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A method of calculation of vibronic or electron-phonon coupling constant is presented for a
Jahn-Teller molecule, cyclopentadienyl radical. It is pointed out that symmetry breaking at
degenerate point and violation of Hellmann-Feynman theorem occur in the calculations based on a
single Slater determinant. In order to overcome these difficulties, the electronic wave functions are
calculated using generalized restricted Hartree-Fock and complete active space self-consistent-field
method and the couplings are computed as matrix elements of the electronic operator of the vibronic
coupling. Our result agrees well with the experimental and theoretical values. A concept of vibronic
coupling density is proposed in order to explain the order of magnitude of the coupling constant
from view of the electronic and vibrational structures. It illustrates the local properties of the
coupling and enables us to control the interaction. It could open a way to the engineering of vibronic
interactions. © 2006 American Institute of Physics. �DOI: 10.1063/1.2150816�
I. INTRODUCTION

Vibronic interaction or electron-vibration �phonon� inter-
action is one of the most investigated problems in molecular
physics.1–4 It plays an important role not only in solid-state
physics but also in chemical reaction theory, for instance,
Jahn-Teller �JT� effect,5 superconductivity, electron transfer
reaction, and so on. These phenomena are ruled by the mag-
nitude of the vibronic coupling or electron-phonon coupling
constant.

Some authors have calculated the vibronic coupling con-
stant from vibronic coupling integrals over hydrogenlike
atomic orbitals,6 and others have evaluated them from the
calculation of a conical intersection of Born-Oppenheimer
potentials.7,8 Recently, on the other hand, Kato and Hirao
have calculated a vibronic coupling constant of some JT mol-
ecules from the gradient of a Born-Oppenheimer potential
near the JT crossing point R0 �see Fig. 1� using density-
functional method.9 However, as we will discuss in this ar-
ticle, their calculations involve some serious problems: �1�
symmetry breaking of the wave function and �2� violation of
Hellmann-Feynman theorem.10,11 One of the purposes of this
article is to overcome these problems.

Among many JT molecules, cyclopentadienyl radical
�C5H5, Fig. 2� is one of the most investigated molecule, since
it has been not only an important species in organic chemis-
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try but also a target of spectroscopy and quantum chemistry.
The electronic state of the radical with D5h symmetry is 2E1�,
as shown in Fig. 3.

Throughout this article, we consider linear vibronic cou-
pling and neglect higher-order couplings. The JT-active vi-
brational mode which couples to the electronic E1� state can
be deduced as

�E1�
2� = a1� � e2�, �1�

where ��2� denotes the symmetric product of an irreducible
representation �. Therefore, the radical should give rise to a
JT distortion with e2� symmetry, and the resulting structure is
C2v. The molecule has 3N−6=24 vibrational modes,

�vib = 2a1� � a2� � 3e1� � 4e2� � a2� � e1� � 2e2�. �2�

Thus the two a1� modes and four e2� can couple to the elec-
tronic state as long as the linear JT effect is considered.

The JT distortion of the radical has been first observed
using electron-spin resonance �ESR� in condensed
phase.12–16 After the ESR observations in condensed phase,
the spectroscopy of the isolated radical has been
reported.17–25 After pioneering work by Liehr,26 theoretical
calculations have been piled up.27–30

Recently Applegate et al. have observed Ã 2A2�→ X̃ 2E1�
transition of the radical in detail and calculated observable
spectroscopic constants by ab initio method.8 They estimated
the vibronic coupling constants for the four e2� modes from

their experiment and calculation. Since their assignment is

© 2006 American Institute of Physics14-1
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quite excellent, cyclopentadienyl radical is a good target for
our calculation of the vibronic coupling.

In this paper, we will present a new method of the cal-
culation of the vibronic coupling integrals as matrix elements
of an electronic operator of the vibronic couling and compare
them with those by Applegate et al. Furthermore, we will
propose a concept of vibronic coupling density in order to
explain the order of magnitude of the coupling constant from
view of the electronic and vibrational structures. To find a
way to control the coupling is another purpose of this study.

The paper is organized as follows. In Sec. II, the model
Hamiltonian of the problem is presented. The method of the
calculation is presented in Sec. III. The calculations using the
gradient of a Born-Oppenheimer potential at the JT crossing
point is not appropriate, since the wave function gives rise to
the symmetry breaking at the point. In addition the applica-
tion of the Hellmann-Feynman theorem that the coupling is
equal to the gradient is not valid. We discuss these points in
Secs. IV and V, respectively. In Sec. VI, the results of calcu-
lations are shown and we discuss the constants in terms of
the vibronic coupling density. Finally, we conclude this work
in Sec. VII.

II. VIBRONIC HAMILTONIAN

A molecular Hamiltonian is given by

FIG. 1. Cross section of the Jahn-Teller potential. Jahn-Teller crossing R0 is
the nuclear configuration of the molecule without Jahn-Teller distortion, and
energy minimum Rmin is the molecular structure with the lowest energy. The
D5h symmetry at R0 is lowered into the C2v at Rmin because of the Jahn-
Teller effect. For the structure R0� which is obtained after the optimization
for the conical intersection, the energy difference Ee�R0��−Ee�Rmin�=1/2D2

is called Jahn-Teller stabilization energy �E, where D is dimensionless vi-
bronic coupling constant.
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H�r,R� = T�R� + T�r� + U�r,R� = T�R� + He�r,R� , �3�

where

He�r,R� = T�r� + U�r,R� , �4�

R denotes a set of nuclear coordinates, r that of electronic
coordinates, T a kinetic-energy operator, and U a sum of an
electron-electron, electronic-nuclear, and nuclear-nuclear po-
tential operator. He is an electronic Hamiltonian which gives
a potential surface Ee�R� within the Born-Oppenheimer ap-
proximation,

