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Anomalous spatio-temporal chaos in a two-dimensional system
of nonlocally coupled oscillators

Hiroya Nakaoa)

Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan
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A two-dimensional system of nonlocally coupled complex Ginzburg–Landau oscillators is
investigated numerically for the first time. As previously shown for the one-dimensional case, this
two-dimensional system exhibits anomalous spatio-temporal chaos characterized by power-law
spatial correlations. In this chaotic regime, the amplitude difference between neighboring elements
displays temporal noisy on–off intermittency. The system is also spatially intermittent in this
regime, as revealed by multiscaling analysis: The amplitude field is multiaffine and the difference
field is multifractal. Correspondingly, the probability distribution function of the measure defined
for each field is strongly non-Gaussian, exhibiting scale-dependent deviations in the tail due to
intermittency. © 1999 American Institute of Physics.@S1054-1500~99!01304-X#
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Assemblies of mutually interacting dynamical units are
ubiquitous in nature. As models for them, systems of
simple coupled dynamical elements, e.g., limit cycle oscil
lators and chaotic maps, have been studied extensively
Recently, a new class of coupled systems, those with no
locally coupled dynamical elements, was introduced and
found to exhibit anomalous spatio-temporal chaos char-
acterized by power-law spatial correlations. All previous
studies on such systems have been done in one dimensio
but the mechanism for the appearance of this spatio-
temporal chaos seems to be universal, and it is also ex
pected to exist in higher dimensions. In this paper, a two-
dimensional system of nonlocally coupled oscillators is
investigated for the first time. As in the one-dimensional
case, the system is found to exhibit anomalous spatio
temporal chaos, accompanied by several distinctive fea
tures specific to this chaotic regime: Power-law spatial
correlations, noisy on–off intermittency, and multiscaling
properties.

I. INTRODUCTION

Assemblies of coupled dynamical elements are wid
observed in nature. Simplified models of such systems, e
coupled limit cycle oscillators and chaotic maps, have pla
important roles not only in modeling such systems reali
cally but also in understanding the varieties of possible
havior of systems far from equilibrium. Many important co
cepts, such as pattern formation and spatio-temporal ch
have been extracted from detailed studies of such mode

The interaction between elements is usually assume
be attractive, and of a mean-field type in a wide sense; e
element is coupled to the mean amplitude of its neighbor
elements, and is driven by the difference between its o
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amplitude and this mean amplitude in such a way that
amplitude differences between elements tend to decreas

A system with diffusive coupling is a representative lim
iting case. Here, each element interacts strongly with
nearest neighbors, so that the amplitude field of the syste
always continuous and smooth. It is well known that so
equations describing diffusively coupled systems of dyna
cal elements, such as the complex Ginzburg–Landau e
tion, exhibit spatio-temporal chaos.1,2

The opposite limiting case is that of global coupling,
mean-field coupling in the narrow sense. Here, each elem
is coupled to the mean field of the entire system, and is t
coupled to all elements with equal strength. In this case,
amplitude field becomes statistically spatially homogeneo
and the notion of space is lost. It is known that systems w
global coupling generally exhibit some typical forms of b
havior, e.g., clustering and collective chaos.3,4

In Ref. 5, Kuramoto introduced a system lying betwe
the above two limiting cases, one of nonlocally coupled e
ments. Our subsequent numerical simulations of o
dimensional, nonlocally coupled systems with various typ
of elements revealed that such systems generally exh
anomalous spatio-temporal chaotic behavior, which can
be seen in the two limiting cases. In this chaotic regime,
amplitude field becomes fractal, and the spatial correlation
the amplitude field displays power-law behavior on sm
scales. Furthermore, the fractal dimension and the expo
of the spatial correlation vary continuously with the coupli
strength. We developed a theory, based on a simple mult
cative stochastic model,6,7 that can explain the fractality o
the amplitude field and the power-law behavior of the spa
correlation. Such a model is frequently employed in desc
ing the noisy on–off intermittency phenomena8–10 found in
many physical systems, and this suggests that our system
likely exhibits this type of temporal intermittency. The tem
poral intermittency of our system induces a spatial interm
tency. In order to study this, we carried out a more gene
analysis of the amplitude field based onqth structure func-
tions and found that the amplitude field possesses multia

of
l:
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ity. We also carried out multifractal analysis of the differen
field of the original amplitude field, inspired by its appare
similarity to the intermittent energy dissipation field in flu
turbulence.6,11

