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Noise-induced turbulence in nonlocally coupled oscillators
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We demonstrate that nonlocally coupled limit-cycle oscillators subject to spatiotemporally white Gaussian
noise can exhibit a noise-induced transition to turbulent states. After illustrating noise-induced turbulent states
with numerical simulations using two representative models of limit-cycle oscillators, we develop a theory that

clarifies the effective dynamical instabilities leading to the turbulent behavior using a hierarchy of dynamical
reduction methods. We determine the parameter region where the system can exhibit noise-induced turbulent
states, which is successfully confirmed by extensive numerical simulations at each level of the reduction.
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I. INTRODUCTION

When a dynamical system is driven by external noises, its
effective dynamics generally changes [1-5]. We usually ex-
pect that the system tends to be more random and statisti-
cally uniform, because the noise destroys the spatiotemporal
structures of the system. For example, Matsumoto and Tsuda
[4] found that external noise can destabilize chaos and pro-
duces ordered behavior in the Belousov-Zhabotinsky map,
and called this phenomenon “noise-induced order.” Shibata,
Chawanya, and Kaneko [5] studied the effect of microscopic
external noise on the collective motion of a globally coupled
map in fully desynchronized states. They demonstrated that
the collective motion is successively simplified with the in-
crease of external noise intensity, while without the external
noise a macroscopic variable shows high-dimensional chaos
distinguishable from random motions.

In this paper, we give a counterexample to this intuition.
Specifically, we demonstrate that nonlocally coupled limit-
cycle oscillators can undergo a noise-induced transition from
uniform states to turbulent states through effective dynamical
instabilities, with the induced turbulent fluctuations far larger
than the intensity of the driving noise.

Our starting point is a general equation describing nonlo-
cally coupled limit-cycle oscillators subject to spatiotempo-
rally white Gaussian noise. We first present numerical ex-
amples using two representative models of limit-cycle
oscillators, the FitzHugh-Nagumo model and the Stuart-
Landau model, in order to illustrate that weak external noise
can actually cause turbulence in such systems. To theoreti-
cally investigate this noise-induced turbulent state, we sim-
plify our original equation to a Langevin phase equation by
means of the phase reduction method for limit-cycle oscilla-
tors, utilizing the fact that the external noise intensity and the
coupling strength between the oscillators are sufficiently
weak. The resulting equation describes a system of nonlo-
cally coupled noisy phase oscillators. We then derive an
equivalent nonlinear Fokker-Planck equation from this
Langevin equation by adopting the mean-field theory, which
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holds exactly for our nonlocally coupled oscillators. Our
nonlinear Fokker-Planck equation has a constant solution
corresponding to all the oscillators being in a completely
desynchronized state. It is linearly stable when the external
noise is sufficiently strong, but, as the noise intensity is de-
creased, undergoes a Hopf bifurcation at a certain noise in-
tensity, giving rise to limit-cycle oscillations of the phase
distribution. In the vicinity of this bifurcation point, we can
derive a complex Ginzburg-Landau equation from the non-
linear Fokker-Planck equation by applying the center-
manifold reduction method, which governs the small-
amplitude deviation of the probability density from the
constant solution. It is well known that the spatially uniform
oscillation of the complex Ginzburg-Landau equation be-
comes unstable and spatiotemporal chaos develops when the
Benjamin-Feir instability condition is satisfied. Therefore,
we expect that the Langevin phase equation and the corre-
sponding nonlinear Fokker-Planck equation also exhibit spa-
tiotemporal chaos under suitable conditions. By direct nu-
merical simulations, we will confirm that the amplitude
turbulence typical of the complex Ginzburg-Landau equation
actually arises. In addition, we also confirm that the phase
turbulence arises near the Benjamin-Feir criticality, which is
also a hallmark of the complex Ginzburg-Landau equation.
We then examine the situation far from the Hopf bifurcation.
In our system, another smaller critical noise intensity is ex-
pected to exist, above which the turbulence arises from the
spatially uniform oscillation via a long-wave phase instabil-
ity. To confirm this, we derive a Kuramoto-Sivashinsky-type
equation by applying the phase reduction method to the spa-
tially uniform oscillating solution of the nonlinear Fokker-
Planck equation. Our calculation shows that the phase diffu-
sion coefficient changes its sign from positive to negative as
the noise intensity is increased from zero, which implies the
destabilization of the spatially uniform oscillating solution.
By a systematic numerical calculation of the phase diffusion
coefficient, we determine the parameter region where our
system exhibits a noise-induced turbulent state. From the
mathematical analysis of the hierarchy of reduced equations
and extensive numerical simulations of the dynamical equa-
tion at each level of the reduction, we will conclude that the
appearance of the turbulence can be considered as a noise-
induced transition phenomenon.
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The organization of this paper is as follows. In Sec. II, we
introduce our model and present numerical results for the
FitzHugh-Nagumo and Stuart-Landau oscillators. In Sec. III,
we derive Langevin and Fokker-Planck equations from the
original equation by the phase reduction method. In Sec. IV,
we derive a complex Ginzburg-Landau equation by a center-
manifold reduction of the Fokker-Planck equation near its
Hopf bifurcation point. In Sec. V, we reduce the Fokker-
Planck equation to a Kuramoto-Sivashinsky-type equation
near the destabilization point of the spatially uniform oscil-
lation, and draw the complete phase diagram of the noise-
induced turbulence. Concluding remarks will be given in the
final section.

II. NOISE-INDUCED TURBULENCE IN NONLOCALLY
COUPLED LIMIT-CYCLE OSCILLATORS

In this section, we introduce a general model of nonlo-
cally coupled noisy oscillators, and numerically demonstrate
that the model can exhibit noise-induced turbulent states us-
ing two representative models of limit-cycle oscillators.

A. General model

We consider a system of nonlocally coupled limit-cycle
oscillators in one-dimensional space subject to spatiotempo-
ral noise. The general form of the model is given by

aX(x,t) = F[X(x,n]+ K f ’ dx' G(x — x)X (X', 1) + Von(x,1).

(1)

Here, X(x,7) represents the state of a local limit-cycle oscil-
lator at location x and time #. The first term on the right-hand
side describes the dynamics of each oscillator. In the absence
of the coupling and the noise, it is simply given by X
=F(X), which is assumed to have a single stable limit-cycle
solution. The second term describes the nonlocal coupling

among the oscillators, where K and G(x) represent respec-
tively the coupling matrix and the nonlocal coupling func-
tion. Throughout this paper, we use a simple exponential
function

G =5 expl(- ), @
which is normalized to unity in the whole space domain. The
last term of Eq. (1) represents the external noise applied to
each oscillator, whose intensity is controlled by the param-
eter o. (x,t) is a spatiotemporally white Gaussian noise
with zero mean specified by

((x,0)=0, (9(x,0)7(x",1")) =26 (x —x") St -1"),
3)
where the subscripts j and j’' denote the vector components
of the noise.

Equation (1) can naturally be derived, for example, in the
following situation. Let us consider a set of equations [6—11]
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FIG. 1. (Color online) FitzHugh-Nagumo oscillator with param-
eters €=0.5, a=1.0, and »=0.3. (a) Limit-cycle orbit and nullclines
in the X-Y plane. (b) Generalized phase ¢(X,Y) e [0,27], which is
globally defined such that ¢=w holds identically.

9X (x,1) = F[X(x,0)] + KS(x,0) + Von(x,1), (4)
79,8 (x,1) = = S(x,1) + ﬁ)ch(x,t) +X(x,1), (5)

which describe a system of mutually interacting oscillatory
elements, where the coupling between the elements is medi-
ated by some substance that diffuses and decays much faster
than the dynamics of the individual oscillators, e.g., slime
molds interacting through signal molecules. By considering
the 7— 0 limit and eliminating the fast dynamics of S adia-
batically, we obtain Eq. (1) with the kernel given by Eq. (2)
from Egs. (4) and (5).

