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A simple Landau theory of three-component alloy systems under incompressible 

condition is investigated, which appears to give regions of the phase diagram in which 

Archimedean tiling phases are stable in two dimensions. Moreover, we find regions 

where dodecagonal and decagonal quasicrystals appear to be stable. 

Alexander-MacTague and Mermin-Troian theories of weak crystallization are revisited. 
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1. Introduction 
Recently, several self-organized Archimedean tiling patterns [1], as shown in figure 1 

have been obtained in three-component star polymeric alloy systems [2-12]. The 

structure is a polygonal cylindrical structure like a honeycomb whose cross section is a 

two-dimensional polygonal tiling. An Archimedean tiling is a tiling in which only one 
type of vertices is allowed in each tiling. A set of integers, 

  

! 

(n
1
,n

2
,n

3
,L) , denotes a 

tiling of a vertex type in the way that 

! 

n
1
-gon, 

! 

n
2
-gon, 

! 

n
3
-gon, etc, meet consecutively 

on each vertex. Superscripts are employed to abbreviate when possible. Three 

Archimedean tilings denoted as (4.82), (63), and (4.6.12) belonging to the single junction 
class are particularly important, because they can be colored by three colors, 

corresponding to three components [2, 3]. Furthermore, not only the single junction 

class is observed [4], but also an indirect Archimedean tiling, (32.4.3.4), composed of 

equilateral triangles and squares has been observed: This is the first striking 

experimental realization of a microphase separated structure with complex molecular 

environments [11]. In metallurgy, the (32.4.3.4) net is called the 

! 

"  phase known as one 

of the Frank-Kasper complex alloy family [13-17]. Since the discovery of quasicrystals 

[18-21], the significance of the 

! 

"  phase is not only its existence, but also its close 
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relationship to dodecagonal quasicrystals (DDQC) [22-25]. Both phases always appear 

with a slight composition change. Hence, a question arises: Can we find polymeric 

dodecagonal quasicrystals? Remarkably, the (32.4.3.4) net and a dodecagonal 

quasicrystal have been formed in a Monte Carlo simulation of the same polymeric star 

alloys [26]. 

Three decades ago, the simplest one-order parameter Landau theory [27] for 

crystallization was proposed by Alexander and MacTague (AM) [28, 29]. They showed 

that the bcc structure is stable near the liquid-solid transition temperature. Although the 

theory is independent of details of the system, e.g. the particular atomic species, atomic 

interactions, temperature, pressure, etc, it accounts for the fact that a large number of 

metals crystallizes from melts into bcc structures. Surprisingly, a recent experiment on 

block copolymers showed that a bcc micelle phase form from a melt as well [30]. This 

implies that the theory appears to be universal over different length scales, regardless of 

soft or hard matter. In fact, the essence of the AM theory has been adopted by the weak 

segregation theory of microphase separation of AB block copolymer melts by Leibler, 

which has succeeded in providing a qualitative understanding of the phase diagram of 

AB block copolymers [31, 32]. After the discovery of quasicrystals, the AM theory has 

been extended to two- or multi-order parameter systems by Mermin and Troian (MT) to 

understand the stability of quasicrystalline phases [33]. Afterwards both AM and MT 

theories have been further extended to study the stability of dodecagonal quasicrystals 

and Faraday waves [34-36]. Is the MT-type theory applicable to the multi-component 

star polymeric alloy system? 

In this paper, we first show that the single junction class of the Archimedean 

tiling patterns of star polymers can be derived naturally from a MT type mean-field 

theory. Secondly, we present phase diagrams in which complex phases such as 

(32.4.3.4), dodecagonal and decagonal phases are stable. Here, we restrict our survey to 
two-dimensional tiling structures. Therefore, we have ignored lamellae in lamellar-type 
two-dimensional phase and three-dimensional phases [2]. 

 

2. Two-order parameter theory for ABC star alloys 

By assuming the incompressibility condition for the densities of star ABC 

block copolymer melts, the free energy of three-component alloy systems can be 

expressed by two order parameters. Since, the inherent three-component nature has not 
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been considered in the MT theory, we therefore reconsider the MT theory to construct 

our minimal model of three-component alloys. In figure 1, a key feature is that three 

species should meet at vertices and behave like one ingredient, which is realized in the 

ABC star polymer system.  

