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We investigate the possibility of D-term inflation within the framework of type-I string-inspired models.
Although the D-term inflation model has the excellent property that it is free of the so-ocaledblem, two
serious problems appear when we embed D-term inflation in string theory: the magnitude of the FI term and
the rolling motion of the dilaton. In the present paper, we analyze the potential of D-term inflation in type-I-
inspired models and study the behavior of dilaton and twisted moduli fields. Adopting the nonperturbative
superpotential induced by gaugino condensation, the twisted moduli can be stabilized. If the dilaton is in a
certain range, it evolves very slowly and does not run away to infinity. Thus D-term-dominated vacuum energy
becomes available for driving inflation. By studying the density perturbation generated by the inflation model,
we derive the constraints on model parameters and give some implications on D-term inflation in type-I-
inspired models.
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[. INTRODUCTION pansion. The Fl term comes from the anomaloy$)$ym-
metry. In fact, most 4D string models have anomalou$)U
In the success of slow-roll inflation, a sufficient flat po- symmetry for both heterotic modefl4,5] and type-l1 models
tential for the inflaton, which is the inflation driving scalar [6]. These anomalies can be canceled by the Green-Schwarz
field, is required. However, it is not so easy to construct anechanism, where certain fields transform nontrivially under
model of inflation where the corresponding scalar field has anomalous (1) symmetrieg7]. Such a role is played by the
very flat potential in the framework of supergravity. Usually, dilaton field S in heterotic models and the twisted moduli

the flatness of the potential is expressed as fields M in type-l1 models. That generates the FI term. Thus,
) ) D-term inflation seems possible to be realized in string mod-
M5 [V’ els
=PI < : e o
=5V ) <1, (1) However, there are difficulties in the realization of D-term
inflation based on heterotic models. The first problem is the
\V4 energy scale of inflation. The magnitude of the FI term is
— N2 .
7=Mpy <1, (2)  given as
in terms of the slow-roll parameters, where the prime denotes g2 )
a derivative with respect to the inflaton aii, is the re- &= 1o 5> Q)M ()
T

duced Planck mass. In the case when the vacuum energy is
dominated by the F term during inflation, supergravity ef-
fects produce the soft mass of the inflaton field whose magwhere g® is the gauge coupling and T) is a model-
nitude is the same order ¢f and spoil the flatness of the dependent constant of the order®(10)-O(10?) [4]. Equa-
potential. In other words, such a large inflaton mass givesion (3) reads \/E/Mp=0(10‘1)—0(10‘2). On the other
n~1 and violates the slow-roll condition, which is often hand, the cosmic microwave backgrow@MB) anisotropy
referred to as they problem. requiresé'?=10" GeV. We find that the theoretical predic-
From this point of view, D-term inflation is one of the tion is too large to meet the observational estimation. This
attractive inflation scenarios within the framework of super-inconsistency is still a serious problem, although several
symmetric model§1,2],* because the inflaton does not ac- studies to construct a model with effectively suppressed FI
quire the mass-squared term of the ordeHdfand the flat- terms have been done in heterotic modé&®]. The second
ness of the potential is preserved. In the D-term inflationproblem is due to the dilaton dependence of the FI term and
scenario, the Fayet-lliopould$l) term is dominant during the anomalous (1) gauge coupling. The presence of the
inflation and this vacuum energy causes an accelerating exlilaton S and several types of moduli fields is one of impor-
tant features in superstring theory. Vacuum expectation val-
ues(VEVs) of these fields determine the magnitudes of all

*Email address: kobayash@gauge.scphys.kyoto-u.ac.jp the couplings—e.g., gauge couplings and Yukawa couplings.
TEmail address: osamu@mail.nctu.edu.tw The dilaton field prevents the realization of D-term inflation.
1See Ref[3] for an early study of an inflation model relevant to Sinceg®«1/ReS, the D-term scalar potentiddy = g2¢%/2 is

the D term. in proportion to (ReS) 3. Hence the dilaton rolls down the
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potential to infinity, R&S—o, and the D-term potential en- W=AXd, ¢d_. 5)
ergy goes to zeroyp—0. This phenomenon is the same as

the dilaton runaway problem in generic string models andrhen, the scalar potential is written as

such runaway behavior of the dilaton and moduli fields pre- 5

vents a viable inflatiof10]. Even if we adopt type-I models v=> |9, W2+ g_Dz (6)
rather than heterotic models, the FI term is dependent on the ! 2

field which plays a role in the Green-Schwarz anomaly can-

cellation mechanism for the anomalouélY Hence, if these =NX2(|p_ |2+ |+ N P |?

