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Correct boundary conditions for tli&® e dynamic Jahn-Teller problem are considered explicitly for

the first time to obtain approximate analytical solutions in the strong coupling limit. Numerical
solutions for the decoupled equations using the finite difference method are also presented. The
numerical solutions for the decoupled equations exhibit avoided crossings in the weak coupling
region, which explains the oscillating behavior of the solutions obtained by Longuet-Higfgahs

for the coupled equations. The obtained analytical energy expressions show improved agreement
with the numerical calculations as compared with the previous treatment in which the potentials
were assumed to be harmonic. We demonstrate that the pseudorotationaljéhgg$), whereg

is the dimensionless vibronic coupling constant, gndotal angular momentumj= *1/2,
+3/2,.., in theconventional strong coupling expression for the vibronic levels of the lower sheet

is exact. Non-Hermitian first-order perturbation theory gives the energy which is correct ugfto 1/

The asymptotic behavior of the wave function at the origin does not influence the corrected energy
up to order of 1g*. At the same time the treatment of the upper sheet with correct boundary
conditions gives solutions which are entirely different from the corresponding Slonczewski’'s
solutions. Besides, the correct boundary conditions enable us to evaluate the nonadiabatic coupling
between the lower and upper potential sheets. The energy correction due to the nonadiabatic
coupling is estimated to be of orderg®/ © 2005 American Institute of Physics.

[DOI: 10.1063/1.1836758

I. INTRODUCTION order of 162, whereg is dimensionless vibronic coupling
constant. However, the radial wave function within the crude
The dynamical Jahn-Telle(JT) problemis one of the  approximation does not satisfy the boundary condition at the
most investigated problems in molecular physics. Howevergrigin and gives rise to divergent nonadiabatic coupling ele-
the analytical solution in the general case has not been egrents. A similar problem that singularity appears in the
tablished. Hamiltonian based on the diabatic representation has also
The first numerical calculations for the energy spectra ofeen discussed—1°
the dynamicE®e JT problem describing the coupling of a | this paper, we will present a simple approximate ana-
twofold degenerate electronie state with a twofold degen- |ytical solution which satisfies the correct boundary condi-
erate vib_rationab state, were performed more thar_n 40 yearstion at the origin for the dynamical line&®e problem in
ago>? Since then, many authors have studied this problempe strong coupling limit. First-order perturbation is em-
numerically>* On the other hand, first progress towards theployed to obtain up to & contribution. The whole treat-
exact solution was made by Jutite obtained finite-order ment for the lower energy surface demonstrates the existence
quations folr the isolatt_ad values of thg coupling constant.ira)f the pseudorotational energ$/(2g?) in the vibronic spec-
which the eigenvalue lies on a baseline. Efforts to obtain,, in the strong coupling limit. We will also present the

analytical solutions are continuing even'toﬁaﬁ}? nonadiabatic coupling matrix elements using the obtained
The dynamic lineaE®e JT problem in the strong cou- g, tions.

. .. . : ; 12
pling limit has been investigated since 1958: These so- The paper is organized as follows: In Sec. Il we formu-

lutions in the strong coupling limit are called the crude so-546 theEg e Jahn-Teller Hamiltonian in the adiabatic basis

lutions in the present paper. The crude solution which IS,y decouple the equations in the strong coupling limit. In
obtained assuming a harmonic potential can reproduce thg

- : ! §IERTY ec. lll we show the numerical solution of the decoupled
numerical calculation well in the strong coupling limit up to equation using the finite difference method and compare it

with the exact numerical solution of the coupled equations
dElectronic mail: tsato@scl.kyoto-u.ac.jp obtained by Longuet-Higginst al. The solutions within the

0021-9606/2005/122(5)/054104/13/$22.50 122, 054104-1 © 2005 American Institute of Physics

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.1836758
http://dx.doi.org/10.1063/1.1836758

054104-2 Sato, Chibotaru, and Ceulemans J. Chem. Phys. 122, 054104 (2005)

crude approximation are presented in Sec. IV. In Sec. V, w¢he Hamiltonian then becomes
consider the asymptotic behavior in the vicinity of the origin 5 5

: . : P 19 1 1 1/. 1
which the solutions of the coupled and decoupled equation &M74S=| — 2_ Fo+ ——

. K . . 2 2P 8 2_2' z ZUX

should satisfy. The approximate analytical solution of the p p
decoupled equation for the lower sheet is presented in Sec. +gpor @)
VI. In Sec. VI, first-order perturbation for the solution is ‘
calculated to obtain the energy correction up tg*1érder. ~ Where

The solution for the upper sheet is presented in Sec. VIII. In 1 0
Sec. IX, the nonadiabatic coupling is evaluated. o,= ( 0 1)_ )
II. EQ e DYNAMIC JAHN-TELLER HAMILTONIAN This Hamiltonian shows that the radial motion and angular
— ) ) motion can be separated:
The Hamiltonian for the lineaE®e dynamic Jahn-
Teller problem is written within the space spanned by com- 1 iis ©
. _ - D(p, )= —¢ : 9
plex electronic stateg. =1V2(p,*i¢.) as (p,®) T x(p)
T . . TR
H= p p —(Q3+Q?) | &, wherej is the eigenvalue of the operatdeL,+ 30,, and
Q9 Q j=*1/2,£3/2,+5/2,... . The Hamiltonian for the radial mo-
+9(Quox+ Q). (1 tionis

1d2 j2 1

whereg is a dimensionless vibronic coupling constant and ~ i
= 2 d 2 2 2+ 2,0 0-0 2 20-X+gp0-z (10)