According to the AM theory, the third-order term in the free energy gives rise 

to crystal formation, because the third-order term is associated with three-body 

interactions that govern how three particles construct triangle in a crystal, whereas the 

quadratic terms relate to just two-body interactions to determine distances between two 

particles and to how many atoms exist with respect to a center particle. To explore 

crystalline or quasicrystalline structures, the relation between three particles is crucially 

important as compared with liquids and glasses. In the Fourier expansion of the density, 

sets of q vectors forming triads contribute to the third-order term. When the magnitude 

of the reciprocal lattice vectors is restricted to the maximum peak q of the static 

structure function, S(q), just above the liquid-solid transition, the problem is reduced to 

evaluate the number of equilateral triangles in the reciprocal space. The result is a set of 

vectors consisting of edges of an octahedron leading to the bcc structure in the real 

space. Similarly, in the two-component theory, the key to determine structures is to 

construct triangles composed of q and k corresponding to two order parameters.  
We define the meaningful densities of three components, 

! 

"#  (

! 

"=A, B, or C), 

as deviations from uniform values. Under the incompressibility condition, 

! 

"
A

+"
B

+"
C

= 0, we can describe these densities by using two order parameters, 

! 

" 

and 

! 

"  defined as 

! 

" #$
A

+$
B

= %$
C

 and 

! 

"#"
A
$"

B
. Below we consider the 

third-order terms of a Landau free energy of the form 

! 

"#
A
#
B
#
C
 and 

! 

"#
C

2

# . The 

former term represents the effect of three-body attractive interactions such that three 
components, A, B, and C should meet, i.e. 

! 

"4#
A
#
B
#
C

= $
3
"$#

2 . Usually, the 

third-order term, 

! 

"
3, in the AM theory is negative, however, in our definition we find a 

plus sign, which is very important to determine the phases of density waves. The latter 

term, 

! 

"#
2
$ , implies that 

! 

"  or C dominates and induces the whole transition, 

whereas the 

! 

"#$
2  term in turn implies that the phase separation of A and B induces 

the whole transition. In principle, stepwise transitions of two order parameters can 

occur; however, these mixed terms reduce this possibility. Since our focus in this paper 

is the C-dominated transition, the usual AM theory term, 

! 

"#
3 , is neglected from the 

starting point as is in the MT theory. 
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Now the form of the generic free energy, 

! 

f , describing Archimedean tiling 

phases and quasicrystals to examine is 

 

! 

f =
1

V
[t"2

+"4
+ #$2

+ $4% + g
0
$3 & g

1
"$2 & g

2
"2$]dr, (1) 

where 

! 

t  and 

! 

"  are parameters corresponding to the temperature and each 

! 

gi  is a 

positive parameter. Two fourth-order term constants are absorbed into the rescaling of 

! 

"  and 

! 

" . The temperature-like parameters, 

! 

t  and 

! 

" , control the strength of 

transitions of 

! 

" and 

! 

", respectively. A point 

! 

t = 0 (or 

! 

" = 0) is the second-order 

transition point of a so-called 

! 

"
4  model without third-order terms. The third-order 

terms determine the relation between the sets of reciprocal lattice vectors forming 

equilateral or isosceles triangles. Before closing this section, we should mention 
previous studies. When 

! 

g
2

= 0  and the 

! 

"
4  term is omitted, the model is the simplest 

model up to third-order terms, which is nothing but the MT theory. As another 

extension of the MT theory, a similar idea has been devised by Müller [35] using only 

one coupled term.  

 

3. Free Energy Forms of Several Phases 
Below we consider C dominated transitions; we thus first set up reciprocal lattice 

vectors {k} for 

! 

"(k). In figure 2 a-e, the sets of reciprocal lattice vectors {k} (solid 

line) are illustrated for several phases. By making triads of vectors consisting of k and q 
(broken line) we can construct {q} for 

! 

"(q) . The possible length ratio of vectors can 

be 1, 

! 

2 , 

! 

3 , or 

! 

