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Correct boundary conditions for theE^ e dynamic Jahn-Teller problem are considered explicitly for
the first time to obtain approximate analytical solutions in the strong coupling limit. Numerical
solutions for the decoupled equations using the finite difference method are also presented. The
numerical solutions for the decoupled equations exhibit avoided crossings in the weak coupling
region, which explains the oscillating behavior of the solutions obtained by Longuet-Higginset al.
for the coupled equations. The obtained analytical energy expressions show improved agreement
with the numerical calculations as compared with the previous treatment in which the potentials
were assumed to be harmonic. We demonstrate that the pseudorotational energyj 2/(2g2), whereg
is the dimensionless vibronic coupling constant, andj total angular momentum:j 561/2,
63/2,..., in theconventional strong coupling expression for the vibronic levels of the lower sheet
is exact. Non-Hermitian first-order perturbation theory gives the energy which is correct up to 1/g4.
The asymptotic behavior of the wave function at the origin does not influence the corrected energy
up to order of 1/g4. At the same time the treatment of the upper sheet with correct boundary
conditions gives solutions which are entirely different from the corresponding Slonczewski’s
solutions. Besides, the correct boundary conditions enable us to evaluate the nonadiabatic coupling
between the lower and upper potential sheets. The energy correction due to the nonadiabatic
coupling is estimated to be of order 1/g6. © 2005 American Institute of Physics.
@DOI: 10.1063/1.1836758#

I. INTRODUCTION

The dynamical Jahn-Teller~JT! problem is one of the
most investigated problems in molecular physics. However,
the analytical solution in the general case has not been es-
tablished.

The first numerical calculations for the energy spectra of
the dynamicE^ e JT problem describing the coupling of a
twofold degenerate electronicE state with a twofold degen-
erate vibrationale state, were performed more than 40 years
ago.1,2 Since then, many authors have studied this problem
numerically.3,4 On the other hand, first progress towards the
exact solution was made by Judd.5 He obtained finite-order
equations for the isolated values of the coupling constant in
which the eigenvalue lies on a baseline. Efforts to obtain
analytical solutions are continuing even today.6–10

The dynamic linearE^ e JT problem in the strong cou-
pling limit has been investigated since 1958.1,11,12These so-
lutions in the strong coupling limit are called the crude so-
lutions in the present paper. The crude solution which is
obtained assuming a harmonic potential can reproduce the
numerical calculation well in the strong coupling limit up to

order of 1/g2, whereg is dimensionless vibronic coupling
constant. However, the radial wave function within the crude
approximation does not satisfy the boundary condition at the
origin and gives rise to divergent nonadiabatic coupling ele-
ments. A similar problem that singularity appears in the
Hamiltonian based on the diabatic representation has also
been discussed.13–15

In this paper, we will present a simple approximate ana-
lytical solution which satisfies the correct boundary condi-
tion at the origin for the dynamical linearE^ e problem in
the strong coupling limit. First-order perturbation is em-
ployed to obtain up to 1/g4 contribution. The whole treat-
ment for the lower energy surface demonstrates the existence
of the pseudorotational energyj 2/(2g2) in the vibronic spec-
tra in the strong coupling limit. We will also present the
nonadiabatic coupling matrix elements using the obtained
solutions.

The paper is organized as follows: In Sec. II we formu-
late theE^ e Jahn-Teller Hamiltonian in the adiabatic basis
and decouple the equations in the strong coupling limit. In
Sec. III we show the numerical solution of the decoupled
equation using the finite difference method and compare it
with the exact numerical solution of the coupled equations
obtained by Longuet-Higginset al. The solutions within thea!Electronic mail: tsato@scl.kyoto-u.ac.jp
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crude approximation are presented in Sec. IV. In Sec. V, we
consider the asymptotic behavior in the vicinity of the origin
which the solutions of the coupled and decoupled equation
should satisfy. The approximate analytical solution of the
decoupled equation for the lower sheet is presented in Sec.
VI. In Sec. VII, first-order perturbation for the solution is
calculated to obtain the energy correction up to 1/g4 order.
The solution for the upper sheet is presented in Sec. VIII. In
Sec. IX, the nonadiabatic coupling is evaluated.

II. E‹e DYNAMIC JAHN-TELLER HAMILTONIAN

The Hamiltonian for the linearE^ e dynamic Jahn-
Teller problem is written within the space spanned by com-
plex electronic statesc651/&(fu6 ife) as

Ĥ52
1

2 H S ]2

]Qu
2 1

]2

]Qe
2D 2~Qu

21Qe
2!J ŝ0

1g~Quŝx1Qeŝy!, ~1!

whereg is a dimensionless vibronic coupling constant and
(Qu ,Qe) are real normal coordinates of ane vibrational
mode, and

ŝ05S 1 0

0 1D , ŝx5S 0 1

1 0D , ŝy5S 0 2 i

i 0 D . ~2!

Throughout this article, energy is measured by\v, length as
A\/(mv), and momentum asAmv\ to obtain dimension-
less quantities. If (Qu ,Qe) are written in polar coordinates,

Qu5r cosf,

Qe5r sinf,

the vibronic interaction matrix can be written as12

g~Quŝx1Qeŝy!5grS 0 e2 if

eif 0 D . ~3!

Therefore the Hamiltonian in polar coordinates is given by

Ĥ5F2
1

2 H 1

r

]

]r S r
]

]r D1
1

r2

]2

]f2J 1
1

2
r2G ŝ0

1grS 0 e2 if

eif 0 D . ~4!

If we write the eigenfunction of the Hamiltonian asC
5F/Ar, the Hamiltonian forF becomes

Ĥ5S 2
1

2

]2

]r2 2
1

8r2 1
L̂z

2

2r2 1
1

2
r2D ŝ0

1grS 0 e2 if

eif 0 D , ~5!

whereL̂z52 i ]/]f. To diagonalize the potential energy ma-
trix, the following unitary transformation is applied12

Ŝ5
1

& S expS 2 i
f

2 D expS 2 i
f

2 D
expS i

f

2 D 2expS i
f

2 D D , ~6!

the Hamiltonian then becomes

Ŝ†ĤŜ5S 2
1

2

]2

]r2 1
1

2
r22

1

8r2D ŝ01
1

2r2 S L̂z2
1

2
ŝxD 2

1grŝz , ~7!

where

ŝz5S 1 0

0 21D . ~8!