B. FitzHugh-Nagumo oscillators

As the first example, we consider the case that the local
oscillator in Eq. (1) is given by the FitzHugh-Nagumo (FN)
oscillator. The model is explicitly given by

IX(x,1) = Fy(X,Y) + KySy(x,0) + Voug(r,),  (6)

GY(x5,1) = Fy(X,Y) + KySx(e,0) + Nopy(r,1),  (7)
where the dynamics of each oscillator is described by
Fx(X.Y)=€'(X=-X~Y), FyX.Y)=aX+b, (8)

and the nonlocal coupling term Sy(x,?) is given by
Sx(x,1) = f dx'G(x = x")X(x',1). 9)

We consider the case that the oscillators are coupled only
through the variable X. We fix the parameters of the oscilla-
tors as €=0.5, a=1.0, and »=0.3, with which the oscillators
are well in the self-oscillatory regime.

Figure 1(a) shows the limit-cycle orbit of an individual
FitzHugh-Nagumo oscillator in the X-Y plane together with
its nullclines, in the absence of the coupling and the noise.
Throughout this paper, we use a generalized phase variable
to describe the oscillator (see the next section). Figure 1(b)
shows the generalized phase variable of the FitzHugh-
Nagumo oscillator defined on the X-Y plane, which maps the
state variable (X,Y) of the oscillator to a single real phase
variable ¢ €[0,27].

We performed direct numerical simulations of Eqgs.
(6)—(9), where the oscillator fields X(x,7) and Y(x,z) are dis-
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FIG. 2. (Color online) Numerical simulations of nonlocally coupled noisy FitzHugh-Nagumo oscillators for three representative cases.
(a), (b), and (c) Case FN-I (Kx=0.02, Ky=0.08, and 0=0.0002); (d), (e), and (f) Case FN-II (Kx=0.02, Ky=0.08, and 0=0.0006); (g), (h),
and (i) Case FN-III (Kyx=0.08, Ky=0.02, and o=0.0006). Other parameters are fixed as €=0.5, a=1.0, and 5=0.3. The left panels (a), (d),
and (g) show spatiotemporal patterns of the order parameter modulus; the middle panels (b), (e), and (h) show instantaneous spatial profile
of the local oscillator phase; the right panels (c), (f), and (i) show corresponding phase portraits in the X-Y plane. The number of oscillators
is N=2!9 and the separation between neighboring oscillators is Ax=0.1.

cretized using N=2'0 oscillators with the spatial grid size of
Ax=0.1. See Appendix C for the details of the numerical
methods. The values of the coupling strength Ky and Ky are
chosen appropriately in such a way that the spatially uniform
oscillation is stable and the system is nonturbulent in the
absence of noise.

In order to observe the average deterministic dynamics of
the system, it is desirable to filter statistical fluctuations due
to the noise. We thus introduce a space-time dependent com-
plex order parameter with modulus R(x,7) and phase ©(x,7),
calculated from the oscillator phase field ¢(x,7) through

R(x,0)expli®(x,1)] = f“’ dx'G(x — x")explig(x’,1)]. (10)

This order parameter represents a spatial average of the com-
plex phase factor exp(i¢h) of the local oscillators over the
coupling range.

Results for three representative cases, denoted by FN-I,
FN-II, and FN-III, are illustrated in Fig. 2 in rows. The left
panels display the spatiotemporal evolution of the modulus
R(x,1) of the order parameter, the middle panels display how

the phases of the individual oscillators are distributed in
space at a given time, and the right panels display the snap-
shots of the state variables of the oscillators on the X-Y
plane.

To see what happens when we increase the noise intensity
from zero, we first compare the cases FN-I (top row) and
FN-II (middle row). The coupling parameters used in FN-I
and FN-II are the same, but the noise intensity used in FN-II
is three times stronger than that used in FN-I. In the weak
noise case, FN-I, the modulus of the order parameter (left
panel) is almost uniform in space and also constant in time.
The phases of the individual oscillators (middle and right
panels) somewhat fluctuate due to the noise, but the ampli-
tude of the fluctuation seems to be much smaller than that we
expect for turbulent fluctuations due to a dynamical instabil-
ity of the system. In the case FN-II, the noise is three times
stronger. Now the modulus of the order parameter exhibits
quite irregular spatiotemporal behavior, and the amplitude of
the phase fluctuations is much larger than that in the case
FN-I, covering the whole range from 0 to 2. Note also that
the amplitude of the phase fluctuations is far larger than the
applied noise intensity, which indicates that they are pro-
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FIG. 3. (Color online) Order parameter fluctuation (R%)—(R)? vs
oscillator number N for the case FN-II (open circles) and the case
FN-III (crosses). () represents the space-time average. The solid
and dashed lines have slopes 0 and —1, respectively. The system
size is fixed as L=NAx=102.4.

duced by a noise-induced dynamical instability of the sys-
tem.

Only with these results, it might still be suspected that
what looks like turbulence in the case FN-II might actually
not be true turbulence, and the large fluctuations of the order
parameter might simply be the result of increasing the noise
intensity by three times. To clear up this suspicion, we com-
pare the cases FN-II (middle row) and FN-III (bottom row).
Now the noise intensities are the same, but the coupling pa-
rameters are slightly different. As clearly be seen, the order
parameter observed in the case FN-III is almost uniform in
space and constant in time at the same noise level as that
used in the case FN-II. Therefore, the violent order param-
eter fluctuations in the case FN-II should not simply be sta-
tistical ones due to the noise.

To distinguish the two types of order parameter fluctua-
tions more clearly, we systematically vary the total number N
of the oscillators in each case. Since we fix the system
length, we are controlling the oscillator number density, or
equivalently, the number of oscillators sitting within the cou-
pling range. If the fluctuation of the order parameter is sim-
ply of statistical origin coming from the finiteness of N, the
variance should decrease as N~! due to the central limit theo-
rem. In contrast, if the order parameter fluctuation is due to
the dynamical instability of the system, the same quantity
should remain constant even if N is varied.

The results are shown in Fig. 3, where the variance of
each order parameter is plotted as a function of N in double-
logarithmic scales for the cases FN-II and FN-III. We see
that there is a vast difference in the amplitude of fluctuations,
and, as expected, its dependence on N is clearly different
between the two cases; the fluctuation amplitude is almost
constant in the case FN-II, whereas it decreases in inverse
proportion to N in the case FN-III.

Thus, we conclude that the phase fluctuations observed in
the case FN-II is not merely finite-sample statistical fluctua-
tions, but they are actually turbulent fluctuations generated
by the effective dynamical instability of the system induced
by the weak external noise.
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C. Stuart-Landau oscillators

Our second example is a system of Stuart-Landau (SL)
oscillators with nonlocal coupling, which is described by

aW(x,1) = (1 +iwg) W= (1 +iB)|W*W + KSy(x,1)
+ \«";nw(x,t) (11)

and

o0

Swlx,1) = dx'G(x = x")W(x',1). (12)

—o0

The Stuart-Landau oscillator is the simplest limit-cycle os-
cillator derived as a normal form of the supercritical Hopf
bifurcation [12]. Each oscillator state is now described by a
complex amplitude, W. Correspondingly, the coupling term
Sw and the noise 7y are also complex variables. We take the
parameters w and K as wy=/+1.0 and K=0.05, and control
the remaining parameters B and o. As in the previous
FitzHugh-Nagumo case, the values of the parameter S is
chosen in such a way that the spatially uniform oscillation is
stable and the system is nonturbulent in the absence of noise.

We carried out the numerical analysis of this model com-
pletely in parallel with the previous case of the FitzHugh-
Nagumo oscillators (see Appendix C for the numerical meth-
ods). For the Stuart-Landau oscillator, mapping from the
complex amplitude W to the generalized phase ¢ can be
analytically given as [12,13]

¢=arg W— B1n|W|. (13)

Using this definition, we calculate the order parameter of the
system given by Eq. (10).