He�r,R���r,R� = Ee�R���r,R� . �5�

Starting from a reference nuclear configuration R0, which is
the JT crossing point in the JT problem, the electronic
Hamiltonian for a deformed molecule whose nuclear coordi-
nates are expressed by R is written as

He�r,R� = He�r,R0� + U�r,R� − U�r,R0�

= He�r,R0� + �U�r,R� . �6�

Thus the molecular Hamiltonian is rewritten using the elec-
tronic Hamiltonian at R0 as

H�r,R� = T�R� + He�r,R0� + �U�r,R� . �7�

Since the deformation is expressed in terms of a set of nor-
mal coordinates Qi at R0,

�U = �
i
� �U

�Qi
�

0
Qi +

1

2�
i
� �2U

�Qi
2�

0

Qi
2 + ¯

�i = 1,2, . . . ,3N − 6� . �8�

Here we ignored intermode couplings so that the vibrations
are considered as isolated. This expansion originates from
Herzberg-Teller expansion around the JT crossing R0 up to
the second order in Qi. Therefore, the model Hamiltonian
describing the coupling between harmonic vibration and
electronic motion can be written as

H = �
i

−
�2

2
� �2

�Qi
2� + He�r,R0� + �

i
� �U

�Qi
�

0
Qi

+ �
i

1

2
�i

2Qi
2, �9�

where �i is the frequency of the mode. The index i runs over
2a1� � 4e2� modes. The first term in Eq. �9� corresponds to the
nuclear kinetic energy. The operator involved in the third
term,

FIG. 2. Structure of cyclopentadienyl radical. Because
of the Jahn-Teller effect, symmetry of the structure is
lowered from D5h to C2v.
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Vi = � �U
�Qi

�
0
, �10�

is called the electronic operator of the mode i, and ViQi

describes the vibronic coupling.
The vibronic wave function is expanded in terms of the

eigenfunctions of He�R0�,

��r,Q� = �
n

�n�Q��n�r,R0� , �11�

where �n�r ,R0� is an eigenfunction belonging to the
eigenenergy E0 of He�R0� in the electronic eigenequation
�5�, �n�Q� an expansion coefficient which depends on the
normal coordinates, and n runs over the electronic configu-
rations. To obtain a JT Hamiltonian, the domain of n is re-
stricted to the degenerate electronic state �E1��	, �E1�		. � and
	 denote one of the irreducible representation of doubly de-
generate one that decomposes into b1 and a2 when the sym-
metry is lowered from D5h into C2v, respectively. We treat
the model Hamiltonian within the model space spanned by
�E1��	 and �E1�		. Thus we can write the JT Hamiltonian ma-
trix as follows:

ĤJT = E0
̂0 + �
i

−

�2

2
� �2

�Qi
2�
̂0 +

1

2
�i

2Qi
2
̂0�

+ �
i
��E1���� �U

�Qi
�0

�E1��	 �E1���� �U
�Qi

�0
�E1�		

�E1�	�� �U
�Qi

�0
�E1��	 �E1�	�� �U

�Qi
�0

�E1�		 �Qi

�12�

=E0 + �
i

−

�2

2
� �2

�Qi
2� +

1

2
�i

2Qi
2��
̂0 + �

i

V̂iQi,

�13�

where


̂0 = �1 0

0 1
� . �14�

The last term in Eq. �13� describes the vibronic coupling.

FIG. 3. � orbitals of cyclopentadienyl radical. Because of the fivefold sym-
metry, the orbital level of HOMO is doubly degenerate e1�, one of them is
denoted as 	, and the other as �. � is transformed as yz, and 	 is xz.
Irreducible representations in the parentheses are those lowered into the
subgroup C2v: E1�↓C2v=a2 � b1. 	 is a2 and � is b1.
The integrals �E1�����U /�Qi�0�E1��	 and so on are called vi-
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bronic coupling integrals �VCIs�, which are the matrix ele-
ments of the electronic operator Vi.

The coupling matrix between the jth vibrational degen-
erate e2� mode and the electronic E1� state can be reduced
using Wigner-Eckart theorem,

��E1���V��j��E1��	 �E1���V��j��E1�		

�E1�	�V��j��E1��	 �E1�	�V��j��E1�		 �
=

1
�2

�E1���Ve2��j���E1�	� 1
�2 0

0 − 1
�2

� , �15�

and

��E1���V	�j��E1��	 �E1���V	�j��E1�		

�E1�	�V	�j��E1��	 �E1�	�V	�j��E1�		 �
=

1
�2

�E1���Ve2��j���E1�	� 0 1
�2

1
�2 0

� . �16�

Therefore, the reduced matrix element �E1��Ve2��j��E1�	 can be
calculated from the following relations:

�E1���Ve2��j���E1�	 = 2�E1���V��j��E1��	 = − 2�E1�	�V��j��E1�		

= 2�E1���V	�j��E1�		 = 2�E1�	�V	�j��E1��	 .

�17�

Thus, for a single degenerate vibrational mode, the vibronic
coupling matrix is obtained as

V̂e2���j� =
1

2
�E1���Ve2��j���E1�	�1 0

0 − 1
� = Ve2��j��1 0

0 − 1
� ,

�18�

and

V̂e2�	�j� =
1

2
�E1���Ve2��j���E1�	�0 1

1 0
� = Ve2��j��0 1

1 0
� , �19�

where

Ve2��j� =
1

2
�E1���Ve2��j���E1�	 = �E1���V��j��E1��	 = − �E1�	�V��j�

��E1�		 = �E1���V	�j��E1�		 = �E1�	�V	�j��E1��	 �20�

is the vibronic coupling constant �VCC�, which is the quan-
tity we will calculate in this article.

