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Dilaton and moduli fields in D-term inflation
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We investigate the possibility of D-term inflation within the framework of type-I string-inspired models.
Although the D-term inflation model has the excellent property that it is free of the so-calledh problem, two
serious problems appear when we embed D-term inflation in string theory: the magnitude of the FI term and
the rolling motion of the dilaton. In the present paper, we analyze the potential of D-term inflation in type-I-
inspired models and study the behavior of dilaton and twisted moduli fields. Adopting the nonperturbative
superpotential induced by gaugino condensation, the twisted moduli can be stabilized. If the dilaton is in a
certain range, it evolves very slowly and does not run away to infinity. Thus D-term-dominated vacuum energy
becomes available for driving inflation. By studying the density perturbation generated by the inflation model,
we derive the constraints on model parameters and give some implications on D-term inflation in type-I-
inspired models.
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I. INTRODUCTION

In the success of slow-roll inflation, a sufficient flat p
tential for the inflaton, which is the inflation driving scala
field, is required. However, it is not so easy to construc
model of inflation where the corresponding scalar field ha
very flat potential in the framework of supergravity. Usual
the flatness of the potential is expressed as

e[
M p

2

2 S V8

V D 2

!1, ~1!

h[M p
2 V9

V
!1, ~2!

in terms of the slow-roll parameters, where the prime deno
a derivative with respect to the inflaton andM p is the re-
duced Planck mass. In the case when the vacuum ener
dominated by the F term during inflation, supergravity
fects produce the soft mass of the inflaton field whose m
nitude is the same order ofH and spoil the flatness of th
potential. In other words, such a large inflaton mass gi
h;1 and violates the slow-roll condition, which is ofte
referred to as theh problem.

From this point of view, D-term inflation is one of th
attractive inflation scenarios within the framework of sup
symmetric models@1,2#,1 because the inflaton does not a
quire the mass-squared term of the order ofH2 and the flat-
ness of the potential is preserved. In the D-term inflat
scenario, the Fayet-Iliopoulos~FI! term is dominant during
inflation and this vacuum energy causes an accelerating

*Email address: kobayash@gauge.scphys.kyoto-u.ac.jp
†Email address: osamu@mail.nctu.edu.tw
1See Ref.@3# for an early study of an inflation model relevant

the D term.
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pansion. The FI term comes from the anomalous U~1! sym-
metry. In fact, most 4D string models have anomalous U~1!
symmetry for both heterotic models@4,5# and type-I models
@6#. These anomalies can be canceled by the Green-Sch
mechanism, where certain fields transform nontrivially und
anomalous U~1! symmetries@7#. Such a role is played by the
dilaton field S in heterotic models and the twisted modu
fields M in type-I models. That generates the FI term. Th
D-term inflation seems possible to be realized in string m
els.

However, there are difficulties in the realization of D-ter
inflation based on heterotic models. The first problem is
energy scale of inflation. The magnitude of the FI term
given as

j5
g2

192p2
Tr~Q!M p

2 , ~3!

where g2 is the gauge coupling and Tr(Q) is a model-
dependent constant of the order ofO(10) –O(102) @4#. Equa-
tion ~3! readsAj/M p5O(1021) –O(1022). On the other
hand, the cosmic microwave background~CMB! anisotropy
requiresj1/2.1015 GeV. We find that the theoretical predic
tion is too large to meet the observational estimation. T
inconsistency is still a serious problem, although seve
studies to construct a model with effectively suppressed
terms have been done in heterotic models@8,9#. The second
problem is due to the dilaton dependence of the FI term
the anomalous U~1! gauge coupling. The presence of th
dilaton S and several types of moduli fields is one of impo
tant features in superstring theory. Vacuum expectation
ues ~VEVs! of these fields determine the magnitudes of
the couplings—e.g., gauge couplings and Yukawa couplin
The dilaton field prevents the realization of D-term inflatio
Sinceg2}1/ReS, the D-term scalar potentialVD5g2j2/2 is
in proportion to (ReS)23. Hence the dilaton rolls down the
©2004 The American Physical Society10-1
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potential to infinity, ReS→`, and the D-term potential en
ergy goes to zero,VD→0. This phenomenon is the same
the dilaton runaway problem in generic string models a
such runaway behavior of the dilaton and moduli fields p
vents a viable inflation@10#. Even if we adopt type-I models
rather than heterotic models, the FI term is dependent on
field which plays a role in the Green-Schwarz anomaly c
cellation mechanism for the anomalous U~1!. Hence, if these
fields run away, D-term inflation cannot occur in 4D strin
models.