fields run away, D-term inflation cannot occur in 4D string )

models. AN PR LG
In this paper we study the behavior of dilaton and moduli 2 * L

fields in the D-term inflation scenario with the above two
problems in mind. The purpose of the present paper is tdhe true vacuum of this potential corresponds to
explore a way to avoid these problems at the same time.

Actually, studies of the runaway problem have been done for X=¢,=0, |¢_|=\¢ (8)
heterotic models in Ref$11,12. Now, in particular, we will
consider type-l string-inspired models. D-term inflation in , .
type-l-inspired models has been studied in R&8] and it For a value oX fixed, we analyze the minimum &. We
was shown that the magnitude of the FI term is reducible tglefine

a desired value. This result arises from the facts that the FlI

term is determined by the expectation value of the twisted X.= 9\/5_ (9)
moduli and the string scalil is independent of the Planck A
scaleM,, [14] in type-l string models. In fact, the twisted
moduli field plays a role in the Green-Schwarz anomaly can

and supersymmetr§SUSY) is not broken.

For |X| <X, the minimum corresponds to

cellation in 4D type-l string models. However, in RgL3] 2y2
the stabilization of the twisted moduli and the runway prob- lp_|?=¢6———, |¢.|=0. (10)
lem have not been discussed. These issues might be not g

trivial. Indeed, stabilization of the twisted moduli fields were
studied and different aspects from those of the dilaton fiel
were revealed15].> As we will show, the twisted moduli |$.|=0 (11)
field cannot stabilize with nonvanishing vacuum energy in - '

pnly _the D-term potential and any vacuum energy _drivingm this case, the vacuum energy is obtained as
inflation does not appear, unless we assume a specifieKa

Pn the other hand, fgiX|>X., the minimum corresponds to

potential. Therefore, stabilization of the twisted moduli is g? X

also an important issue for the inflation in type-l models. V=38, (12
This paper is organized as follows. In the next section, we

review briefly D-term inflation. In Sec. Ill, we study the anq the radial part oK is identified with the inflaton. Al-

behavior of dilaton and twisted moduli fields. It will be though the mass oK vanishes at the tree level, since the
shown that the twisted moduli field is stabilized during infla- supersymmetry breaking by the nonvanishing D term gener-

tion. In Sec. 1V, the dynamics of the inflaton and dilaton gie5 the mass difference between the masses. of
fields are studied, and we will derive constraints on param- -

eters in our models. Section V is devoted to conclusions and m2 =\?2|X|2+ g%, (13)
a discussion. -
and the masses of those fermionic partners, the one-loop ef-
Il. D-TERM INFLATION fective potential is given as
Here we give a brief review of D-term inflatidd, 2]. We 2 2 2%
consider theN=1 supersymmetric model with () gauge Vi :g_gz 1+ 9 In)\ | 2| (14)
symmetry and the nonvanishing FI terén The model in- R 2 6m2 A

cludes three matter field& and ¢. . The fields¢.. have

U(1) charges+1 while X has no Wl) charge. The i) D  where A is the renormalization scale. That generates the

term is written as mass term oX and the potential is slightly lifted. Then, the
inflaton slowly rolls down the potential. From the equation

D=¢+[¢2—[o- | (4)
2 2
Hereafter we take the charge assignment such ghad. n=— 9° Mg (15)
Suppose the superpotential 872 |X|?

we find that the slow-roll condition is violatedyt-1) when
%See also Refd16,17. the inflaton reaches at
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g2 thermore, in Ref[9] more fieldsX; relevant to the inflaton
|Xf|2=—2M§, (16)  have been introduced and in such a case an effective value of
87 the FI term can be reduced.

and the inflation ends.
We have reviewed on the simplest D-term inflation model. !l BEHAVIOR OF THE DILATON AND TWISTED
However, as noted in the Introduction, the magnitude of the MODULI FIELDS

