which in electromagnetic field analyses is
generally called an acceleration factor.

IV. RESULTS

A. Test Model

In the present analysis, we use the IEEJ standard benchmark
model of 3-D eddy-current analyses [2]. The analyzed model
is discretized by first-order brick-type edge elements. Table I
lists the discretization data. The electromagnetic field equations
are solved by using the Galerkin method with A-formulation
and the backward time difference method. The linear system
of equations generated is solved by the shifted ICCG method.
The convergence criterion of the iterative method is given by
I7ll2/||fll2 < 10~7, where r and f are the residual vector and
the right-hand-side vector of the linear system, respectively.

B. Numerical Results

In this paper, we examined effects of the acceleration factor
a and orderings on the convergence rate in the shifted ICCG
method. While there are several orderings for a finite-element
analysis, we pay special attention to multicolor ordering, which
is one of the most popular ways for parallelization in the ICCG
method. It is well known that parallel orderings including mul-
ticolor ordering suffer from a tradeoff problem between paral-
lelism and convergence of the iterative solver [12].

Fig. 2 shows the convergence behavior of the shifted ICCG
method when the unknown variables are ordered by using nat-
ural, random, 80-color and 400-color orderings. In this numer-
ical test, the acceleration factor is fixed at 1.08. Fig. 2 indicates
that ordering of the unknowns affects the convergence rate of the
iterative solver. Although the relationship between ordering and
convergence is generally not simple in unstructured analyses,
the result shown in Fig. 2 agrees with previous research results
obtained in structured finite-difference analyses [9], [12]. While
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natural ordering shows the best preconditioning performance,
the increased number of colors in multicolor ordering improves
the convergence rate.

Next, we examine the effectiveness of the P.R.I. on the esti-
mation of the number of iterations needed to obtain convergence
in the iterative solver. Fig. 3 plots the relationship between the
P.R.I. and the number of iteration in natural and random order-
ings when the acceleration factor is changed from 1.03 to 2.03.
In Fig. 3, the numerical tests based on two different orderings
form an identical P.R.I. evaluation line. This result indicates that
the P.R.IL. is effective for comparisons between different order-
ings in the shifted ICCG method even when the acceleration
factor varies. Figs. 4 and 5 show the results of multicolor or-
dering with various numbers of colors where the acceleration
factor is set to be 1.08, 1.16, or 1.2. In Fig. 4, we observe a
general characteristic of multicolor ordering, in which an in-
crease in the number of colors reduces the number of iterations.
However, the relationship between the number of colors and the
number of iteration is not given by a simple linear function. On
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Fig. 5. Relationship between the P.R.I. and the number of iterations in the mul-
ticolor ordering technique.

the other hand, in the same numerical test, the number of iter-
ations is roughly proportional to the P.R.I. as shown in Fig. 5.
Since the degree of parallelism is in an inverse proportion to the
number of colors, the P.R.I. value can be used for setting the
number of colors to compromise parallelism and convergence
in the multicolor ordering technique.

Next, we check a comparison of convergence evaluation
accuracies between the P.R.I. and the Frobenius norm of the
remainder matrix ||Rp|| that is a conventional convergence
evaluation index [9]. Fig. 6 shows a strong correlation between
two evaluation indices. Namely, the P.R.I. has the same degree
of convergence evaluation accuracy as the ||Rp|| value. On
the other hand, computing the ||Rr|| value requires additional
memory, which is twice as large as the memory requirement for
the coefficient matrix. Accordingly, the P.R.I. has the advantage
of a much less memory requirement.

V. CONCLUSION

This paper introduces the convergence evaluation index
(P.R.I) in the shifted ICCG method. The evaluation index is

IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 4, APRIL 2007

2.4 T T T T
2F +7 +-§"+ 7]
ot
N i}r
=4 + 1 +++
+
X 16 - B
IS + o+ 7
8 + *
2] +
g 1.2 .
[0
2 +
[<] +
[T
0.8 | B
Random ordering  +
Natural ordering =
04 " B
1 1 1 1
10 20 30 40
P.R..(x10°%)

Fig. 6. Relationship between the P.R.I. and the Frobenius norm of the
remainder matrix.

easily computed with little additional memory. Numerical tests
confirm the relationship between the number of iterations and
the P.R.I. values when different orderings and acceleration
factors are used. Moreover, it is shown that the P.R.I. has a
strong correlation with the Frobenius norm of the remainder
matrix that is a conventional evaluation index. The memory
requirement for computing the P.R.I. value is much less than
that for the conventional index. Consequently, P.R.I. values
can be used as a tool for estimating the number of iterations in
setting parameters in the shifted ICCG method.
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