In this paper we study the behavior of dilaton and mod
fields in the D-term inflation scenario with the above tw
problems in mind. The purpose of the present paper is
explore a way to avoid these problems at the same ti
Actually, studies of the runaway problem have been done
heterotic models in Refs.@11,12#. Now, in particular, we will
consider type-I string-inspired models. D-term inflation
type-I-inspired models has been studied in Ref.@13# and it
was shown that the magnitude of the FI term is reducible
a desired value. This result arises from the facts that the
term is determined by the expectation value of the twis
moduli and the string scaleMs is independent of the Planc
scaleM p @14# in type-I string models. In fact, the twiste
moduli field plays a role in the Green-Schwarz anomaly c
cellation in 4D type-I string models. However, in Ref.@13#
the stabilization of the twisted moduli and the runway pro
lem have not been discussed. These issues might be
trivial. Indeed, stabilization of the twisted moduli fields we
studied and different aspects from those of the dilaton fi
were revealed@15#.2 As we will show, the twisted modul
field cannot stabilize with nonvanishing vacuum energy
only the D-term potential and any vacuum energy drivi
inflation does not appear, unless we assume a specific Ka¨hler
potential. Therefore, stabilization of the twisted moduli
also an important issue for the inflation in type-I models.

This paper is organized as follows. In the next section,
review briefly D-term inflation. In Sec. III, we study th
behavior of dilaton and twisted moduli fields. It will b
shown that the twisted moduli field is stabilized during infl
tion. In Sec. IV, the dynamics of the inflaton and dilato
fields are studied, and we will derive constraints on para
eters in our models. Section V is devoted to conclusions
a discussion.

II. D-TERM INFLATION

Here we give a brief review of D-term inflation@1,2#. We
consider theN51 supersymmetric model with U~1! gauge
symmetry and the nonvanishing FI termj. The model in-
cludes three matter fieldsX and f6 . The fieldsf6 have
U~1! charges61 while X has no U~1! charge. The U~1! D
term is written as

D5j1uf1u22uf2u2. ~4!

Hereafter we take the charge assignment such thatj.0.
Suppose the superpotential

2See also Refs.@16,17#.
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W5lXf1f2 . ~5!

Then, the scalar potential is written as

V5(
i

u] iWu21
g2

2
D2 ~6!

5l2uXu2~ uf2u21uf1u2!1l2uf2f1u2

1
g2

2
~j1uf1u22uf2u2!2. ~7!

The true vacuum of this potential corresponds to

X5f150, uf2u5Aj, ~8!

and supersymmetry~SUSY! is not broken.
For a value ofX fixed, we analyze the minimum ofV. We

define

Xc[
g

l
Aj. ~9!

For uXu,Xc , the minimum corresponds to

uf2u25j2
l2X2

g2 , uf1u50. ~10!

On the other hand, foruXu.Xc , the minimum corresponds to

uf6u50. ~11!

In this case, the vacuum energy is obtained as

V5
g2

2
j2, ~12!

and the radial part ofX is identified with the inflaton. Al-
though the mass ofX vanishes at the tree level, since th
supersymmetry breaking by the nonvanishing D term gen
ates the mass difference between the masses off6 ,

m6
2 5l2uXu26g2j, ~13!

and the masses of those fermionic partners, the one-loop
fective potential is given as

V1-loop5
g2

2
j2S 11

g2

16p2
ln

l2uXu2

L2 D , ~14!

where L is the renormalization scale. That generates
mass term ofX and the potential is slightly lifted. Then, th
inflaton slowly rolls down the potential. From the equatio

h52
g2

8p2

M p
2

uXu2
, ~15!

we find that the slow-roll condition is violated (h;1) when
the inflaton reaches at
0-2
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uXf u25
g2

8p2
M p

2 , ~16!

and the inflation ends.
We have reviewed on the simplest D-term inflation mod

However, as noted in the Introduction, the magnitude of
FI term j in such a simple model is required to be mu
smaller than the values ofj derived from 4D heterotic mod
els. Reference@8# has proposed a mechanism in hetero
models to reduce effectively the FI term compared with
original value. Here we also give a brief review of su
models. Instead of the single fieldX, we consider two fields
X6 . Generic string models have several U(1)a symmetries.
Some of them are anomalous and others are anomaly fre
Ref. @8#, 4D heterotic models were studied and the FI te
was considered for only one of the U~1! symmetries. That is
because only one U~1! symmetry can be anomalous in a 4
heterotic model. However, we will study inflation mode
inspired by type-I string models, where two or more U~1!
symmetries can be anomalous. Thus, here we extend
model of Ref.@8# into the case with many FI termsja , while
ja50 for anomaly-free U(1)a . Suppose thatX6 have U(1)a
charges6Qa . Then the D term is written as