(Q4,Q,) are real normal coordinates of amn vibrational

de, and :
mode, an _ This Hamiltonian is exact because we did not apply any
. 1 0\ 0 1, _ 0 —i approximation in passing from Ed1l) to Eq. (10). This
— - = 2) o . :
9% o 1/ %711 o) Y \i o) Hamiltonian yields the coupled equations
Throughout this article, energy is measuredfilay length as 1d? N j? n 1 g j E
Vi/(mw), and momentum agmw? to obtain dimension- S 2dp? " 2p? 2p X-1GIPX =73 2X+=EX-
less quantities. IfQ,,Q,) are written in polar coordinates, 1 d2 i2 1 i
- il T2 1, =
Q,=p cose, ( 2ap2 T2t 2P )X++|9|PX+ 22X~ EXL
Qc=psing, Ly

If one neglects the termj{(2p?)) &, in the strong coupling

the vibronic interaction matrix can be written*as limit, the coupled equations are decoupled as

- oar—af® € - 1d2 21
9Qu+ QI =0P s ¢ |- (_Ed_,)z+2_,)2+ EPZ)X_|9|PX:EX, (12)
Therefore the Hamiltonian in polar coordinates is given by 12 2 1
. 119 oy 1 &) 1, ( 2@2+27+2p X++lglpx+=Eix+, (13
"2l e\ Pap) T 7 e T 2P
and the Hamiltonians for the decoupled equations are
0 i
1 d?
+ . .
9Plee o ) @ th—id—pﬁUi(p), (14

If we write the eigenfunction of the Hamiltonian ag

S h
=®d//p, the Hamiltonian for® becomes where

i2
~ J l
2 2 _d o

The termj?/(2p?) in U (p) plays the role of the centrifugal

0 e energy. The resulting energy surfaces are shown in Figs. 1
gp e o )’ (5) and 2. The decoupled equati¢h?) is the equation for the
lower sheet, and Eq13) for the upper sheet, respectively.
wherel,= —i3/9¢. To diagonalize the potential energy ma- These are the equations that we will discuss in the present
trix, the foIIowmg unitary transformation is applitd paper.
) ) In comparison with the so-callelexican hatpotential
1 ex;< ) exr{ ) in the static Jahn-Teller probletjt should be noted that the
S= , (6) potentials diverge at the origin due to the centrifugal energy
V2| p(i f) Cox p(i f) j2/(2p?). This behavior of the potentials at the origin im-
2 2 poses a boundary condition for the wave functions: the radial
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Q.

FIG. 1. Potential energy surfaces of the linda®e problem including
centrifugal energy. For the cross section of this potential, see Fig. 2.

part xy should be zero at the origin. According to general
rules of quantum mechanics the solutions of Sdhrger i
equations should always obey appropriate boundary condi- \
tions, therefore we have to reconsider the previous analytical pg”)
solutions for this problem.

The term neglected in Eq10) mixes the states of the
two energy surfaced) . (p); to neglect this coupling is
equivalent to the adiabatic approximation for the strong cou-
pling limit. ThereforeH,o,= — (j/(2p?)) & can be regarded

4
©

FIG. 2. Radial cross sections of the potential energy surfaces in Fig. 1.

as the nonadiabatic coupling. where positiveg corresponds to the equation for the lower
The vibronic wave functions within this adiabatic ap- sheet, and a negativg for the upper sheet. This is a two-
proximation are given by point boundary problem with the boundary conditior(0)
=0 andy(«)=0.
(o) We make the discretization with an increméntor this
. o Xn(p ion‘y. — d
+n,j)= 2 r)ell ¢ , (16) equation:y,= x(r,) an
wherer is the electronic coordinate)’=S(y..), and the h2x"=(Xn+1—2Xn+ Xn-1)+ Coxn, (18)

total exact vibronic wave function can be written as a linear
combination of these states with the samen which the \yhere
coefficients are determined by the neglected mixing term in
the Hamiltonian(10). 1 1

C,= 1254+ 9055 , (19
I1l. NUMERICAL SOLUTION . . .
OF THE DECOUPLED EQUATION and 8§ means a central difference. If the difference correction

is neglected, the finite difference equation becomes
In this section we show the numerical solutions of the

decoupled Eqgs(12) and (13) using the finite difference
method® and compare them with the numerical solution ob-X”Jf1+
tained by Longuet-Higginst al’ (20)

We write the decoupled Eg$l2) and(13) as

i 2
—2+2Eh®>— :]—ZJnghe’n—h“n2 Xnt Xn-1=0

with the boundary conditionyy,=x(0)=0 and x, 1

max

=x(reuo=0, where rg, is a cutoff distance. Thush

Ld’%(p) (% 1, =Tt/ Nmax. These algebrai i i i
_t R _ cut! Nmax- gebraic equations yield the eigenvalue
2 dp? * 2p? TP e x(P)=Ex(p), (17 problem of the matrix form
2gh®1—h*12 1 0
3 42 X1 X1
1 2gh°2—h*2 1 XY i2 Y2
0 1 2gh®3—h*3? X3 |=|2+ HZ_ZEhZ) Xs |. (D
0 1 2gh®na—h*nZ.., XNina X
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FIG. 3. Comparison of the numerical solutions for the decoupled equations

of the lower sheet12) (dotted lineg and upper shedfl3) (broken line$ for

j = 1/2 with those of the coupled equati¢il) (solid line9 calculated using
the N=100 circular oscillator basis functions after Ref. 1 in the range of
0=<g=<10, whereg is dimensionless coupling constant. Energy unitds

and E;r=1/2g2 Jahn-Teller stabilization energy.

