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Modeling spiking behavior of neurons with time-dependent Poisson processes
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Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and
the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson
processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the
sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly
compared with the mean interval between spikes, are found to be consistent with the three statistical coeffi-
cients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.
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I. INTRODUCTION

Spike sequences recorded from cortical neuronsin vivo
are usually irregular. It is not established whether the st
dard neurospiking models can describe the experimen
observed spiking irregularity@1#. It has been asserted that th
leaky integrate-and-fire model with temporally uncorrela
inputs is able to generate irregular spike sequences@2,3#.
Motivated by this alleged finding, Shinomoto, Sakai, a
Funahashi@4,5# proposed examining the consistency of
neurospiking model with experimental spiking data by co
sidering several statistical measures of the interspike in
vals ~ISIs!: not only the coefficient of variationCV , which
measures the spiking irregularity, but also the skewness
efficient of the interval distribution,S, and the correlation
coefficient of consecutive intervals,R.

A leaky integration process with temporally uncorrelat
Gaussian input is termed an Ornstein-Uhlenbeck proc
~OUP!. In this paper we refer to a threshold spike-reset p
cess whose membrane dynamics are given by such a pro
as OUP. This OUP can generate an irregular spike seque
The experimental spike sequences examined in Refs.@4,5#
are in fact irregular~possessing largeCV values!, but the
other two statistical coefficientsSandR evaluated from them
are distributed very widely beyond the range that any O
can realize. The largeSvalues and the largeR values exhib-
ited by some non-negligible percentage of neurons are
statistical characteristics of these experimental spike
quences that cannot be reproduced by any OUP, as expla
in the following.

The first finding that leads us to reject the OUP as a mo
of biological spiking behavior concerns the incompatibil
of their statistics in theCV-S plane@4#. Among the experi-
mental spike sequences examined in Refs.@4,5#, the mean
ISI is at least 30 msec and typically greater than 100 ms
This is much larger than the membrane time constant, wh
is considered to range from 1 to 20 msec@6#. Thus in any of
the spiking sequences, model parameter values for which
mean ISI is less than the membrane time constant shoul
excluded from consideration. We always add this constr
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to the OUP when considering it as a neurospiking mod
The feasible region of an OUP for infinite length sequenc
given this constraint, is shown in Fig. 1~a! as the shaded are
in the CV-S plane. The dashed line represents the envel
of the contours within which lie 99% of sequences conta
ing 100 intervals generated by an OUP with the same c
straint. The data taken from the monkey prefrontal cortex
overlaid in the same figure. Each dot represents statis
derived from 100 ISIs recorded from a neuron. The perce
age of the experimental data lying outside this 1% envel
is 7.2%. Those data that lie outside the 1% envelope do
because theirS values are too large, typically greater than
or 5.

The second finding on which our rejection of the OUP
based is that regarding the correlation coefficient of conse
tive intervalsR. TheR values are expected to be distribute
normally with mean zero and variance 1/n for any spike
sequences ofn intervals generated according to a renew
process, including an OUP and a Poisson process@7–9#.
Here, the range within which lie 99% of sequences conta
ing 100 intervals generated by a renewal process, co
sponds toRP@20.26,0.26#, with 0.5% lying on either side
of this range. This range is indicated by the vertical dash
lines in Fig. 1~b!. The R values obtained using the data r
corded from the prefrontal cortical neurons are distribu
with an overall shift to the positive side with respect to th
range, and the percentage of the data lying outside the
deviation range is 11.3%. This result implies that renew
processes in general, including the OUP, are incapable
describing the statistics of spiking behavior as reflected
the correlation coefficientR.

With these two results, the OUP alone was found to
unable to describe the experimental data. It was then sho
however, that the statistics of the experimental data could
reproduced by a leaky integrate-and-fire model that inclu
temporally correlated inputs, which are themselves gene
ated by another Ornstein-Uhlenbeck process@5#. We refer to
this model as a ‘‘colored OUP.’’ In sweeping out all param
eter values, however, the data generated by colored O
occupies a much wider region in the space of the three
tistical measures of interest than that of the experime
data. The colored OUP is therefore in some sense ‘‘ove
pable’’ of describing neurospiking behaviors. One somew
unnatural aspect of the behavior of the colored OUP is tha
©2001 The American Physical Society10-1
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FIG. 1. ~Color! Distributions of statistical coefficients for 666 spike sequences recorded from monkey prefrontal cortices~by courtesy of
Shintaro Funahashi and Yutaka Sakai!. Each dot represents a pair of statistical coefficients computed from a spike sequence consisting
ISIs of a neuron.~a! The coefficient of variationCV and the skewness coefficientS. The shaded area represents the region that can
reproduced by the OUP with the constraint that the mean spike interval is greater than the membrane time constant. The dash
represent the envelope of the contours within which 99% of the data should exist given the finite number of intervals per seqn
5100) if this spiking behavior were described by an OUP. The percentage of the data lying outside this 1% envelope is 7.2%. T
clearly excludes the OUP as a possible model of such spiking behavior.~b! The correlation coefficient of consecutive intervalsR and the
skewness coefficientS. Here, the range, within which lie 99% of sequences containing 100 ISIs generated by an OUP or any r
process, corresponds toRP@20.26,0.26#, which is indicated by the vertical lines. The percentage of the experimental data lying ou
these lines is 11.3%. This result clearly excludes any renewal process.
041910-2
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MODELING SPIKING BEHAVIOR OF NEURONS WITH . . . PHYSICAL REVIEW E64 041910
generates regular spike sequences over a fairly wide rang
parameter values~The original OUP can also generate reg
lar spike sequences!. Although in actual biological systems
regular spiking can be observed in constant current injec
experiments conductedin vitro @10,11#, in general it is not
observed in the cortex of an active animalin vivo, and for
this reason, there is no reason to require our model to be
to reproduce such behavior.