All our previous studies were done in one-dimensio
systems. However, our previous theory does not require
systems to be one-dimensional, and spatio-temporal ch
with power-law structure functions is also expected in hig
dimensions. In this paper, we study a system of nonloc
coupled complex Ginzburg–Landau oscillators in two
mensions for the first time, and investigate the anomal
spatio-temporal chaotic regime of this system. Some con
eration is given to the multiscaling properties of the interm
tent amplitude and difference fields.

II. MODEL

As proposed by Kuramoto,5 nonlocal coupling naturally
appears in the following plausible situation. Consider an
sembly of spatially distributed dynamical elements, e
cells. Each element is assumed to interact indirectly w
other elements through some~e.g., chemical! substance,
which diffuses and decays much faster than the dynamic
each element. Such a situation can be described by the s
equations

Ẋ~r,t !5F~X~r,t !!1K•A~r,t !, ~1!

eȦ~r,t !52hA~r,t !1D¹2A~r,t !1X~r,t !, ~2!

where X is the amplitude of an element,F describes the
intrinsic dynamics of the amplitude in the absence of c
pling, andA is the concentration of the intermediating su
stance with decay rateh and diffusion rateD. The substance
A is generated at a rate proportional to the amplitudeX, and
the amplitudeX is affected by the substanceA through a
coupling matrixK . The parametere determines the ratio o
the time scale of the elements to that of the substance, a
assumed to be very small.

Now, let us consider thee→0 limit and eliminate the
dynamics ofA adiabatically. Setting the left-hand side of E
~2! to 0, we can solve the equation forA as

A~r,t !5E dr8G~r82r!X~r8,t !, ~3!

whereG(r82r) is a kernel that satisfies

~h2D¹2!G~r82r!5d~r8!. ~4!

By inserting Eq.~3! into Eq. ~1!, we obtain the following
system of nonlocally coupled dynamical elements

Ẋ~r,t !5F~X~r,t !!1K•E dr8G~r82r!X~r8,t !. ~5!

The kernelG(r82r) can be solved as

G~r82r!5
1

~2p!dE ddq
exp@ iq•~r82r!#

h1Duqu2
, ~6!

where d is the spatial dimension of the system. When t
system is isotropic, the kernelG becomes a function of the
distancer :5ur82ru, and can be expressed as
ownloaded 18 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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G~r !}exp~2gur u!, d51, ~7!

K0~gur u!, d52, ~8!

exp~2gur u!
gur u

, d53, ~9!

whereK0 is the modified Bessel function. The constantg is
the inverse of the coupling length and is given by

g5Ah

D
. ~10!

Each G(r ) must satisfy the normalization conditio
*G(r )ddr51. Since we treat a two-dimensional system,
use Eq.~8! for G(r ) hereafter.

As elements, we use complex Ginzburg–Landau osci
tors. They are the simplest limit cycle oscillators that can
derived through the center-manifold reduction techniq
from generic oscillators near their Hopf bifurcation points1

The corresponding nonlocally coupled system is given by
following equation for the complex amplitudeW ~Here we
explicitly include the term2W in the coupling part in order
to express that the coupling is actually attractive. It could
well be absorbed into the intrinsic part by rescaling the va
ables suitably.!:

Ẇ~r,t !5W2~11 ic2!uWu2W1K~11 ic1!~W̄2W!.
~11!

Here K is the coupling strength,c1 and c2 are real param-
eters, and the nonlocal mean-fieldW̄ is given by

W̄~r,t !5E dr8G~r82r!W~r8,t !. ~12!

This is the nonlocal complex Ginzburg–Landau equation
troduced by Kuramoto5 as the first concrete example of no
locally coupled systems.