On the other hand, the interaction matrix between vibra-
tional a1� mode k is written as

V̂a1��k� = ��E1���Va1��k��E1��	 �E1���Va1��k��E1�		

�E1�	�Va1��k��E1��	 �E1�	�Va1��k��E1�		 �
=

1
�2

�E1���Va1��k���E1�	�1 0

0 1
� = Va1��k��1 0

0 1
� , �21�
where
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Va1��k� =
1
�2

�E1���Va1��k���E1�	 = �E1���Va1��k��E1��	

= �E1�	�Va1��k��E1�		 �22�

is a VCC for a totally symmetric a1� mode. Therefore, using
Eqs. �20� and �22�, the VCC can be obtained from a numeri-
cal calculation of the VCI. Furthermore Eqs. �20� and �22�
involve conditions among the VCI due to the symmetry of
the wave function which should be satisfied in the JT system.
In Sec. IV, we will discuss the symmetry of wave functions
at the degenerate point R0.

We introduce here some dimensionless quantities. For a
vibrational mode i, the normal coordinate Qi is measured by
�� /�i,

Qi =� �

�i
qi, �23�

where qi is a dimensionless normal coordinate. Dimension-
less coupling constant Di can be defined as

Di =
Vi

���i
3

. �24�

Therefore, the JT Hamiltonian is written in terms of these
dimensionless quantities:

ĤJT = E0
̂0 + �
k=1

2 
−
�2

2 � �2

�Qa1��k�
2 �
̂0 +

1

2
�a1��k�

2 Qa1��k�
2


̂0

+ Qa1��k�Va1��k�
̂0� + �
j=1

4 
−
�2

2 � �2

�Qe2��j��
2 �
̂0

−
�2

2 � �2

�Qe2��j�	
2 �
̂0 +

1

2
�e2��j�

2 Qe2��j��
2


̂0

+
1

2
�e2��j�

2 Qe2��j�	
2


̂0 + Ve2��j��Qe2��j��
̂z + Qe2��j�	
̂x��
�25�

=E0
̂0 + �
k=1

2

��a1��k�
−
1

2� �2

�qa1��k�
2 �
̂0 +

1

2
qa1��k�

2

̂0

+ qa1��k�Da1��k�
̂0� + �
j=1

4

��e2��j�
−
1

2� �2

�qe2��j��
2 �
̂0

−
1

2� �2

�qe2��j�	
2 �
̂0 +

1

2
qe2��j��

2

̂0 +

1

2
qe2��j�	

2

̂0 + De2��j�

��qe2��j��
̂z + qe2��j�	
̂x�� , �26�

where


̂x = �0 1 �, 
̂z = �1 0 � . �27�

1 0 0 − 1
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III. METHOD OF CALCULATION

As the reference structure R0 of the JT system, we take
the structure of cyclopentadienyl anion, which is called
parent system throughout this article. Since the parent system
does not give rise to any JT distortion, its geometry has D5h

geometry.
The electronic operator Vi is a sum of one-electron op-

erators vi�a� and the derivative of the nuclear-nuclear repul-
sion potential Unn with respect to Qi,

Vi = − �
a

�

 �

�Qi
� Ze2

�ra − R���0

+
�Unn

�Qi

= �
a

�i�a� +
�Unn

�Qi
, �28�

where

�i�a� = − �

 �

�Qi
� Ze2

�ra − R���0

= � �u�a�
�Qi

�
0
, �29�

indices  and a denote nucleus and electron, respectively, Z

charge of the nucleus , and

u�a� = − �


Ze2

�ra − R�
. �30�

It should be noted that �Unn/�Qi is zero except for the a1�
modes.

The normal coordinate Qi �i=1,2 , . . . ,3N−6� is related
to 3N Cartesian coordinates R= �X ,Y ,Z�
= �R3−2 ,R3−1 ,R3� �=1,2 , . . . ,N� by

R� =
1

�M
�
i=1

3N−6

l�iQi �� = 1,2, . . . ,3N� , �31�

where l�i can be determined from a vibrational analysis, and
M denotes the mass of a nucleus . The one-electron elec-
tronic operator vi�a� is written as

�i�a� = � �u�a�
�Qi

�
0

= �
�=1

3N � �u�a�
�R�

�
0
� �R�

�Qi
�

0

= �
�=1

3N � �u�a�
�R�

�
0

1
�M

l�i = �
�=1

3N

���a�l�i, �32�

where

���a� =
1

�M

� �u�a�
�R�

�
0
. �33�

For the Hartree-Fock �HF� methods, the E1� wave func-
tions are written as a single Slater determinant,

�E1���HF�	 = � ¯ �m�m� ¯ ���	�	�	 ¬ ��	 , �34�

and

�E1�	�HF�	 = � ¯ �m�m� ¯ ���	���	 ¬ �		 , �35�

where �� and �	 denote the degenerate highest occupied mo-
lecular orbital �HOMO� �see Fig. 3�, and , � are spin func-
tions. The complete active space self-consistent-field

�CASSCF� wave functions are written as
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�E1���CASSCF�	 = �
I

CI���I	 , �36�

�E1�	�CASSCF�	 = �
I

CI	��I	 , �37�

where �I is a ground or excited electronic configuration
within the active space, and CI is a coefficient.

The vibronic coupling matrices of the HF and CASSCF
wave functions are given by

V̂i
HF = ����Vi��	 ���Vi�		

�	�Vi��	 �	�Vi�		 � , �38�

and

V̂i
CAS = ��

I,I�

CI�
* CI����I�Vi��I�	 �

I,I�

CI�
* CI�	��I�Vi��I�	

�
I,I�

CI	
* CI����I�Vi��I�	 �

I,I�

CI	
* CI�	��I�Vi��I�	 � ,

�39�

respectively. All matrix elements are constructed from the
integrals over Slater determinants. In general the integrals of
a one-electron operator O1=�ih�i� over Slater determinants
are expressed as

�¯mn ¯ �O1� ¯ mn ¯ 	 = �
m

�m�h�m	 , �40�

�¯mn ¯ �O1� ¯ pn ¯ 	 = �m�h�p	 , �41�

�¯mn ¯ �O1� ¯ pq ¯ 	 = 0, �42�

where m, n, p, and q denote spin-orbitals.31 Since Vi is a sum
of the one-electron operator vi, the integrals in Eq. �38� can
be decomposed as