Figure 4 summarizes the numerical results, where three
representative cases SL-I, SL-II, and SL-III are compared.
As previously, the parameter 3 is the same for SL-I and
SL-II, but the noise intensity in SL-II is six times larger than
that in SL-I. In the case SL-I, the amplitude of the phase
fluctuations is quite small, and the modulus R(x,f) of the
order parameter is almost spatially uniform and temporally
constant. In the case SL-II, the amplitude of the phase fluc-
tuations becomes quite large, and the modulus R(x,?) of the
order parameter exhibits complex spatiotemporal dynamics.
Thus the strong turbulent fluctuation arises from the spatially
uniform oscillation as the noise intensity is increased. How-
ever, when the parameter S is slightly changed, SL-III, the
noise with the same intensity cannot induce such turbulent
fluctuations.

From the same argument as the previous FitzHugh-
Nagumo case, we conclude that the strong fluctuation seen in
the case SL-II represents a genuine turbulence of the dy-
namical origin induced by the external noise.

III. REDUCTION TO NONLOCALLY COUPLED
NOISY PHASE OSCILLATORS

We have observed that nonlocally coupled limit-cycle os-
cillators can exhibit noise-induced turbulent states. In the
present and the subsequent sections, we will develop a
theory that explains consistently the above numerical results.
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FIG. 4. (Color online) Numerical simulations of nonlocally coupled noisy Stuart-Landau oscillators for three representative cases. (a),
(b), and (c) Case SL-I (B8=2.6 and 0=0.0001); (d), (e), and (f) Case SL-II (8=2.6 and 0=0.0006); (g), (h), and (i) Case SL-III (8=1.6 and
0=0.0006). Other parameters are given by wy=£+1.0 and K=0.05. The left panels (a), (d), and (g) show the spatiotemporal patterns of the
order parameter modulus; the middle panels (b), (e), and (h) show the instantaneous spatial profile of the local oscillator phase; the right
panels (c), (f), and (i) show the corresponding phase portraits in the X-Y plane. The number of oscillators is N=2'" and the separation

between neighboring oscillators is Ax=0.1.

In this section, we present our first step, namely, the deriva-
tion of a Langevin phase equation from the original dynami-
cal equation for the nonlocally coupled limit cycles by means
of the phase reduction method. The resulting equation de-
scribes a system of nonlocally coupled phase oscillators,
whose validity is demonstrated numerically for the Stuart-
Landau oscillators. We also derive an equivalent nonlinear
Fokker-Planck equation through the mean-field theory,
which will be the starting point for further analysis.

A. Phase reduction

We apply the standard phase reduction method to our sys-
tem of nonlocally coupled noisy limit-cycle oscillators,
which derives an approximate equation consisting of only
the phase variable from the original dynamical equations in
multiple variables [12]. The phase reduction is allowed when
the individual local oscillators are perturbed only slightly.
Thus, the coupling strength and the external noise intensity
should be sufficiently small. As shown in the phase portraits
in Figs. 2 and 4 right panels), the oscillators are always in the
near vicinity of the unperturbed limit-cycle orbits. Therefore,

the parameter values used in the previous numerical analysis
satisfy the above condition.

As we already mentioned, we use a specific definition of
the phase, determined on the phase space of the limit cycle in
such a way that ¢=w holds identically, where w is the natu-
ral frequency of the local oscillator. This can always be done
by an appropriate nonlinear transformation of the phase
space variables of the oscillator [12-14].

Details of the derivation of a phase equation from Eq. (1)
are given in Appendix A. The resulting phase equation takes
the form

a,d(x,1) = w+ f‘” dx'G(x = x"I'[p(x,1) — Pp(x',1)]

+\Dé&,1), (14)

where I'(¢) represents the phase coupling function between
the oscillators, D the effective noise intensity that inherits
the effect of the noise #7(x,7) in the original equation, and
&(x,1) a real scalar spatiotemporally white Gaussian noise
satisfying
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FIG. 5. (Color online) Phase coupling functions I'(¢) of the
FitzHugh-Nagumo oscillators. The solid and dashed curves corre-
spond to the cases FN-I and FN-II (Kx=0.02 and Ky=0.08) and the
case FN-III (Kx=0.08 and Ky=0.02), respectively. The in-phase
coupling condition is satisfied in both cases, i.c., dI'($)/d¢|s
<0.

(€(x,0)=0, (ExnNéx'.1")=28x—-x")8t—-1").

(15)

The phase coupling function I'(¢) can be calculated from the
dynamical equations of the coupled limit cycles. The effec-
tive noise intensity D can also be calculated once the param-
eters of the original dynamical equations are given. Note that
the above equation describes a system of nonlocally coupled
noisy phase oscillators.

B. FitzHugh-Nagumo oscillators

We first consider the case of the FitzHugh-Nagumo oscil-
lators. By applying the formula developed in Appendix A,
the phase coupling function can be expressed as

1 2
L(p-¢')= ;Tf dN[KxZx(\ + &) + KyZy(N + ¢) 1X,(N
0

+¢'), (16)

where X,(¢) is the X component of the unperturbed limit
cycle, and Zy(¢) and Zy(¢) are the phase sensitivity func-
tions of the FitzHugh-Nagumo oscillator. Though the limit-
cycle solution of the FitzHugh-Nagumo model cannot be ob-
tained analytically, these quantities can be calculated
numerically with sufficient precision using standard methods
[15]. Figure 5 displays the phase coupling function I'(¢)
calculated for the two sets of the coupling constants Ky and
Ky used in Sec. II. For both parameter conditions, the cou-
pling functions are the in-phase type, as is clear from the
property  dl'(¢)/de| 4-o<0 [12].

The effective noise intensity D can be expressed by the
original noise intensity o and the phase sensitivity functions
Zy and Zy as

2
L f N oZ20N) + Z20V)]. (17)
2'77' 0
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C. Stuart-Landau oscillators

In the case of the Stuart-Landau oscillators, the limit-
cycle solution and the phase sensitivity function can be ob-
tained analytically. The natural frequency, the phase coupling
function, and the effective noise intensity are given by ®
=wy—B, [(p—¢")=—K\1+ 3 sin(¢p—¢'+a), and D=0(1
+3%), respectively. Thus Eq. (14) takes the following explicit
form

9 plx,1) = @ — K\1 + ﬂzf dx'G(x —x')

Xsin[ p(x,1) — P(x',1) + a] + \/Ef(x,t), (18)

where the parameter « is given by

a=arg(l +ip). (19)

By changing the time scale, we can simplify the above equa-
tion as

,(x,t) = w— f dx'G(x — x")sin[ ¢(x,1) — P(x',1) + ]

+\Dé(x, 1), (20)
where the rescaled noise intensity is given by

2
oVl +
L o+ F

X 21

To see the validity of the phase reduction, we present here
results of direct numerical simulations of the Langevin phase
equation (18). Figure 6 displays the numerical results, which
correspond to the three cases, SL-I, SL-II, and SL-III, treated
in Sec. II. By comparing Fig. 6 with Fig. 4, we can confirm
that the reduced Langevin phase equation nicely reproduces
the behavior of the original nonlocally coupled limit-cycle
oscillators.

D. Nonlinear Fokker-Planck equation

We now transform the Langevin phase equation (14) de-
rived above to an equivalent nonlinear Fokker-Planck equa-
tion, which makes the following analysis far easier. To do
this, we note that the Langevin phase equation may be
viewed as describing the dynamics of a single local oscillator
driven by the nonlocal mean field of infinitely many other
oscillators sitting within the coupling range. This means that
the net coupling force experienced by this local oscillator is
a macrovariable, and therefore its statistical fluctuation can
be completely negligible. For this reason, the nonlocal cou-
pling term in the phase equation can safely be replaced with
its statistical average.