III. ANOMALOUS SPATIO-TEMPORAL CHAOS

In the numerical simulations whose results are presen
here, the system was a square lattice of length 1. A tota
N255122220482 elements were situated at lattice sites, a
periodic boundary conditions were used. The coupling len
g21 was fixed to 1/8. The nonlocal mean field is easily c
culated by using the FFT~fast Fourier transform! technique,
since it is simply a convolution of the amplitude field wit
the kernel Eq.~8!. We setc1522 andc252. These are the
standard values used in our one-dimensional simulations

In Figs. 1–3, typical snapshots of the real partX(x,y) of
the complex variableW(x,y) are shown for three differen
values of the coupling strengthK. ~Since by symmetry we
obtain similar figures for the imaginary partY(x,y), we use
X(x,y) in the following analysis and call it the ‘‘amplitude
field.’’ ! The amplitude field atK51.05 is continuous and
smooth, while atK50.65 it seems to be discontinuous an
disordered, although not completely random. The amplitu
field at the intermediate coupling strengthK50.85 looks
somewhat more complex and intriguing; it is composed
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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intricately convoluted, smooth and disordered patches
various length scales. This is the anomalous spatio-temp
chaotic regime in which we are interested.

IV. SPATIAL CORRELATION FUNCTION

Let us first examine the spatial correlation function. F
ures 4~a!–4~c! display the spatial correlation function
C(x,y)ª^X(0,0)X(x,y)& corresponding to the amplitud
fields shown in Figs. 1–3. Each correlation function
clearly rotationally symmetric, resulting from the isotropy
the system. As the amplitude field becomes disordered,

FIG. 1. Snapshot of the amplitude fieldX(x,y) for K51.05. Darker dots
indicate larger amplitudes.

FIG. 2. Snapshot of the amplitude fieldX(x,y) for K50.85.
ownloaded 18 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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correlation function becomes steep, and the center of
graph, which corresponds to the self-correlationC(0,0), be-
comes peaked.

In Ref. 5, the anomalous spatio-temporal chaotic regi
is characterized by the power-law behavior of the spa
correlation function at small distance:

C~ l !ª^X~0!X~ l !&.C02C1l a~ l !1!, ~13!

where C0 and C1 are constants anda is a noninteger
parameter-dependent exponent.

To confirm that this power-law behavior also exists
two dimensions. we calculated the radial correlation funct
C( l )5^X(r)X(r1 l)& (u lu5 l ) along a straight line in a cer
tain direction @We mainly used the (0,1) and (1,1) dire
tions, but the results are independent of the direction.#, and
fit for the best values ofC0 andC1 . Figure 5 displays lnl vs
ln@C02C(l)# for several values of the coupling strengthK.
For each coupling strength, the experimental data fall alm
along a single line, and the power-law behavior is evide
The exponenta of the power law varies continuously wit
the coupling strength. Although not shown in the figure, t
correlation functionC( l ) is continuous at the originl 50 for
K>Kc and discontinuous forK,Kc , where 0.80,Kc

,0.85. At this value, there appears a finite gap between
self-correlation C(0) and the correlation between th
nearest-neighbor elements liml→10C( l ).C0 . This implies
that the motion of each individual element becomes so v
lent that the amplitude field is no longer continuous stati
cally. In Ref. 7, this transition point is identified with th
blowout bifurcation point in the on–off intermittent dynam
ics of the amplitude difference between nearby elements

Thus, the anomalous spatio-temporal chaos in two
mensions is also characterized by power-law behavior of
spatial correlation function with a parameter-dependent
ponent.

FIG. 3. Snapshot of the amplitude fieldX(x,y) for K50.65.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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V. NOISY ON–OFF INTERMITTENCY

In Refs. 6 and 7, we argue that the scaling behavior
the spatial correlation is a consequence of the underly
multiplicative processes of amplitude differences betwe
neighboring elements. We described this process usin
multiplicative stochastic model and related the exponenta of
the spatial correlation with the fluctuation of the finite-tim
Lyapunov exponent of an element. This model shares
essential features with those used in describing noisy on
intermittency.8–10 This suggests that our system should a
exhibit this type of temporal intermittency. Actually, th
finite-time Lyapunov exponent of an externally driven co
plex Ginzburg–Landau oscillator can fluctuate between p
tive and negative values, and neighboring oscillators are s
jected to only slightly different nonlocal mean field
Therefore, the conditions for the appearance of noisy on–
intermittency between neighboring oscillators are satisfie
our system.