���V��	 = �
m

nm��m�v��m	 , �43�

���V�		 = ����v��		 , �44�

�	�V��	 = ��	�v���	 , �45�

�	�V�		 = �
m

nm��m�v��m	 , �46�

where m runs over the occupied spatial orbitals, and nm is a
occupation number of the orbital m.31 On the other hand,
evaluation of those in Eq. �39� is slightly complicated. The
integral ��I�V��I�	 is finite if the two configurations differ by
less than one spin-orbital, otherwise zero. For instance, for
the case that both �I and �I� are single-electron excited con-

figurations, the integral is decomposed as follows:

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to 
��a
r �V��b

s	 =��
m

��m�v��m	 if a = b , r = s

��r�v��s	 if a = b , r � s

− ��a�v��b	 if a � b , r = s

0 if a � b , r � s ,
� �47�

where �a and �b denote occupied spin-orbitals, and �r and �s

unoccupied spin-orbitals. m runs over the occupied spin-
orbitals.

The VCI over Slater determinants ��	 and �		 can be
decomposed into orbital vibronic integrals �OVCIs� for the �
mode over molecular orbitals,

���V���	 = − �	�V��		 = �
m�E1��E1�

�n��m�����m��v�����m�	

+ n	�m���	�m��v���	�m�	� , �48�

FIG. 4. Jahn-Teller active e2� vibrational modes. The largest displacement
locates on the carbon atoms for e2��1� and e2��3�, and on hydrogen atoms for
e2��2� and e2��4�. The displacements of the bold arrows greatly contribute to
the VCC. Inserted values are the magnitude of bold arrows. C2v :E2�↓C2v
=a1 � b2. � is a1 and 	 is b2.
where m runs over the occupied molecular orbitals with or-
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bital E1� and E1� symmetry, and ���m� and �	�m� denote the
degenerate pair of the E1� or E1� spatial orbitals. n��m� and
n��m� are occupation numbers of ���m� and �	�m�. Note that all
the orbitals with the E1� symmetry can also couple to the E2�
mode since �E1�

2�=A1� � E2�. Furthermore it should be noted
here that

����m��v�����m�	 + ��	�m��v���	�m�	 = 0, �49�

because of the symmetry of the matrix elements as appeared
in Eq. �17�. Therefore, contributions from a pair of ���m� and
�	�m� are canceled and the vibronic coupling integrals can be
reduced into OVCI over the doubly occupied frontier orbitals
�� or �	,

���V��j���	 = ��	�v��j���		 ,

�50�
�	�V��j��		 = ����v��j����	 .

On the other hand, the VCI for the 	 mode is written as

���V	�j��		 = ��	�v	�j����	 ,

�51�
�	�V	�j���	 = ����v	�j���		 .

Therefore, the vibronic coupling matrix in the HF methods is
equal to the OVCI matrix,

FIG. 5. Totally symmetric a1� vibrational modes. The largest displacement
locates on the carbon atoms for a1��1�, and on hydrogen atoms for a1��2�.

FIG. 6. Incorrect symmetry breaking of the frontier orbitals in cyclopenta-
dienyl radical with D5h symmetry. The left two diagrams are those of cyclo-
pentadienyl anion, and the remaining ones are those of cyclopentadienyl
radical. The HOMO should be degenerate because of the high symmetry.
However, the HOMO calculated by the methods based on a single determi-

nant, ROHF, ROB3LYP, UHF, and UB3LYP exhibit symmetry breaking.
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V̂�
HF = ���	�v���		 0

0 ����v����	
� , �52�

and

V̂	
HF = � 0 ����v	��		

��	�v	���	 0
� . �53�

As for the a1� modes, there is no such cancellation;

Va1��k� = ���Va1��k���	 = �	�Va1��k��		 = �
m

��m�va1��k���m	

+
�Unn

�Qa1��k�
= �

m�

��m��va1��k���m�	 +
�Unn

�Qa1��k�
, �54�

where m and m� run over the occupied spin-orbitals of ��	
and �		, respectively.

Using l�i in Eq. �31�, the VCC for the e2� mode can be
written as

FIG. 7. Calculated electronic state of cyclopentadienyl radical 2E1� state.
Though the results using GRHF and state-averaged CASSCF give correct
degeneracy, the calculations using ROHF, ROB3LYP, UHF, and UB3LYP
exhibit an incorrect energy splitting.

FIG. 8. Energy curves of the A2 and B1 states along the e2��3� mode
�UHF/6–31G�d , p��. The Jahn-Teller crossing is disappeared at Q=0 where

the two energy curves should cross.
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Vj = �E1���v��j��E1��	 �55�

= �
�=1

3N

l���j��E1���v��E1��	 �56�

= �
�=1

3N

u�l���j� �57�

=K�
�=1

3N

xd�l���j� �58�

=Kkj , �59�

where

u� = �E1���v��E1��	 , �60�

FIG. 9. Symmetry breaking in the lowest � orbital of cyclopentadienyl
radical and the anion �framed�. The calculations were performed for the D5h

structure. The symmetric � orbital a2��1� becomes asymmetric when a
single-determinant-based calculation is applied. This gives rise to the vi-
bronic coupling matrix with a wrong symmetry �see text�. The calculations
were performed using STO-3G basis set.