Let us denote by f(¢,x,t) the probability density function
of the phase ¢ of a single oscillator at a space-time point
(x,1). Following the above argument, we average the cou-
pling term in Eq. (14) by the single-oscillator phase distribu-
tion f(¢,x,t). The equation then takes the form of a single-
oscillator Langevin equation driven by a space-time
dependent force V(¢,x,1), that is,
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FIG. 6. (Color online) Numerical simulations of nonlocally coupled noisy phase oscillators corresponding to the nonlocally coupled noisy
Stuart-Landau oscillators for [(a) and (b)] case SL-I, [(c) and (d)] case SL-II, and [(e) and (f)] case SL-IIL. (a), (c), and (e) Spatiotemporal
patterns of the order parameter modulus. (b), (d), and (f) Instantaneous spatial profile of the local oscillator phase. The number of oscillators
is N=2!9 and the separation between neighboring oscillators is Ax=0.1.

G,0(x,1) = V(,x,1) + VDE(x, 1), (22)

where

o0

V(g,x,1) = w+ f dx'G(x—-x")

—00

2
Xf d¢'T(¢= )¢ x".1).  (23)
0
Note that this equation now involves only one dynamical
variable, ¢(x,7), as a result of statistical averaging.

The above single-oscillator Langevin equation can be eas-
ily transformed to a single-oscillator Fokker-Planck equation
in the form [16,17]

Mz_i{ w+f dx'G(x—x")
ot d¢ 0

21
x j BT (b= S 1) Lot
0

. D&Zf(qb,x,t)'

pye (24)

Since the drift velocity itself involves the distribution
f(¢,x,1), this Fokker-Planck equation is nonlinear. This
equation is the starting point for further analysis.

IV. AMPLITUDE EQUATION NEAR THE ONSET
OF COLLECTIVE OSCILLATION

In the following sections, we will further reduce the non-
linear Fokker-Planck equation (24) to analyze its dynamics
near the destabilization points. In this section, we first apply
the center-manifold reduction to Eq. (24) near the onset of
collective oscillations. Following Ref. [18], we derive the
complex Ginzburg-Landau equation, and then present results
of numerical simulations that confirm the theoretical conjec-
ture on the noise-induced turbulence.

A. Hopf bifurcation and the complex
Ginzburg-Landau equation

The nonlinear Fokker-Planck equation (24) has a trivial
constant solution, f(¢,x,t)=1/2m, corresponding to the
completely desynchronized state of the oscillators. When the
noise intensity D is sufficiently large, this constant solution
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is stable. As D is decreased, the constant solution is destabi-
lized via a Hopf bifurcation.

In the previous study [18], it was shown that the nonlinear
Fokker-Planck equation (24) has a series of critical noise
intensities, below which the system can sustain traveling
waves of various wave numbers. Among them, the spatially
uniform oscillating solution of the phase distribution with
wave number zero has the largest critical noise intensity.
Thus, when we decrease D from above, the trivial constant
solution gives way to a spatially uniform oscillating solution
at a certain critical value D=D..

In the vicinity of this Hopf bifurcation point, we can de-
rive an amplitude equation describing the slow dynamics of
the destabilized mode. We introduce a complex amplitude
A(x,1) describing the deviation of f(¢,x,t) from the constant
solution 1/27 as

o1 o . o
(,x,0) = — + —[A(x, )™ 4 A" (x,1)e” N1,
2 2
T 2w

(25)

As explained in Ref. [18], we can derive the complex
Ginzburg-Landau equation for this complex amplitude

9A(x,1) =\*(D.— D)A + di*A - g|A|A, (26)

from the nonlinear Fokker-Planck equation by the center-
manifold reduction method [12]. The parameters of the
above complex Ginzburg-Landau equation can be expressed
in terms of the Fourier components I'; of the phase coupling
function

L(¢)= 2 e, (27)
|=—0
As derived in Ref. [18], they are given by

Im F[ Im F)\
5 DL- =
[ N

)

N\ = arg max
1

Q(;:—)\((l)'f'Re F)\+F0), (28)

ATy +17))
ZImF)\—iReF)\+iF2)\’

d=- i)\F)\, g= (29)

where Re and Im denote the real part and the imaginary part,
respectively. In what follows, we will restrict ourselves to the
case of A=1 and Re g >0, i.e., the case that the first Fourier
component of the phase distribution undergoes a supercriti-
cal Hopf bifurcation. This is actually the case with our two
representative models of limit-cycle oscillators. When the
noise intensity D is decreased below D,., Eq. (26) starts to
exhibit oscillatory behavior. In this region, by appropriately
rescaling the variables, we obtain the standard form of the
complex Ginzburg-Landau equation [12,13,19-22]

A1) =A+ (1 +ic))PA— (1 +icy)|APA,  (30)

where the real parameters c¢; and ¢, are given by

PHYSICAL REVIEW E 75, 036209 (2007)

@ 71/2
o no oscillation
Qo
BF
8 n/4r
P+
0 . . . .
00 01 02 03 04 05
D
(b) 3
amplitude turbulence
2 L
3 phase turbulence
B BF
uniform oscillation
0 .
0 1 2
)

FIG. 7. (Color online) (a) Phase diagram plotted as a function of
the noise intensity D and the phase shift «. The red solid curve
represents the Hopf bifurcation line [D=D.=cos(a)/2]. For nu-
merical simulations near the bifurcation, the noise intensity is cho-
sen such that D/D.=0.8 indicated by the dotted curve. The
Benjamin-Feir (BF) critical line (w=arctan 2) is also indicated. (b)
Phase diagram plotted as a function of the parameters c;
=Imd/Red=tan(@) and c,=Img/Reg=—tan(a)/2. Plus (case P: a
=0.5, D/D_,=0.8), open circle (case Q: a=1.0, D/D.=0.8), and
filled circle (case R: a=1.2, D/D.=0.8) correspond to spatially
uniform oscillation, phase turbulence, and amplitude turbulence, re-
spectively. The Benjamin-Feir (BF) line (1+c¢;c,=0) is also indi-
cated by the green curve.

_Imd
" Red’

Img

:a. (31)

C (&)

We use this standard form in the following discussion.

It is well known that the spatially uniform oscillating so-
Iution of the complex Ginzburg-Landau equation becomes
unstable and spatiotemporal chaos develops when the
Benjamin-Feir instability condition 1+c;c, <0 is satisfied.
Furthermore, it is also known that in the near vicinity of the
Benjamin-Feir line, the modulus of the complex Ginzburg-
Landau equation tends to be uniform, and the phase compo-
nent dominates the dynamics of the system. In such a situa-
tion, the complex Ginzburg-Landau equation can be further
reduced to the Kuramoto-Sivashinsky equation [12]
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(a)

time —

FIG. 8. Uniform oscillation. Parameter values are a=0.5 and
D/D.=0.8 (case P). Space (horizontal) -time (vertical) plot of order
parameter phase ®(x,r) for (a) Fokker-Planck simulation and (b)
Langevin simulation using N=2'3 oscillators.

30(x,)=—c,+ (1 + C1C2)3§® +(cy—¢))(0,0)?
c%(l + c%)

5 7', (32)

where O(x,1) is the phase of the complex amplitude A(x,7),
and is essentially the same as the phase of the order param-
eter defined in Eq. (10) except for the sign, as we see later.
When the Benjamin-Feir instability condition is slightly ex-
ceeded, the phase diffusion coefficient 1+c;c, of this equa-
tion becomes slightly negative, leading to turbulent behavior.
In such a case, by an appropriate rescaling of the variables,
we obtain the standard form of the Kuramoto-Sivashinsky
equation [12]

00(x,1)=- 70 +(3,0)* - 4'0. (33)

B. Stuart-Landau oscillators

For the sake of simplicity, we treat the nonlocally coupled
noisy Stuart-Landau oscillators hereafter. In this case, as seen
from Eq. (20) and Eq. (21), the phase coupling function is
given by the simple sine function

I'(¢) ==sin(¢+ a),

which is the in-phase type coupling. The parameters of the
reduced complex Ginzburg-Landau equation can be calcu-
lated as

la| < /2, (34)

cos «
c = 2

Imd Img
=tana, cr=_—"=-—

tan o
" Red eg 2

, C

(35)

By choosing the parameter « appropriately, the Benjamin-
Feir instability condition can be satisfied. Thus it was con-
jectured in Refs. [6,18] that, since the reduced complex
Ginzburg-Landau equation can exhibit turbulent behavior,
the corresponding nonlinear Fokker-Planck equation, the
Langevin phase equation, and the original nonlocally
coupled noisy limit-cycle oscillators, could also exhibit tur-
bulent behavior under suitable conditions.

