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A two-dimensional system of nonlocally coupled complex Ginzburg—Landau oscillators is
investigated numerically for the first time. As previously shown for the one-dimensional case, this
two-dimensional system exhibits anomalous spatio-temporal chaos characterized by power-law
spatial correlations. In this chaotic regime, the amplitude difference between neighboring elements
displays temporal noisy on-off intermittency. The system is also spatially intermittent in this
regime, as revealed by multiscaling analysis: The amplitude field is multiaffine and the difference
field is multifractal. Correspondingly, the probability distribution function of the measure defined
for each field is strongly non-Gaussian, exhibiting scale-dependent deviations in the tail due to
intermittency. © 1999 American Institute of Physid§1054-150009)01304-X]

Assemblies of mutually interacting dynamical units are  amplitude and this mean amplitude in such a way that the
ubiquitous in nature. As models for them, systems of amplitude differences between elements tend to decrease.
simple coupled dynamical elements, e.g., limit cycle oscil- A system with diffusive coupling is a representative lim-
lators and chaotic maps, have been studied extensively. iting case. Here, each element interacts strongly with its
Recently, a new class of coupled systems, those with non- nearest neighbors, so that the amplitude field of the system is
locally coupled dynamical elements, was introduced and always continuous and smooth. It is well known that some
found to exhibit anomalous spatio-temporal chaos char- equations describing diffusively coupled systems of dynami-
acterized by power-law spatial correlations. All previous  cal elements, such as the complex Ginzburg—Landau equa-
studies on such systems have been done in one dimension,tion, exhibit spatio-temporal chadg.

but the mechanism for the appearance of this spatio- The opposite limiting case is that of global coupling, or
temporal chaos seems to be universal, and it is also ex- mean-field coupling in the narrow sense. Here, each element
pected to exist in higher dimensions. In this paper, a two- is coupled to the mean field of the entire system, and is thus
dimensional system of nonlocally coupled oscillators is coupled to all elements with equal strength. In this case, the
investigated for the first time. As in the one-dimensional amplitude field becomes statistically spatially homogeneous,
case, the system is found to exhibit anomalous spatio- and the notion of space is lost. It is known that systems with
temporal chaos, accompanied by several distinctive fea- global coupling generally exhibit some typical forms of be-
tures specific to this chaotic regime: Power-law spatial havior, e.g., clustering and collective chads.

correlations, noisy on-off intermittency, and multiscaling In Ref. 5, Kuramoto introduced a system lying between
properties. the above two limiting cases, one of nonlocally coupled ele-

ments. Our subsequent numerical simulations of one-
dimensional, nonlocally coupled systems with various types
I. INTRODUCTION of elements revealed that such systems generally exhibit
anomalous spatio-temporal chaotic behavior, which cannot
Assemblies of coupled dynamical elements are widelybe seen in the two limiting cases. In this chaotic regime, the
observed in nature. Simplified models of such systems, e.gamplitude field becomes fractal, and the spatial correlation of
coupled limit cycle oscillators and chaotic maps, have playedhe amplitude field displays power-law behavior on small
important roles not only in modeling such systems realisti-scales. Furthermore, the fractal dimension and the exponent
cally but also in understanding the varieties of possible beef the spatial correlation vary continuously with the coupling
havior of systems far from equilibrium. Many important con- strength. We developed a theory, based on a simple multipli-
cepts, such as pattern formation and spatio-temporal chaosative stochastic modéf’, that can explain the fractality of
have been extracted from detailed studies of such models.the amplitude field and the power-law behavior of the spatial
The interaction between elements is usually assumed toorrelation. Such a model is frequently employed in describ-
be attractive, and of a mean-field type in a wide sense; eadhg the noisy on—off intermittency phenomé&n# found in
element is coupled to the mean amplitude of its neighboringnany physical systems, and this suggests that our system too
elements, and is driven by the difference between its owiikely exhibits this type of temporal intermittency. The tem-
poral intermittency of our system induces a spatial intermit-
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ity. We also carried out multifractal analysis of the difference  G(r)xexp —y|r|), d=1, (7)
field of the original amplitude field, inspired by its apparent
similarity to the intermittent energy dissipation field in fluid Ko(ylr)), d=2, )

turbulence®

All our previous studies were done in one-dimensional M
systems. However, our previous theory does not require the yIr]
systems to be one-dimensional, and spatio-temporal chaQgherek, is the modified Bessel function. The constanis
with power-law structure functions is also expected in highefine inverse of the coupling length and is given by
dimensions. In this paper, we study a system of nonlocally