FIG. 10. Energy gradient �E /�R and ��H /�R	 �VCI in the figure� using
ROHF towards the minimum of the potential on the 2A2 manifold. The unity
of the displacement corresponds to that between the minimum of the poten-
tial and the origin, the Jahn-Teller crossing. The absolute value of ��H /�R	

at the Jahn-Teller crossing is larger than that of the energy gradient.
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distortion vector xd is the unit vector in the direction of u
= �u��;

kj = �
�=1

3N

xd�l���j�, �61�

and K is a constant. The value of xd is obtainable from the
OVCI. Vibrational analysis yields the value of l���j�, and kj

can be calculated from these quantities. The value of K is
calculated from a JT stabilization energy, i.e., reorganization
energy �E,

�E � �
j=1

4
Vj

2

2� j
2 = K2�

j=1

4
kj

2

2� j
2 . �62�

Therefore,

K2 = �E��
j=1

4
kj

2

2� j
2�−1

, �63�

where �E is the difference between the minimum energy of
the radical optimized within C2v symmetry and that of coni-
cal intersection optimized within D5h symmetry.7

In order to obtain the optimized geometry R0 and vibra-
tional structure of the parent system, restricted Hartree-Fock
�RHF� method is employed for cyclopentadienyl anion. At
the geometry R0, we employed state-averaged CASSCF
method using GAUSSIAN 98 �Ref. 32� and generalized re-
stricted Hartree-Fock �GRHF� method using CADPAC �Ref.
33� to determine the wave function of cyclopentadienyl radi-
cal. All calculations were performed using the 6-31G�d , p�
basis set. The VCI was evaluated using these wave functions.

From the results of the electronic structure calculation
for the radical at R0 and the vibrational analysis for the an-
ion, we calculated u and xd, using Eq. �60�. l�i is obtained
from the vibrational analysis, and ki was calculated from Eq.

FIG. 11. Energy gradient �E /�R and ��H /�R	 �VCI in the figure� using
ROB3LYP towards the minimum of the potential on the 2A2 manifold. The
unity of the displacement corresponds to that between the minimum of the
potential and the origin, the Jahn-Teller crossing. The absolute value of
��H /�R	 at the Jahn-Teller crossing is larger than that of the energy
gradient.
�61�. K was obtained using Eq. �63� from the results of the

AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



024314-8 Sato, Tokunaga, and Tanaka J. Chem. Phys. 124, 024314 �2006�
calculation of the JT stabilization energy. Scaled Vi was cal-
culated from Eq. �59� using K, and unscaled Vi from Eq.
�56�.

In the vibrational analysis, positive directions of the nor-
mal coordinates are defined in Figs. 4 and 5. All quantities
are given in a.u. except for bond lengths and wave numbers
throughout this article. The a.u. of the VCC is
me

3/2e6 / �4�	0�3�4=8.632 09�107 J /kg1/2 m in the Systéme
International �SI� unit.

IV. SYMMETRY BREAKING AND WIGNER-ECKART
THEOREM

Figure 6 shows the energy levels of the frontier orbitals
calculated using RHF and RB3LYP for the anion and ROHF,
ROB3LYP, UHF, and UB3LYP for the neutral radical. As for
the anion which has a closed shell, the calculations give a
degenerate e1� HOMO with the correct degeneracy. However,
either in HF or in density-functional theory �DFT� calcula-
tions, the restricted open-shell and unrestricted calculations
exhibit symmetry broken orbitals for the radical which
should have the degenerate e1� orbitals. The orbital symmetry
cannot be assigned within the D5h point group. It is known
that such an incorrect symmetry breaking of the orbitals
sometimes occurs in the system involving a degenerate elec-
tronic state when a calculation is based on a single
determinant.34 We confirmed the same situation in the
present calculation.

Figure 7 shows the calculated total energy of the elec-
tronic 2E1� state for the radical. Since the electronic 2E1� is
degenerate, the total energy of two electronic configurations,
����2��	�1 and ����1��	�2, should be equal. However, the cal-
culations using ROHF, ROB3LYP, UHF, and UB3LYP ex-
hibit incorrect energy splittings, while the results using
GRHF and state-averaged CASSCF give correct degeneracy.
Moreover, as shown in Fig. 8, the JT crossing point is disap-
peared at the point Q=0 where the two energy curves should
cross.

Symmetry breaking is observed not only in the energy
but also in the wave function. Figure 9 illustrates the ex-
amples of the symmetry broken orbital of cyclopentadienyl

TABLE I. Bond length �Å� of cyclopentadienyl anion C5H5
− calculated using

RHF/6-31G�d , p� and the neutral radical using GRHF/6-31G�d , p�. Note
that the geometrical structure employed throughout this work is that of the
anion.

Species Method C–C C–H

Anion RHF/6-31G�d , p� 1.4021 1.0800
Neutral GRHF/6-31G�d , p� 1.4037 1.0725

TABLE II. Wave number �cm−1� of cyclopentadienyl
radical calculated using GRHF/6-31G�d , p�. Experim

Species Method a1��1� a1��2

Anion RHF 1233 3321

Neutral GRHF 1236 3349
Expt. 1071
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radical with the D5h symmetry. The lowest � orbital, which
should be a2� symmetry within the D5h geometry, becomes
asymmetric when a single-determinant-based calculation,
such as ROHF, ROB3LYP, UHF, and UB3LYP, is applied for
the radical.

This gives rise to the vibronic coupling matrix with a
wrong symmetry. From Eq. �17�, �E	�Ve�

�E		 has the same
absolute value as �E��Ve�

�E�	. However, the calculation of the
coupling for the e2��3� mode using the ROHF wave function
yields �E��Ve�

�E�	=0.000 941 324 7 and �E	�Ve�
�E		

=−0.000 976 415 9, and the ROB3LYP calculation gives
�E��Ve�

�E�	=0.000 801 507 4 and �E	�Ve�
�E		

=−0.000 803 151 2. Therefore, the symmetry broken orbitals
give rise to a symmetry broken interaction matrix. In other
words, as for the wave function obtained by ROHF and
ROB3LYP, the Wigner-Eckart theorem is not satisfied.