To examine this conjecture, we conduct systematic nu-
merical simulations near the Hopf bifurcation curve. Theo-
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space “space

FIG. 9. Uniform oscillation. Parameter values are @=0.5 and
D/D.=0.8 (case P). (a) Instantaneous spatial profile of phase dis-
tribution function obtained from Fokker-Planck simulation. (b) In-
stantaneous spatial profile of local oscillator phase obtained from
Langevin simulation using N=2"3 oscillators.

retical bifurcation diagrams of the complex Ginzburg-
Landau equation are plotted as a function of the parameters
a and D in Fig. 7(a), and as a function of the parameters ¢
and ¢, in Fig. 7(b). The red solid line in Fig. 7(a) represents
the Hopf bifurcation curve, below which the complex ampli-
tude A(x,?) starts to oscillate. In the numerical simulations,
we fix the noise intensity at D/D_.=0.8, which corresponds to
the black line. We choose three representative points on this
line, indicated by P, Q, and R. The green line represents the
Benjamin-Feir instability curve 1+cc,=0, which can be ex-
pressed as a=arctan V2 from Eq. (35).

Note that the parameters ¢; and ¢, cannot change inde-
pendently in the present model. From Eq. (35), only pairs of
(¢1,cy) satisfying ¢;=-2c¢, drawn as the straight line in Fig.
7(b) can be realized. The three representative cases P, Q, and
R correspond to three different dynamical states of the com-
plex Ginzburg-Landau equation, namely, spatially uniform
oscillation, phase turbulence, and amplitude turbulence, re-
spectively [23]. On these points, we numerically simulate the
Langevin phase equation and the corresponding nonlinear
Fokker-Planck equation (and, in some cases, also the com-
plex Ginzburg-Landau equation and the Kuramoto-
Sivashinsky equation). Numerical methods used in the simu-
lations are summarized in Appendix C. In drawing the
figures presented hereafter, numerical results obtained from
the different equations are appropriately rescaled to accord
with the standard form of the complex Ginzburg-Landau
equation (30) or the Kuramoto-Sivashinsky equation (33).

Figures 8 and 9 display the results at the parameter point

FIG. 10. Amplitude turbulence. Parameter values are a=1.2 and
D/D.=0.8 (case R). Space (horizontal) -time (vertical) plot of the
order parameter modulus R(x,7) is shown in rescaled units with
which the complex Ginzburg-Landau equation takes the standard
form, Eq. (30), whose system size is L=114. Numerical data ob-
tained from (a) the complex Ginzburg-Landau equation, (b) the
nonlinear Fokker-Planck equation, and (c) the Langevin phase
equation using N=2' oscillators are compared.
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FIG. 11. (Color online) Amplitude turbulence. Parameter values are @=1.2 and D/D_.=0.8 (case R). (a) Spatial power spectrum of the
order parameter as a function of the wave number in rescaled units with which the complex Ginzburg-Landau equation takes the standard
form, Eq. (30). Numerical data obtained from the complex Ginzburg-Landau equation (GL), the nonlinear Fokker-Planck equation (FP), and
the Langevin phase equation (LE) are compared. (b) Instantaneous spatial profile of the phase distribution function obtained from the
Fokker-Planck simulation. (c¢) Instantaneous spatial profile of the local oscillator phase obtained from the Langevin simulation using N

=215 oscillators.

P, where we expect stable uniform oscillation obtained by
direct numerical simulations of the nonlinear Fokker-Planck
equation (24) and the Langevin phase equation (14). Figures
8(a) and 8(b) plot the temporal evolution of the order param-
eter phase O(x,) defined in Eq. (10). As expected from the
phase diagram of the reduced complex Ginzburg-Landau
equation, both equations exhibit spatially uniform oscillating
solutions. Small nonuniformity seen in the Langevin simula-
tion, Fig. 8(b), is due to trivial statistical fluctuations. Figures
9(a) and 9(b) display the snapshots of the instantaneous spa-
tial distribution of the phases. We can confirm that the phase
distributions are spatially uniform.

Numerical results obtained at the parameter point R,
where the amplitude turbulence is expected in the reduced
complex Ginzburg-Landau equation, are shown in Figs. 10

and 11. Figures 10(a)-10(c) show spatiotemporal patterns of
the modulus R(x,f) of the order parameter defined in Eq.
(10), obtained by numerical simulations of the complex
Ginzburg-Landau equation, the nonlinear Fokker-Planck
equation, and the Langevin phase equation, respectively. As
mentioned above, the order parameter defined in Eq. (10)
gives the first Fourier mode of the phase distribution, which
corresponds to the complex conjugation of the complex am-
plitude for the reduced complex Ginzburg-Landau equation
as

o

R(x,1)e’®) = f

—00

dx' G(x — x")et "D (36)

FIG. 12. Phase turbulence. Parameter values are a=1.0 and D/D.=0.8 (case Q). Space (horizontal) -time (vertical) plot of the order
parameter phase gradient v(x,7)=2d,0(x,#) is shown in rescaled units with which the Kuramoto-Sivashinsky equation takes the standard
form, Eq. (33), whose system size is L=76. Numerical data obtained from (a) the Kuramoto-Sivashinsky equation, (b) the complex
Ginzburg-Landau equation, and (c) the nonlinear Fokker-Planck equation are compared.
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FIG. 13. (Color online) Phase turbulence. Parameter values are @=1.0 and D/D_.=0.8 (case Q). (a) Spatial power spectrum of the order
parameter phase gradient v(x,7)=2d,0(x,t) is plotted as a function of the wave number in rescaled units with which the Kuramoto-
Sivashinsky equation takes the standard form, Eq. (33). Numerical data obtained from the Kuramoto-Sivashinsky equation (KS), the complex
Ginzburg-Landau equation (GL), and the nonlinear Fokker-Planck equation (FP) are compared. (b) Instantaneous spatial profile of the phase

distribution function obtained from the Fokker-Planck simulation.

0 2
=f dx’G(x—x')f dgb’e"‘ﬁ’f((j)’,x’,t) (37)
o0 0

|

~A"(x,1)e %!,

dx'G(x = x")A"(x",1)e” "% (38)

(39)

where we used the fact that the characteristic wavelength
becomes sufficiently longer than the length of the the nonlo-
cal coupling near the critical point in the last approximation.
The three patterns are quite similar to each other. Figure
11(a) shows the spatial power spectrum of the order param-
eter. They are also almost identical to each other. Figures
11(b) and 11(c) show the snapshots of the phase distributions
obtained from the nonlinear Fokker-Planck equation and the
Langevin phase equation, respectively. In both figures, we
can observe strongly nonuniform phase distributions due to
turbulent fluctuations, which again resemble each other.
These results clearly indicate that the turbulent fluctuations
exhibited by the three equations are generated by the same
dynamical instability.

Finally, the numerical results for the parameter Q, for
which phase turbulence is expected, are shown in Figs. 12
and 13. Figure 12 compares the results from the Kuramoto-
Sivashinsky equation, the complex Ginzburg-Landau equa-
tion, and the nonlinear Fokker-Planck equation, where the
spatiotemporal evolution of the phase gradient v(x,7)
=23,0(x,t) of the order parameter is plotted for each equa-
tion. They are remarkably similar to each other. In Fig. 13(a),
spatial power spectrum of the order parameter phase gradient
is plotted for each equation. They also show excellent agree-
ment with each other. Figure 13(b) shows a snapshot of the
phase distribution function obtained from the nonlinear
Fokker-Planck equation. As expected, long-wavelength
phase fluctuations are observed.