We wish to construct a simple model with a small numb
of parameters, which reproduces the spiking statistics of n
rons in vivo without the necessity of fine tuning paramet
values. As a possible type of such models, we study in
present paper time-dependent Poisson processes, in w
point events~spikes! are generated randomly with a spik
rate that is temporally modulated in some prescribed man
We consider such models because we have proven tha
coefficient of variationCV is greater than or equal to unit
for a sequence of infinite length generated by any kind
time-dependent Poisson process. This fact appears to be
sistent with experimental data of finite length takenin vivo.
In the present paper we do not attempt a detailed exam
tion of the consistency of such models with experimen
data of finite length, but instead we obtain values for
three coefficientsCV , S, and R, describing the statistics o
the spike sequences of infinite length, through analytic
numerical investigation for three types of time-depend
Poisson processes: pulse regulated, sinusoidally regul
and doubly stochastic.

II. THREE STATISTICAL COEFFICIENTS

A sequence of point events~spikes! is registered in a form
of a sequence of interevent intervals~ISIs! as $T1 ,
T2 ,•••,Tn%, assuming the stationarity of the phenome
The ISI sequence is characterized in the present pape
three statistical coefficientsCV , S, andR, which will be de-
fined in this section. Theoretical statistical coefficients w
respect to time-dependent Poisson processes will be c
puted for a sequence of infinite number of intervals. Wh
performing the numerical simulation, the number of interv
n was set very large (n51 000 000) so that the compute
statistics can practically be regarded as theoretical value
n5`. With respect to the experimental ISI sequence, ho
ever, the number of available ISIs are limited, and we will
the number of intervals asn5100 in computing the sampl
statistics.

The coefficient of variationCV is a measure of the vari
ability of ISIs, defined as the ratio of the standard deviat
to the mean,

CV5~T2T̄!2 1/2
/T̄. ~1!

HereT is the interval and•••̄ represents an averaging oper
tion such thatT̄[1/n( i 51

n Ti . The coefficientCV vanishes
for a regular spike sequence. On the other hand,CV51 for
an infinite length sequence generated by a fixed Poisson
cess. For a sequence of finite number of intervalsn, the
sampleCV value is expected to be distributed about 1 w
the deviation of the order of 1/An, if the sequence is gener
04191
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ated by the Poisson process. We can see in Fig. 1~a! that
most experimental spike data exhibit large values ofCV .

The skewness coefficientS is a measure of the asymmetr
of the interval distribution defined as

S5~T2T̄!3/~T2T̄!23/2
. ~2!

The skewness coefficientScan be either positive or negative
but it is 2 for an infinite length sequence generated by
Poisson process. For a sequence of finite number of inter
n, the sampleS value is expected to be distributed about
with the deviation of the order of 1/An, if the sequence is
generated by the Poisson process. We can see in Fig.~a!
that a large percentage of experimental data exhibit value
S significantly larger than 2.

The correlation coefficientR is a measure of the mutua
dependence of consecutive ISIs, defined as

R5~TiTi 112T̄2!/~T2T̄!2, ~3!

where Ti and Ti 11 denote a pair of consecutive interval
The correlation coefficientR vanishes for an infinite length
sequence generated by any renewal process, including
OUP and the Poisson process. For a sequence of finite n
ber of intervalsn, the sampleR value is expected to be dis
tributed normally about zero with variance 1/n if the se-
quence is generated by a renewal process. As depicted in
1~b!, a large percentage of the data taken from the mon
prefrontal cortex exhibit positiveR values significantly larger
than what would result from the renewal process.

III. THREE KINDS OF TIME-DEPENDENT POISSON
PROCESSES

In the Poisson process, point events occur randomly
time with a certain fixed ratel. In this process, the intereven
intervals T appear as randomly and independently cho
values from an exponential probability distribution

p~T!5le2lT. ~4!

For an infinite length spike sequence generated by a fi
Poisson process, we can expect that the three statistica
efficients defined above will take the valuesCV51, S52,
andR50. For a finite number of intervals so generated,
root mean square deviation from these values is of the o
of 1/An.