This Hamiltonian shows that the radial motion and angular
motion can be separated:

F~r,f!5
1

A2p
ei j fx~r!, ~9!

where j is the eigenvalue of the operatorĴ5L̂z1
1
2ŝz , and

j 561/2,63/2,65/2,... . The Hamiltonian for the radial mo-
tion is

Ĥ5S 2
1

2

d2

dr2 1
j 2

2r2 1
1

2
r2D ŝ02

j

2r2 ŝx1grŝz . ~10!

This Hamiltonian is exact because we did not apply any
approximation in passing from Eq.~1! to Eq. ~10!. This
Hamiltonian yields the coupled equations

H S 2
1

2

d2

dr2 1
j 2

2r2 1
1

2
r2Dx22ugurx22

j

2r2 x15Ex2

S 2
1

2

d2

dr2 1
j 2

2r2 1
1

2
r2Dx11ugurx12

j

2r2 x25Ex1 .

~11!

If one neglects the term (j /(2r2))ŝx in the strong coupling
limit, the coupled equations are decoupled as

S 2
1

2

d2

dr2 1
j 2

2r2 1
1

2
r2Dx22ugurx25E2x2 , ~12!

S 2
1

2

d2

dr2 1
j 2

2r2 1
1

2
r2Dx11ugurx15E1x1 , ~13!

and the Hamiltonians for the decoupled equations are

H652
1

2

d2

dr2 1U6~r!, ~14!

where

U6~r!5
j 2

2r2 1
1

2
r26ugur. ~15!

The termj 2/(2r2) in U6(r) plays the role of the centrifugal
energy. The resulting energy surfaces are shown in Figs. 1
and 2. The decoupled equation~12! is the equation for the
lower sheet, and Eq.~13! for the upper sheet, respectively.
These are the equations that we will discuss in the present
paper.

In comparison with the so-calledMexican hatpotential
in the static Jahn-Teller problem,12 it should be noted that the
potentials diverge at the origin due to the centrifugal energy
j 2/(2r2). This behavior of the potentials at the origin im-
poses a boundary condition for the wave functions: the radial
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part x should be zero at the origin. According to general
rules of quantum mechanics the solutions of Schro¨dinger
equations should always obey appropriate boundary condi-
tions, therefore we have to reconsider the previous analytical
solutions for this problem.

The term neglected in Eq.~10! mixes the states of the
two energy surfacesU6(r); to neglect this coupling is
equivalent to the adiabatic approximation for the strong cou-
pling limit. ThereforeHnon52( j /(2r2))ŝx can be regarded
as the nonadiabatic coupling.

The vibronic wave functions within this adiabatic ap-
proximation are given by12

u6,n, j &5c6
ad~r !ei j f

xn~r!

A2pr
, ~16!

where r is the electronic coordinate,c6
ad5Ŝ(c6), and the

total exact vibronic wave function can be written as a linear
combination of these states with the samej , in which the
coefficients are determined by the neglected mixing term in
the Hamiltonian~10!.

III. NUMERICAL SOLUTION
OF THE DECOUPLED EQUATION

In this section we show the numerical solutions of the
decoupled Eqs.~12! and ~13! using the finite difference
method16 and compare them with the numerical solution ob-
tained by Longuet-Higginset al.1

We write the decoupled Eqs.~12! and ~13! as

2
1

2

d2x~r!

dr2 1S j 2

2r2 1
1

2
r22gr Dx~r!5Ex~r!, ~17!

where positiveg corresponds to the equation for the lower
sheet, and a negativeg for the upper sheet. This is a two-
point boundary problem with the boundary condition;x(0)
50 andx(`)50.

We make the discretization with an incrementh for this
equation:xn5x(r n) and

h2xn95~xn1122xn1xn21!1C2xn , ~18!

where

C252
1

12
d41

1

90
d62¯ , ~19!

andd means a central difference. If the difference correction
is neglected, the finite difference equation becomes

xn111S 2212Eh22
j 2

h2 12gh3n2h4n2Dxn1xn2150

~20!

with the boundary conditionx05x(0)50 and xnmax11

5x(rcut)50, where r cut is a cutoff distance. Thush
5r cut/nmax. These algebraic equations yield the eigenvalue
problem of the matrix form

S 2gh312h412 1 0 ¯

1 2gh322h422 1 ¯

0 1 2gh332h432
¯

¯ ¯ ¯ ¯

¯ 0 1 2gh3nmax2h4nmax
2

D S x1

x2

x3

]

xnmax

D 5S 21
j 2

h2 22Eh2D S x1

x2

x3

]

xnmax

D . ~21!

FIG. 1. Potential energy surfaces of the linearE^ e problem including
centrifugal energy. For the cross section of this potential, see Fig. 2.

FIG. 2. Radial cross sections of the potential energy surfaces in Fig. 1.
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Figure 3 shows the calculated result of the eigenenergy
for the decoupled equations for the lower and upper sheet.
The energy for the lower sheet converges in the strong cou-
pling limit, while that for the upper sheet increases monoto-
nously. Solutions for the coupled equation are also shown.
We calculated the numerical solutions of the coupled equa-
tion after Longuet-Higginset al.1 with 100 basis functions.
Looking at Fig. 3, it is clear that the levels for the lower and
upper sheet, calculated using the decoupled equations, do
cross each other. However when the coupled equations are
used, the intersections between the solutions of the two
sheets become avoided, due to the nonadiabatic coupling
terms. The sequence of avoided crossings gives rise to the
oscillating behavior of the solutions of the coupled equations
in the weak coupling region withg,2. Moreover, from Fig.

4, we can see that the solutions of the coupled and decoupled
equation coincide up to order of 1/g4 in the strong coupling
limit.