These numerical results confirm the existence of the
noise-induced transition from the constant solution via the
Hopf bifurcation and the Benjamin-Feir instability.

V. PHASE EQUATION NEAR THE DESTABILIZATION
POINT OF THE SPATIALLY UNIFORM
OSCILLATION

In the previous section, we have analyzed the nonlinear
Fokker-Planck equation near the Hopf bifurcation point of
the constant solution using the center-manifold reduction. In
this section, we investigate a different parameter region,
where the uniformly oscillating solution of the nonlinear
Fokker-Planck equation loses its stability against phase dis-
turbances. As a result, a transition line to the spatiotemporal
chaos will be determined, which completes the phase dia-
gram of the noise-induced turbulence.

A. Lower transition line to the spatiotemporal chaos

In the preceding section, it was found that the constant
solution of the nonlinear Fokker-Planck equation, which is
stable for large noise intensity, loses its stability via the su-
percritical Hopf bifurcation as the noise intensity is de-
creased, and the order parameter exhibits spatiotemporal
chaos near the Hopf bifurcation point under suitable condi-
tions. However, the spatially uniform oscillating solution of
all the oscillators is stable in the absence of noise, since we
assume the in-phase coupling in the original nonlocally
coupled limit-cycle oscillators. Thus there should be a lower

noise intensity D A

no oscillation
Hopf

turbulent

BF ] non-turbulent D=Dec

7
7’
7

,’/ . .
_}~~ noise-induced
f”
- turbulence

-
_——

non-turbulent

phase shift o

FIG. 14. Schematic phase diagram of the noise-induced turbu-
lence as a function of the phase shift & and the noise intensity D.
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(@ (b)

0 0

FIG. 15. (Color online) Schematic phase distribution function
fo(6—0) with a spatially uniform phase, (a) ®=0,, and with a
spatially slowly varying phase, (b) @=0(x,1).

critical noise intensity, above which the uniformly oscillating
solution of the oscillators loses its stability and gives way to
the spatiotemporal chaos. The schematic phase diagram
which describes this situation is illustrated in Fig. 14. Below
we analyze the situation where the order parameter becomes
turbulent as the noise intensity is increased from zero. We
use the method of phase reduction once again to derive a
phase equation describing the dynamics of slowly varying
wave fronts.

B. Slow phase modulation of the spatially uniform oscillation

We here give the outline of the analysis. Details of the
analytical calculations are given in Appendix B. First, we
focus on the spatially uniform oscillating solution f;(6
—0,) of the nonlinear Fokker-Planck equation, where 6= ¢
—Q4r. Here, () is the frequency of the collective oscillation,
and the constant @, is the initial phase that can be chosen
arbitrary. We then allow this phase constant @ to be slowly
space-time dependent, and denote it as @(x,z). Figure 15(a)
shows a schematic picture of a spatially uniform oscillating
solution, whose order parameter phase ®, is constant, and
Fig. 15(b) the case that the order parameter phase O(x,7) is
slowly varying. The phase of the slowly modulated oscillat-
ing solution defined here is essentially the same as the phase
of the order parameter defined previously in Eq. (10) except
for the mean drift term ()¢, as long as the spatial scale of the
variation is sufficiently long compared to the coupling
length. Thus we use the same notation ®(x, ) for both phase
variables. As shown in Appendix B, we can derive an equa-
tion for the phase ®(x,7) in a closed form using the analyti-
cal procedure given in Ref. [12]. If we truncate the series of
gradient expansion retaining the first few terms, the derived
phase equation has the form

PHYSICAL REVIEW E 75, 036209 (2007)

8,0(x,1) = 7020 + 1(3,0)> = NF'O + -+, (40)

where the parameters v, u, and \ can be calculated using the
phase coupling function I'(¢), the spatially uniform oscillat-
ing solution f;,(6), and its associated left and right eigenfunc-
tions. Among these parameters, the phase diffusion coeffi-
cient ¥ is the most important quantity. When v changes its
sign from positive to negative, the spatially uniform oscillat-
ing solution loses its stability, and spatiotemporal chaos sets
in.

C. Phase diagram for the Stuart-Landau case

For the case of the Stuart-Landau oscillators with the
phase coupling function given in Eq. (34), we numerically
calculated the phase diffusion coefficient v at various values
of the phase shift & and the noise intensity D, and deter-
mined the 7=0 curve on the a-D plane. Typical functional
shapes of f(6), ug(6), and ug(é’) obtained from the numerical
calculations are illustrated in Fig. 16.

In Fig. 17(a), dependence of the phase diffusion coeffi-
cient ¥ on a and D is illustrated. v is positive in the red
region and negative in the blue region. Figure 17(b) repre-
sents the whole phase diagram. The blue curve represents
v=0. The red line represents the Hopf bifurcation curve, and
the green line the Benjamin-Feir criticality near the Hopf
bifurcation. In the parameter region surrounded by the red
curve and the blue curve, the phase diffusion coefficient v is
negative, indicating that spatiotemporal chaos appears in this
region. The Benjamin-Feir criticality line, which we obtained
in the previous section by the center-manifold reduction, is
also consistent with the results of the present phase reduction
analysis.

Let us now look back on the numerical results of the
original nonlocally coupled noisy Stuart-Landau oscillators
(Fig. 4) and also its reduced phase model (Fig. 6). Three sets
of the parameters used in Fig. 4 and 6, SL-I, SL-II, and
SL-III, are also plotted on the phase diagram in Fig. 17(b).
As can be seen, only the case SL-II is in the region of noise-
induced turbulent states. The other two cases, SL-I and SL-
III, are in the parameter region where the spatially uniform
oscillation is stable. Thus our theory consistently explains
the occurrence of noise-induced turbulence.

VI. CONCLUDING REMARKS

We studied a system of nonlocally coupled limit-cycle
oscillators subject to spatiotemporal white Gaussian noise,

@ 06 () 0.8 © 4.0
€ 03 € 00 € o0
S s S
0.0 08 4.0
0 0 0

FIG. 16. (Color online) Numerically obtained (a) spatially uniform oscillating solution, (b) right zero eigenfunction, and (c) left zero
eigenfunction. The parameter values are a=1.2 and D/D_.=0.5, which give v=-0.371652.
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FIG. 17. (Color online) Dependence of the phase diffusion co-
efficient ¥ on the phase shift a and the noise intensity D. (a) ¥ was
numerically evaluated in the parameter region with ae[0.0,1.4]
and D/D, €[0.1,0.9]. ¥ is negative in the blue region, and positive
in the red region. (b) The red and blue curves represent the Hopf
bifurcation line (D=D,) and the noise-induced transition line to
turbulent state (v=0). The Benjamin-Feir (BF) line is also indicated
by the green line. Cases SL-I, SL-II, and SL-III are indicated by the
triangle, the open circle, and the cross, respectively.

which exhibits a remarkable phenomenon called noise-
induced turbulence. We considered the case that the coupling
and the noise are sufficiently weak, and reduced the system
to nonlocally coupled noisy phase oscillators by using the
phase reduction method. We then derived an equivalent non-
linear Fokker-Planck equation from the Langevin phase
equation, utilizing the fact that the mean-field theory exactly
holds owing to the nonlocal coupling. The center-manifold
reduction was applied to the situation where the trivial con-

PHYSICAL REVIEW E 75, 036209 (2007)

stant solution of the nonlinear Fokker-Planck equation be-
comes unstable and starts to oscillate, and we derived the
complex Ginzburg-Landau equation. Furthermore, we also
derived the Kuramoto-Sivashinsky-type equation from the
nonlinear Fokker-Planck equation by applying the phase re-
duction method once again. The hierarchy of our equations
derived for the noise-induced turbulence is summarized in
Table 1. Our theoretical analysis and numerical simulations
thus provide strong evidence for the existence of noise-
induced turbulence in systems of nonlocally coupled noisy
limit-cycle oscillators.