Da5ja1Qa~ uX1u22uX2u2!1•••, ~17!

where the ellipsis denotes contributions due to other ch
matter fields. We consider large field values forX6 , X6

@Aja as before and assume that the other fields gain m
terms—e.g.,

W5l
X1X2

M
f1f2 . ~18!

Then, the matter fields other thanX6 vanish for X6 , X6

@Aja, and the D term is dominated byX6 . In this case, the
scalar potential is written as

VD5(
a

ga
2

2
@ja1Qa~ uX1u22uX2u2!#2. ~19!

The directionuX1u5uX2u corresponds to the inflaton. Th
minimum of VD is obtained as

~VD!min[
ge f f

2

2
je f f

2 5(
a

ga
2

2
ja

22

S (
a

g2QajaD 2

(
a

ga
2Qa

2
~20!

for

uX1u22uX2u252

(
a

ga
2Qaja

(
a

ga
2Qa

2
. ~21!

In a certain situation~maybe with fine-tuning!, this vacuum
energy (VD)min becomes much smaller thanO(ga

2ja
2). Fur-
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thermore, in Ref.@9# more fieldsXi relevant to the inflaton
have been introduced and in such a case an effective valu
the FI term can be reduced.

III. BEHAVIOR OF THE DILATON AND TWISTED
MODULI FIELDS

In this section we study the behavior of dilaton a
twisted moduli fields in type-I string-inspired D-term infla
tion models. We consider the case that the anomalous U~1!
originates from the D9-brane. In this case the gauge kin
function is obtained as@18#

f 95S1s
M

Ms
, ~22!

where s is a model-dependent constant and we defines̃
5s/Ms . The corresponding gauge couplingg9 is obtained
asg9

251/Re(f 9). The Kähler potential of the dilaton fieldS
is written as

K~S,S̄!52 ln~S1S̄!. ~23!

On the other hand, the Ka¨hler potential of the twisted modul
field K(M ,M̄ ) is not clear. For small values ofM, it can be
expanded as@19#

K~M ,M̄ !5
1

2
~M1M̄ !21•••. ~24!

However, the reliability of this form is not clear for larg
values ofM—i.e., M>O(1).

The twisted moduli field plays a role in the 4D Gree
Schwarz~GS! anomaly cancellation mechanism, and the
term is obtained as

j5dGSK8~M ,M̄ !, ~25!

wheredGS is a model-dependent constant. Thus the D-te
scalar potential is obtained during inflation,

VD5
@dGSK8~M ,M̄ !#2

S1S̄1s̃~M1M̄ !
. ~26!

First, let us study behavior ofSduring inflation. IfS runs
away to infinity, D-term inflation cannot succeed. Here, w
introduce the canonically normalized dilaton fieldf, which
is defined as

f5M p

1

A2
ln

S1S̄

2
. ~27!

The first and second derivatives ofVD by f are obtained as

]VD

]f
52

A2~S1S̄!

S1S̄1s̃~M1M̄ !

VD

M p
, ~28!
0-3
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]2VD

]f2
52

2A2~S1S̄!

S1S̄1s̃~M1M̄ !

VD

M p
2

3S 12
2~S1S̄!

S1S̄1s̃~M1M̄ !
D . ~29!

Suppose the twisted moduliM is stabilized somehow suc
that S1S̄!s̃(M1M̄ ). Then, we obtain

S 1

VD

]VD

]f D 2

.2S S1S̄

s̃~M1M̄ !
D !1, ~30!

1

VD

]2VD

]f2
.2

2A2~S1S̄!

s̃~M1M̄ !
!1; ~31!

that is, the slow-roll condition is satisfied for the dilaton fie
and it does not run away. Note that this result is independ
of the form ofK(M ,M̄ ).

We have considered the case that the U~1! gauge multiplet
originates from the D9-brane. We can easily extend
above analysis into another case: for example, when the U~1!
gauge multiplet originates from the D5-brane, wrapping a
torus of the 6D compact space. In this case, the gauge kin
function is obtained as

f 5i5Ti1s̃~M1M̄ !, ~32!

whereTi is the moduli field whose VEV determines the vo
ume of the 2D torus. Its Ka¨hler potential is the same as th
dilaton field—i.e.,

K~Ti ,T̄i !52 ln~Ti1T̄i !. ~33!