IV. ENERGY EXPRESSIONS
WITHIN CRUDE APPROXIMATION

In this section, we will review the previous analytical
solution within the crude approximation for the eigenstates
of the linearE^ e problem in the strong coupling limit.12

From Eq.~15!, the trough of minima of the lower poten-
tial sheetU2(r) is located at

r0
(2)'ugu1OS 1

ugu3D , ~22!

and of the upper surface at

r0
(1)'S j 2

ugu D
1/3

1OS 1

ugu5/3D . ~23!

In the strong coupling limit, the lowest eigenstates of
each energy surface should be localized at the potential mini-
mum. Therefore, expanding the potentials around the minima
r0

(2)5ugu for the lower sheet andr0
(1)5( j 2/ugu)1/3 for the

upper sheet, and keeping quadratic terms of the displace-
ments from these minima, the Schro¨dinger equation for the
lower and upper sheet become

S 2
1

2

d2

dx2
2 1

1

2
x2

2 1
1

2
g21

j 2

2r0
(2)2Dx2~x2!5E2x2~x2!,

~24!

and

S 2
1

2

d2

dx1
2 1

1

2

3

2 S g2

u j u D
2/3

x1
2 1

3

2
~ j 2g2!1/3Dx1~x1!

5E1x1~x1!, ~25!

respectively, wherex65r2r0
(6) . Making this harmonic ap-

proximation, we can obtain the eigenenergy and eigenfunc-
tion: for the lower sheet,

E2,n j5S n1
1

2D1
j 2

2g2 2
1

2
g2, ~26!

x2~r!5e2 ~1/2!(r2ugu)2
Hn~r2ugu!, ~27!

and, for the upper sheet,

E1,n j5)S g2

u j u D
1/3S n1

1

2D1
3

2
~ j 2g2!1/3, ~28!

x1~r!5e2 ~1/2!A3/2(g2/u j u)1/3(r2( j 2/ugu)1/3)

3HnS S 3

2D 1/4S g2

u j u D
1/6S r2S j 2

ugu D
1/3D D . ~29!

The wave functions have finite values at the origin~see
Figs. 5 and 6!. This incorrect behavior of the wave function
~27! and ~29! prevents us from calculating the nonadiabatic
coupling matrix element. We therefore have to introduce cor-
rect asymptotic behavior of these wave functions. Further-
more the coefficient of order 1/g2 in Eq. ~26! is j 2, which is
well reproduced in the numerical calculations~see Figs. 7
and 8!. Note that there is no 1/g4 order in this expression.
Therefore the crude solution is exact up to order of 1/g2.

FIG. 3. Comparison of the numerical solutions for the decoupled equations
of the lower sheet~12! ~dotted lines! and upper sheet~13! ~broken lines! for
j 51/2 with those of the coupled equation~11! ~solid lines! calculated using
the N5100 circular oscillator basis functions after Ref. 1 in the range of
0<g<10, whereg is dimensionless coupling constant. Energy unit is\v,
andEJT51/2g2 Jahn-Teller stabilization energy.

FIG. 4. Numerical solutions of the coupled equation~broken line! and de-
coupled equation~solid line! for the lower sheet withj 51/2,n50. Energy is

shown by 4g4(E2EJT2
1
22 ( j 2/2g2)) as a function of dimensionless cou-

pling constantg. The energy unit is\v, andEJT51/2g2 is the Jahn-Teller
stabilization energy. The solutions of the coupled and decoupled equations
coincide up to power of 1/g4 in the strong coupling limit.

054104-4 Sato, Chibotaru, and Ceulemans J. Chem. Phys. 122, 054104 (2005)

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



V. ASYMPTOTIC BEHAVIOR
IN THE VICINITY OF ORIGIN

Given the divergence of the centrifugal component of
the potential at the origin~Figs. 1 and 2!, the solution in this
region is searched in the standard way17,18

x~r!5rav~r!, ~30!

wherev(r) is nonzero at the origin anda is a non-negative
constant.

In this section, we determine the powera for both the
exact coupled equations and the decoupled equations.

A. Coupled equation

If r goes to zero the coupled equations of the Hamil-
tonian ~10! become

S 2
1

2

d2

dr2 1
j 2

2r2

j

2r2

j

2r2 2
1

2

d2

dr2 1
j 2

2r2

D S x2

x1
D50. ~31!

This matrix can be diagonalized as

S 2
1

2

d2

dr2 1
j 2

2r2 2
j

2r2 0

0 2
1

2

d2

dr2 1
j 2

2r2 1
j

2r2

D
3S x28

x18
D 50, ~32!

where

S x28

x18
D 5

1

&
S 1 1

1 21D S x2

x1
D . ~33!

If x68 ;ra68 C68 in the vicinity of r50, whereC68 are
nonzero constants, we have equations fora8:

FIG. 5. Normalized wave functionx2 of the ground vibronic state (n, j )
5(0,1/2) for the lower potential withg52. The solid line is the present
result~59!, and the dotted line crude one~27!. The present wave function is
asymmetric with respect to the maximum and the maximum is shifted. The
crude wave function has a finite value at the origin, while the present wave
function goes to zero.

FIG. 6. Normalized wave functionx1 of the vibronic state (n, j )5(0,1/2)
for the upper potential withg52. The solid line is the present result~94!,
and the dotted line crude one~29!. The present wave function is delocalized
and asymmetric with respect to the maximum and the maximum is shifted
~see text!. The crude wave function has a finite value at the origin, while the
present wave function goes to zero.

FIG. 7. Comparison of the general energy expression of Eq.~56! ~solid line!

with a25
1
21Aj 21

1
4 and the previous expression Eq.~26! ~horizontal bro-

ken line! for the lower potential sheet, with the numerical results of the

decoupled equation for the lower sheet~dotted line!. 2g2(En j2EJT2
1
2) for

(n, j )5(0,1/2) are shown as a function of dimensionless coupling constant
g. The unit of energy is\v, andEJT51/2g2 denotes the Jahn-Teller stabi-
lization energy.