Finally, we briefly discuss how to distinguish the noise-
induced effective deterministic dynamics of the system from
the noisy patterns when the precise dynamical equation de-
scribing the system is not available. In principle, we will be
able to detect the bifurcations of the effective deterministic
dynamics, if appropriately filtered spatial patterns exhibit
qualitative changes as the external noise intensity is varied.
For our nonlocally coupled noisy oscillators, we introduced
the space-time dependent complex order parameter given by
Eq. (10) to observe the effective deterministic dynamics of
the system, where the nonlocal coupling function G(x) was
used as the kernel function that filters the noisy patterns to
eliminate nonessential statistical fluctuations. For experimen-
tal systems, however, there would be cases that the appropri-
ate kernel function is not known in advance and should be
determined empirically. The precise form of the kernel func-
tion is not important, so that the essential parameter is the
width of the kernel function, namely, the coarse-graining
scale of the noisy patterns. One possible method to estimate
the appropriate width of the kernel function is to utilize a
spatial correlation function C(x) of the local oscillators at a
sufficiently strong noise intensity, where no collective oscil-
lations arise. The correlation length of C(x) calculated in
such a regime will directly reflect the coupling length of the
system, which gives a reasonable estimate of the appropriate
kernel width. We can then filter the noisy patterns using a
suitable localized kernel function, such as the Gaussian or
the exponential kernel, whose width is given by the obtained
correlation length. For our nonlocally coupled oscillators, the
correlation length of C(x) directly reflects the coupling
length of G(x). Using the method explained above, we could
actually observe spatiotemporal patterns similar to those ob-
served using the complex order parameter, Eq. (10), without
assuming prior knowledge of the nonlocal coupling function
G(x).

We believe that noise-induced turbulence can be experi-
mentally realized in the near future.

TABLE 1. Hierarchy of equations for noise-induced turbulence.

Nonlocally coupled noisy limit-cycle oscillators (FitzHugh-Nagumo oscillators, Stuart-Landau oscillators), X (x,7)

| “Ist phase reduction”

Nonlocally coupled noisy phase oscillators (Langevin phase equation), ¢(x,7)

| “mean-field theory”

Nonlinear Fokker-Plank equation, f(¢,x,)—“2nd phase reduction”—Kuramoto-Sivashinsky equation, O(x,r)

| “center-manifold reduction”

| “near the Hopf bifurcation”

Complex Ginzburg-Landau equation, A(x,#)—“2nd phase reduction”— Kuramoto-Sivashinsky equation, O (x,7)
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APPENDIX A: PHASE REDUCTION OF COUPLED
NOISY LIMIT-CYCLE OSCILLATORS

We consider the following Langevin equation describing
an ensemble of coupled identical limit-cycle oscillators sub-
ject to independent noises

IX,(0=FX,) + 2V, (X,.X,)) + Von, (1), (Al)

!
n

where X, () represents the state of the nth oscillator at time ¢,
F(X,) the individual dynamics, V,, ,.(X,,,X,) the interaction
between n and n'th oscillators, o the noise intensity, and
1,(7) the external noise added independently to each oscilla-
tor. The noise 7,(¢) is assumed to be white Gaussian, whose
statistics are given by

(0y=0. (GO 7, (1)) =288, 81~1"). (A2)

where the superscripts j and j' denote the vector component.
When the coupling term and the noise term are sufficiently
small, the phase reduction method is applicable. Applying
the phase reduction method [12], we obtain the following
Langevin equation for the phase variables:

Gp(0) = 0+ 2 Z(hy) - Viy (s br) + NOZ(b,) - (1),

n

(A3)

Here, w is the natural frequency of the oscillators, Z(¢,) is
the phase sensitivity function [12], and V, ,/(¢,, ¢, is the
abbreviation of V,./[Xo(¢,),Xo(¢, )], where X is the un-
perturbed limit-cycle solution. By virtue of the independent
Gaussian statistics, we can rewrite the above equation (A3)
in the following form

B (D) = 0+ 2 Z(h) - Vi (b ) + V| Z(,)]1E,(1),

n

(A4)

where [|Z(¢,)||=VZ(,)-Z(,) and the statistics of the white
Gaussian noise &, is given by

(£0)=0, (§0&,(1))=20,,,81-1").  (AS)
We introduce the new slow phase variables ¢, as
by= 0t + &, (A6)
and rewrite the above Langevin equation (A4) as
() = 2 Z(wt + ;) - V(@i + By + )
+alz(r+ ,)&,0). (A7)

The corresponding Fokker-Planck equation describing the
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evolution of the probability density function P({¢,},?) of the
phase variables is given by

gp({an},r) = (— %)h({&sﬂ},r),
t n d

n

(A8)
where

]n({ajn}’t) = [2 Z((x)t + g_bn) : Vn,n’(wt"' asn’wt+ 97>n')

n

+ %i_((THZ((Ut*‘ @n)“%] P({J)n}’t)
I,

~ Loz + $IPPABLD]. (A9
73,

Rapidly oscillating quantities in J,({¢,},?) are now time av-
eraged over one period of the oscillator. The resulting aver-
aged Fokker-Planck equation has the following form

d - d
pRCCATEDY (— —_)

n

(2 Fn,n’(a)n - (?)n’)P({q_bn}’t)

n

_D%P({(En}’t))’ (Alo)
9,

where the phase coupling function I, ,,/(é,— ¢,) is given by

_ 1 2 _ _
Fllll’(¢n_¢n’)=_J d)\Z()\+¢n)'Vnn’()\+¢n7)\
] 27T 0 ]

+ ). (A11)

and also the effective noise intensity D is given by
1 [ _ _
=—f AN GZ(N+ ) - Z(N+ ). (A12)
2w ),

The Langevin equation corresponding to the averaged
Fokker-Planck equation (A10) is expressed as

&t(?)n(t) = E Fn,n'(&n - asn’) + \/Bgn(t)- (A13)

n

Finally, we obtain the following Langevin equation for the
phases:

Gibu(t) = 0+ 2 T (b= br) + \DE(D).  (Al4)

n

Now let us consider the nonlocally coupled oscillator system.
The above formulas can be written in the form

DV, (X X,) — | dX'Gx-x)V(X,X'), (A15)

!
n
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2 Fn,n'(¢il - ¢n') - f dX,G()C —X’)I‘(Qs— ¢,)v

(A16)

where

21
F(q&—q&’):ij ANZN+ @) - VIN+ p N+ D).
27,
(A17)

Here, X’ and ¢’ are the abbreviations of X(x’,7) and ¢(x’,1),
respectively.