( 5 +1) /2 . At this stage the (32.4.3.4) net with vectors {k} having 
different wavelengths should be out of consideration like the fcc lattice, which has not 
been considered in the original AM theory. With a sacrifice of simplicity we will 

include (32.4.3.4) in the following way [29]. 
Let A be the lattice constant of the (32.4.3.4) Bravais lattice spanned by 

! 

(A,0)  
and 

! 

(0,A) . The (32.4.3.4) crystal structure composed of vertices of squares and 

equilateral triangles is represented by four-point basis: (a+c, b+c), (b+c, -a+c), (-a+c, 

-b+c), (-b+c, a+c), where 

! 

a = (3" 3)A /4 , 

! 

b = ( 3 "1)A /4  and 

! 

c = A /2 . The 
reciprocal lattice vector is represented by 

! 

G = mG
1

+ nG
2
, where 

! 

G
1

= (2" /A,0) , 

! 

G
2

= (0,2" /A). In terms of these basis, the prominent peaks of the structure factor for C 
components is given by 

! 

{k
i
}={(

! 

±2,0), (0,

! 

±2), (

! 

±2,

! 

±1), (

! 

±1,

! 

±2)} (figure 2c). The 
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subscript 

! 

i  is assigned counterclockwise. The magnitude of vectors for k is 

! 

4  or 

! 

5 . Taking this difference into account, we exert a penalty of increase in the 
coefficients of the second-order terms: 

! 

" # = # + c$  as an approximation. 

The (32.4.3.4) tiling is composed of squares and equilateral triangle leading to 
two kinds of local arrangement of ABC component (figure 1). In addition, both 
experimentally and numerically this structure is observed in a composition range 

between (4.82), and (4.6.12) [3, 12]. Therefore, we adopt two ways to construct 

! 

". The 
reciprocal lattice vector for 

! 

"
1
 is the sum of two vectors: {

! 

p
i+1

}={

! 

k
i
+ k

i+3
} (figure 

2(f)), and that for 

! 

"
2
 is the sum {

! 

q
i+1

}={

! 

k
i
+ k

i+2
} (figure 2h). The magnitude of the 

vectors is 

! 

8  or 

! 

10  for p, and it is 

! 

13  or 

! 

16  for q. Taking these differences 
into account, we exert penalties of increase in the coefficients of the second-order terms: 

! 

" t = t + c# . 

In the case of DDQC, the reciprocal lattice vectors for 

! 

" are shown in figure 
2(d). Since the DDQC is akin to (32.4.3.4), we employ {

! 

p
i+1

}={

! 

k
i
+ k

i+3
} and 

{

! 

q
i+1

}={

! 

k
i
+ k

i+2
}, and the difference between p and q is taken into consideration as 

! 

" t = t + c# , in the same way as (32.4.3.4). 

We can define amplitudes and phases of the Fourier transformation of order 

parameters: 

! 

"(q
i
) = #ei$ i , 

! 

"(k j ) =#e
i$ j . By minimizing free energies with respect to 

the amplitudes and phases, phases are completely determined except for the phonon and 

phason degrees of freedom [37]. Attention should be paid to the problem of phases for 

(63), (4.6.12), (32.4.3.4), DDQC and DQC with mutual dependence among the 

reciprocal vectors. 

Here, we explicitly present free energy forms worked out for two types of 
tetragonal (4.82) (T1, T2), hexagonal (63) (H1), hexagonal (4.6.12) (H2), tetragonal 

(32.4.3.4) (T3), dodecagonal (DD), decagonal (D) and octagonal (O) quasicrystals as 

follows: 

! 

f
T1

= t" 2 +
9

4
" 4 + #$ 2

+
9

4
$ 4 % g

2
$" 2 ,    (2) 

! 

f
T2

= t" 2 +
9

4
" 4 + #$ 2

+
9

4
$ 4 % g

1
$ 2" ,    (3) 

! 

f
H1

= t" 2 +
5

2
" 4 + #$ 2

+
5

2
$ 4 % g

0

2

3
$ 3 % g

2

2

3
$" 2,  (4) 
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! 

f
H2

= t" 2 +
5

2
" 4 + #$ 2

+
5

2
$ 4 % g

0

2

3
$ 3 % g

1

2

3
$ 2" ,  (5) 

! 