FIG. 8. Comparison of the general energy expression Eq.~56! ~solid line!
with a25u j u and the previous expression Eq.~26! ~horizontal broken line!
for the lower potential sheet, with the numerical results of the coupled

equation~dotted line!. 2g2(En j2EJT2
1
2) for (n, j )5(0,1/2) are shown as a

function of dimensionless coupling constantg. The unit of energy is\v,
andEJT51/2g2 denotes the Jahn-Teller stabilization energy.
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2a68 ~a68 21!1 j 26 j 50. ~34!

The solutions are

a28 5 j ,12 j , ~35!

a18 5 j 11,2 j . ~36!

For the solution to be regular at the origin,a68 should be
positive. Therefore, for a positivej ,

a28 5 j 5u j u, ~37!

a18 5 j 115u j u11, ~38!

and, for a negativej ,

a28 512 j 5u j u11, ~39!

a18 52 j 5u j u. ~40!

We pass fromx28 ,x18 to x2 ,x1 in the vicinity of
r50:

5 x25
1

&
~x28 1x18 !;

1

&
~ra28 C28 1ra18 C18 !

x15
1

&
~x28 2x18 !;

1

&
~ra28 C28 2ra18 C18 !.

~41!

Note that C68 are nonzero constants. If we writex6

;ra6C6 in the vicinity of r50, a65min(a18 ,a28 ). There-
fore a65u j u.

B. Decoupled equation

If r goes to zero in the decoupled equations, they be-
come

S 2
1

2

d2

dr2 1
j 2

2r2Dx6~r!50. ~42!

If x6;ra6C6 in the vicinity of the origin, whereC6 is
a nonzero constant, we obtain an equation fora in the de-
coupled regime:

2a6~a621!1 j 250. ~43!

Sincea should be positive to obtain a physical solution,

a65 1
2 1Aj 21 1

4. ~44!

The fact that differenta’s are obtained from the coupled
and decoupled equation signifies that the asymptotic behav-
ior of the wave function around the origin is strongly influ-
enced by the nonadiabatic coupling. This is especially true
for the upper sheet even in the strong coupling limit.

Since we found thata25a1 for both the coupled and
decoupled equation, we will puta25a15a hereafter. Note
that the crude approximation corresponds to puttinga50.

VI. LOWER SHEET

The Schro¨dinger equation for the lower sheet~12! is a
particular case of motion in a central field and textbook
quantum mechanics17,18 tells us that the solution should be-
have asra at the origin, wherea is a constant. Though we
determineda in the previous section, we keepa arbitrary in

the discussion on the lower sheet in order to emphasize the
fact that the energy expression in the strong coupling limit is
independent ofa up to the order of 1/g2. Let x2(r)
5rav2(r), wherev2(r) is assumed not to be zero at the
origin; substituting it into the equation leads to

v29 1P2~r!v28 1Q2~r!v250, ~45!

where

P2~r!5
2a

r
, ~46!

Q2~r!52E21
a22a2 j 2

r2 12ugur2r2. ~47!

Since in the strong coupling limit the neighborhood of
r0

(2)5ugu is the most important coordinate domain, we ex-
pandP2(r) andQ2(r) as follows:

P2~r!5
2a

ugu
2

2a

g2 ~r2ugu!1¯ , ~48!

Q2~r!5S 2E21
a22a2 j 2

g2 1g2D1S 2a22a212 j 2

ugu3 D
3~r2ugu!1S 211

3a223a23 j 2

g4 D ~r2ugu!2

1¯ . ~49!

Let x25r2ugu, then the approximate equation becomes

v29 ~x2!1~a0
(2)1b0

(2)x2!v28 ~x2!1~a1
(2)1b1

(2)x2

1c1
(2)x2

2 !v2~x2!50, ~50!

where

a0
(2)5

2a

ugu
, ~51!

b0
(2)52

2a

g2 , ~52!

a1
(2)52E21

a22a2 j 2

g2 1g2, ~53!

b1
(2)5

2a22a212 j 2

ugu3
, ~54!

c1
(2)5211

3a223a23 j 2

g4 . ~55!

From Appendix A, the eigenenergy is obtained from the
quantization condition as

E252
a22a2 j 2

2g2 2
1

2
g21

b0
(2)

2
1k(2)

1
b0

(2)14k(2)

2
n1

a0
(2)t (2)

2
2

t (2)2

2
, ~56!

where

k(2)5 1
4~2b0

(2)1Ab0
(2)224c1

(2)!, ~57!
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t (2)5
b1

(2)12a0
(2)k

b0
(2)14k(2) . ~58!

The eigenfunction is

x2~r!5ra expS 2
1

2
z (2)2~r2l (2)!2D

3exp~g (2)!Hn~k (2)~r2m (2)!!, ~59!

where

z (2)252S k(2)1
b0

(2)

2 D , ~60!

l (2)5ugu2
a0

(2)2t (2)

2k(2)1b0
(2) , ~61!

g (2)5g2S k(2)1
b0

(2)

2 D 1
~a0

(2)2t (2)!2

4k(2)12b0
(2) , ~62!

k (2)5Ab0
(2)

2
12k(2), ~63!

and

m (2)5ugu2
a0

(2)22t (2)

b0
(2)14k(2) . ~64!

Since, in the strong coupling limit, these constants become

z (2)→1,

k (2)→1,

m (2)→g,

l (2)→g,

Eq. ~59! approaches the crude wave function~27! except for
ra.

In the strong coupling limit, we have a simplified energy
expression

E252 1
2 g21n1 1

2

1
j 2

2g2 1
~3a22a213 j 2!~2n11!

4g4 1OS 1

g6D . ~65!

It should be noted that arbitrarya does not appear in the
power of 1/g2. This is the reason why the crude energy
expression1,12 gives the correct behavior of energy up to the
order of 1/g2 in the strong coupling region, in spite of the
incorrect asymptotic behavior. Furthermore, it is important to
note that the contributions of the order of 1/g2 originate not
only from a1

(2) which gives the pseudorotational energy
j 2/(2 g2) in the crude treatment witha50 but also from
a0

(2) ,b0
(2) ,k(2),t (2) which are neglected in the crude ap-

proximation. In the 1/g4 order, we find a dependence ona.
However, as we will discuss in the following section, the
first-order perturbations will exactly cancel the
a-dependence in the 1/g4 order.