, d=3, (C)

coupled complex Ginzburg—Landau oscillators in two di- _ \/; 10
mensions for the first time, and investigate the anomalous “ND (10

spatio-temporal chaotic regime of this system. Some consid-

eration is given to the multiscaling properties of the intermit- E8¢h Gd(r) must satisfy the normalization condition
tent amplitude and difference fields. JG(r)d%=1. Since we treat a two-dimensional system, we

use Eq.(8) for G(r) hereafter.
As elements, we use complex Ginzburg—Landau oscilla-
Il. MODEL tors. They are the simplest limit cycle oscillators that can be
As proposed by Kuramotononlocal coupling naturally derived thr_ough _the center-mamfold re(_zluctlor_1 tech_nlque
from generic oscillators near their Hopf bifurcation poihts.

appears in the following plausible situation. Consider an as . o
sembly of spatially distributed dynamical elements, e.g.,] € corresponding nonlocally coupled system is given by the

cells. Each element is assumed to interact indirectly with©!!owing equation for the complex amplitud&/ (Here we
other elements through som.g., chemical substance, explicitly include the term—W|n the coupling part in order
which diffuses and decays much faster than the dynamics 4p express that the coupling is actually attractive. It could as

each element. Such a situation can be described by the set We!l be absorbed into the intrinsic part by rescaling the vari-
ables suitably:

equations
X(r,t)=F(X(r,1)) +K-A(r,1), (1) W(r,t)=W—(1+i02)IW|2W+K(1+icl)(V_V—W)-(11)
€A(r,t)=— pA(r,t) + DV2A(r,t) + X(r,t), 2

HereK is the coupling strength;; andc, are real param-
where X is the amplitude of an elemenE describes the eters, and the nonlocal mean-fiaM is given by

intrinsic dynamics of the amplitude in the absence of cou-

pling, andA is the concentration of the intermediating sub- V_V(r,t)=f dr'G(r' —r)W(r',t). (12)
stance with decay ratg and diffusion rateD. The substance

A is generated at a rate proportional to the amplitdd@nd T js the nonlocal complex Ginzburg—Landau equation in-

the amplitudeX is affected by the substane® through a  roduced by Kuramofbas the first concrete example of non-
coupling matrixK. The parametee determines the ratio of locally coupled systems.

the time scale of the elements to that of the substance, and is
assumed to be very small.
Now, let us consider the— 0 limit and eliminate the
dynamics ofA adiabatically. Setting the left-hand side of Eq. /!l ANOMALOUS SPATIO-TEMPORAL CHAOS

(2) 10 0, we can solve the equation féras In the numerical simulations whose results are presented

, , , here, the system was a square lattice of length 1. A total of

A(r,t)=f dr'G(r' —=nX(r’,1), (3 N2=512-2048 elements were situated at lattice sites, and
periodic boundary conditions were used. The coupling length
vy~ 1 was fixed to 1/8. The nonlocal mean field is easily cal-
(p—DV3G(r'—r)=68(r"). (4) culated by using the FFTfast Fourier transforitechnique,
since it is simply a convolution of the amplitude field with
the kernel Eq(8). We setc,;=—2 andc,=2. These are the
standard values used in our one-dimensional simulations.

In Figs. 1-3, typical snapshots of the real péfk,y) of
the complex variabl&V(x,y) are shown for three different
values of the coupling strengtk. (Since by symmetry we
obtain similar figures for the imaginary par(x,y), we use

whereG(r’ —r) is a kernel that satisfies

By inserting Eq.(3) into Eq. (1), we obtain the following
system of nonlocally coupled dynamical elements

X(r,t)=F(X(r,t))+K- f dr'G(r’' —r)X(r',t). (5)

The kernelG(r’' —r) can be solved as

1 exdiq-(r'—r)] X(x,y) in the following analysis and call it the “amplitude
G(r'—rn= df dq > (6)  field.”) The amplitude field ak=1.05 is continuous and
(2m) 7+Dld| smooth, while aK =0.65 it seems to be discontinuous and
whered is the spatial dimension of the system. When thedisordered, although not completely random. The amplitude
system is isotropic, the kern@ becomes a function of the field at the intermediate coupling strengkt=0.85 looks
distancer:=|r’ —r|, and can be expressed as somewhat more complex and intriguing; it is composed of
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FIG. 1. Snapshot of the amplitude fiek{x,y) for K=1.05. Darker dots FIG. 3. Snapshot of the amplitude fieldx,y) for K=0.65.
indicate larger amplitudes.

intricately convoluted, smooth and disordered patches oforrelation function becomes steep, and the center of the
various length scales. This is the anomalous spatio-temporgraph, which corresponds to the self-correlat®{®0,0), be-
chaotic regime in which we are interested. comes peaked.