fT3 = " t (#1
2

+ #2
2
) +
37

12
#1
4

+
11

4
#2

4
+
17

18
#1
2#2

2 $
1

2
#1
3#2 + " % & 2

+
29

12
& 4

$g0
1

3
& 3 $ g1

1

3
& 2#1 +

5

6
& 2#2

' 

( ) 
* 

+ , 
$ g2

1

3

2

3
&#2

2
+
1

3
&##2

' 

( ) 
* 

+ , 
,

 (6) 

! 

f
DD

= " t (#
1

2
+ #

2

2
) +
11

4
(#
1

4
+ #

2

4
) +
4

3
#
1

2
#
2

2
+ $% 2

+
11

4
% 4 & g

0

1

3
% 3 & g

1

1

3
% 2#

1
+% 2#

2[ ],
   (7) 

! 

f
D

= t" 2 +
27

10
" 4 + #$ 2

+
27

10
$ 4 % g

1

2

10
$ 2" % g

2

2

10
$" 2 ,  (8) 

! 

f
O

= t" 2 +
21

8
" 4 + #$ 2

+
21

8
$ 4 % g

1or 2

1

2
$ 2" .   (9) 

The difference between two (4.82) phases is that the length ratio of k and q is 

the inverse, namely 

! 

q /k =1/ 2  or 

! 

2 , for T1 or T2, respectively. It is generally 
stated that the more the number of reciprocal vectors is, the more the fourth-order terms. 
Hence one can deduce that the (4.82) phases are low temperature phases, since the 

fourth-order terms are the smallest among models considered here. Moreover, it is easy 

to prove analytically that the free energy of the octagonal quasicrystal cannot be lower 
than that of the (4.82) phases over the entire 

! 

t -

! 

"  range under the assumption of one 
wavelength for each order parameter. Two (4.82) phases are 

! 

t -

! 

"  (or 

! 

" -

! 

" ) symmetric, 

but (63) and (4.6.12) are asymmetric due to the 

! 

" 3 term. As seen in (6) and (7), the 
dodecagonal quasicrystal and (32.4.3.4) is very similar in the reciprocal space as well. 

However, there are subtle differences that stem from nontrivial combination of the 

(32.4.3.4) crystalline vectors. Since it is difficult to express free energy minima 
explicitly as functions of 

! 

"  and 

! 

t , in the next section we numerically minimize the 

free energy forms. 

 
4. Numerical Results 
The strength of 

! 

gi  coefficients of the third-order terms and two parameters (

! 

"  and 

! 

t ) 

controls the phase behavior. First, it is easy to obtain the (63) phase region when 

! 

g
0
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and 

! 

g
2
 are large enough. This hexagonal symmetry uses the 

! 

g
0
 (

! 

"
3) term, which the 

original AM theory contains. Striking results originate from the 

! 

g
1
 and 

! 

g
2
 terms, 

demonstrated in figure 3: two phase-diagrams in the 

! 

t " #  plane with (a) 

! 

g
0

= 0.8 , 

! 

g
1

= 2.2, 

! 

g
2

= 0.2 , and (b) 

! 

g
0

= 0.2 , 

! 

g
1

= 2.2, 

! 

g
2

= 2.2 . Both take values of 

! 

c" = 0.1, 

! 

c" = 0.2.  

In figure 3a, we find phase regions where (32.4.3.4) (T3) and dodecagonal 

(DD) phases are stable in addition to (4.82) (T2) and (4.6.12) (H2). The dodecagonal 
quasicrystal appears on the high temperature side of a wide (32.4.3.4) phase region. It is 
reasonable because the (32.4.3.4) phase is the approximant of the DDQC and the 
symmetry of the reciprocal vectors for 

! 

"  is broken with taking two types of vectors. 

We note that the additional constant 

! 

c"  controls the existence of the DDQC. If 

! 

c" = 0, 

the DDQC vanishes in this case. The (4.6.12) phase appears in a region where 

! 

" 

dominates over 

! 

" . In other words, the formation of the hexagonal lattice of C 
component can only cause the whole transition. The (4.82) phases should be basically 

low temperature ones, since the fourth-order terms are small. It is noted that the 
existence of T1 and T2 near 

! 

t = 0 may be an artefact due to the crude approximation 
by using 

! 

c" = 0.1.  