Figure 5 shows a comparison between the present and
cruden50,j 51/2 normalized radial wave functions for the
lower sheet. At the origin, the present wave functions are

zero. On the other hand, the crude wave functions have finite
values. The positions of the maximum of the present wave
functions are shifted into largerr comparing to the crude
ones. The asymmetric potential sheet reflects the asymmetric
shapes of the wave functions. On the other hand, the crude
ones have a symmetric form about the potential minimum
due to the harmonic potential which is symmetric about its
minimum.

Figure 7 exhibits the energy for the lower staten50, j
51/2 using the general energy expression Eq.~56! with a

5 1
21Aj 21 1

4. We can see that Eq.~56! reproduces the nu-
merical solution for the decoupled equation.

If one substitutesa5u j u which describes the asymptotic
behavior of the coupled equation into Eq.~56!, it is interest-
ing to compare it with the numerical solution of the coupled
equation. Figure 8 exhibits satisfactory agreement between
Eq. ~56! with a5u j u and the numerical solution of the
coupled equation. This may indicate that the asymptotic be-
havior ra partly contains the nonadiabatic effect. Thus Eq.
~56! with a5u j u cannot be regarded as the adiabatic energy
of the decoupled equation.

VII. FIRST-ORDER CORRECTION
FOR THE LOWER SHEET

In this section, the coefficients in the approximate de-
coupled equation for the lower sheet are assumed to be
b1

(2)50 and c1
(2)521 for simplicity. The approximate

equation is written as

v91S 2a

g
2

2a

g2 ~r2g! D v8

1S 2E1
a22a2 j 2

g2 1g22~r2g!2D v50. ~66!

This equation is given by the following Hamiltonian:

H052
1

2

d2

dr2 2S a

g
2

a

g2 ~r2g! D d

dr

2
1

2 S a22a2 j 2

g2 1g2D1
1

2
~r2g!2, ~67!

and, we regard this as the unperturbed Hamiltonian. The un-
perturbed energy is obtained as

En j
(0);2

1

2
g21n1

1

2
1

j 2

2g2 1
a2

4g4 1O~g26!. ~68!

In the v space, the normalization condition is

E rdrdfC* C5E drdfF* F

5E drx* x5E drr2av* v51. ~69!

It is found that the volume element in thev space isr2adr.
In this space, the adjoint operators are
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S d2

dr2D †

5
d2

dr2 1
4a

r

d

dr
1

2a~2a21!

r2 , ~70!

S r
d

dr D †

52~2a11!2r
d

dr
, ~71!

S d

dr D †

52
2a

r
2

d

dr
. ~72!

Therefore the adjoint of the unperturbed Hamiltonian~67! is
obtained as

H 0
†52

1

2

d2

dr2 2S 2a

r
2

2a

g
1

a

g2 r D d

dr
2

a~2a21!

r2

1
4a2

g
•

1

r
2

a~2a11!

g2 2
1

2 S a22a2 j 2

g2 1g2D
1

1

2
~r2g!2. ~73!

It is found that the adjoint of the unperturbed Hamiltonian
H 0

† is different fromH0 . ThereforeH0 is a non-Hermitian
operator. Since the eigenequation ofH 0

† cannot be solved
analytically, the same approximation which was made in the
equation forH:

1

r
5

1

g
2

1

g2 ~r2g!2¯ , ~74!

1

r2 5
1

g2 1¯ , ~75!

is applied forH 0
† . The approximate adjoint operator is ob-

tained as

~H 0
†!approx52

1

2

d2

dr2 2S a

g
2

a

g2 ~r2g! D d

dr

2
1

2 S a22a2 j 2

g2 1g2D1
1

2
~r2g!2. ~76!

It is found that (H 0
†)approx5H0 . Since the unperturbed

Hamiltonian is non-Hermitian, we have to resort to non-
Hermitian perturbation theory19 ~see Appendix D!.

The Hamiltonian giving the decoupled Eq.~67! in the v
space is written as

H52
1

2

d2

dr2 2
a

r

d

dr
1S j 22a21a

2r2 1
1

2
r22gr D . ~77!

Therefore the perturbation operator is defined by

V5H2H05S 2
a

r
1

a

g
2

a

g2 ~r2g! D d

dr

1S 2
a22a2 j 2

2r2 1
a22a2 j 2

2g2 D . ~78!

This operator is decomposed as

V5V 1
(2)1V 1

(3)1¯1V 0
(1)1V 0

(2)1¯ , ~79!

where

V 1
(2)52

a

g3 ~r2g!2
d

dr
, ~80!

V 1
(3)5

a

g4 ~r2g!3
d

dr
, ~81!

V 0
(1)5

a22a2 j 2

g3 ~r2g!, ~82!

V 0
(2)52

3~a22a2 j 2!

2g4 ~r2g!2. ~83!

From Appendices B and C, we obtain the first energy
correction up to 1/g4 as

E0 j
(0)1E0 j

(1);2
1

2
g21n1

1

2
1

j 2

2g2 1
3 j 2

4g4 . ~84!

Table I shows the coefficient of 1/g4 order obtained from
the numerical calculations of the decoupled and coupled
equation, and the present analytical expression 3j 2. We find
that agreement between the corrected energy expression~84!
and the numerical results is quite good.

VIII. UPPER SHEET

In this section,a is put to be equal to121Aj 21 1
4.

The equation for the upper sheet is

v19 1

2S 1

2
1Aj 21

1

4D
r

v18 1~2E122ugur2r2!v150.

~85!

In the second term of the equation, if 1/r is expanded around
r0

(1)5( j 2/g)1/3, the approximate equation can be written as

v19 1~a0
(1)1b0

(1)~r2r0
~1 !!!v18 1~a1

(1)1b1
(1)~r2r0

~1 !!