J. Chem. Phys. 122, 054104 (2005)

4, we can see that the solutions of the coupled and decoupled
equation coincide up to order ofgt/ in the strong coupling
limit.
IV. ENERGY EXPRESSIONS
WITHIN CRUDE APPROXIMATION

In this section, we will review the previous analytical
solution within the crude approximation for the eigenstates
of the linearE® e problem in the strong coupling limit

From Eq.(15), the trough of minima of the lower poten-
tial sheetU _(p) is located at

1
~[g|+0O 19l (22
and of the upper surface at
j2 1/3
(D~|—] +0O —r) 23
=(1g] ol 23

In the strong coupling limit, the lowest eigenstates of
each energy surface should be localized at the potential mini-
mum. Therefore, expanding the potentials around the minima
p&)=|g| for the lower sheet ang{" = (j%|g|)*® for the
upper sheet, and keeping quadratic terms of the displace-

Figure 3 shows the calculated result of the eigenenergynents from these minima, the Sétinger equation for the
for the decoupled equations for the lower and upper sheefower and upper sheet become

The energy for the lower sheet converges in the strong co

u_

1d> 1 j2
pling limit, while that for the upper sheet increases monoto( S+ —x + g+ ) (X V=E_v_(x_
nously. Solutions for the coupled equation are also shown, 2 dx* g 2p{ )2 x-(x-) x-(x-).
We calculated the numerical solutions of the coupled equa- (24
tion after Longuet-Higginet al! with 100 basis functions. and
Looking at Fig. 3, it is clear that the levels for the lower and 5 2\ 23
) : 1d 1 3(g
upper sheet, calculated using the decoupled equations, da_ — . x += (J 292)13) ., (x,)
cross each other. However when the coupled equations are 2 dX+ 2]
used, the intersections between the solutions of the two _
=Eix+(x4), (29

sheets become avoided, due to the nonadiabatic coupling
terms. The sequence of avoided crossings gives rise to tHespectively, where. = p—p{*) . Making this harmonic ap-
oscillating behavior of the solutions of the coupled equationroximation, we can obtain the eigenenergy and eigenfunc-

in the weak coupling region witg<2. Moreover, from Fig.

i 2.4

2.0
1.6
1.2
0.8

0.4

ag™(E + Ejr-1/2-j%/2g

0 |||||||||
0246 810
g

FIG. 4. Numerical solutions of the coupled equatibnoken ling and de-
coupled equatiofsolid line) for the lower sheet with=1/2n=0. Energy is
shown by 4*(E—E;;— %— (j?/2g%)) as a function of dimensionless cou-
pling constang. The energy unit igiw, andE ;= 1/2g? is the Jahn-Teller

stabilization energy. The solutions of the coupled and decoupled equatior@N

coincide up to power of @ in the strong coupling limit.

tion: for the lower sheet,
2

E n+ = +j——1 2 (26)

- n] 2 292 29 ’
X-(p)=e~ @2l (p—|g]), 27

and, for the upper sheet,
g2 1/3 3
= = _ —(i2n2\1/3
Yo (p)=e" (RGN o= (i%/lgh ™)
3 1/4 gz 1/6 j2 1/3

XHul =] | —| = 29
((2) (m (" (|g|) 29

The wave functions have finite values at the origgee
Figs. 5 and & This incorrect behavior of the wave function
(27) and (29) prevents us from calculating the nonadiabatic
coupling matrix element. We therefore have to introduce cor-
rect asymptotic behavior of these wave functions. Further-
more the coefficient of order g7 in Eq. (26) is j2, which is
well reproduced in the numerical calculatiofsee Figs. 7
d 9. Note that there is no @# order in this expression.
Therefore the crude solution is exact up to order af1/
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FIG. 5. Normalized wave functioly_ of the ground vibronic staten(j) 0246 810
=(0,1/2) for the lower potential witly=2. The solid line is the present g

result(59), and the dotted line crude o1G27). The present wave function is . . L

asymmetric with respect to the maximum and the maximum is shifted. Thé!G: 7- Comparison of the general energy expression of&.(solid line)

crude wave function has a finite value at the origin, while the present wavevith «_ = %+ ViZ+ 43 and the previous expression Eg6) (horizontal bro-

function goes to zero. ken ling for the lower potential sheet, with the numerical results of the
decoupled equation for the lower shéeotted ling. ZgZ(Enj— Ejr— %) for
(n,j)=(0,1/2) are shown as a function of dimensionless coupling constant
g. The unit of energy isiw, andE ;= 1/2g° denotes the Jahn-Teller stabi-

V. ASYMPTOTIC BEHAVIOR lization energy.

IN THE VICINITY OF ORIGIN

Given the divergence of the centrifugal component ofThIS matrix can be diagonalized as

the potential at the origifFigs. 1 and 2 the solution in this 1d> j? j
region is searched in the standard Way/ T2dp? + 202 22 0
2 2
x(p)=p0(p), (30 0 L
2dpc 2p° 2p

wherev (p) is nonzero at the origin and is a non-negative X!
constant. x| °) ) =0, (32

In this section, we determine the powerfor both the X+
exact coupled equations and the decoupled equations. where
A. Coupled equation X 1(1 1\(x_

If p goes to zero the coupled equations of the Hamil- (Xl) - 5(1 —1) X+)' 33

tonian (10) become ,
If x.~p*=C. in the vicinity of p=0, whereC’. are

1 d2 2 i nonzero constants, we have equationsdor
T2dp? 22 2p? (X‘)—o -
i 1 d? j2 X+ 14 prr
202 2002 " 257 -

10

08} |

0 02 46 810
g
FIG. 6. Normalized wave functioy. of the vibronic staterg,j)=(0,1/2)  FIG. 8. Comparison of the general energy expression(&8). (solid line)
for the upper potential witly=2. The solid line is the present res(4), with a_=[j| and the previous expression H@6) (horizontal broken ling

and the dotted line crude ori29). The present wave function is delocalized for the lower potential sheet, with the numerical results of the coupled
and asymmetric with respect to the maximum and the maximum is shiftetquation(dotted ling. 2g%(E;— Er— %) for (n,j)=(0,1/2) are shown as a
(see text The crude wave function has a finite value at the origin, while the function of dimensionless coupling constant The unit of energy isiw,
present wave function goes to zero. and E ;1= 1/29? denotes the Jahn-Teller stabilization energy.
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—a(a,—1)+j%=j=0. (34)  the discussion on the lower sheet in order to emphasize the
fact that the energy expression in the strong coupling limit is