FIG. 4. Short-range spatial correlation functionsC(x,y) for ~a! K51.05,
~b! K50.85, and~c! K50.65.
ownloaded 18 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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We now report results that confirm this for our syste
The coupling strengthK was set at 0.85. Figure 6 show
typical time sequences of the amplitude differencesDX1(t)
andDX2(t). The distance between the elements is 51221 for
DX1(t) and 6421 for DX2(t). Strong intermittency of the
signals is apparent. It can be seen thatDX2(t) exhibits more
frequent bursts thanDX1(t), reflecting the fact thatDX2(t)
is subjected to larger fluctuations thanDX1(t).

We can confirm that these intermittent signals actua
represent noisy on–off intermittency by calculating the lam
nar length distribution. The laminar phase is defined a
continuous duration, during which the absolute value of
difference does not exceed a certain threshold. Here
choose 0.5 as the threshold value. Figure 7 displays lam
length distributionsR(t) obtained fromDX1(t) andDX2(t).
The characteristic shape of the distributionR(t), i.e., the
power-law dependence ont with slope23/2 for smallt to-
gether with the exponential shoulder seen in the larget re-
gion, clearly indicates that the signals actually correspond

FIG. 5. Power-law behavior of the correlation functions: log–log plot
C02C( l ) vs l obtained for several values of the coupling strengthK.

FIG. 6. Typical evolution of the amplitude differences. The distance
tween the elements is 51221 for DX1(t) and 6421 for DX2(t).
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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noisy on–off intermittency. The shoulder reflects brok
scale invariance due to the additive noise. As expected,
shoulder ofDX2(t) appears at a smaller value oft than that
of DX1(t).9,10

VI. MULTISCALING ANALYSIS

The notion of multiscaling~i.e., multiaffinity and multi-
fractality! has been employed successfully in characteriz
complex spatio-temporal behavior of various phenome
such as velocity and energy dissipation fields in flu
turbulence,2,12 rough interfaces in fractal surface growth,13

nematic fluid electro-convective turbulence,14 financial data
of currency exchange rates,15 and even in natural images.16

In Refs. 6 and 11, we introduced multiscaling analysis i
our system for the one-dimensional case, inspired by the
parent similarity of the amplitude and difference fields in o
system to the velocity and energy dissipation fields in fl
turbulence. Here we apply multiscaling analysis to the tw
dimensional case.

First, we introduce the difference fieldZ(r) as

Z~r!ªu¹X~r!u5AS ]X

]x D 2

1S ]X

]y D 2

. ~14!

This quantity emphasizes the edges of the original amplit
field X(r) ~Here, the differential should not be interprete
literally. We always use a finite difference in the actual c
culation, e.g.,@X(x1Dx,y)2X(x,y)#/Dx with sufficiently
small Dx.). It is the analogue of the energy dissipation fie
in fluid turbulence. Figure 8 presents a typical snapsho
the difference fieldZ(x,y) at K50.85, corresponding to th
amplitude field shown in Fig. 2. The intermittency under
ing the original amplitude field is now apparent.

We then introduce the following quantities as measu
for the amplitude fieldX(r) and the difference fieldZ(r):

h~r; l !ªuX~r1 l!2X~r!u, ~15!

m~r; l !ªE
S(r; l )

Z~r8!d2r8. ~16!

FIG. 7. Distributions of the laminar length obtained from the time sequen
DX1(t) andDX2(t) shown in Fig. 6.
ownloaded 18 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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Here u lu5 l , and the domain of integrationS(r; l ) is a square
of length l placed atr. The first quantity is the difference in
the amplitude fieldX(r) at two points separated by a distan
l, and the second quantity is the volume enclosed by
difference fieldZ(r) and the squareS(r; l ).

Following the multifractal formalism, two types of par
tition functions are defined as

Zh
q~ l !ª^h~ l !q&5

1

M ~ l ! (i 51

M ( l )

h~r i ; l !q, ~17!