1c1
(1)~r2r0

~1 !!2!v150, ~86!

where

a0
(1)5

2a

r0
5

11A114 j 2

j 2/3 g1/3, ~87!

b0
(1)52

2a

r0
~1 !2 52

11A114 j 2

j 4/3 g2/3, ~88!

a1
(1)52E22gr0

~1 !2r0
~1 !252E122 j 2/3g2/32 j 4/3g2 ~2/3!,

~89!

TABLE I. Comparison of the analytical expression with the numerical so-

lutions of the decoupled and coupled equations. 4g4(E2(2
1
2g21n1

1
2

1 ( j 2/2g2))) is calculated at large value ofg510.0 for j 51/2, n50. In the
analytical expression in the strong coupling limit, this is equal to 3j 2.

j 3 j 2 Decoupled Coupled

1/2 0.75 0.74 0.77
3/2 6.75 6.78 6.80
5/2 18.75 18.37 18.36
7/2 36.75 34.45 34.42
9/2 60.75 53.53 53.44
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b1
(1)522g22r0

~1 !522g22 j 2/3g2 ~1/3!, ~90!

c1
(1)521. ~91!

The eigenenergy is obtained as

E15 j 2/3g2/31
1

2
j 4/3g2 ~2/3!1

b0
(1)

2
1k(1)

1
b0

(1)14k(1)

2
n1

a0
(1)t (1)

2
2

t (1)2

2
. ~92!

In the strong coupling limit the simplified energy expression
has the form as

E1;S 3 j 2211aS n1
1

2D D S g

j 2D 2/3

1O~ ugu2 ~2/3!!, ~93!

where a5 1
21Aj 21 1

4. This energy expression is different
from that of the crude approximation.

Figure 9 shows the energy for the upper sheet calculated
by the energy expression Eq.~92! and the numerical calcu-
lation of the decoupled equation using the finite difference
method. The agreement of the present results with the nu-
merical result is clearly improved.

In the energy expression, we found that an effect ofa
appears in the lowest order ofg. This means that the energy
is strongly influenced by the existence ofra. This will be
clearly understood from the eigenfunction as discussed be-
low. The eigenfunction for the upper sheet can be written as

x1~r!5ra exp@2 1
2 z (1)2~r2l (1)!2#

3exp~g (1)!Hn~k (1)~r2m (1)!, ~94!

where

k(1)5 1
4~2b0

(1)1Ab0
(1)224 c1

(1)!, ~95!

t (1)5
b1

(1)12a0
(1)k

b0
(1)14k(1) , ~96!

z (1)5A2k(1)1b0
(1), ~97!

l (1)5r0
(1)2

a0
(1)

2k(1)1b0
(1) , ~98!

g (1)5
a0

(1)2

4k(1)12b0
(1) , ~99!

k (1)5Ab0
(1)14k(1)

2
, ~100!

m (1)5r0
(1)2

a0
(1)22t (1)

A2~b0
(1)14k(1)!

. ~101!

The wave function in the crude approximation is essen-
tially that of the harmonic potential. On the other hand, the
present function for the upper sheet is far from the wave
function of the harmonic potential;~1! the position of the
extrema are displaced towards largerr as compared to the
harmonic wave function;~2! the present wave function has
smaller curvature than expected for the harmonic wave func-
tion. In other words, the wave function is more delocalized
than the harmonic wave function. The curvature depends on
z (1). In the strong coupling limit,

z (1)5Ak(1)1
b0

(1)

2
;

2 j 4

a
g2 ~1/3!, ~102!

wherea5 1
21Aj 21 1

4. Since the highest orders ink(1) and
b0

(1)/2 cancel,z (1) decreases asg increases. In other words,
the curvature at larger becomes small as the coupling in-
creases. Figure 6 shows a comparison between the present
and crude normalized eigenfunctions for the upper potential
sheet. At the origin, moreover, the present wave functions are
zero, while the crude wave function has a finite value.

Though the upper energy expression is better than that of
the crude approximation, there is still a discrepancy. It is
found that ag2/3 contribution is still missing in the present
energy expression.

IX. NONADIABATIC COUPLING

The nonadiabatic coupling matrix element is written as

^xn j
2 u

j

2r2uxm j
1 &

A^xn j
2 uxn j

2 &A^xm j
1 uxm j

1 &
5

j

2

I non,j
(n,m)

A^xn j
2 uxn j

2 &A^xm j
1 uxm j

1 &
,

~103!

where

I non,j
(n,m)5E

0

`

rdrxn j
2 ~r!

1

r2 xm j
1 ~r!. ~104!

From Appendix B, the integralI non,j
(n,m) is obtained as

FIG. 9. Energy for upper sheetE1 using the present expression~92! ~solid
line! and within the crude approximation~28! ~broken line!, and the numeri-
cal solutionEup ~dotted line! for the decoupled equation for the upper sheet
with j 51/2, n50. The energies are shown byE1EJT as a function of
dimensionless coupling constantg, where EJT51/2g2 is the Jahn-Teller
stabilization energy.
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I non,j
(n,m)5exp~g (2)1g (1)1g0!

e2z0
2l0

2

2 (
l 50

n

(
k50

m S n
l D S m

k D
3~2k (2)!n2 l ~2k (1)!m2k

3Hl~2k (2)m (2)!Hk~2k (1)m (1)!

3z0
2122a122n2m1 l 1k

3M ~2a221n1m2 l 2k,z0 ,l0!, ~105!

where

z05Az (2)21z (1)2

2
, ~106!

l05
z (2)2l (2)1z (1)2l (1)

z (2)21z (1)2 , ~107!

g052
1

2

z (2)2z (1)2~l (1)2l (2)!2

z (2)21z (1)2 . ~108!

Note that the matrix element between states with differentj
vanishes.