Hence, the D-term scalar potential during D-term inflation
written as

VD5
@dGSK8~M ,M̄ !#2

Ti1T̄i1s̃~M1M̄ !
. ~34!

In a similar way to the dilaton field, the moduli fieldTi does
not run away if M is stabilized such thatTi1T̄i!s̃(M

1M̄ ).
Next, we study the stabilization ofM in the model with

VD , Eq. ~26!, that U~1! originates from the D9-brane. Fo
S1S̄!s̃(M1M̄ ), the potential reduces to

VD5
@dGSK8~M ,M̄ !#2

s̃~M1M̄ !
. ~35!

Unfortunately, only the termVD does not stabilize the
twisted moduliM at a finite value with nonvanishing vacuu
energy, unless we choose a special form ofK(M ,M̄ ). In fact,
the minimum in this potential is located atM1M̄50 and
VDuM1M̄5050 for the Kähler potential, K(M ,M̄ )5(M

1M̄ )2/2. Hence, another term is necessary for stabilizat
02351
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of M such that D-term inflation can be realized. We assu
that gaugino condensation of another non-Abelian ga
group generates the nonperturbative superpotential

Wnp5de2D(S1s̃8M ), ~36!

where D524p2/(2b) and b is the one-loop beta-function
coefficient of the gauge coupling. In general, the constants8
is different from s. Anyway one needs a stabilizatio
mechanism ofS as well asM in the true vacuum after infla
tion ends. It is the usual approach to stabilizeS by this type
of nonperturbative superpotential. Thus, it is natural to
sume the above superpotential. For stabilization ofS in the
true vacuum, double or more gaugino condensations are
ten used in the so-called racetrack model. Here, for simp
ity, we consider the case that only the single gaugino c
densation potential is dominant during inflation. As we did
estimation ofVD , we assumeS1S̄!s̃(M1M̄ ) during in-
flation; that is, we haveWnp5de2Ds̃8M. In this case, the
scalar potential in the global SUSY is written as3

V5~Ds̃8!2d2e2Ds̃8m1
dGS

2

s̃
m, ~37!

wherem[M1M̄ . We need an explicit form ofK(M ,M̄ ) to
discuss the stabilization ofM. Here and hereafter we take

K~M ,M̄ !5
1

2
~M1M̄ !2. ~38!

The stationary condition]V/]m50 is satisfied by

^M1M̄ & in f5
1

Ds̃8
lnS s̃d2~Ds̃8!3

dGS
2 D , ~39!

where ^•••& in f denotes the expectation value during infl
tion. If the effective mass squared during inflation,

]2V

]m2U
m5^M1M̄ & in f

.
Ds̃

^M1M̄ & in f

VD53
Ds̃

^M1 M̄̄ & in f

M p
2H2,

~40!

is larger enough thanH2 around this stationary point, th
twisted moduli can be stabilized. The condition is satisfied
the present model because ofDs̃Ms

2/^M1M̄ & in f@1 and
M p;Ms ,4 as we will see soon. Note that the key point f
stabilization is the polynomial form of the Ka¨hler potential,
in particular the canonical form. When we consider ad
tional higher terms (M1M̄ )n (n.2) in the Kähler potential,
we obtain qualitatively a similar result for stabilization

3When we study the scalar potential within the framework of s
pergravity theory, we obtain qualitatively the same result.

4This relation is derived in the next section.
0-4
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However, if the twisted moduli field has the logarithmic for
of the Kähler potential, this type of stabilization cannot b
realized.

Now let us estimatêM1M̄ & in f . If b/s85O(1), we es-
timate (Ds8)215O(1023) –O(1022), because of (Ds8)21

50.00043b/s8. For such a small value of (Ds8)21

5O(1023) –O(1022), the factor (Ds8)3 inside of the loga-
rithmic function enlargeŝM1M̄ & in f by a factor ofO(10).
Also, the GS coefficientdGS may enlargê M1M̄ & in f by a
few factor fordGS!1. Then we can estimate

^M1M̄ & in f

Ms
5O~1022!–O~1021!. ~41!