In Ref. 5, the anomalous spatio-temporal chaotic regime
is characterized by the power-law behavior of the spatial

IV. SPATIAL CORRELATION FUNCTION correlation function at small distance:

Let us first examine the spatial correlation function. Fig- N
ures 4a)—4(c) display the spatial correlation functions C(1):=(X(0)X(1))=Co=Cal*(I<1), (13
C(x,y)=(X(0,0)X(x,y)) corresponding to the amplitude \yhere C, and C, are constants and is a noninteger
fields shown in Figs. 1-3. Each correlation function is parameter-dependent exponent.
clearly rotationally symmt_etric, rt_esulting from thg isotropy of To confirm that this power-law behavior also exists in
the system. As the amplitude field becomes disordered, thg,, dimensions. we calculated the radial correlation function
C()=(X(r)X(r+1)) (|l|=1) along a straight line in a cer-
tain direction[We mainly used the (0,1) and (1,1) direc-
tions, but the results are independent of the direcliand
fit for the best values o, andC; . Figure 5 displays Ihvs
InN[Cy—C(I)] for several values of the coupling strengh
For each coupling strength, the experimental data fall almost
along a single line, and the power-law behavior is evident.
The exponentr of the power law varies continuously with
the coupling strength. Although not shown in the figure, the
correlation functionC(l) is continuous at the origin=0 for
K=K, and discontinuous forK<K., where 0.88K_.
<0.85. At this value, there appears a finite gap between the
self-correlation C(0) and the correlation between the
nearest-neighbor elements |im, (C(I)=C,. This implies
that the motion of each individual element becomes so vio-
lent that the amplitude field is no longer continuous statisti-
cally. In Ref. 7, this transition point is identified with the
blowout bifurcation point in the on—off intermittent dynam-
ics of the amplitude difference between nearby elements.

Thus, the anomalous spatio-temporal chaos in two di-
mensions is also characterized by power-law behavior of the
spatial correlation function with a parameter-dependent ex-
FIG. 2. Snapshot of the amplitude fiek{x,y) for K=0.85. ponent.
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FIG. 4. Short-range spatial correlation functio@éx,y) for () K=1.05,

(b) K=0.85, and(c) K=0.65.

V. NOISY ON-OFF INTERMITTENCY

In Refs. 6 and 7, we argue that the scaling behavior of

FIG. 5. Power-law behavior of the correlation functions: log—log plot of
Co—C(l) vs| obtained for several values of the coupling streri§th

We now report results that confirm this for our system.
The coupling strengtliK was set at 0.85. Figure 6 shows
typical time sequences of the amplitude differendes; (t)
andAX,(t). The distance between the elements is 51fr
AX,(t) and 641 for AX,(t). Strong intermittency of the
signals is apparent. It can be seen thi,(t) exhibits more
frequent bursts that X, (t), reflecting the fact thah X,(t)
is subjected to larger fluctuations tharX,(t).

We can confirm that these intermittent signals actually
represent noisy on—off intermittency by calculating the lami-
nar length distribution. The laminar phase is defined as a
continuous duration, during which the absolute value of the
difference does not exceed a certain threshold. Here we
choose 0.5 as the threshold value. Figure 7 displays laminar
length distributiondR(t) obtained fromA X, (t) andAX,(t).