Figure 10 and Tables II–IV show the nonadiabatic cou-
pling integrals calculated using Eq.~105!. It is found from
these Figures that some extrema exist in the weak coupling
region where the avoided crossing occurs. and the nonadia-
batic coupling rapidly decays as the vibronic coupling in-

FIG. 10. Nonadiabatic coupling integrals as a function ofg between the
upper j 51/2 states and~a! the lowern250, j 51/2; ~b! the lowern251,
j 51/2; ~c! the lowern252, j 51/2; ~d! the lowern253, j 51/2.

TABLE II. Calculated nonadiabatic coupling integral for the lowern250
state and the uppern150,1,2,3 states.

g n150 n151 n152 n153

1.0 0.13622 0.00818 0.02024 0.00830
2.0 0.09256 0.02891 0.01593 0.00698
3.0 0.03853 0.02828 0.01786 0.01006
4.0 0.01442 0.01757 0.01514 0.01103
5.0 0.00523 0.00901 0.01021 0.00940
6.0 0.00185 0.00413 0.00589 0.00665
7.0 0.00063 0.00175 0.00302 0.00407
8.0 0.00021 0.00069 0.00142 0.00222
9.0 0.00007 0.00026 0.00062 0.00106

10.0 0.00002 0.00009 0.00031 0.00030

TABLE III. Calculated nonadiabatic coupling integral for the lowern2

51 state and the uppern150,1,2,3 states.

g n150 n151 n152 n153

1.0 20.06612 0.05834 0.01459 0.01435
2.0 20.10316 0.01840 0.00994 0.00839
3.0 20.05099 20.01231 0.00070 0.00467
4.0 20.02003 20.01438 20.00592 20.00026
5.0 20.00742 20.00912 20.00678 20.00332
6.0 20.00268 20.00469 20.00501 20.00390
7.0 20.00094 20.00215 20.00299 20.00310
8.0 20.00032 20.00090 20.00156 20.00200
9.0 20.00010 20.00035 20.00074 20.00108

10.0 20.00003 20.00013 20.00039 20.00033

TABLE IV. Calculated nonadiabatic coupling integral for the lowern253
state and the uppern150,1,2,3 states.

g n150 n151 n152 n153

1.0 20.00218 0.01553 0.01058 0.01311
2.0 20.05478 0.03208 0.00229 0.00619
3.0 20.07231 0.00653 0.00344 0.00356
4.0 20.03672 20.01226 20.00221 0.00121
5.0 20.01444 20.01188 20.00613 20.00194
6.0 20.00535 20.00717 20.00595 20.00364
7.0 20.00192 20.00359 20.00413 20.00357
8.0 20.00067 20.00161 20.00237 20.00263
9.0 20.00023 20.00066 20.00122 20.00156

10.0 20.00007 20.00026 20.00068 20.00051

054104-10 Sato, Chibotaru, and Ceulemans J. Chem. Phys. 122, 054104 (2005)

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



creases. In other words, the nonadiabaticity is negligibly
small in the strong coupling region. That is the reason why
the numerical solutions of the coupled and decoupled equa-
tions coincided in the strong coupling region.

Figure 11 shows the overlap between the wave functions
of the lower and upper sheet withn50, and j 51/2. ~a! g
51.0, ~b! g52.0, ~c! g55.0, ~d! g510.0. As the vibronic
coupling increases, the maximum of the upper function
slowly approaches the origin, while that of the lower sheet
follows the minimum point of the lower potential,r0

(2);g.
Since the overlap is the largest forg'2.0, the maximum of
the nonadiabatic coupling lies aroundg'2.0 as shown in
Fig. 10.

From perturbational point of view, energy correction due
to the nonadiabatic coupling is estimated to be of order of
1/g6, since the nonadiabatic coupling integral is of order of
1/g2 and the energy difference between upper and lower
sheet is of order ofg2.

X. CONCLUSION

We obtained an approximate analytical solution with the
correct boundary conditions for theE^ e dynamic Jahn-
Teller problem in the strong coupling limit. Compared with
the previous solutions, the eigenfunctions contain factorsr u j u

for the coupled equation andr1/21Aj 211/4 for the decoupled
equation. As a results the solutions for the upper sheet look
entirely different from those obtained by Slonczewski.20

The levels for the lower and upper sheet, numerically
calculated using the decoupled equations, do cross each
other. However when the coupled equations are used, the
intersections between the solutions of the two sheets become
avoided, due to the nonadiabatic coupling terms. The se-
quence of avoided crossings gives rise to the oscillating be-
havior of the solutions of the coupled equations in the weak
coupling region withg,2.

The vibronic energy spectra obtained show better agree-
ment with a numerical calculation for the coupled and de-
coupled equations than the crude ones in the wide range of
g. For the ground vibronic state, the agreement is good up to
g'1.5 with a5u j u.

The first order perturbation yields energy correction of
the order ofg24 in the strong coupling limit witha51/2
1Aj 211/4. Moreover the asymptotic behavior of the lower
wave function does not influence the corrected energy up to
the power of 1/g4.

Due to the correct boundary condition, we evaluate the
nonadiabatic coupling between vibronic states of the lower
and upper potential sheets. It is found that the corresponding
matrix elements decrease very fast with the coupling con-
stant. Moreover the order of energy correction due to the
nonadiabatic coupling is estimated to be of order of 1/g6.
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APPENDIX A: SOLUTION
OF THE DIFFERENTIAL EQUATION

The equation to be solved has a form:

y9~x!1~a01b0x!y8~x!1~a11b1x1c1x2!y~x!50. ~A1!

Puttingy(x)5u(x)exp(kx2) leads to

u91~a01~b014k!x!u81~~a112k!1~b112a0k!x!u50,
~A2!

wherek satisfies

4k212b0k1c150. ~A3!

Sincek should be positive,k is

k5 1
4 ~2b01Ab0

224c1!. ~A4!

Let u(x)5v(x)exp(2tx),

v91~a022t1~b014k!x!v81~t22a0t1a112k!v50,
~A5!

wheret5 (b112a0k)/(b014k).
Putting z5a022t1(b014k)x and v(x)5w(z) leads

to

w9~z!1
1

b014k
zw8~z!1

1

~b014k!2

3~t22a0t1a112k!w~z!50. ~A6!