Figure 1 showsV againstm for Ds85100 anddGS
2 /sd2

50.01. The form of the Ka¨hler potential, Eq.~38!, is not
reliable for a large value of ^M1M̄ & in f —i.e., ^M

1M̄ & in f /Ms>O(1). From this point, the above result tha
M is stabilized as a small value is favorable. Another n
point of the result is that the stabilized value satisfies

^M1M̄ & in f@
1

Ds̃8
, ~42!

when the value inside of the logarithmic function is larg
Note that the F-term and D-term parts in the scalar poten
satisfy

VD

VF
.Ds̃8^M1M̄ & in f . ~43!

Equations~42! and ~43! imply the inequality

VF!VD ; ~44!

that is, with this stabilized value of^M1M̄ & in f , the D-term
scalar potential is dominant. That allows us to realize D-te
inflation. Therefore, the vacuum energy during inflation
estimated as

FIG. 1. The scalar potential~37! of m for Ds85100 and
dGS

2 /sd250.01.
02351
e

.
al

V5
dGS

2

s̃
^M1M̄ & in f . ~45!

In explicit type-I string models through type-IIB orient
fold construction, the GS coefficientdGS is calculated in
units of Ms as dGS/Ms5O(1021) –O(1023) @20#. It is not
completely clear what is a natural value ofdGS from the
viewpoint of generic type-I models except type-IIB constru
tion. Furthermore, as reviewed in the previous section,
original value of the FI term appears as the inflation vacu
energy in the simplest model, but it can be effectively
duced in models with more fields and U~1! symmetries. As
another remark, ifd is suppressed by any mechanism, t
stabilized value ^M1M̄ & in f /Ms becomes small like
O(1022) –O(1023).

IV. DYNAMICS AND DENSITY PERTURBATION

Now let us discuss the dynamics in this inflation mod
The relevant potential including one-loop correction duri
inflaton is given by

V5
dGS

2 ^M1M̄ & in f
2

S1S̄1s̃^M1M̄ & in f

3F11
1

16p2

2

S1S̄1s̃^M1M̄ & in f

ln
l2uXu2

(S1S̄)L2G .

~46!

Here the F-term contribution is negligibly smaller than the
term in the potential, as already mentioned. On the ot
hand, one should notice that the stabilization of twist
moduli is achieved by the F-term potential and we can
place M1M̄ with ^M1M̄ & in f . Furthermore, hereafter w
will consider only the regionS1S̄!s̃^M1M̄ & in f in order to
avoid runway motion of the dilaton and obtain a success
inflation. In this sense, the initial value problem of the dil
ton, why the dilaton takes such a initial value, remains u
solved.

From

hXX52
1

8p2

2

s̃^M1M̄ & in f

M p
2

X2
, ~47!

we find that when the inflaton5 X reaches the critical poin
Xf , where

Xf
25

1

8p2

2M p
2

s̃^M1M̄ & in f

, ~48!

the slow-roll condition is violated. On the other hand,Xc is
expressed as

5Hereafter, we omit the absolute value symboluu.
0-5
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Xc
2.

2

s̃^M1M̄ & in f

dGŜ M1M̄ & in f

l2
. ~49!

Hence, if the inequality

M p
2

8p2
.

dGŜ M1M̄ & in f

l2
~50!

holds, inflationary expansion terminates when the infla
reachesXf rather thanXc . This inequality holds forl;1.

Then the equations of motion for the homogeneous par
the scalar fieldsX andf are, respectively, given by

Ẍ13HẊ52]XV

.2
dGS

2

s̃2

1

8p2

2

X
~51!

and

f̈13Hḟ52]fV

.
dGS

2

s̃2

23/2

M p
eA2f/M p, ~52!

where we ignored the dilaton dependence in the radia
correction part because of the weakness of the depende
The solutions under the slow-roll approximation are

X25Xe
21

dGS
2

s̃2

1

2p2

H~ te2t !

3H2
, ~53!

e2A2f/M p5e2A2fe /M p1
4dGS

2

s̃2

H~ te2t !

3M p
2H2

, ~54!

with Xe5X(te) andfe5f(te), wherete denotes the time o
the end of inflation. By using the definition of the number
e-folds, 2dN[Hdt, Eq. ~54! is rewritten as

S1S̄

s̃^M1M̄ & in f
U

te

5
1

s̃^M1M̄ & in f

S1S̄
22N

. ~55!