FI term & in such a simple model is required to be much |, this section we study the behavior of dilaton and
smaller than the values gfderived from 4D heterotic mod- yyisted moduli fields in type-l string-inspired D-term infla-
els. Referencg8] has proposed a mechanism in heteroticiioy models. We consider the case that the anomalads U

models to reduce effectively the FI term compared with itSyjginates from the D9-brane. In this case the gauge kinetic
original value. Here we also give a brief review of suchgnction is obtained ak18]

models. Instead of the single fiek| we consider two fields
X. . Generic string models have several U{ Bymmetries. M
Some of them are anomalous and others are anomaly free. In fg=S+ R (22
Ref.[8], 4D heterotic models were studied and the FI term s
was considered for only one of thg1) symmetries. That is ] ~
because only one (@) symmetry can be anomalous in a 4D Where o is a model-dependent constant and we define
heterotic model. However, we will study inflation models =¢/Ms. The corresponding gauge coupligg is obtained
inspired by type-I string models, where two or morél ?593.: 1/Re(f). The Kanler potential of the dilaton fiel&
symmetries can be anomalous. Thus, here we extend thH@ written as
model of Ref[8] into the case with many FI terngg , while o L
&,=0 for anomaly-free U(1). Suppose thaX.. have U(1), K(S,S)=—In(S+9). (23
charges= Q4. Then the D term is written as

On the other hand, the ikéer potential of the twisted moduli

= 2— 2 ... . . - -
Da=&at Qal[ Xy |*=[X_[F)+ -, 17 field K(M,M) is not clear. For small values 4, it can be

where the ellipsis denotes contributions due to other chiraf*Panded agl9]

matter fields. We consider large field values %r, X. 1

t>>\/§—a as before and assume that the other fields gain mass K(M,M)= S(M+ M)2+ - .. (24)
erms—e.g.,

X X_ However, the reliability of this form is not clear for large
W=A—y—9+9-. (18 yalues ofM—i.e., M=0(1).
The twisted moduli field plays a role in the 4D Green-
Then, the matter fields other thaf. vanish forX., X. Schwarz(GS) anomaly cancellation mechanism, and the FlI
> /&,, and the D term is dominated B4 . In this case, the term is obtained as
scalar potential is written as

2 £= 6K’ (M,M), (25)

— Ya 2_ 2\72
VD_; 2 [£a* Qal X [*=|X-[H]" (19 where g5 is a model-dependent constant. Thus the D-term
scalar potential is obtained during inflation,
The direction|X ,|=|X_| corresponds to the inflaton. The

minimum of Vp, is obtained as _ [SgsK' (M, M)]? 06
, 2 P StSta(M+M)
o2 92 ; 9°Qaéa
(Vo) min= %”ggffzz ?agg— —FF (20 First, let us study behavior & during inflation. IfSruns
a E 92Q2 away to infinity, D-term inflation cannot succeed. Here, we
a e introduce the canonically normalized dilaton fiejd which
is defined as
for
vl S+S X
2 = — |l —
DIHONA P=Mp g @
X4 2= X 2= ————. (21
e first and second derivatives y ¢ are obtained as
92Q2 The fi d d derivatives \gf, by ¢ btained
a
In a certain situatiorimaybe with fine-tuning this vacuum ‘ND: _ _\/§(~S+ S _ Vo (29)
energy V/p)min becomes much smaller tha®(g2£2). Fur- ¢ S+S+a(M+M) My
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Vo 2\/§(S+§) Vo of M such_that D-term inflation can be realized. We assume
ST == — — that gaugino condensation of another non-Abelian gauge
d¢ S+Sto(M+M) Mg group generates the nonperturbative superpotential
. _2(§+ S) | (29) Wnp:de—A(S+U'M), (36)
S+S+o(M+M)