The solutions are independent ofa up to the order of H2. Let y_(p)

a =j1-j, (35) =p“v_(p), wherev_(p) is assumed not to be zero at the
origin; substituting it into the equation leads to
al=j+1-]. (36)
) o v"+P_(p)v_+Q_(p)v_=0, (45)
For the solution to be regular at the origia,. should be
positive. Therefore, for a positivig where
"=j=|jl, 3 2a
a’ =j=[j| (37) pi(p)zj, (46)
a =j+1=|j|+1, (39
o a’—a—j?

and, for a negative, Q_(p)=2E_+ T+2|g|p_p2' (47)

a=1-j=|j|+1, (39

Since in the strong coupling limit the neighborhood of
al.=—j=|jl. (400 p=|g| is the most important coordinate domain, we ex-

We pass fromy’ ,x’. to x_,x. in the vicinity of pandP_(p) andQ-(p) as follows:

p=0: 20 2a
Pf(P):ﬂ——z(P—|9|)+"', (48)
1, 9 9
X7=5(X7+X+)~5(p ~CL+p*+C}) W2 a2 2a— 202+ 2]
(42) Q (p)=|2E_+ ———+0*|+ T
N L 9 g
X+=E(x_—><+)~5(p ~CL—p*Cl). 3a?—3a—3j2
x(p-la+| -1+ 22 g
Note that C. are nonzero constants. If we writg.
~p®=C. in the vicinity of p=0, @ =min(a/, ,a"). There- +een (49)
fore . =|j|.
@ =l Letx_=p—|g|, then the approximate equation becomes
B. Decoupled equation v (x_)+(@§+ bl % )’ (x2)+(al ) +b{Ix_
If p goes to zero in the decoupled equations, they be- +c(1‘)x2_)v_(x_)=0, (50)
come
( 1 q2 2 ) where
—5321t52/x=(p)=0. (42)
2dp* " 2p° agﬂ:z—“, (51)
If x-~p®=C. in the vicinity of the origin, where& .. is 9l
a nonzero constant, we obtain an equationdan the de- 2u
coupled regime: b{)=— r (52
—ax (.= 1)+]7=0. “43 o a—j?
Sincea should be positive to obtain a physical solution, ai)=2E_+ Tﬂ;z, (53
at=%+\/j2+ 711 (44) (=) 2a—2a2+2j2
The fact that different’s are obtained from the coupled by = FIE ’ 54
and decoupled equation signifies that the asymptotic behav- ) -
ior of the wave function around the origin is strongly influ- =14 3a"—3a—3 _ (55)
enced by the nonadiabatic coupling. This is especially true ! g’

for the upper sheet even in the strong coupling limit.
Since we found thatv_ = «, for both the coupled and

decoupled equation, we will put_ = «, = a hereafter. Note

that the crude approximation corresponds to puttirgO. a’—a—j% 1 bg’)

From Appendix A, the eigenenergy is obtained from the
quantization condition as

- T2+ — 4+ k(™
E_ 292 2g + > +k
VI. LOWER SHEET
. bi)+4k(?)  al)AD) )2

The Schrdinger equation for the lower shegt?) is a + 5 n+ T (56)
particular case of motion in a central field and textbook
quantum mechanic* tells us that the solution should be- where
have asp® at the origin, wherex is a constant. Though we (-)_1 (=) _ _
determinedu in the previous section, we keeparbitrary in k()= 3(=b§ )+ bi7—4c)), (57)
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b{)+2a{ )k zero. On the other hand, the crude wave functions have finite
TH:W' (58)  values. The positions of the maximum of the present wave
0 functions are shifted into larges comparing to the crude
The eigenfunction is ones. The asymmetric potential sheet reflects the asymmetric
1 shapes of the wave functions. On the other hand, the crude
x_(p)=p~ exp( - _g()z(p_)\()y) ones have a symmetric form about the potential minimum
2 due to the harmonic potential which is symmetric about its
(-) () p— () minimum.
X eXpy I Hale o= ), (59 Figure 7 exhibits the energy for the lower state O, |
where =1/2 using the general energy expression &) with o
B . b{?) =1+/j2+% We can see that Eq56) reproduces the nu-
s )2=2( k() + T) (60) merical solution for the decoupled equation.

If one substitutesy=|j| which describes the asymptotic

(- ag’)— () behavior of the coupled equation into E§6), it is interest-
N7 =g~ k() F p) (61) ing to compare it with the numerical solution of the coupled
0 equation. Figure 8 exhibits satisfactory agreement between
N B (N (@l )= ))? Eq. (56) with @=|j| and the numerical solution of the
v =gt kT 2 + 4k(-) 4 2p) (62 coupled equation. This may indicate that the asymptotic be-
0 havior p® partly contains the nonadiabatic effect. Thus Eq.
- by~ O (56) with @=|j| cannot be regarded as the adiabatic energy
K=\ +2k, (63 of the decoupled equation.
and
T e S VIl. FIRST-ORDER CORRECTION
w=lol - peaer (64 FOR THE LOWER SHEET

Since, in the strong coupling limit, these constants become  In this section, the coefficients in the approximate de-
coupled equation for the lower sheet are assumed to be