Since the left-hand side~LHS! must be less than the order o
1021, we find that s̃^M1M̄ & in f /(S1S̄);102 for the
present horizon scale. Similarly, from Eq.~53! we obtain

X25Xe
21

N

2p2s̃^M1M̄ & in f

M p
2 ; ~56!

we unfortunately found that the somewhat large field va
region X5O(1)M p is used in this inflation model. This i
the undesirable feature of this model. Here we estimate
quantity
02351
n
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f
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e

S ḟ

Ẋ
D 2

5(8p2s̃^M1M̄ & in f)
2S S1S̄

s̃^M1M̄ & in f
D 2

X2

2M p
2

.1021S s̃^M1M̄ & in f

1021 D S S1S̄

s̃^M1M̄ & in f

U
te

1021

D 2

3
112H~ te2t !

S 11
S1S̄

s̃^M1M̄ & in f

U
te

2H(te2t)D 2 , ~57!

where we adoptedXf asXe and supposes;1. Thus we find
that the ratio of kinetic energies of these scalar fields take
value of O(1021) –O(1022), because the final part in thi
expression is almost unity during inflation.

Next, we turn to the density perturbation generated by t
inflation model. The WMAP data show that the adiaba
fluctuation is favored@21,22#. On the other hand, in genera
an inflation model which contains several evolving sca
fields produces also the isocurvature fluctuation. Acco
ingly, we estimate the contribution from the isocurvatu
mode and confirm this model to be consistent with obser
tions. The perturbed Einstein equation in Fourier space re

d f̈ 13Hd ḟ 1S k2

a2
1V,ffD df1V,fXdX

524ḟḞ12V,fF, ~58!

d Ẍ13Hd Ẋ 1S k2

a2
1V,XXD dX1V,Xfdf

524ẊḞ12V,XF, ~59!

Ḟ1HF52
1

2M p
2 ~ḟdf1ẊdX!, ~60!

wherek is the wave number,a is the scale factor, the comm
denotes a derivative ofV with respect to the fields (X,f),
df anddX represent perturbations of the scalar fieldsf and
X, respectively, andF is the curvature perturbation variab
in the notation of Ref.@23#. These equations have analyt
solutions for a long wavelength under the slow-roll appro
mation @24#:

dX5~ ln V!,XFQ11Q3E
tk

t

„ln~ ln V!,X…,fJdfG , ~61!

df5~ ln V!,fFQ11Q32Q3E
tk

t

„ln~ ln V!,f…,XJdXG ,
~62!
0-6
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with

J5expS 2E
tk

t

@„ln~ ln V!,X…,fdf1„ln~ ln V!,f…,XdX# D .

~63!

Heretk denotes the horizon crossing time for a wave num
k, k5a(tk)H. In addition,Q1 and Q2 are integration con-
stants and expressed as

Q152
H2

A2k3Ẋ
eX~k!U

tk

, ~64!

Q31Q152
H2

A2k3ḟ
ef~k!U

tk

, ~65!

where eX(k) and ef(k) are classical random quantitie
which are normalized as

^eX~k!eX* ~k8!&5^ef~k!ef* ~k8!&5d (3)~k2k8!. ~66!

The appearance ofQ3 is due to the existence of isocurvatu
perturbation. Furthermore, as we already mentioned, s
the dilaton dependence in the radiative correction part is n
ligible, the potential, Eq.~46!, seems to be a separate for
V5Vf(f)VX(X). Since J51 in this case, Eqs.~61! and
~62! can be rewritten as

dX5
V,X

V
Q1 , ~67!

df5
V,f

V
~Q11Q3!. ~68!

Then, the curvature perturbation is expressed as

F52
Ḣ

H2
Q11

~V,f!2

2V2
Q3 ~69!

5
Ḣ

H2

H2

A2k3Ẋ
eX~k!U

tk

1
~V,f!2

2V2

3S H2

A2k3Ẋ
eX~k!2

H2

A2k3ḟ
ef~k!D U

tk

. ~70!

From Ẋ2@ḟ2, we find that the first term is much larger tha
the second term and the primary contribution to the den
perturbation comes from the adiabatic fluctuation genera
by inflaton. Hence, we find that the density perturbation
this inflation model is almost adiabatic with small isocurv
ture fluctuations.