Zm
q ~ l !ªN~ l !^m~ l !q&5(

i 51

N( l )

m~r i ; l !q, ~18!

whereZh
q( l ) is calculated along a certain line in some dire

tion, as in the case of the previously considered spatial c
relation function, whileZm

q ( l ) is calculated over the entire
system.r i is either the position of the line segment or th
position of the square.M ( l ) is the number of line segment
of length l that are needed to cover the entire line, andN( l )
is the number of squares of sizel that are needed to cover th
entire system. The functionZh

q( l ) is called the ‘‘structure
function’’ in the context of fluid turbulence.2,12

When the measures possess scaling properties, the p
tion functions are expected to scale withl asZh

q( l ); l z(q) and
Zm

q ( l ); l t(q). Furthermore, if these exponentsz(q) andt(q)
depend nonlinearly onq, the corresponding measuresh( l )
and m( l ) are called ‘‘multiaffine’’ and ‘‘multifractal,’’
respectively.2,12,13

For the one-dimensional case, we know that the am
tude field is multiaffine and the difference field is multifra
tal. Moreover, our previous theory predicts the followin
form for the scaling exponentz(q) of the amplitude field:

z~q!5q~0,q,b!, b~b,q!. ~19!

s

FIG. 8. Snapshot of the difference fieldZ(x,y) for K50.85, corresponding
to the amplitude field shown in Fig. 2.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Hereb is a positive constant determined by the fluctuation
the finite-time Lyapunov exponent of the element. It is
lated to the slope of the probability distribution ofh( l ).6,11

This is the simplest form of multiaffinity, and is sometim
referred to as ‘‘bi-fractality.’’ ~There is some confusion in
terminology for historical reasons. The term bi-affini
would be more appropriate.!12 This form of the scaling ex-
ponentz(q) is also expected in two dimensions, since o
previous theory imposes no restriction on the dimensiona
of the system.

For the scaling exponentt(q) of the difference field, we
have not yet been able to develop a satisfactory theory.
merical results in one-dimensional systems suggest thatt(q)
also depends nonlinearly onq and that the difference field i
multifractal with a rather simple functional form fort(q).11

However, the scaling exponentt(q) for two-dimensional
systems may be different from that in the one-dimensio
case, since the definition ofZm

q ( l ) depends on the dimension
ality of the system@In the one-dimensional case,11 we de-
fined the difference field asZ(x)ªudX(x)/dxu. In that case,
the PDFs~probability distribution functions! of the measure
m(x; l ) roughly collapse under rescaling. With the definitio
given in Eq.~14!, this does not hold in two dimensions, a
we see in Sec. VII.#, while Zh

q( l ) is always defined along a
line.

Let us proceed to the numerical results. The coupl
strengthK is fixed at 0.85 hereafter, where the system is fu
in the anomalous spatio-temporal chaotic regime.

Figure 9 displays the partition functionZh
q( l ) obtained

for several values ofq. Each curve depends onl in a power-
law manner for smalll, and the corresponding exponent i
creases withq. The dependence of the scaling exponentz(q)
on q is shown in Fig. 10. Thez(q) curve is a strongly non-
linear function of q, and the multiscaling property of th
amplitude field is evident. Furthermore, thez(q) curve pos-
sesses a bi-linear form, as expected from Eq.~19!, although a
sharp transition is absent, due to the limited number of
cillators @There exists another asymptotic regime near
transition point, whereZh

q( l ) does not behave in a power-la

FIG. 9. Partition functionsZh
q( l ) for several values ofq, at intervals of 0.5.

The top line corresponds toq50, and the bottom one toq55.
ownloaded 18 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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manner.6,7 The measured exponents deviate from the theo
ical values in this regime. With an increase inN, this
asymptotic regime shrinks, and the transition becom
clearer~see inset of Fig. 10!.#. From the largeq behavior of
the exponent, we can roughly estimate the value ofb as
;0.45.

Thus, the amplitude field turns out to be multiaffine, a
the behavior of the scaling exponent is the same as that in
one-dimensional case.

Figure 11 shows the partition functionZm
q ( l ) for several

values ofq. It is clear that each curve exhibits a power-la
dependence onl. The width of the region in which the powe
law holds seems much wider than in the previous case.
scaling exponentt(q) is plotted in Fig. 12. The correspond
ing generalized dimensionD(q)ªt(q)/(q21) is also
shown in the inset.t(q) is again a nonlinear function ofq,
but its dependence onq does not seem to be so simple as th

FIG. 10. Scaling exponentz(q) obtained forN2520482. The theoretical
curve Eq.~19! with b50.45 is compared with the experimental data. T
dependence of the exponent spectra on the number of oscillators is sho
the inset for the casesN252562, 5122, and 20482.