) o - where A =2472/(—b) andb is the one-loop beta-function
Suppose the twisted modull is stabilized somehow such  coefficient of the gauge coupling. In general, the constdnt
that S+ S<o(M+M). Then, we obtain is different from 0. Anyway one needs a stabilization
mechanism ofs as well asM in the true vacuum after infla-
1 dVp)? tion ends. It is the usual approach to stabil&by this type
Vp dp of nonperturbative superpotential. Thus, it is natural to as-
sume the above superpotential. For stabilizatiorsdfi the
2 = true vacuum, double or more gaugino condensations are of-
L7 VD_ - 2~‘/§(S+_S) <1 (31) tenused in the so-called racetrack model. Here, for simplic-
Vb 9¢p? o(M+M) ' ity, we consider the case that only the single gaugino con-
_ o o . ~densation potential is dominant during inflation. As we did in
that is, the slow-roll condition is satisfied for the dilaton field estimation ofVp, we assumes+ S<5'(M +M) during in-

and it does not run away. Note that this result is independer}}ation_ that is. we havaV. —de 7'M In this case. the
[ ) np_ . [l

of the form of K(M,M). _ scalar potential in the global SUSY is writter®as
We have considered the case that th&)ldjauge multiplet

S+S
F(M+M)

<1, (30)

originates from the D9-brane. We can easily extend the 52

above analysis into another case: for example, when {tg U V= (A;r)zdzefA}'mngSm (37)

gauge multiplet originates from the D5-brane, wrapping a 2D o

torus of the 6D compact space. In this case, the gauge kinetic

function is obtained as wherem=M +M. We need an explicit form ok (M,M) to
~ — discuss the stabilization &fl. Here and hereafter we take

f5i:Ti+(T(M+M), (32)
. g . _ 1 _
whereT,; is the moduli field whose VEV determines the vol- K(M,M)= E(|\/| +M)2. (39)

ume of the 2D torus. Its Kder potential is the same as the

dilaton field—i.e., ] N ] o
The stationary conditio@V/dm=0 is satisfied by

K(T{ T ==In(Ti+T)). (33 -
_ od?(Ag’)3
Hence, the D-term scalar potential during D-term inflation is (M+ M>inf:A~, In 52 ) (39
written as 7 Gs
DR I\W)]Z where (- - -}, denotes the expectation value during infla-
b= esr (34)  tion. If the effective mass squared during inflation,
Ti+Ti+O'(M+M)
) ~ ~
In a similar way to the dilaton field, the moduli field does ﬂ - A‘T_ 0=3 A"_ '2) 2
not run away ifM is stabilized such thal;+T;<o(M gm? m=(M + W), (M+M)ins (M+M)ing
+M). (40

Next, we study the stabilization dfl in the model with
Vp, Eq. (26), that U1) originates from the D9-brane. For is larger enough thaiti? around this stationary point, the
S+S<o(M+M), the potential reduces to twisted moduli can be stabilized. The condition is satisfied in
the present model because A%M§/<M+M>mf>1 and
Mp~MS,4 as we will see soon. Note that the key point for
(35 stabilization is the polynomial form of the Kéer potential,
in particular the canonical form. When we consider addi-

Unfortunately, only the termVp does not stabilize the tional higher termsl_(/l+|\7)”(n>_2) in the Kehler potential,
twisted moduliM at a finite value with nonvanishing vacuum we obtain qualitatively a similar result for stabilization.

energy, unless we choose a special fornkK o, M). In fact,
the minimum in this potential is located M+M=0 and 3When we study the scalar potential within the framework of su-

Vp|m+m-0=0 for the Kaler potential, K(M,M)=(M pergravity theory, we obtain qualitatively the same result.
+M)?/2. Hence, another term is necessary for stabilization “This relation is derived in the next section.

[SesK'(M,M)]?
Vp=—Fm———.
a(M+M)
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FIG. 1. The scalar potential37) of m for A¢’=100 and
624 0d?=0.01.

However, if the twisted moduli field has the logarithmic form
of the Kénler potential, this type of stabilization cannot be 1,

realized.

Now let us estimatéM +M);,. If b/a’"=0(1), we es-
timate Ao') " 1=0(10 %)-0(10 ?), because of fo') !
=0.0004xb/o’. For such a small value of Ao’) !
=0(10 %)-0(10 ?), the factor Ao"')? inside of the loga-
rithmic function enlargegM + M), by a factor ofO(10).
Also, the GS coefficientgg may enlargelM +M);,; by a
few factor for §os<1. Then we can estimate

(M+M)in

M =0(10 ?)-0(10™ ).