Here we shall introduce the so-called Bardeen param
which is defined by

z[F1
2

3

F1H21Ḟ

11w
, ~71!
02351
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which is conserved in the superhorizon scalek!aH if the
fluctuation is adiabatic@25#. Herew denotes the ratio of pres
sure to energy density. However, the present model cont
two slow-rolling scalar fields and may produce the isocur
ture fluctuation. In this case, the time variation ofz is caused
by the isocurvature fluctuation and the Bardeen paramete
no longer a conserved quantity on superhorizon scales.
deed, the time variation ofz is expressed as

3

2
H~11w!ż52cs

2 k2

a2
F2

r

2
wG, ~72!

wherecs
25 ṗ/ ṙ and the quantity

G5
dp

p
2

cs
2

w

dr

r
~73!

represents the amplitude of an entropy perturbation. In
case that the universe is filled with two component sca
fields (X,f), Eq. ~72! is rewritten as@26#

ż5
H

Ḣ

k2

a2
F1

H

2

]

]t S Ẋ22ḟ2

Ẋ21ḟ2D S dX

Ẋ
2

df

ḟ
D . ~74!

In a single field inflation model, eitherẊ or ḟ goes to zero
and the second term on RHS of Eq.~74! vanishes. Thus,z
becomes a conserved quantity on superhorizon scales in
case. However, we need to take the variation ofz into ac-
count, because there are two evolving scalar fields in
present model. The spectrum of the density perturbationsz at
the horizon crossing time is

Pzu tk5S H2

2puẊu
D 2 F12

1

2

ef

eX
GU

tk

, ~75!

up to the first order ofḟ2/Ẋ2, whereef5ḟ2/(2V) and eX

5Ẋ2/(2V) are slow-roll parameters. From Eq.~74!, the
variation of the Bardeen parameter after the horizon cross
is estimated as

Dz[E
tk

te
żdt5Q3S ḟ2

Ẋ2 U
tk

2
ḟ2

Ẋ2U
te

D . ~76!

Furthermore, the power spectrum of the density pertur
tions at the end of inflation@27# is estimated as

Pzu te5S H2

2puẊu
D 2U

tk

F122
ef

eX
U

te

1
~ef /eXu te!

2

ef /eXu tk
G . ~77!

We find that the variation ofz on superhorizon scales by th
isocurvature perturbation is suppressed by the power
ḟ2/Ẋ25O(1021) –O(1022). The amplitude of the curvature
perturbation is rewritten as
0-7
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H2

2puẊu
U

tk

52
dGŜ M1M̄ & in f

M p
2

AN

6
, ~78!

and we obtain the constraint on the model parameters,

dGŜ M1M̄ & in f

M p
2

.1025, ~79!

for the present horizon scale. For the GS coefficientdGS, a
suppressed value is required like the heterotic case. Exp
models through type-IIB orientifold construction seem to d
rive dGS/Ms5O(1021) –O(1023) @20#. Anyway, the GS co-
efficient dGS is model dependent. If we find the model
which dGS is small enough likedGS/Ms;1023, the string
scale can be almost comparable withM p or slightly smaller.
Otherwise, if the original FI terms are not small enough,
would need the mechanism to reduce the effective FI term
mentioned in Sec. II or a lower string scale.

On the other hand, the spectrum of gravitational wa
perturbation produced by the inflation is given byPg
5uH/(2pM p)u2 and its observational results showP g

<10210. This constraint is expressed asV<1028M p
4 in

terms of the potential. Therefore we obtain

V5
dGS

2 ^M1M̄ & in f

s̃
<1028M p

4 . ~80!

By combining Eqs.~79! and ~80!, we obtains̃^M1M̄ & in f
>1022. That can be satisfied by a stabilized value~41! of

^M1M̄ & in f—e.g.,^M1M̄ & in f;0.13Ms for s;1.
Finally we discuss the evolution of the universe after

flation. The relevant potential after inflation is given by

V5~gaugino condensation potential!1l2uXu2uf2u2

1
@dGSK8~M ,M̄ !2uf2u2#2

S1S̄1s̃~M1M̄ !
. ~81!

After inflation, the scalar fieldsX and f2 oscillate around
their corresponding minimumX50 and^f2&5Aj, respec-
tively. Here we should notice thatj is a function of the
twisted moduliM and still a time variant in the reheatin
stage, because the twisted moduli do not yet reach at the
vacuum at this moment. This is a feature which the simp
model of D-term inflation does not possess.