(=) _ _ . . .
4 L b{)=0 and c{)=—-1 for simplicity. The approximate
()1, equation is written as
g, 20 2«
v o'+ ———2<p—g>)v'
AN g, 9 g
. a2_a_j2
Eg. (59) approaches the crude wave functi@T) except for +| 2B+ ——— +¢?— (p_g)z)v -0. (66)
p<. g
In the strong coupling limit, we have a simplified energy __ . S . G
expression This equation is given by the following Hamiltonian:
2
E.=—1g?+n+ 3 __1d E_ﬁ(p_g) d
o 2dp* g ¢° dp
02 2, Qi2
i (Ba—2a°+3j%)(2n+1) 1 5 )
+F+ 207 +0 5/ (65) 1« —a—| 2 1 2
g 9 g9 ) 2 +9 +§(p—g) ) (67)

It should be noted that arbitrary does not appear in the

power of 1f2. This is the reason why the crude energyand, we regard this as the unperturbed Hamiltonian. The un-
expressioh’? gives the correct behavior of energy up to the perturbed energy is obtained as

order of 142 in the strong coupling region, in spite of the

incorrect asymptotic behavior. Furthermore, it is important to 0 1, 1 2 a? s

note that the contributions of the order ofyi/originate not i 29Nt ST 4—g4+0(g )- (68)
only from a{~) which gives the pseudorotational energy o o
j2/(2g?) in the crude treatment wite=0 but also from In thev space, the normalization condition is

a§” b7 k™), 7(7) which are neglected in the crude ap-

proximation. In the Ig* order, we find a dependence an j pdpd¢qf*\p=J dpdpd* P

However, as we will discuss in the following section, the

first-order  perturbations will exactly cancel the

a-dependence in the g7 order. :j dPX*X=f dpp®*v*v=1. (69

Figure 5 shows a comparison between the present and
cruden=0,j =1/2 normalized radial wave functions for the It is found that the volume element in thespace isp?*dp.
lower sheet. At the origin, the present wave functions ardn this space, the adjoint operators are
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d2\t g2 da d 2a(2a—1) TABLE I. Comparison of the analytical expression with the numerical so-
(d—z) :d_2+ — d—+ —_—, (70 lutions of the decoupled and coupled equationg*(E—(— 3g2+n+ 3
p P p dp P + (j%/2g?))) is calculated at large value gf=10.0 forj=1/2,n=0. In the
d d analytical expression in the strong coupling limit, this is equal ja 3
( p %) =—(2a+1)—p %’ (71) j 3j2 Decoupled Coupled
1/2 0.75 0.74 0.77
d\" 22 d 7y 2 6.75 6.78 6.80
dp)  p dp’ 5/2 18.75 18.37 18.36
712 36.75 34.45 34.42
Therefore the adjoint of the unperturbed Hamilton{gr) is  9/2 60.75 53.53 53.44
obtained as
i 1 d? (Za 2a+ a ) d a(2a—1)
0 ZW p g EZP dp p @__ % 21
Vl - g3(p g) do’ (80)
+4a2 1 a(2a+1) 1(&2—a—j2+ 5 p
o 2 -5 2 g
g »p 9 2 g a d
VP=5lh=9° g (81
1 ) P
+5(p=9)% (73 o @i
Vo'=——=3—(p—0), (82
It is found that the adjoint of the unperturbed Hamiltonian 9
HO is different fromH,. ThereforeH, is a non-Hermitian 2 3(a’—a—j?) )
operator. Since the eigenequation 7ﬁifT cannot be solved Vo= T(P 9)°. (83
analytically, the same approximation which was made in the ) ) ]
equation forH: From Appendices B and C, we obtain the first energy
correction up to Ig* as
2 1( )— (74) 1 1 j2  3j?
~———=2((p—=g (0) (1)~__ J J
p g g E +E g+n+2+—gz+4g (84)
1 o (75) Table | shows the coefficient ofg? order obtained from
p° g ’ the numerical calculations of the decoupled and coupled

equation, and the present analytical expressiph 8ve find

is applied forH . The approximate adjoint operator is ob that agreement between the corrected energy expre&tpn

tained as and the numerical results is quite good.
(’HT) B d? (a a ( )) d
olarro "2 407 g 2P Y dp VIIl. UPPER SHEET
2_ 2
_ 1( @ ‘; J +g?|+ l(p_g)z_ (76) In this sectiona is put to be equal tg+ \/j2+ 1.
2 g 2 The equation for the upper sheet is
It is found that (Hg)appmxz Hy. Since the unperturbed 1 1
. . . o 2 Z + '2+ _
Hamiltonian is non-Hermitian, we have to resort to non- 2 1”77
Hermitian perturbation theoty (see Appendix D v+ vh+(2E.—2|g|p—p?)v,.=0.
The Hamiltonian giving the decoupled E®?7) in thev P (85)
space is written as
5 L In the second term of the equation, iplis expanded around
1d ad (J —ata Epz—gp) 77 (”:(jzlg)l’3 the approximate equation can be written as
2 2 .
237 o\ 272 4 (8504 b5 (p— ph v+ (2§D +b{D (o p”)
Therefore the perturbation operator is defined by
+c{p—py)?v, =0, (86)
o o o
Ve=H—Ho=| — — 4+ — — —a) | — where
_ _ b_2a 1+ Vi+aj2
az—a—jz az—a—jz a( = —2/3_g y (87)
2 1+1+4j°
This operator is decomposed as b= — (3)2 ==~ ) g%® (88)
Po
V:V(2)+V(3)+...+V(1)+V(2)+... , (79) ) )
! 1 0 0 al=2E—2gpit — pit)2=2E , —2j23g2R3—j43g~ (23,
where (89
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FIG. 9. Energy for upper sheé&t, using the present expressi®?) (solid
line) and within the crude approximatid@8) (broken ling, and the numeri-
cal solutionE,, (dotted ling for the decoupled equation for the upper sheet
with j=1/2, n=0. The energies are shown l+E;; as a function of
dimensionless coupling constagt where E;;=1/2g% is the Jahn-Teller
stabilization energy.