V. HELLMANN-FEYNMAN THEOREM AND ENERGY
GRADIENT

The Hellmann-Feynman theorem10,11 states that, when a
Hamiltonian depend on a parameter �, the derivative of the
energy with respect to the parameter is equal to the expecta-
tion value of the derivative of the Hamiltonian with respect
to �,

�E���
��

= � �H���
��

� . �64�

If the normal coordinate Q is taken for the parameter �,

�E�Q�
�Q

= � �H�Q�
�Q

� = � �U�Q�
�Q

� . �65�

Therefore, if we had applied the theorem for the problem, the
VCC could be calculated as the derivative of energy with
respect to Q. However, we cannot resort to the Hellmann-
Feynman theorem for the calculation of the VCC, because
the Hellmann-Feynman theorem is not valid in the present
calculations.

Figures 10 and 11 demonstrate that the energy gradient
�E /�R is not equal to the Hellmann-Feynman force ��H /�R	
along the path towards the minimum of the potential on the
2A2 manifold in C2v �2E1�↓C2v= 2A2�2B1 ,C2v�D5h�, where
the calculations were performed using ROHF and
ROB3LYP, respectively. The unity of the displacement cor-
responds to that between the minimum of the potential and
the origin, the JT crossing. In both calculations, the absolute
value of the Hellmann-Feynman force at the JT crossing is
larger than that of the energy gradient. Therefore, we cannot
calculate the vibronic coupling from the energy gradient.

n calculated using RHF/6-31G�d , p� and the neutral
l values are taken from Ref. 8.

e2��1� e2��2� e2��3� e2��4�

914 1144 1497 3263

918 1198 1596 3313
872 1041 1320
anio
enta

�
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We confirmed that the Hellmann-Feynman theorem is
also violated as well as the Wigner-Eckart theorem. This is
the reason why we compute the VCC from the VCI employ-
ing the wave function based on the GRHF and state-averaged
CASSCF calculation.

VI. RESULTS AND DISCUSSION

A. Geometrical and vibrational structures

The optimized symmetry of the parent system C5H5
− and

that of the conical intersection for the neutral radical C5H5

are D5h. In Table I, the bond lengths of the anion and the
neutral radical are tabulated. It is found that the optimized
geometries of the energy minimum for the anion and the
conical intersection for the radical are almost the same. The

TABLE III. Total energy and unscaled vibronic coup
6-31G�d , p�. The vibrational vectors are obtained by

C5H5 RHF GRHF CAS

Energy −192.1430a −192.1719 −192

a1��1� −31.26 3.49 2
a1��2� 22.63 2.67 2
e2��1� 9.00 8.76 6
e2��2� 13.53 13.60 13
e2��3� −14.16 −14.61 −1
e2��4� −7.85 −7.83 −4

aThe energy is estimated using Koopmans’ theorem.
energy is −0.0473.
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bond lengths differ within 0.002 Å for C–C and 0.01 Å for
the C–H bond. Thus we take the geometry of the anion as
that of the JT crossing point in order to reduce computational
resources.

The calculated and experimental8 vibrational frequencies
are summarized in Table II. The calculated vibrational struc-
tures are also the same. Therefore, we took the geometrical
and vibrational structures of the anion as those of the JT
crossing of the radical throughout this study.

B. Vibronic interaction matrix and Wigner-Eckart
theorem

The vibronic coupling matrix for the e2��3� vibrational
mode calculated by RHF is obtained as

onstant V �10−4 a.u.� of C5H5. Basis set employed is
/6-G�d , p� for the anion.

CAS�5,5� CAS�5,6� CAS�5,8�

2 −192.2357 −192.2379 −192.2433

1.13 1.17 1.39
1.87 1.89 1.99
4.78 4.83 5.09
11.63 11.58 11.62

−14.58 −14.50 −14.18
−3.20 −3.34 −3.34

energy of the anion is −192.1903 a.u., and HOMO
��E��Ve�
�E�	 �E��Ve�

�E		

�E	�Ve�
�E�	 �E	�Ve�

�E		 � = �0.001 416 302 4 0.000 000 000 0

0.000 000 000 0 − 0.001 416 302 4
� ,

and

��E��Ve	
�E�	 �E��Ve	

�E		

�E	�Ve	
�E�	 �E	�Ve	

�E		 � = �0.000 000 000 0 0.001 416 302 4

0.001 416 302 4 0.000 000 000 0
� .

TABLE IV. Unscaled dimensionless vibronic coupling constant D of C5H5 calculated using 6-31G�d , p� basis
set. The vibrational vectors employed in these calculations were obtained with RHF/6-31G�d , p� for the anion.
The values outside the parentheses were calculated using the vibrational frequencies of the anion obtained by
RHF/6-31G�d , p�, and the values in the parentheses using the vibrational frequencies of the radical evaluated
by GRHF/6-31G�d , p�. Negative signs are neglected.

C5H5 RHF GRHF CAS�3,4� CAS�5,5� CAS�5,6� CAS�5,8�

a1��1� 7.42�7.40� 0.83�0.83� 0.67�0.67� 0.27�0.27� 0.28�0.28� 0.33�0.33�
a1��2� 1.22�1.20� 0.14�0.14� 0.13�0.13� 0.10�0.10� 0.10�0.10� 0.11�0.11�
e2��1� 3.35�3.33� 3.26�3.24� 2.42�2.40� 1.78�1.77� 1.80�1.79� 1.89�1.88�
e2��2� 3.59�3.35� 3.61�3.37� 3.53�3.29� 3.09�2.88� 3.08�2.87� 3.09�2.88�
e2��3� 2.51�2.28� 2.59�2.36� 2.73�2.48� 2.59�2.35� 2.57�2.34� 2.52�2.29�
e2��4� 0.43�0.42� 0.43�0.42� 0.27�0.27� 0.18�0.17� 0.18�0.18� 0.18�0.18�
ling c
RHF

�3,4�

.195

.82

.45

.50
.27
5.38
.95

The
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Since it has the correct symmetry which is expected from the
Wigner-Eckart theorem, we can obtain the vibronic coupling
constant 1 /2�E��V��E	=0.001 416. Furthermore we con-
firmed that the GRHF and CASSCF wave functions satisfy
the Wigner-Eckart theorem as well as the RHF wave
function.