The characteristic shape of the distributi®{t), i.e., the
power-law dependence drwith slope —3/2 for smallt to-
gether with the exponential shoulder seen in the ldrge
gion, clearly indicates that the signals actually correspond to

the spatial correlation is a consequence of the underlying~

S—

multiplicative processes of amplitude differences betweené

neighboring elements. We described this process using
multiplicative stochastic model and related the expomeat

the spatial correlation with the fluctuation of the finite-time
Lyapunov exponent of an element. This model shares all
essential features with those used in describing noisy on—of

intermittency®~*° This suggests that our system should also ~

exhibit this type of temporal intermittency. Actually, the ﬁ

finite-time Lyapunov exponent of an externally driven com-
plex Ginzburg—Landau oscillator can fluctuate between posi-
tive and negative values, and neighboring oscillators are sub
jected to only slightly different nonlocal mean field.
Therefore, the conditions for the appearance of noisy on—oft
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t
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6000

intermittency between neighboring oscillators are satisfied if|c. 6. Typical evolution of the amplitude differences. The distance be-

our system.

tween the elements is 512 for AX,(t) and 641 for AX,(t).
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R(1)

10°
t

FIG. 7. Distributions of the laminar length obtained from the time sequences
AX4(t) andAX,(t) shown in Fig. 6.

noisy on—off intermittency. The shoulder reflects brokenriG. 8. Snapshot of the difference fiefqx,y) for K=0.85, corresponding
scale invariance due to the additive noise. As expected, thie the amplitude field shown in Fig. 2.

shoulder ofA X,(t) appears at a smaller value othan that

of AX,(t).%1°

Here|l|=1, and the domain of integratia®(r;!) is a square
VI. MULTISCALING ANALYSIS of lengthl placed atr. The first quantity is the difference in
The notion of multiscalindi.e., multiaffinity and multi-  the amplitude field(r) at two points separated by a distance
fractality) has been employed successfully in characterizing: @nd the second quantity is the volume enclosed by the

complex spatio-temporal behavior of various phenomenadifference fieldZ(r) and the squar&(r:l).
such as velocity and energy dissipation fields in fluid  Following the multifractal formalism, two types of par-

turbulencé'? rough interfaces in fractal surface growth, fition functions are defined as

nematic fluid electro-convective turbulenéefinancial data M(h)
of currency exchange raté%and even in natural imagé$. ZA():=(h(1)% = WZ h(r;;1)9, (17
In Refs. 6 and 11, we introduced multiscaling analysis into (h=
our system for the one-dimensional case, inspired by the ap- N(l)
parent similarity of the amplitude and difference fields in our Z3(1):==N({(m(H= > m(r;;1)9, (18
system to the velocity and energy dissipation fields in fluid i=1

turbulence. Here we apply multiscaling analysis to the two-
dimensional case. whereZg(l) is calculated along a certain line in some direc

First, we introduce the difference fiek(r) as t|on,_as in the_ case qf thqe prgwously considered spatla_l cor-
. 5 relation function, whileZ(I) is calculated over the entire
Z(r)=|VX(r)| = (%) +<%) (14) system.r; is either the position of the line segment or the
X ay| - position of the squareM (1) is the number of line segments

This quantity emphasizes the edges of the original amplitud8' €ngth! that are needed to cover the entire line, &f(d)

field X(r) (Here, the differential should not be interpreted 'S the number of squares of S('Ftha,t are needed to cover the
literally. We always use a finite difference in the actual cal-S"iré system. The functiod(l) is called 1Ehe structure
culation, e.g.[X(x+Ax,y)—X(x,y)]/Ax with sufficiently function” in the context of fluid turbule_nc%. _ _
smallAx.). It is the analogue of the energy dissipation field Wher? the measures possess sca!mg %ropertze()s), the parti-
in fluid turbulence. Figure 8 presents a typical snapshot o*'gn functzo)ns are expected_ to scale wiitasZy(1)~1* and

the difference fieldZ(x,y) atK=0.85, corresponding to the Zm(l)~17%. Furthermore, if these exponeritn) and(q)
amplitude field shown in Fig. 2. The intermittency underly- 46Pend nonlinearly om, the corresponding measuragl)

ing the original amplitude field is now apparent. and m(l) are called “multiaffine” and “multifractal,

H , 12,13
We then introduce the following quantities as measuredespectively’

for the amplitude fieldX(r) and the difference fiel&(r): For the one-dimensional case, we know that the ampli-
tude field is multiaffine and the difference field is multifrac-
h(r;l):=|X(r+1)—X(r)

: (15  tal. Moreover, our previous theory predicts the following
form for the scaling exponerit(q) of the amplitude field:

{(q)=0a(0<q<p), B(B=<q). (19

m(r;I)::L(rII)Z(r’)dzr’. (16)
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FIG. 9. Partition function&(I) for several values od, at intervals of 0.5. ) . .