0t

0 2 4 6 8 10

b(f):—Zg—2pg+)=—29—2j2’3g_ w3, (90)
c{=-1. (91)
The eigenenergy is obtained as
(+)
E,=j%g?3+ %j4/3g— (213 4 b; + k)
b{+4k()  alt)p) ()2
5 n-+ 5 5 (92

J. Chem. Phys. 122, 054104 (2005)

b{")+2al"k
(+)__1 0 (96)
TN
(= 2k + b7, (97)
()= (+) 8"
A P 9
a(()+)2
()=
AT TNOR (99)
b") + 4k(H)
K= ——, (100
2
() _o.(+)
a, 27
pH=pt) — 0 (101)

V2(b{T+ 4Kk

The wave function in the crude approximation is essen-
tially that of the harmonic potential. On the other hand, the
present function for the upper sheet is far from the wave
function of the harmonic potentialjl) the position of the
extrema are displaced towards largeas compared to the
harmonic wave function(2) the present wave function has
smaller curvature than expected for the harmonic wave func-
tion. In other words, the wave function is more delocalized
than the harmonic wave function. The curvature depends on
™). In the strong coupling limit,

2j* _

(D= kD4 2 2L
4 k' + 5

a

(1/3)’ (102)

wherea=2+/j?+ 3. Since the highest orders ki*) and
b{")/2 cancel /") decreases ag increases. In other words,
the curvature at large becomes small as the coupling in-

In the strong coupling limit the simplified energy expressioncreases. Figure 6 shows a comparison between the present

has the form as

1 2/3
n+ 5] || +odel- @),

5 (93

E+~(3j2—1+a (J%

where a=3+/j2+ 5. This energy expression is different
from that of the crude approximation.

and crude normalized eigenfunctions for the upper potential
sheet. At the origin, moreover, the present wave functions are
zero, while the crude wave function has a finite value.

Though the upper energy expression is better than that of
the crude approximation, there is still a discrepancy. It is
found that ag?’® contribution is still missing in the present
energy expression.

Figure 9 shows the energy for the upper sheet calculated

by the energy expression E(2) and the numerical calcu-

lation of the decoupled equation using the finite difference
method. The agreement of the present results with the ndX. NONADIABATIC COUPLING

merical result is clearly improved.

In the energy expression, we found that an effecivof
appears in the lowest order gf This means that the energy
is strongly influenced by the existence @f. This will be

clearly understood from the eigenfunction as discussed be-
low. The eigenfunction for the upper sheet can be written as

x+(p)=p*exd — 3% (p—\()?]

Xexp( YN H () (p—ul)), (94)
where
KD=3(=bg"+ bi7=4c[7), (95

The nonadiabatic coupling matrix element is written as

j 1)

VO Vot Xmd 2 Nt Xap N X e
(103

N I
<an|2—’)2|ij>

where

f pdpXn;
0

From Appendix B, the integrdl

[ (n,m) _
non,j

1
(p)FXr;j(p)- (104

(n.m)

honj 1S Obtained as
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FIG. 10. Nonadiabatic coupling integrals as a functiongobetween the
upperj=1/2 states anda) the lowern_=0, j=1/2; (b) the lowern_=1,
j=1/2; (c) the lowern_=2, j=1/2; (d) the lowern_=3, j=1/2.

TABLE II. Calculated nonadiabatic coupling integral for the lower=0
state and the upper, =0,1,2,3 states.

J. Chem. Phys. 122, 054104 (2005)

TABLE Ill. Calculated nonadiabatic coupling integral for the lower
=1 state and the upper, =0,1,2,3 states.

g n,=0 n,=1 n,=2 n,=3
1.0 —0.06612 0.05834 0.01459 0.01435
2.0 —0.10316 0.01840 0.00994 0.00839
3.0 —0.05099 —0.01231 0.00070 0.00467
4.0 —0.02003 —0.01438 —0.00592 —0.00026
5.0 —0.00742 —0.00912 —0.00678 —0.00332
6.0 —0.00268 —0.00469 —0.00501 —0.00390
7.0 —0.00094 —0.00215 —0.00299 —0.00310
8.0 —0.00032 —0.00090 —0.00156 —0.00200
9.0 —0.00010 —0.00035 —0.00074 —0.00108
10.0 —0.00003 —0.00013 —0.00039 —0.00033
e~ &N

|(nvm):exq y(_)+ y(+)+ 70)

non,j

X(ZK(_))n_l (ZK(+))m—k
XH) (= K (= k)

—1-2a+2-—n—m+l+k
X {o

XM((2a—2+n+m—1—Kk,{y,N\o), (105
where
é« — +§ +)2
Lo= VT’ (1006
2N 4 ()2 (+)
No= (2 hz (1079
1 £2)20\ () \ (-))2
18T ) (109

Yom T 5 ALYk
Note that the matrix element between states with diffefent
vanishes.