C. Vibronic coupling constant

The calculated VCCs by RHF, GRHF, and CASSCF
methods are tabulated in Table III. These methods yield the
appropriate wave function with the correct symmetry. Note
that the RHF wave function is not variationally optimized for
the radical since the RHF calculation was performed for the
parent system, cyclopentadienyl anion. For the a1� modes, the
RHF wave function yields quite large value, comparing with
the variationally optimized wave function. This is because all
the occupied orbitals contribute to the VCC of the a1� modes,
and the errors are accumulated, while only frontier e1� orbit-
als contribute to that of e2� modes.

In each calculation, the VCC of the e2��3� mode has the
largest value of all the e2� modes. All calculations show the
tendency, e2��3��e2��2��e2��1��e2��4�, and this agrees with
the experimental result. In other words, as long as we are
interested in a qualitative aspect of the e2� modes, we can
employ the RHF wave function for the VCC calculation.

Table IV shows the dimensionless vibronic coupling
constant D, which is calculated using the frequency. Though

TABLE V. Dimensionless scaled vibronic coupling constants for the degen-
erate e2� modes calculated by CASSCF�5,8� /6-31G�d , p�. Negative signs
are neglected. The calculations 1–3 and experimental values are taken from
Ref. 8.

De2��1� De2��2� De2��3� De2��4�

This work 0.79 1.30 1.06 0.08
Calculation 1 0.77 0.98 1.40 �0.14
Calculation 2 0.66 0.82 1.17 �0.14
Calculation 3 0.85 0.82 1.14 �0.14
Experimental 0.62 1.07 0.85 0

FIG. 12. Contour plot on the plane z=1.0 of the electron density ���r� of the

frontier e1�� orbital calculated by the GRHF/6–31G�d , p� method.
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D calculated by the GRHF frequency is smaller than that
calculated by the RHF frequency, the difference is rather
small.

The calculated D after the scaling using the constant K is
tabulated in Table V. Table V demonstrates good agreement
of the present results with the calculation and experiment
reported by Applegate et al.8

D. Vibronic coupling density analysis

Since we have the explicit expressions for the coupling
integral, Eq. �52�, as discussed in Sec. III, we can discuss
VCC in terms of the electronic and vibrational structures. In
particular, for the HF wave functions, we can define vibronic
coupling density � j�r� in a simple form to analyze the VCC.

Vibronic coupling density � j�r� for the e2��j� mode is
defined by

� j�r� = ��
*�r����r�v��j��r� = ���r�v��j��r� , �66�

where ���r� is the frontier electron density of the molecular
orbital ��, and v��j��r� the one-electron electronic operator

FIG. 13. �a� Contour map on the plane z=1.0 of the one-electron vibronic
coupling operator v��r� with respect to the e2��1�� mode �a.u.�. �b� Contour
map on the plane z=1.0 of the vibronic coupling density �e2��1���r� �a.u.�.
defined in Eq. �32�. The VCC is written as
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Vj =� dr� j�r� . �67�

The vibronic coupling density enables us to analyze the cal-
culated VCC in terms of the electronic structure ���r� and the
derivative of the potential with respect to the normal coordi-
nate v��j��r�.

In Fig. 4, the JT-active e2� modes are shown. It should be
noted that the larger components of the vibrational modes lie
on the carbon atoms for e2��1� and e2��3�, while the hydrogens
in e2��2� or e2��4� have large contribution.

Figure 12 shows the contour plot of the frontier electron
density ���r� of e1�� orbital calculated from the GRHF wave
function �see Fig. 3�.

In Fig. 13�a�, the derivative of the potential with respect
to the e2��1�� mode is shown. It is found that the large values
are distributed on the C1–H1, C2–H2, and C5–H5 bonds.
However, there is little electron density on the C2–H2 and
C5–H5 bonds. Consequently, the vibronic coupling density
of this mode �1 is small and negative, and localized on the
C1–H1 bond, as shown in Fig. 13�b�.

FIG. 14. �a� Contour map on the plane z=1.0 of the one-electron vibronic
coupling operator v��r� with respect to the e2��2�� mode �a.u.�. �b� Contour
map on the plane z=1.0 of the vibronic coupling density �e2��2���r� �a.u.�.
Figure 14�a� shows the derivative of the potential with

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to 
respect to the e2��2�� mode. The derivative of the potential
has a large value not just on the C–C bonds but near the
C3–C4, C2–C3, and C4–C5 bonds. This is because the large
displacement of this mode lies on the hydrogen atoms. Since
the electron density is localized on the C3–C4 bond, the
vibronic coupling density for this mode �2 gives rather large
near the C3–C4 bond as shown in Fig. 14�b�.

The derivative of the potential with respect to the e2��3��
mode is shown in Fig. 15�a�. This mode yields the largest
VCC among the four. The derivative plot shows a distribu-
tion on the C3–C4, C2–C3, and C4–C5 bonds. Figure 14�b�
shows the vibronic coupling density �3. As the result of the
electron and derivative potential distributions, �3 is distrib-
uted in the region near the C3–C4 bond. The broad distribu-
tion makes the VCC of this mode large. The coincidence
between the electron density distribution �� and the distribu-
tion of the derivative potential is the reason why the VCC of
the e2��3�� mode is the largest of the four.

In Fig. 16�a�, the derivative potential with respect to the
e2��4�� mode is shown. It is distributed on the C1–H1,
C2–H2, and C5–H5 bonds where �� gives small value. The

FIG. 15. �a� Contour map on the plane z=1.0 of the one-electron vibronic
coupling operator v��r� with respect to the e2��3�� mode �a.u.�. �b� Contour
map on the plane z=1.0 of the vibronic coupling density �e2��3���r� �a.u.�.
vibronic coupling density of this mode �Fig. 16�b�� illustrates
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low density near the C1 atom. The distribution of the deriva-
tive potential does not coincide with the electron density
distribution ��. This is the reason why the VCC of this mode
is the smallest.