Now, we consider the reheating process according to R
@28#. Since there are fields which are charged under b
anomalous U~1! and each of the subgroups of the stand
model, the D term receives a contribution from these fie
As a result, the D term takes the form of

D5gS uf1u22uf2u21(
i

qi uQi u21j D , ~82!

j5dGSK8~M ,M̄ !, ~83!
02351
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where Qi are charged fields for both anomalous U~1! and
gauge groups of the standard model andqi are their positive
charge. In the case that fieldsw i of the minimal supersym-
metry standard model belong to the fieldsQi , the f2 field
couples with them by the interaction

Lint5g2Aj(
i

qi uw i u2~df21df2
† !, ~84!

wheredf2[f22^f2&. Hence thef2 field would imme-
diately decay through this gauge interaction. On the ot
hand, the decay ofX would be delayed. The mass off2 is
mf2

5(g/l)mX . Sinceg.1 in our model at the time of the
end of inflation, the decay ofX to f2 would be forbidden
kinematically. As a result,X decays to light matter through
higher-dimensional interactions and the reheating can
completed with a high enough reheating temperature.

In this scenario, a huge entropy after the reheating by
inflaton is produced by the decay of the dilaton and mod
fields in late time. Therefore, this D-term inflation mod
should be incorporated with the Affleck-Dine baryogene
@29#. The Affleck-Dine baryogenesis with the dilution by th
dilaton and moduli decay have been investigated@30,31#.
However, an actual estimation of the baryon to entropy ra
is beyond the scope of this paper, because their full poten
strongly depends on the form of the Ka¨hler potential of
twisted moduli and the condensation gauge groups@15#.

Furthermore, it is pointed out that cosmic strings gen
ated after D-term inflation can modify the CMB anisotrop
significantly @32#. Huge entropy production at a late time
desirable from this point of view, because dilution by t
entropy production is one possible way to remove the eff
of cosmic strings. Moreover, there is one thing to note. T
FI term is given by Eq.~25! and its magnitude is param
etrized by the expectation value of the twisted modu
Therefore the tension of cosmic strings in late time is n
necessarily the same as the scale of the FI term du
inflation—namely,^M1M̄ & in fÞ^M1M̄ &, where^•••& de-
notes the VEV. This feature might change the situation of
effect of cosmic strings.

V. CONCLUSIONS AND DISCUSSION

We have studied D-term inflation within the framework
type-I string-inspired models. In this case, the twisted mod
field plays a significant role. For stabilization of the twiste
moduli, the polynomial form of the Ka¨hler potential is im-
portant. Stabilization of the twisted moduli during inflation
achieved with the help of the gaugino condensation poten
and this stabilization mechanism does not spoil the situa
that the potential is dominated by the D term. Furthermore
is a favorable property that the expectation value of
twisted moduli during inflation is smaller enough than un
where the Ka¨hler potentialK5(M1M̄ )2/2 is valid, while
this result leads to one shortcoming—that the inflatonX must
take a somewhat large valueX.M p during inflation.

At first, we found that the magnitude of the FI term wou
be reducible to a desirable value within this framework ev
if we do not assume a hierarchically large gap between
string scaleMs and the Planck scaleM p .

Concerning the second problem—or dilaton runaw
0-8
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problem—we found the condition to avoid this difficulty fo
the initial value of the dilaton. In the potential with a fixe
twisted moduli, we could find the field region where th
dilaton does not run away,S1S̄!s̃^M1M̄ & in f . If the dila-
ton takes such an initial value at the preinflation stage, i
possible that the universe undergoes a quasi de Sitter ex
sion, because the dilaton can evolve slowly. Of course, at
moment, we cannot answer the question why the dila
takes such an initial value. The point we would like to e
phasize in the present paper is that D-term inflation is p
sible in type-I string-inspired models under certain con
tions. On the other hand, the small expectation value of
dilaton during inflation might be a good point from anoth
point of view. In studies of the evolution of the dilaton
string cosmology, the initial condition—that the dilaton ta
a smaller value than the VEV at the beginning, (S1S̄)u t i
,^S1S̄&—has been adopted@10,31,33#. Therefore, the ini-
tial value of the dilaton set by this inflation is consistent w
the initial condition in these studies. Although these a
based on a heterotic model, the situation would not cha
essentially. That might lead to dilaton stabilization at t
correct vacuum.
ep

cl

02351
is
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Moreover, the ingenious point in this model is that t
condition which prohibits the dilaton from rolling down th
potential also suppresses the growth of the unneces
isocurvature fluctuation. Thus, we can obtain an almost a
batic density perturbation.

What we have to investigate further is the late time ev
lution of the universe. In the present paper, we have
estimated baryogenesis and the effect of cosmic strings
so on, because they would involve us in other factors suc
a concrete potential for the supersymmetry breaking than
potential of inflation. These are important issues for futu
works.
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