FIG. 11. Partition functionsZm
q ( l ) for several values ofq, at intervals of 0.5.

The bottom line corresponds toq50 and the top one toq55.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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of z(q). However, as we conjectured~based on the results o
our numerical analysis! in the one-dimensional case,11 t(q)
seems to depend linearly onq in the asymptotic regime. Cor
respondingly, theD(q) curve seems to saturate to a horizo
tal line D(q)5D(`), and this transition becomes sharper
we increase the system size@We cannot observe a clear tra
sition to a horizontal line, as in the one-dimensional ca
This may be due to the limited number of oscillators us
~We typically neededN5215 oscillators to observe a clea
transition in one dimension. Since in two dimensions t
requiresN25230 oscillators, such was not possible in o
present simulations.!, or to the two-dimensionality of the
system.#.

Thus, the difference field also turns out to be multifra
tal. Despite the above-mentioned two-dimensionality of
system, the behavior of the scaling exponent is roughly
same as that in the one-dimensional case. In particula
exhibits linear dependence onq asymptotically.

VII. PROBABILITY DISTRIBUTIONS OF THE
MEASURES

The multiscaling properties of the amplitude and diffe
ence fields are consequences of the intermittency underl
the system. In order to analyze this intermittency in mo
detail, we study here the probability distribution functio
~PDF! of both measures at each length scale.

Let us consider the PDFs of the measuresh( l ) andm( l ).
It is convenient to use the rescaled measureshr( l ):5h( l )/ l
and mr( l )ªm( l )/ l 2 and the corresponding rescaled PD
Pr(hr ; l ) and Qr(mr ; l ). With this rescaling, the peaks an
widths of the PDFs become relatively close. We give o
results in these rescaled variables.

The scaling exponentsz(q) and t(q) are fully deter-
mined by the dependence of these PDFs on the scalel. In
Ref. 11, we approximated the tails of the PDFs with cert
functional forms and extracted the scaling exponents asy
totically in the smalll limit. Here we only present some o

FIG. 12. Scaling exponentt(q) obtained forN2520482. The inset shows
the corresponding generalized dimensionD(q) for the cases N2

52562, 5122, and 20482.
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the numerical results for the purpose of emphasizing the
termittency of the amplitude and difference fields.

Figure 13 displays the rescaled PDFPr(hr ; l ) of the
rescaled amplitude differencehr( l ) for several values ofl on
a log–log scale. Each PDF has a characteristic shape sim
to the truncated Le´vy distribution, as we obtained previousl
for the one-dimensional case. This is composed of a cons
region near the origin, a power-law decay in the middle, a
a sharp cutoff. Each curve roughly collapses to a sca
invariant curve in the constant and power-law regions, wh
the cut-off of the tail moves to the right asl decreases, due to
the intermittency. More precisely, the cut-off position of th
PDF ~defined in some suitable way! is proportional tol 21.
This gives rise to the bi-fractal behavior of thez(q) curve
~see Ref. 11 for details!.

Our previous theory predicts that the slope of the pow
law decay is212b, with the constantb from Eq. ~19!.
This is confirmed in Fig. 13, where the slope of the pow
law decay can be read off as21.4, roughly in agreemen
with the previously obtained valueb;0.45 from the scaling
exponentz(q). The inset of Fig. 13 displays the PDF of th
amplitude differenceh( l ) ~without taking the absolute
value!, rescaled by the standard deviation on a linear-
scale, in order to further emphasize the intermittency of
amplitude field. The PDF evolves from a nearly Gauss
form into an intermittent power-law form as the scalel de-
creases.