It is interesting to note that it is not necessary for the
VCC of the mode which has large component on the carbons
to be large.

VII. CONCLUSION

We present a new method of calculation of vibronic cou-
pling constant, taking a JT molecule, cyclopentadienyl radi-
cal, as an example. It is confirmed that symmetry breaking at
degenerate point and violation of Hellmann-Feynman theo-
rem occur in the calculations based on a single Slater deter-
minant. In order to overcome these difficulties, the electronic
wave functions are calculated using generalized restricted
Hartree-Fock �GRHF� and CASSCF methods, and the cou-
plings are computed as matrix elements of the electronic op-
erator of the vibronic coupling. Our result agrees well with

FIG. 16. �a� Contour map on the plane z=1.0 of the one-electron vibronic
coupling operator v��r� with respect to the e2��4�� mode �a.u.�. �b� Contour
map on the plane z=1.0 of the vibronic coupling density �e2��4���r� �a.u.�.
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the experimental and theoretical values by Applegate et al. A
concept of vibronic coupling density is proposed in order to
explain the order of magnitude of the coupling constant from
view of the electronic and vibrational structures. It is found
that the vibronic coupling of the JT-active mode is large
when the frontier electron density � matches the one-electron
electronic operator vi. Furthermore it can illustrate the local
properties of the coupling and enables us to control the in-
teraction. This could open a way to the engineering of vi-
bronic interactions. For instance, replacement by a heteroa-
tom or introduction of a functional group for a molecule
alters, the matching between the frontier electron density and
the one-electron electronic operator.

ACKNOWLEDGMENT

Numerical calculation was partly performed in the Su-
percomputer Laboratory of Kyoto University.

1 I. Bersuker, The Jahn-Teller Effect and Vibronic Interactions in Modern
Chemistry �Plenum, New York, 1984�.

2 G. Fischer, Vibronic Coupling: The Interaction Between the Electronic
and Nuclear Motions �Academic, London, 1984�.

3 I. Bersuker and V. Polinger, Vibronic Interactions in Molecules and Crys-
tals �Springer-Verlag, Berlin, 1989�.

4 I. Bersuker, Chem. Rev. �Washington, D.C.� 101, 1067 �2001�.
5 H. Jahn and E. Teller, Proc. R. Soc. London, Ser. A 161, 220 �1937�.
6 L. Gribov and W. Orville-Thomas, Theory and Methods of Calculation of
Molecular Spectra �Wiley, Chichester, 1988�.

7 T. Barckholtz and T. Miller, J. Phys. Chem. A 103, 2321 �1999�.
8 B. Applegate, T. Miller, and T. Barckholtz, J. Chem. Phys. 114, 4855
�2001�.

9 T. Kato and K. Hirao, Adv. Quantum Chem. 44, 257 �2003�.
10 H. Hellmann, Einführung in die Quantenchemie �Franz Deuticke,

Leipzig, 1937�.
11 R. Feynman, Phys. Rev. 56, 340 �1939�.
12 R. Kuczkowski, J. Am. Chem. Soc. 87, 5260 �1965�.
13 G. Liebling and H. McConnell, J. Chem. Phys. 42, 3931 �1965�.
14 A. Carrington, H. Longuett-Higgins, R. Moss, and P. Todd, Mol. Phys. 9,

187 �1965�.
15 M. Kira, M. Watanabe, and H. Sakurai, J. Am. Chem. Soc. 102, 5202

�1980�.
16 P. Barker, A. Davies, and W. Tse, J. Chem. Soc., Perkin Trans. 2 1980,

941.
17 G. Porter and B. Ward, Proc. R. Soc. London, Ser. A 303, 139 �1968�.
18 R. Engleman and D. Ramsay, Can. J. Phys. 48, 964 �1970�.
19 H. Nelson, L. Pasternack, and J. McDonals, Chem. Phys. 74, 227 �1983�.
20 J. Yao, J. Fernandez, and E. Bernstein, J. Chem. Phys. 110, 5174 �1999�.
21 J. Fernandez, J. Yao, and E. Bernstein, J. Chem. Phys. 110, 5159 �1999�.
22 L. Yu, S. Foster, J. Williamson, M. Heaven, and T. Miller, J. Phys. Chem.

92, 4263 �1988�.
23 L. Yu, J. Williamson, and T. Miller, Chem. Phys. Lett. 162, 431 �1989�.
24 L. Yu, D. Cullin, J. Williamson, and T. Miller, J. Chem. Phys. 98, 2682

�1993�.
25 P. Engelking and W. Lineberger, J. Chem. Phys. 67, 1412 �1977�.
26 A. Liehr, Z. Phys. Chem., Neue Folge 9, 338 �1956�.
27 L. Snyder, J. Chem. Phys. 33, 619 �1960�.
28 W. Hobey and A. McLachlan, J. Chem. Phys. 33, 1695 �1960�.
29 R. Meyer, F. Graf, T.-K. Ha, and H. Gunthard, Chem. Phys. Lett. 66, 65

�1979�.
30 W. Borden and E. Davidson, J. Am. Chem. Soc. 101, 3771 �1979�.
31 A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to

Advanced Electronic Structure Theory �Macmillan, New York, 1982�.
32 M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman,

V. Zakrzewski, J. J. A. Montgomery, R. Stratmann, J. Burant et al.,
GAUSSIAN 98, Revision A.9, Pittsburgh PA, 1998.

33 Cambridge Analytic Derivative Package �CADPAC�, Issue 6.5, Cambridge,
UK, 2001.

34 W. Borden and E. Davidson, Acc. Chem. Res. 29, 67 �1996�.
AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