(41)

Figure 1 showsV againstm for Ao’ =100 and 634 od?
=0.01. The form of the Klaler potential, Eq.38), is not

reliable for a large value of<M+l\7>inf—i.e., (M

PHYSICAL REVIEW D 69, 023510 (2004

2

0Gs _
o

In explicit type-I string models through type-IIB orienti-
fold construction, the GS coefficiendgg is calculated in
units of Mg as 8gs/Ms=0(10"1)—0(10 3) [20]. It is not
completely clear what is a natural value 6fs from the
viewpoint of generic type-1 models except type-11B construc-
tion. Furthermore, as reviewed in the previous section, the
original value of the FI term appears as the inflation vacuum
energy in the simplest model, but it can be effectively re-
duced in models with more fields and1) symmetries. As
another remark, ifd is suppressed by any mechanism, the

stabilized value (M+M);, /M becomes small like
0(10 2)—0(103).
IV. DYNAMICS AND DENSITY PERTURBATION

Now let us discuss the dynamics in this inflation model.
e relevant potential including one-loop correction during
inflaton is given by

_ 5(238<M+M>i2nf
S+ S+ (M +M)ing

. 1 2 A2|X|?
— — n — .
1672 S+S+o(M+M)in;  (S+S)A2
(46)

X1

Here the F-term contribution is negligibly smaller than the D
term in the potential, as already mentioned. On the other
hand, one should notice that the stabilization of twisted
moduli is achieved by the F-term potential and we can re-

place M +M with (M+M);;. Furthermore, hereafter we

+M)ins/M¢=0(1). From this point, the above result that Will consider only the regios+ S<a(M+M); in order to
M is stabilized as a small value is favorable. Another niceavoid runway motion of the dilaton and obtain a successful

point of the result is that the stabilized value satisfies

— 1
<M+M>inf>§y (42)

when the value inside of the logarithmic function is large.
Note that the F-term and D-term parts in the scalar potential

satisfy
Vp - _
_:AO',<M+M>inf. (43)
&
Equations(42) and (43) imply the inequality
Ve<Vp; (44)

that is, with this stabilized value @M +M);,¢, the D-term

inflation. In this sense, the initial value problem of the dila-
ton, why the dilaton takes such a initial value, remains un-
solved.

From

2
1 2 M2

_,V—__, 4
872 o(M+M)n; X2 @7

MXXx= —

we find that when the inflatdnX reaches the critical point
Xt , where

1 2M;
8772 }<M + M>inf ’

2

X3 (49

the slow-roll condition is violated. On the other hanq, is
expressed as

scalar potential is dominant. That allows us to realize D-term
inflation. Therefore, the vacuum energy during inflation is

estimated as

®Hereafter, we omit the absolute value symfol
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2

_ o _
2 Ss{M+M)in; ) N _ S+S X2
= T @9 2| =ETEM M) ==
o(M+M)int A X T(M+M)ine/ 2M3
Hence, if the inequality S+S 2
M_IZJ>5GS<M—+|\7>Inf (50) _ 1 E<M+M>In U<M+M>inf te
8’7T2 )\2 =10 1071 10*1
holds, inflationary expansion terminates when the inflaton 14 2H(to—1)
reachesX; rather thanX.. This inequality holds fon~1. % — e , (57)
Then the equations of motion for the homogeneous part of S+S 2
the scalar field and ¢ are, respectively, given by 1+ ~<I\/I—l\7> 2H(te—t)
o(M~+M)in

te

X+3HX=—ayV
where we adopte{; asX, and suppose~ 1. Thus we find
52@3 1 2 that the ratio of kinetic energies of these scalar fields takes a
== -5 (5)  value of O(10 1)-0O(10 ?), because the final part in this
expression is almost unity during inflation.