Figure 14 displays the PDFsQr(mr ; l ) for the rescaled
volume mr( l ). Their shapes are not as simple as those
Pr(hr ; l ). They are also qualitatively different from the PD
for the difference field in the one-dimensional case11 @The
main differences are~i! the PDFs do not collapse under th
rescaling, and~ii ! the exponent of the power-law decay va
ies gradually withl. These are primarily due to the differen

FIG. 13. Rescaled PDFsPr(hr ; l ) for l 5A2, 2A2, 4A2, 8A2, 16A2,
and 32A2 (3102421). The curve with the slowest cutoff corresponds
l 5A23102421, and the leftmost curve with the fastest cutoff correspon
to l 532A23102421. The inset shows the PDFs of the amplitude differen
h( l ) ~without taking the absolute value!, rescaled by the standard deviatio
on a log-linear scale forl 5A2 ~the steepest curve!, 4A2, 16A2, 64A2,
and 128A2 ~the nearly quadratic curve! (3102421).
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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definition of the difference fieldZ(r) from the one-
dimensional case.#. However, we can still see in the prese
case that both tails extend, and the distribution widens as
scale l decreases. That is, as we decrease the observ
scalel, largely deviated events appear more frequently. I
obvious that this intermittency effect gives rise to the no
linearity of the scaling exponentt(q), although the precise
functional form is difficult to obtain. The inset shows th
PDF of the measurem( l ) rescaled by the standard deviatio
on a linear-log scale for several values ofl. The PDF gradu-
ally becomes steeper asl decreases due to the intermittenc

Hence, the PDFs of the measures reveal the inter
tency of our system clearly. In particular, the PDF for t
amplitude differenceh( l ) has the same shape as that alrea
obtained in the one-dimensional case.

VIII. CONCLUSION

We numerically analyzed a two-dimensional system
nonlocally coupled complex Ginzburg–Landau oscillato
As in the one-dimensional case, we found an anomal
spatio-temporally chaotic regime characterized by power-
behavior of the spatial correlation function. As expect
from our previous theory, the amplitude difference betwe
neighboring elements exhibits noisy on–off intermittenc

FIG. 14. Rescaled PDFsQr(mr ; l ) for l 52 ~the widest distribution with the
steepest power-law decay!, 8, 32, and 128~the narrowest! (3102421). The
inset shows the PDFs ofm( l ), rescaled by the standard deviation on
log-linear scale for the same set of values ofl. The steepest curve corre
sponds tol 523102421, and the curve with the nearly quadratic peak co
responds tol 51283102421.
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giving a microscopic dynamical origin for the power-la
spatial correlations. We performed a multiscaling analysis
regime exhibiting anomalous spatio-temporal chaos
found that the amplitude and difference fields are inde
multiaffine and multifractal, indicating strong intermittenc
underlying the system. By studying the PDFs of the m
sures at each length scale, the intermittency was clearly
served in the form of scale-dependent deviations of the P
in their tails.

Multiscaling properties are also known to exist in ph
nomena such as fluid turbulence and fractal surface grow
The appearance of similar multiscaling properties in ma
different systems suggests some underlying common st
tical law. Further study of the intermittency in our syste
will give more insight into understanding the multiscalin
properties observed in complex dissipative systems.

ACKNOWLEDGMENTS

The author gratefully acknowledges helpful advice a
continuous support from Professor Yoshiki Kuramoto a
thanks Dr. Axel Rossberg and Dr. Glenn Paquette for cr
cally reading the manuscript. He also thanks the Yuka
Institute for providing computer resources, and the JSPS
search Fellowships for Young Scientists for financial su
port.

1Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence~Springer-
Verlag, Berlin, 1984!.

2T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani,Dynamical Systems
Approach to Turbulence~Cambridge University Press, Cambridge, 1998!.

3V. Hakim and W-J. Rappel, Phys. Rev. A46, 7347~1992!; N. Nakagawa
and Y. Kuramoto, Prog. Theor. Phys.89, 313 ~1993!.

4K. Kaneko, Physica D41, 137 ~1990!; T. Shibata and K. Kaneko, Phys
Rev. Lett.81, 4116~1998!.

5Y. Kuramoto, Prog. Theor. Phys.94, 321 ~1995!.
6Y. Kuramoto and H. Nakao, Phys. Rev. Lett.76, 4352 ~1996!; 78, 4039
~1997!.

7H. Nakao, Phys. Rev. E58, 1591~1998!.
8A. S. Pikovsky, Phys. Lett. A165, 33 ~1992!.
9N. Platt, S. M. Hammel, and J. F. Heagy, Phys. Rev. Lett.72, 3498
~1994!.
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