In figure 3b, near the order-disordered phase line, we find a small phase 

region of the decagonal phase between two types of (4.82). A remarkable geometric 
property should be noticed: both 

! 

" 2#  and 

! 

"# 2  terms exist with respect to the same 

sets of k and q due to the golden triangles (figure 2i and j). It turns out that the 

decagonal phase region has been obtained near the order-disordered line by taking 
values of 

! 

g
1
 and 

! 

g
2
 the same with keeping 

! 

g
0
 small.  

Finally, in figure 4 we compare a picture of 

! 

"
C

= #$ for the dodecagonal 

quasicrystal with that obtained in the Monte Carlo simulation of ABC star polymers 

[26]. The agreement is quite well. The comparison between density waves and a TEM 
picture for (32.4.3.4) has been elucidated in Takano et al. [11]. 

 

5. Conclusion 
We have shown that the free energy including third-order terms naturally favours the 

Archimedean tiling structures, (4.82), (63), and (4.6.12) belonging to the single junction 
class. This result is consistent first with the real space geometric analysis [2] and second 
with the fact that they are easily found in experiments and in MC simulations. It is 
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natural that AM and MT theories of weak crystallization is applicable to the star 

polymers as well, because the essence of the theories is reduced to the combinatorial 
problem of vectors in the reciprocal space. Moreover, through the geometric 
interpretations of the third-order terms, we can gain a phenomenological understanding 
of the phase behavior. 

By using only one wavelength for each order parameter, the decagonal phase 

is stable because of the striking self-similar property of a regular pentagon, whereas the 
octagonal phase is unstable. It is inevitable that two wavelengths should be used for 

! 

", 
as in the case of the FCC lattice. A prescription with a certain loss of simplicity has 

been used in the case of (32.4.3.4). In this respect, it is concluded that the dodecagonal 
quasicrystal phase is more favourable near the melting transition. To stabilize (32.4.3.4) 
and DDQC, we believe that the choice of two wavelengths for 

! 

" is natural; however, 

we are not certain that the approximation in 

! 

t  adopted here is validated. 
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Figure captions 

Figure 1. Archimedean tiling phases from ABC star polymers: (a) ABC star block 

terpolymer; (b) and (c) (63), (d) (4.82), (e) (4.6.12), (f) (32.4.3.4) phases. The first three 

direct patterns constitute the single junction class, whereas the (32.4.3.4) net gives the 

skeleton of the real structure. 

 

Figure 2. Sets of reciprocal lattice vectors {k} (solid line) for 

! 

"(k), and triads of the 



 
 

 11 

vectors consisting of k and q (broken line) for 

! 

"(q) : (a) (4.82), (b) (63) and (4.6.12), (c) 

(32.4.3.4), (d) dodecagonal quasicrystal (DDQC), (e) decagonal quasicrystal (DQC); the 

octagonal quasicrystal (OQC) is omitted; a triad (f) is used for (4.82), (32.4.3.4), DDQC, 
and OQC; (g) is for (63), (h) is for (4.6.12), (32.4.3.4), and DDQC; triads (i) and (j) for 

DQC are originated from the self-similar property of a regular pentagon. 

 

Figure 3. Phase-diagrams in the 

! 

t " #  plane: (a) 

! 

g
0

= 0.8 , 

! 

g
1

= 2.2, 

! 

g
2

= 0.2 , and (b) 

! 

g
0

= 0.2 , 

! 

g
1

= 2.2, 

! 

g
2

= 2.2  with 

! 

c" = 0.1, 

! 

c" = 0.2. T1, T2, T3, H2, denote two types 

of (4.82), (32.4.3.4), (4.6.12) Archimedean tiling phases. DD and D represent 
dodecagonal and decagonal quasicrystals, respectively. DIS implies the disordered 

phase. In figure (a), a thin region between T1 and DIS with large 

! 

"  value represents a 
tetragonal phase with 

! 

" = 0 , where a stepwise transition is observed. 
 

Figure 4. Monte Carlo simulation result (left), the density wave for the C component 
obtained from the Landau theory (right), and the superposition (centre). 