APPENDIX B: SECOND PHASE REDUCTION OF THE
NONLINEAR FOKKER-PLANCK EQUATION

In this appendix, we present analytical procedures to de-
rive a phase equation describing the slow phase modulation
of the spatially uniform oscillating solution. We assume
long-wavelength modulation to the spatially uniform oscilla-
tion, so that the spatial derivatives of the function f(¢,x,?)
are small quantities. We thus expand the nonlocal coupling
term of the Fokker-Planck equation as

f dx'G(x—x')f((ﬁ,x',t) = 2 G2m5)25mf(¢’x’t)’ (Bl)
m=0

—o0

where G,,, is the 2mth moment of G(x). It is given by G,,,
= [ dxG(x)x*"/(2m)!, where Gy=1 holds from the normal-
ization condition. Due to the spatial reflection symmetry,
only even moments G,,, remain. For the coupling function
used in this paper, G(x)=exp(~|x|)/2, we obtain G,,,=1 for
all m. The nonlinear Fokker-Planck equation is expanded as

2
HéxD _ il{aﬁf dg¢’
0

ot Y
XTI (- ¢')f(¢',x,t)}f(¢,x,t)}

2w
f dp'T(¢—¢')

0

Pf(bxt) o l
+ D—2 _—
i i

X{Gzﬁif(ﬁ,x,t)}f(rﬁ,x,t)]

a
2

><{G4o”if(¢’,x,t)}f(¢,x,t)] -

2
f d¢'T'(¢-¢')

0
(B2)

Let us denote by f(¢p,x,1)=1(0)=fy(p—Q1) the spatially
uniform oscillating solution of the nonlinear Fokker-Planck
equation, where () is the collective frequency. Inserting this
expression in the nonlinear Fokker-Planck equation, we find
that f(6) satisfies the following equation
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Dd—2 7 Q i 6 i 0)f(0]=0
dGZfO( )+ ( _w)dﬂf()( )_dé’[gO( )fo(6)]=0,

(B3)

where

2
80(9)=f do'T(0-6')fo(6'). (B4)
0

Let u(6,1) represent disturbance to the spatially uniform os-
cillating solution defined by f(¢,x,1)=fo(6)+u(6,1). Equa-
tion (B2) is linearized in u(6,1), i.e., a,u:f,u, where the lin-
earized operator L is defined as

2

A d d d
Lu=D—5u(6) + (O - )~ u(6) — — [80(6)u(6)]

d 2m ’ ’ ,
_d_9|:f0(0)JO do F(ﬁ—&)u(ﬁ)}, (B3)

whose adjoint operator L*, defined by [ S”dﬁu*(e)iu(e)
=[2"d0u(H)L" u*(0), is expressed as

A d2 * d * d *
Lu =Dﬁu (0)—(Q—w)d—0u (6))+g0(0)d—0u (0)

2 d .
+f dOT(8 = 0fy(8)- ' (9). (B6)

0
The left and the right eigenfunctions and their eigenvalues of
these linear operators are determined from

Luy=Nu;, L'uj=Nu; (1=0,1,2,...).  (B7)

The eigenfunctions are assumed to be orthonormalized as

21T
J dOu; ()i, (0) = 8. (B8)

0

Here we should note that the right zero eigenfunction can be
chosen as

B d

LMO = 0, Mo(a) = d_afo(a), )\0 = 0, (B9)
which follows from the differentiation of Eq. (B3) with re-
spect to 6.

We now apply the second-order phase reduction to the
nonlinear Fokker-Planck equation (B2) by treating spatial
derivatives as perturbations. Following the procedure devel-
oped in Ref. [12], the Kuramoto-Sivashinsky-type phase
equation describing the slowly varying phase modulation can
be derived in the form

80(x,0) = 76°0 + 1(3,0)> ~\&'O + -, (B10)

where

21
p=—G, f douy(@) laf@fel,  B11)
0 ¢
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2
w= sz de M;(‘P)i[bo(@fo(%o)], (B12)

0
and

_ 21 ) d
A=G, J de uo(<p)d—[ao(¢)fo(¢)]
0 [

+G,>, x;l{

1#0

2T . d
f de Mé((p)%[a/((p)fo(@)]

0

2 ; d
X f oo Lol

(B13)
0
Here, the quantities a;(¢) and b,(¢) are defined by
2ar
ae) =f de'T(e—¢"ule'), (B14)
0

2 d
b)) = f de'T'(¢- @’)Fuz(w’). (B15)
0 ¢

In general, the spatially uniform oscillating solution f(6)
cannot be obtained analytically. Thus f,(6) and the associ-
ated zero eigenfunctions should be calculated numerically in
order to evaluate the phase diffusion coefficient v (B11).
This can be done with sufficient precision by applying the
numerical relaxation method using M=2° modes for the
phase. See Appendix C for the details of the numerical meth-
ods.

APPENDIX C: NUMERICAL METHODS

We used spatially periodic boundary conditions in all the
numerical simulations throughout this paper. We confirmed
our numerical simulation results are not changed even if we
further increase the number of grid points N for the space or
the number of modes M for the phase.

1. Algorithm for the nonlocally coupled noisy
limit-cycle oscillators

We used an explicit Euler scheme with a time step At
=0.01 for the equation

o

3 X(x,t) =F[X(x,1)] + IA(f dx'G(x —x")X(x',1) + V/c_rn(x,t).

(C1)

The system is discretized using N=2' grid points. The non-
local coupling term can be efficiently calculated by using the
fast Fourier transform (FFT) technique because it is simply a
convolution form with the kernel given by Eq. (2).

2. Algorithm for the nonlocally coupled noisy phase oscillators

The system is discretized using N=2' grid points for Fig.
6 and N=2' grid points for Figs. 8—11. We used an explicit
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Euler scheme with a time step Ar=0.01 for the equation in
the following form
Gd(x,1) = = R(x,Dsin d(x,1) — O(x,1) + a] + VDEx, 1),
(C2)

o0

dx'G(x - x")explig(x',1)],

—00

R(x,0)expli®(x,1)] =

(C3)

where the FFT is used for the calculation of the spatial con-
volution.

3. Algorithm for the nonlinear Fokker-Planck equations

We used a pseudospectral method with M=2> modes for
the phase component, and spatial discretization with N=2'°
grid points for the equation

07f(<§;x»l) == %[{w —R(x,t)sin[ ¢ — O(x,1) + a]}f(h,x,1)]
Pf(p,x,1)
e ()
where

® 2
R(x,t)exp[i@(x,t)]=f dx'G(x—x’)f d¢>’ei¢’f(¢',x’,t).
—o0 0

(Cs5)

A modified Euler scheme with a time step Ar=0.01 is used
for the temporal integration. FFT is used for the calculation
of the spatial convolution.

4. Algorithm for the complex Ginzburg-Landau equation

We used a pseudospectral method for the complex ampli-

tude using N=2'!° modes for the equation
A=A+ (1 +ic))PA - (1 +ic)APA,  (C6)

where a modified fourth-order Runge-Kutta scheme with a
time step Ar=0.01 is used for the temporal integration.

5. Algorithm for the Kuramoto-Sivashinsky equation

We used a pseudospectral method using N=2'" modes for
the equation in the following form

du(x,t)=— (9)2(0 +vdo - &jv, (CT)

where v(x,1)=20,0(x,1). Temporal integration was done by
a modified fourth-order Runge-Kutta scheme with a time
step Ar=0.01.

6. Algorithm for the numerical relaxation method

To determine the spatially uniform oscillating solution
fo(6), we numerically evolve the following nonlinear
Fokker-Planck equation
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2
PR w+f dp'T(¢

0

Wold) l

aZf()((ﬁ’ t)

- ¢")fo(d',1) fo(‘f%l)}"‘D Py

(C8)

from an appropriate initial condition, which converges to a
steadily rotating wave packet with the collective drift veloc-
ity Q, fo(6=¢—Qt). The right eigenfunction uy(6) is simply
obtained by differentiating f,(#) by 6. To obtain the left
eigenfunction u;(ﬁ), we evolve the following equation for
u;;(ﬂ,t),

PHYSICAL REVIEW E 75, 036209 (2007)

&u;(ﬁ,t) B &zué(a,t) &u;(t‘),t) &ué(ﬁ,t)
a P g e el
2 01
+f do'T (0 - 0)f0(6’)w, (C9)
o 90

from an appropriate initial condition using the f;,(6) and the
) obtained above. We constantly rescale u,(6,7) throughout
the numerical evolution, so that the normalization condition
I S’Td 0 u;(ﬂ,t)uo(é’):l is always satisfied. After sufficient re-
laxation, u;(ﬁ,t) converges to the desired left eigenfunction
ug(ﬁ). For the numerical calculations, we used a pseudo-
spectral method using M=2° modes, and a modified Euler
scheme with a time step Ar=0.01 for the temporal integra-
tion.
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