Figure 10 and Tables lI-IV show the nonadiabatic cou-
pling integrals calculated using E¢L05). It is found from
these Figures that some extrema exist in the weak coupling
region where the avoided crossing occurs. and the nonadia-
batic coupling rapidly decays as the vibronic coupling in-

TABLE IV. Calculated nonadiabatic coupling integral for the lower=3
state and the upper, =0,1,2,3 states.

g n,=0 n,=1 n,=2 n,=3 g n,=0 n,=1 n,=2 n,=3
1.0 0.13622 0.00818 0.02024 0.00830 1.0 —0.00218 0.01553 0.01058 0.01311
2.0 0.09256 0.02891 0.01593 0.00698 2.0 —0.05478 0.03208 0.00229 0.00619
3.0 0.03853 0.02828 0.01786 0.01006 3.0 —0.07231 0.00653 0.00344 0.00356
4.0 0.01442 0.01757 0.01514 0.01103 4.0 —0.03672 —0.01226 —0.00221 0.00121
5.0 0.00523 0.00901 0.01021 0.00940 5.0 —0.01444 —0.01188 —0.00613 —0.00194
6.0 0.00185 0.00413 0.00589 0.00665 6.0 —0.00535 —0.00717 —0.00595 —0.00364
7.0 0.00063 0.00175 0.00302 0.00407 7.0 —0.00192 —0.00359 —0.00413 —0.00357
8.0 0.00021 0.00069 0.00142 0.00222 8.0 —0.00067 —0.00161 —0.00237 —0.00263
9.0 0.00007 0.00026 0.00062 0.00106 9.0 —0.00023 —0.00066 —0.00122 —0.00156
10.0 0.00002 0.00009 0.00031 0.00030 10.0 —0.00007 —0.00026 —0.00068 —0.00051
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creases. In other words, the nonadiabaticity is negligibly
small in the strong coupling region. That is the reason why
the numerical solutions of the coupled and decoupled equa-
tions coincided in the strong coupling region.

Figure 11 shows the overlap between the wave functions
of the lower and upper sheet with=0, andj=1/2. (a) g
=1.0, (b) g=2.0, (c) g=5.0, (d) g=10.0. As the vibronic
coupling increases, the maximum of the upper function
slowly approaches the origin, while that of the lower sheet
follows the minimum point of the lower potentigh{ ) ~g.
Since the overlap is the largest fgr=2.0, the maximum of
the nonadiabatic coupling lies arougd=2.0 as shown in
Fig. 10.

From perturbational point of view, energy correction due
to the nonadiabatic coupling is estimated to be of order of
1/g®, since the nonadiabatic coupling integral is of order of
1/g? and the energy difference between upper and lower
sheet is of order o).

X. CONCLUSION

We obtained an approximate analytical solution with the
correct boundary conditions for thE®e dynamic Jahn-
Teller problem in the strong coupling limit. Compared with
the previous solutions, the eigenfunctions contain faqﬁst

for the coupled equation anef’>* ViZE 14 for the decoupled
equation. As a results the solutions for the upper sheet look
entirely different from those obtained by Slonczew&ki.

The levels for the lower and upper sheet, numerically
calculated using the decoupled equations, do cross each
other. However when the coupled equations are used, the
intersections between the solutions of the two sheets become
avoided, due to the nonadiabatic coupling terms. The se-
quence of avoided crossings gives rise to the oscillating be-
havior of the solutions of the coupled equations in the weak
coupling region withg<2.

The vibronic energy spectra obtained show better agree-
ment with a numerical calculation for the coupled and de-
coupled equations than the crude ones in the wide range of
g. For the ground vibronic state, the agreement is good up to
g~1.5 with a=|j|.

The first order perturbation yields energy correction of
the order ofg™* in the strong coupling limit witha=1/2
+/j%+1/4. Moreover the asymptotic behavior of the lower
wave function does not influence the corrected energy up to
the power of 1g*.

Due to the correct boundary condition, we evaluate the
nonadiabatic coupling between vibronic states of the lower
and upper potential sheets. It is found that the corresponding
matrix elements decrease very fast with the coupling con-
stant. Moreover the order of energy correction due to the
nonadiabatic coupling is estimated to be of order g1/
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APPENDIX A: SOLUTION
OF THE DIFFERENTIAL EQUATION

The equation to be solved has a form:
y"(X)+ (ag+bex)y’ (X)+ (a;+byx+cyx?)y(x)=0. (A1)
Puttingy(x) = u(x)expkxX) leads to

u”"+(ag+ (bg+4k)x)u’+((a;+2k) + (b +2agk)x)u=0,

(A2)
wherek satisfies
4k?+ 2bok+c¢,=0. (A3)
Sincek should be positivek is
k= %(—bo+ Vbg—4cy). (A4)

Let u(x) =v(x)exp(—x),
v+ (89— 27+ (bo+4K)X)v' + (72— apT+a; + 2k)v =0,
(A5)
Putting z=ay— 27+ (bgt+4k)x and v(x) =w(z) leads
to

1
ZW (Z)"r‘ (bo+—4k)2

1
W2+ B Ak
X (?—ayr+a;+2k)w(z)=0. (AB)

Let t=—[1/(2(by+4k))]z? and F(t)=w(z), and the
equation becomes

1
2(bo+ 4K)

X (12— agr+a,+4k)F(t)=0.

n (1 ) !
tF"(t)+| 5 —t|F'(t)—

(A7)

This is the Kummer equation.

orig

J. Chem. Phys. 122, 054104 (2005)

Wy (2) =F5(1) (A13)

B 72 1
=B~ Sborak) | 201 N 3,1 ak) 2
N
“N 7 2(bgr k) (2n,r D11 °

From the condition for the solutions to be regular at
in,

2a—1=2n,
2a—1=2n,+1.

(A14)

(A15)

Therefore the two solutions and the conditions can be

written as a single expression:

and

and

(Al6)

| atworawr]
Hinl 'V 2(bg+ 4k 2

Z2
eXp( "~ 2(bg+4k)

2a—1=n. (A17)

Finally, apart from a constant, the solution is

bo
y(x)=expg — k+7

XH( /(bo+4k)/ . ap—27 )) a8
X
" 2 |7 J2(bg+ak)) )’

X% —agx

the quantization condition is
al bo+ 4k bo aoT ’7'2
?— 2 ?+k+7—5. (A19)

APPENDIX B: INTEGRAL /"™

'é“’m):ezyf:dppa exp(— ¢%(p— M) Hn(k1(p— u1))

XHm(xa(p—p2))- (B1)
The Hermite polynomiaH ,(x) can be written in an in-

The general solution of the equation is a linear combi-tegral representation as

nation of the two linear independent ones:
Fi(t)=1F(a, 3;1), (A8)

Fa)=tY¥2 Fi(a+ 3, 3;0), (A9)

where ;Fq(a,c;t) is a confluent hypergeometric function,

anda is defined by
1

a:—m(Tz_aoT+(al+4k)), (Alo)
wy(2)=Fy(t) (AL1)
Z2
:exp< "~ 2(bo+4K)
[ Vawral
XHon| N 3porai) 2 anmnn A2

On the other hand,

(B2)

2t (= — (t212) N
H,(x)= —| e (V2x+it)"dt.