The top line corresponds =0, and the bottom one tg=5. FIG. 10. Scaling exponenf(q) obtained forN?=204&. The theoretical
curve Eq.(19) with 8=0.45 is compared with the experimental data. The
dependence of the exponent spectra on the number of oscillators is shown in
the inset for the case¥?=256, 512, and 2048.

Herep is a positive constant determined by the fluctuation of

the finite-time Lyapunov exponent of the element. It is re-

lated to the slope of the probability distribution bfl).®**  mannef®’ The measured exponents deviate from the theoret-

This is the simplest form of multiaffinity, and is sometimesical values in this regime. With an increase My this

referred to as “bi-fractality.” (There is some confusion in asymptotic regime shrinks, and the transition becomes

terminology for historical reasons. The term bi-affinity clearer(see inset of Fig. 10]. From the largey behavior of
would be more appropriaté? This form of the scaling ex- the exponent, we can roughly estimate the valugBoas
ponent(q) is also expected in two dimensions, since our~0.45.

previous theory imposes no restriction on the dimensionality = Thus, the amplitude field turns out to be multiaffine, and

of the system. the behavior of the scaling exponent is the same as that in the

For the scaling exponen{q) of the difference field, we one-dimensional case.
have not yet been able to develop a satisfactory theory. Nu-  Figure 11 shows the partition functicf.(1) for several
merical results in one-dimensional systems suggestrltgt  values ofq. It is clear that each curve exhibits a power-law
also depends nonlinearly apand that the difference field is dependence oh The width of the region in which the power
multifractal with a rather simple functional form fe(q).'*  law holds seems much wider than in the previous case. The
However, the scaling exponent(q) for two-dimensional scaling exponent(q) is plotted in Fig. 12. The correspond-
systems may be different from that in the one-dimensionaing generalized dimensiorD(q):=7(q)/(q—1) is also
case, since the definition @f (1) depends on the dimension- shown in the insetz(q) is again a nonlinear function af,
ality of the systeniIn the one-dimensional caséwe de- but its dependence anpdoes not seem to be so simple as that
fined the difference field a&(x):=|dX(x)/dx|. In that case,
the PDFs(probability distribution functionsof the measure
m(x;1) roughly collapse under rescaling. With the definition 102 [ ‘ '
given in Eq.(14), this does not hold in two dimensions, as
we see in Sec. VI|, while ZJ(1) is always defined along a
line. 15

Let us proceed to the numerical results. The coupling
strengthK is fixed at 0.85 hereafter, where the system is fully
in the anomalous spatio-temporal chaotic regime.

Figure 9 displays the partition functiaff(l) obtained <& 10 |
for several values of. Each curve depends drin a power-
law manner for small, and the corresponding exponent in-
creases witly. The dependence of the scaling expon&iaf) 100
on g is shown in Fig. 10. Th&(q) curve is a strongly non-
linear function ofq, and the multiscaling property of the
amplitude field is evident. Furthermore, tli€q) curve pos- 10° Lo ‘ s
sesses a bi-linear form, as expected from #8), although a 10 10
sharp transition is absent, due to the limited number of os- !
cillators [There exists another asymptotic regime near the: . 11. partition functiong(l) for several values a, at intervals of 0.5.
transition point, wher&J(l) does not behave in a power-law The bottom line corresponds tp=0 and the top one tq=5.

()

m
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FIG. 12. Scaling exponent(q) obtained forN?=204&. The inset shows
the corresponding generalized dimensidd(q) for the cases N?
=256, 512, and 2048

of £(q). However, as we conjecturédased on the results of
our numerical analysjsn the one-dimensional casé(q)
seems to depend linearly grin the asymptotic regime. Cor-
respondingly, thé(q) curve seems to saturate to a horizon-
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FIG. 13. Rescaled PDFB,(h, ;1) for =42, 22, 42, 82, 16,2,
and 33/2 (xX1024°1). The curve with the slowest cutoff corresponds to
|=2x10241, and the leftmost curve with the fastest cutoff corresponds
to1=32y2x 10241, The inset shows the PDFs of the amplitude difference
h(l) (without taking the absolute valyerescaled by the standard deviation
on a log-linear scale for=+2 (the steepest curye4\2, 16y2, 642,

and 128/2 (the nearly quadratic curyd x 10247 1).