Next, we turn to the density perturbation generated by this
inflation model. The WMAP data show that the adiabatic
fluctuation is favored21,22. On the other hand, in general,
an inflation model which contains several evolving scalar
fields produces also the isocurvature fluctuation. Accord-
ingly, we estimate the contribution from the isocurvature
mode and confirm this model to be consistent with observa-
tions. The perturbed Einstein equation in Fourier space reads

where we ignored the dilaton dependence in the radiative

and
d+3HP=—34V

2 3/2
Y

a? My

e 2¢Mp, (52

correction part because of the weakness of the dependence. - : k?
The solutions under the slow-roll approximation are 5¢p+3HoP + ;J“V*dwﬁ O¢+V, ypx0X
2 Lo
we—x2y Jes 1 Ht—0 53 =—4¢D+2V, P, (59)
¢ 2272 3HZ
. . k2
2 _ SX+3HOX +| — +V,xx| 6X+V,x46¢
e ZHIMy_ o= Zde/Mp 4 4~5<35 H(te2 t) , (54 a2
o? 3MpH? -
=—4AXD+2V, D, (59
with X.= X(te) and¢.= ¢(te), wheret, denotes the time of
the end of inflation. By using the definition of the number of ) 1. )
e-folds, —dN=Hdt, Eq.(54) is rewritten as d+HP=— W(¢5¢+X5X)’ (60)
P
S+S | 1 _ .
= — == — . (55 wherek is the wave numbes is the scale factor, the comma
o(M+ M>inf’te (M +M )iy N denotes a derivative of with respect to the fieldsX, ¢),
S+S o¢ and 6X represent perturbations of the scalar fiefdand

X, respectively, and is the curvature perturbation variable
Since the left-hand sidé.HS) must be less than the order of in the notation of Ref[23]. These equations have analytic

10!, we find that f~7<|\/|+l\7)inf/($+§)~102 for the Solutions for a long wavelength under the slow-roll approxi-

present horizon scale. Similarly, from E¢3) we obtain mation[24];
t
xeoxzy N e 56) X=(InV) 5 Q1+ s | (In(lnv>,x>,¢ad¢}, (61
€ 2’7720'<M+M>inf P t

we unfortunately found that the somewhat large field value
region Xx=0(1)M, is used in this inflation model. This is

the undesirable feature of this model. Here we estimate the
guantity (62)

Sp=(InV), 4

t
Qi+ Qa_Q3Jt (In(In V),¢),XJdX},
k
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with

J=exp< — f[(ln(ln V)13 pd e+ (In(In V),¢),XdX]) .
k (63

PHYSICAL REVIEW D 69, 023510 (2004

which is conserved in the superhorizon schieaH if the
fluctuation is adiabatif25]. Herew denotes the ratio of pres-
sure to energy density. However, the present model contains
two slow-rolling scalar fields and may produce the isocurva-
ture fluctuation. In this case, the time variation/of caused

by the isocurvature fluctuation and the Bardeen parameter is

Heret, denotes the horizon crossing time for a wave numbey, longer a conserved quantity on superhorizon scales. In-

k, k=a(t )H. In addition,Q; and Q, are integration con-

stants and expressed as

2
Q=— —ex(k)| (64)
J2k3X 5
H2
Q3+Q1=— \/Z_qu-be(b(k) , (65

ty

where ex(k) and e,(k) are classical random quantities

which are normalized as

(ex(k)ex (k")) =(ey(k)ef(k"))= 56 (k—k'). (66)

The appearance @); is due to the existence of isocurvature
perturbation. Furthermore, as we already mentioned, since
the dilaton dependence in the radiative correction part is neg-
ligible, the potential, Eq(46), seems to be a separate form

V=V,(#)Vx(X). SinceJ=1 in this case, Eqs(61) and
(62) can be rewritten as

V,x

oX=~;Q1, (67)
V.

5¢:7(Q1+Q3)- (68)

Then, the curvature perturbation is expressed as

H (V,)?

‘D=—mQ1+ W% (69

H H? " +(v,db)2
=——c¢€
H2 \2K3X * L2V
k

(70

H? H?
X(mex<k"m‘*¢<k>)

ty

deed, the time variation af is expressed as

5 L 2
EH(1+W)§——CS§ — 5wl (72
wherec2=p/p and the quantity
op Cgﬁp
r=P_ %% (73
P W op

represents the amplitude of an entropy perturbation. In the
case that the universe is filled with two component scalar
fields (X, ¢), Eq.(72) is rewritten aq 26|

X2— ¢2
X2+ ¢p?