Substituting this representation into the integral yields

— g2)\2 n

s S

2 =0k=o

° (260)"(21e,) ™

| (MM = g27 (T (T

XH (= rypeg) Hil( — rppp) {1727 eITK

where

XM(a+m+n—1—k,Z,\N), (B3)
M N)=2iAT 142 F 142 3. 2)\?
(aagy )_ g E L 1 Eazlg
r 1+a F 1+a 1_ N B84
+ ] Pl ,5,57\ . (B4

1
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Substituting Eq(D3) into Eq.(D2) and taking the first-

APPENDIX C: ASYMPTOTIC BEHAVIOR OF /("™
order of e, we obtain

Since the asymptotic behavior of the confluent hypergeo-
(Ho—a0)|X)=N\1|eo) —Veg).

metric function g’ (D6)

_ I'(c) Ca Multiplying (fo| from the left side, and using E¢D5), we
1Fi(a,ci2)~ I'(c-a) (-2 "G(a,a—c+1-2) can obtain the first-order energy correction:
folVleo)
re , . _{fdMe)
+ Wez(z)al °G(c—a,1-a,z), (C1 L= Foleq) (D7)
whereG is an asymptotic series: In.the present problem, since E@5) pannot be sqlveq
analytically, we adopted the approximate Hamiltonian
Glabz=1+ 22 ab a(a+ 1)b£b+ 1) 2 (H §) appro Which is equal tdH,. The eigenequation is writ-
11z 21z ten as
the asymptotic behavior d¥l(a,Z,\) is (H &) approd 6) = Hol€0) = ag| €0)- (D8)
a a Since
M(a, ¢\ )~ 2 \mes gaxae(z—z —E,gzxz). (C3)
Therefore =(H O)appro 2-/41"' 3-/42 (D9)
O et 2”: zm: ( )( )(2 -1k |fo) can be expanded as a serieggodiroundg— <,
K
=0 k=0 1
S Hy(— ) i — ik |fo>=|f0>+?|y1>+“‘, (D10
1 atnim—Il—-k a+tntm—|—k where|y,) is a coefficient of 1g°. Substituting Eq(D10)
XG 5= 5 - 5 NFOR into Eq. (D7), we obtain
folVe
(CH M:M 0(g™9). (D11)
(foleo)
Forn=0 andm=0,
1 a a Therefore we can employ
IQ9~\3G| 5~ 5,— 5,¢2\? (CH (eolV]eo)
2 2 2 — 0=/ (D12)
1 (eoleo)

APPENDIX D: NON-HERMITIAN PERTURBATION
THEORY

The Hamiltonian’® is decomposed ag${=Hy+ €V,
where € is a small parameter. We assume the unperturbedH. Longuet-Higgins, U. @ik, M. Pryce, and R. Sack, Proc. R. Soc. Lon-
Hamiltonian H, and the perturbation) can be a non-  don, Ser. A244 1 (1958.

Hermitian operator. The eigenequations % and H are 2"5402238’;%; Longuet-Higgins, Philos. Trans. R. Soc. London, Ser. A
written as

Muramatsu and N. Sakamoto, J. Phys. Soc. 44n1640(1978.
Holeo)=ag |€o)

to obtain the energy correction up to order o§/

8s.
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5B. Judd, J. Phys. @2, 1685(1979.
5H. G. Reik, M. Stize, and M. Doucha, J. Phys. 20, 6327(1987).

and M. Szopa and A. Ceulemans, J. Phys3@ 1295(1997.
'H|X) = )\|X>, (D2) 8A. Thiel and H. Kppel, J. Chem. Phy4.10, 9371(1999.
9K. Bosnick, Chem. Phys. Let817, 524 (2000.
where\ and|x) are expanded as 103, Dunn and M. Eccles, Phys. Rev.G8, 195104(2007).
11, Bersuker and B. Vekhter, Fiz. Tverd. Teleeningrad 9, 2652(1967).
AN=ag+en,+ -, 12|, Bersuker and V. Polingekibronic Interactions in Molecules and Crys-

tals (Springer-Verlag, Berlin, 1989

13C. Mead, J. Chem. Phyg8, 807 (1983.

1A Varandas and Z. Xu, Chem. Phy&59, 173(2000.

15A. Varandas and Z. Xu, Chem. Phys. L&il6 248 (2000.

161, Fox, The Numerical Solution of Two-Point Boundary Problems in Or-
dinary Differential EquationgDover, New York, 1990

X} =|eo)+ €[x1) +- - (D3)
SinceH §# H,, the Hermite conjugate operatdt{, has dif-

ferent eigenvectors frorfi,:
Hg| foy=aolfo), (D4) 'L Landau, E. Lifshitz, and J. Sykeuantum Mechanics: Nonrelativistic
Theory(Pergamon, Oxford, 1965
but the eigenvalues are the same. The adjoint of this equations. Fligge, Practical Quantum Mechanic&Springer, Berlin, 1974
can be obtained as 19E. Hinch, Perturbation Methods(Cambridge University Press, Cam-
bridge, 1991
(fol Ho=ao(fol-

(D5) 203, Slonczewski, Phys. Re¥31, 1596 (1963.
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