tal line D(q)=D(), and this transition becomes sharper asthe numerical results for the purpose of emphasizing the in-
we increase the system sipé/e cannot observe a clear tran- termittency of the amplitude and difference fields.

sition to a horizontal line, as in the one-dimensional case. Figure 13 displays the rescaled PO¥(h,;l) of the

This may be due to the limited number of oscillators usedescaled amplitude differendg(l) for several values dfon

(We typically neededN= 2% oscillators to observe a clear a log—log scale. Each PDF has a characteristic shape similar
transition in one dimension. Since in two dimensions thisto the truncated Dey distribution, as we obtained previously
requiresN?=2% oscillators, such was not possible in our for the one-dimensional case. This is composed of a constant

present simulations. or to the two-dimensionality of the
system.

Thus, the difference field also turns out to be multifrac-

region near the origin, a power-law decay in the middle, and
a sharp cutoff. Each curve roughly collapses to a scale-
invariant curve in the constant and power-law regions, while

tal. Despite the above-mentioned two-dimensionality of thethe cut-off of the tail moves to the right dslecreases, due to
system, the behavior of the scaling exponent is roughly thehe intermittency. More precisely, the cut-off position of the

same as that in the one-dimensional case. In particular,
exhibits linear dependence gnasymptotically.

VIl. PROBABILITY DISTRIBUTIONS OF THE
MEASURES

The multiscaling properties of the amplitude and differ-

PDF (defined in some suitable wpys proportional tol ~1.
This gives rise to the bi-fractal behavior of tljéq) curve
(see Ref. 11 for details

Our previous theory predicts that the slope of the power-
law decay is—1— 3, with the constani8 from Eg. (19).
This is confirmed in Fig. 13, where the slope of the power-
law decay can be read off as1.4, roughly in agreement

ence fields are consequences of the intermittency underlyingith the previously obtained valyg~ 0.45 from the scaling
the system. In order to analyze this intermittency in moreexponent/(q). The inset of Fig. 13 displays the PDF of the

detail, we study here the probability distribution functions
(PDPF) of both measures at each length scale.

Let us consider the PDFs of the measuré9 andm(l).
It is convenient to use the rescaled measingt): =h(l)/I

amplitude differenceh(l) (without taking the absolute

value), rescaled by the standard deviation on a linear-log
scale, in order to further emphasize the intermittency of the
amplitude field. The PDF evolves from a nearly Gaussian

and m,(1):=m(1)/I? and the corresponding rescaled PDFsform into an intermittent power-law form as the scélde-

P.(h;;I) andQ,(m, ;). With this rescaling, the peaks and

widths of the PDFs become relatively close. We give our

results in these rescaled variables.
The scaling exponent§(q) and 7(q) are fully deter-
mined by the dependence of these PDFs on the dcéfe

creases.
Figure 14 displays the PDR3,(m, ;I) for the rescaled
volume m,(l). Their shapes are not as simple as those for
P.(h,;l). They are also qualitatively different from the PDF
for the difference field in the one-dimensional cas&he

Ref. 11, we approximated the tails of the PDFs with certairmain differences ar@) the PDFs do not collapse under the
functional forms and extracted the scaling exponents asympescaling, andii) the exponent of the power-law decay var-
totically in the smalll limit. Here we only present some of ies gradually with. These are primarily due to the different

Downloaded 18 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http:/chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 9, No. 4, 1999 Chaos in a system of oscillators 909

, ‘ ‘ giving a microscopic dynamical origin for the power-law
10 spatial correlations. We performed a multiscaling analysis in
regime exhibiting anomalous spatio-temporal chaos and
10° | found that the amplitude and difference fields are indeed
multiaffine and multifractal, indicating strong intermittency
=~ 107" ¢ underlying the system. By studying the PDFs of the mea-
- sures at each length scale, the intermittency was clearly ob-
E 10*° | served in the form of scale-dependent deviations of the PDFs
) in their tails.
10° L Multiscaling properties are also known to exist in phe-
nomena such as fluid turbulence and fractal surface growth.
107 L The appearance of similar multiscaling properties in many
different systems suggests some underlying common statis-
107 tical law. Further study of the intermittency in our system
107° will give more insight into understanding the multiscaling

properties observed in complex dissipative systems.

FIG. 14. Rescaled PDR3,(m, ;1) for | =2 (the widest distribution with the
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