oX 5)
S

. HK? H 9
2 X é

Ha? 2t

In a single field inflation model, eithet or ¢ goes to zero

and the second term on RHS of E@4) vanishes. Thus{
becomes a conserved quantity on superhorizon scales in that
case. However, we need to take the variatiory ahto ac-
count, because there are two evolving scalar fields in the
present model. The spectrum of the density perturbatjcats

the horizon crossing time is

: (79

7D{|tk:

up to the first order oip?/X?, wheree,= ¢?/(2V) and ex

=X?/(2V) are slow-roll parameters. From Eg74), the
variation of the Bardeen parameter after the horizon crossing
is estimated as

#?
2
t X

NNT
A= ftk é’dt—Qe,(ﬁ

) . (76)
te

FromX?> ¢?, we find that the first term is much larger than Furthermore, the power spectrum of the density perturba-
the second term and the primary contribution to the densitfions at the end of inflatiof27] is estimated as
perturbation comes from the adiabatic fluctuation generated

by inflaton. Hence, we find that the density perturbation in
this inflation model is almost adiabatic with small isocurva-

ture fluctuations.

2 2

(eplexl)?
&_ (77

P§|te:

€4
—_— 1-2—
27| X| 5 €x

t, €¢/€X|tk

Here we shall introduce the so-called Bardeen parameter

which is defined by

2P+H P
=0ty —rw 7D

We find that the variation of on superhorizon scales by the
isocurvature perturbation is suppressed by the power of
$?IX?>=0(10"1)—0(10 ). The amplitude of the curvature
perturbation is rewritten as
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H2
277|X|

M +M)iy
2
Mp

(78)

and we obtain the constraint on the model parameters,

ty

5GS<M + I\7>inf -

> =
Mp

105, (79

for the present horizon scale. For the GS coefficiégt, a

suppressed value is required like the heterotic case. Explicﬂ]
models through type-IIB orientifold construction seem to de-

rive gs/M¢=0(10"1)—0(10 3) [20]. Anyway, the GS co-
efficient g5 is model dependent. If we find the model in
which 8gg is small enough likeSgs/M¢~10 2, the string
scale can be almost comparable with, or slightly smaller.

Otherwise, if the original FI terms are not small enough, we;

PHYSICAL REVIEW D69, 023510 (2004

where Q; are charged fields for both anomalousllJand
gauge groups of the standard model apdre their positive
charge. In the case that fields of the minimal supersym-
metry standard model belong to the fiel@s, the ¢_ field
couples with them by the interaction

Lin=0"VEX aileil*(5¢+ 0g), (84)
whered¢p_=¢_—{(¢_). Hence thes_ field would imme-
diately decay through this gauge interaction. On the other
and, the decay of would be delayed. The mass &f is

» =(9/N)my. Sinceg>1 in our model at the time of the

end of inflation, the decay oX to ¢_ would be forbidden
kinematically. As a resultX decays to light matter through
higher-dimensional interactions and the reheating can be
completed with a high enough reheating temperature.

In this scenario, a huge entropy after the reheating by the

inflaton is produced by the decay of the dilaton and moduli

would need the mechanism to reduce the effective FI term ae|ds in late time. Therefore, this D-term inflation model

mentioned in Sec. Il or a lower string scale.

should be incorporated with the Affleck-Dine baryogenesis

On the other hand, the spectrum of gravitational wave29]. The Affleck-Dine baryogenesis with the dilution by the

perturbation produced by the inflation is given %,
=|H/(2mM,)|?> and its observational results sho®,
<107% This constraint is expressed <10 M3 in
terms of the potential. Therefore we obtain

V= 5éS<M + M}inf

<10 8M%.
pd p

(80

By combining Eqs.(79) and (80), we obtaina(M+M )¢
=10 2. That can be satisfied by a stabilized val4d) of
(M+M)p—e.g.,{M+M);,;~0.2X Mg for o~1.

Finally we discuss the evolution of the universe after in-
flation. The relevant potential after inflation is given by

V= (gaugino condensation poteniai\?|X|?| ¢ _|?

+[6GSK'<M,I\7)—|¢7|2]2
S+Sta(M+M)

(81)

After inflation, the scalar fieldX and ¢_ oscillate around
their corresponding minimuX=0 and(¢_)= V¢, respec-
tively. Here we should notice thaf is a function of the
twisted moduliM and still a time variant in the reheating
stage, because the twisted moduli do not yet reach at the t

vacuum at this moment. This is a feature which the simples%l

model of D-term inflation does not possess.