Let t52 @1/(2(b014k))# z2 and F(t)5w(z), and the
equation becomes

tF9~ t !1S 1

2
2t DF8~ t !2

1

2~b014k!

3~t22a0t1a114k!F~ t !50. ~A7!

This is the Kummer equation.
The general solution of the equation is a linear combi-

nation of the two linear independent ones:

F1~ t !51F1~a, 1
2 ;t !, ~A8!

F2~ t !5t1/2
1F1~a1 1

2 , 3
2 ;t !, ~A9!

where 1F1(a,c;t) is a confluent hypergeometric function,
anda is defined by

a52
1

2~b014k!
~t22a0t1~a114k!!, ~A10!

w1~z!5F1~ t ! ~A11!

5expS 2
z2

2~b014k! D
3H2n1

SA 1

2~b014k!
zD ~21!n1

~2n121!!!
. ~A12!

On the other hand,

w2~z!5F2~ t ! ~A13!

5expS 2
z2

2~b014k! DH2n211SA 1

2~b014k!
zD

3A2
1

2~b014k!

~21!n2

~2n211!!!
. ~A14!

From the condition for the solutions to be regular at
origin,

H2a2152n1

2a2152n211. ~A15!

Therefore the two solutions and the conditions can be
written as a single expression:

expS 2
z2

2~b014k! DHnSA 1

2~b014k!
zD ~A16!

and

2a215n. ~A17!

Finally, apart from a constant, the solution is

y~x!5expS 2S k1
b0

2 D x22a0xD
3HnSA~b014k!

2 S x1
a022t

A2~b014k!
D D , ~A18!

and the quantization condition is

a1

2
5S b014k

2 Dn1
b0

2
1k1

a0t

2
2

t2

2
. ~A19!

APPENDIX B: INTEGRAL Ia
„n ,m …

I a
(n,m)5e2gE

0

`

drra exp~2z2~r2l!2!Hn~k1~r2m1!!

3Hm~k2~r2m2!!. ~B1!

The Hermite polynomialHn(x) can be written in an in-
tegral representation as

Hn~x!5A2n21

p E
2`

`

e2 ~ t2/2!~&x1 i t !ndt. ~B2!

Substituting this representation into the integral yields

I a
(n,m)5e2g

e2z2l2

2 (
l 50

n

(
k50

m S n
l D S m

k D ~2k1!n2 l~2k2!m2k

3Hl~2k1m1!Hk~2k2m2!z212a2m2n1 l 1k

3M ~a1m1n2 l 2k,z,l!, ~B3!

where

M ~a,z,l!52zlGS 11
a

2D
1

F1S 11
a

2
,
3

2
;z2l2D

1GS 11a

2 D
1

F1S 11a

2
,
1

2
;z2l2D . ~B4!
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APPENDIX C: ASYMPTOTIC BEHAVIOR OF Ia
„n ,m …

Since the asymptotic behavior of the confluent hypergeo-
metric function is17

1F1~a,c;z!;
G~c!

G~c2a!
~2z!2aG~a,a2c11,2z!

1
G~c!

G~a!
ez~z!a2cG~c2a,12a,z!, ~C1!

whereG is an asymptotic series;

G~a,b,z!511
ab

1! z
1

a~a11!b~b11!

2!z2 1¯1 ~C2!

the asymptotic behavior ofM (a,z,l) is

M ~a,z,l!;2Apez2l2
zalaGS 1

2
2

a

2
,2

a

2
,z2l2D . ~C3!

Therefore

I a
(n,m);Ape2gz21(

l 50

n

(
k50

m S n
l D S m

k D ~2k!n1m2 l 2k

3Hl~2km!Hk~2km!la1n1m2 l 2k

3GS 1

2
2

a1n1m2 l 2k

2
,2

a1n1m2 l 2k

2
,z2l2D .

~C4!

For n50 andm50,

I a
(0,0);laGS 1

2
2

a

2
,2

a

2
,z2l2D . ~C5!

APPENDIX D: NON-HERMITIAN PERTURBATION
THEORY

The Hamiltonian H is decomposed asH5H01eV,
where e is a small parameter. We assume the unperturbed
Hamiltonian H0 and the perturbationV can be a non-
Hermitian operator. The eigenequations ofH0 and H are
written as

H0ue0&5a0 ue0& ~D1!

and

Hux&5lux&, ~D2!

wherel and ux& are expanded as

l5a01el11¯,

ux&5ue0&1eux1&1¯ . ~D3!

SinceH 0
†ÞH0 , the Hermite conjugate operatorH 0

† has dif-
ferent eigenvectors fromH0 :

H 0
†u f 0&5a0u f 0&, ~D4!

but the eigenvalues are the same. The adjoint of this equation
can be obtained as

^ f 0uH05a0^ f 0u. ~D5!

Substituting Eq.~D3! into Eq. ~D2! and taking the first-
order ofe, we obtain

~H02a0!ux&5l1ue0&2Vue0&. ~D6!

Multiplying ^ f 0u from the left side, and using Eq.~D5!, we
can obtain the first-order energy correction:

l15
^ f 0uVue0&

^ f 0ue0&
. ~D7!

In the present problem, since Eq.~D5! cannot be solved
analytically, we adopted the approximate Hamiltonian
(H 0

†)approx, which is equal toH0 . The eigenequation is writ-
ten as

~H 0
†!approxu f 08&5H0ue0&5a0ue0&. ~D8!

Since

H 0
†5~H 0

†!approx1
1

g2 A11
1

g3 A21¯ , ~D9!

u f 0& can be expanded as a series ofg aroundg→`,

u f 0&5u f 08&1
1

g2 uy1&1¯ , ~D10!

where uy1& is a coefficient of 1/g2. Substituting Eq.~D10!
into Eq. ~D7!, we obtain

l15
^ f 08uVue0&

^ f 08ue0&
1O~g26!. ~D11!

Therefore we can employ

l15
^e0uVue0&

^e0ue0&
~D12!

to obtain the energy correction up to order of 1/g4.
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