Now, we consider the reheating process according to Re
[28]. Since there are fields which are charged under bo
anomalous (1) and each of the subgroups of the standar
model, the D term receives a contribution from these field
As a result, the D term takes the form of

D=g |¢+|2—|¢7|2+Z alQil?+¢], (82)

£=08cK'(M,M), (83

dilaton and moduli decay have been investigaftad,31].
However, an actual estimation of the baryon to entropy ratio
is beyond the scope of this paper, because their full potential
strongly depends on the form of the ldar potential of
twisted moduli and the condensation gauge grdus.
Furthermore, it is pointed out that cosmic strings gener-
ated after D-term inflation can modify the CMB anisotropy
significantly[32]. Huge entropy production at a late time is
desirable from this point of view, because dilution by the
entropy production is one possible way to remove the effect
of cosmic strings. Moreover, there is one thing to note. The
FI term is given by Eq(25) and its magnitude is param-
etrized by the expectation value of the twisted moduli.
Therefore the tension of cosmic strings in late time is not
necessarily the same as the scale of the FI term during

inflation—namely,(M + M);,;# (M + M), where(---) de-
notes the VEV. This feature might change the situation of the
effect of cosmic strings.

V. CONCLUSIONS AND DISCUSSION

We have studied D-term inflation within the framework of
type-I string-inspired models. In this case, the twisted moduli
field plays a significant role. For stabilization of the twisted
moduli, the polynomial form of the Kader potential is im-

rLPeortant. Stabilization of the twisted moduli during inflation is

chieved with the help of the gaugino condensation potential
and this stabilization mechanism does not spoil the situation

%hat the potential is dominated by the D term. Furthermore, it
IS a favorable property that the expectation value of the
th . LI N ;

OIIW|sted moduli during inflation is smaller enough than unity

w

here the Kaler potentialK =(M+M)?/2 is valid, while
this result leads to one shortcoming—that the inflaXxanust
take a somewhat large valde>M, during inflation.

At first, we found that the magnitude of the FI term would
be reducible to a desirable value within this framework even
if we do not assume a hierarchically large gap between the
string scaleM and the Planck scaliél , .

Concerning the second problem—or dilaton runaway

023510-8
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problem—we found the condition to avoid this difficulty for ~ Moreover, the ingenious point in this model is that the
the initial value of the dilaton. In the potential with a fixed condition which prohibits the dilaton from rolling down the
twisted moduli, we could find the field region where the potential also suppresses the growth of the unnecessary
dilaton does not run awaf+ S<a(M+M);,;. If the dila-  isocurvature fluctuation. Thus, we can obtain an almost adia-
ton takes such an initial value at the preinflation stage, it idatic density perturbation.

possible that the universe undergoes a quasi de Sitter expan- What we have to investigate further is the late time evo-
sion, because the dilaton can evolve slowly. Of course, at thistion of the universe. In the present paper, we have not
moment, we cannot answer the question why the dilatorstimated baryogenesis and the effect of cosmic strings and
takes such an initial value. The point we would like to em-so on, because they would involve us in other factors such as
phasize in the present paper is that D-term inflation is posa concrete potential for the supersymmetry breaking than the

sible in type-I string-inspired models under certain condi-potential of inflation. These are important issues for future
tions. On the other hand, the small expectation value of thg,orks.

dilaton during inflation might be a good point from another
point of view. In studies of the evolution of the dilaton in
string cosmology, the initial condition—that the dilaton take

a smaller value than the VEV at the beginninc;fﬁ(gﬂti

<(S+S)—has been adoptgd 0,31,33. Therefore, the ini- T.K. was supported in part by a Grant-in-Aid for Scien-
tial value of the dilaton set by this inflation is consistent with tific Research from the Ministry of Education, Science,
the initial condition in these studies. Although these areSports and Culture of JapdNo. 14540256 O.S. was sup-

based on a heterotic model, the situation would not changported by the National Science Council of Taiwan under
essentially. That might lead to dilaton stabilization at theGrant Nos. NSC 92-2811-M-009-006 and NSC 92-2811-M-
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