The values of the coefficientsCV and S evaluated from
experimental spike sequences in fact have been found t
distributed around the values for the Poisson process,CV
51 and S52. The extent to which this experimental da
deviate from these values is, however, too large, given
each data point represents a sequence of 100 ISIs@4#. In
addition, the values ofR found experimentally are as a who
shifted in the positive direction with respect to the range
the renewal process. For these reasons, a fixed Poisson
cess, in which the spike ratel is time independent, canno
reproduce the experimental spiking statistics. We theref
0-3
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would like to consider extended Poisson processes in w
the spike rate is given by some predefined functions of t
l(t).

First, we consider a pulse regulated Poisson process
which the spike rate is a periodic function consisting
Dirac d functions separated by time intervals of lengths,

l~ t !5 (
k52`

`

nd~ t2sk!. ~5!

Namely, multiple spikes~including no spike and one spik
case! can be generated at each timet5sk (k5•••,0,1,
2,•••). The number of spikes at each time is chosen acco
ing to the Poisson distribution with the meann.

Second, we consider a sinusoidally regulated Poisson
cess, in which the spike rate undergoes a smooth peri
modulation as

l~ t !5l01D sin~ t/s!, ~6!

wherel0(>uDu) is the mean spike rate and 2ps is the pe-
riod of the modulation.

Third, we examine a doubly stochastic Poisson proces
which the spike rate is randomly modulated@7,8,12#. We
consider the case that the random modulation of the s
rate is given by the Ornstein-Uhlenbeck process,

dl

dt
52

l2l0

s
1ADj~ t !,

wherej(t) is Gaussian white noise with ensemble-averag
quantities^j(t)&50 and ^j(t)j(t8)&5d(t2t8). We intro-
duced same notationsD ands as the abovementioned sinu
soidally regulated Poisson process@Eq. ~6!#, as those param
eters have mutually the same dimensionalities. This proc
yields the fluctuating spike rate

l~ t !5l01Dh~ t !, ~7!

which is characterized by

^h~ t !&50,

and

^h~ t !h~ t8!&5e2ut2t8u/s.

In this process we stipulate that spikes are not gener
whenl(t)<0.

IV. METHOD OF ANALYSIS

In this section we introduce the method of obtaining th
oretical moments of intervals, which constitute the three s
tistical coefficients for an infinite length sequence genera
by the time-dependent Poisson process, in which p
events~spikes! are generated randomly in time with the ra
l(t). The conditional probability that given a spike at timet
the next spike will appear at timet1T is @7–9#
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p~Tut !5l~ t1T!expF2E
0

T

dul~ t1u!G . ~8!

The nth moment of the ISI, when the preceding spike w
generated at timet, is given by

Tnu t5E
0

`

dTTnp~Tut !.

The conditional moment of the ISIs averaged over all p
sible values of the time of the preceding spike is theref
given by

Tn5 lim
U→`

E
0

U

dtl~ t !Tnu t

E
0

U

dtl~ t !

5 lim
U→`

E
0

U

dtl~ t !E
0

`

dTTnp~Tut !

E
0

U

dtl~ t !

.

~9!

This can be simplified by means of partial integration
yield the simple integral expressions

T̄5
1

l̄
, ~10!

T25
2

l̄
E

0

`

dT expF2E
0

T

dul~ t1u!G , ~11!

T35
6

l̄
E

0

`

dTTexpF2E
0

T

dul~ t1u!G , ~12!

where •••̄ on the right-hand side represents the long-tim
average defined as

Ā5 lim
U→`

1

UE
0

U

dtA~ t !,

while •••̄ on the left-hand side represents the average ov
long spike sequence defined in Sec. II.

The statistical coefficientsCV andS are given by the first
few of the above moments as

CV5AT2/T̄221,

S5
T323T2T̄12T̄3

~T22T̄2!3/2
.

Evaluation of the correlation coefficientR requires an av-
erage over two consecutive intervals, given as
0-4
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TiTi 115 lim
U→`

E
0

U

dtl~ t !E
0

`

dT1T1p~T1ut !E
0

`

dT2T2p~T2ut1T1!

E
0

U

dtl~ t !

. ~13!
-

-
ta
a

er-
The
in

ffi-
of
e-
lated,
ose
tis-

or
vari-
of
to
effi-
ces
ces.
ntal
he
ior

te is
s
if-

se.

me.
t-

rsts
few
e
of

q.
Repeated use of partial integration~as explained in Appendix
A! yields the simple form

TiTi 115
1

l̄
E

0

`

dT1E
0

`

dT2

3l~ t1T1!expF2E
0

T11T2
dul~ t1u!G . ~14!

With the quantityTiTi 11 defined in this manner, the statis
tical coefficientR is given by

R5
TiTi 112T̄2

T22T̄2
.

V. PROOF OF THE INEQUALITY CVÐ1

It was pointed out by Tuckwell~ @9#, pp. 222–225! that
the relationCV>1 holds for a two-state semi-Markov pro
cess in which a spike generator alternates between two s
with different spike rates. Here, we would like to prove th
this inequality holds generally forany kind of time-
dependent Poisson process.

The inequalityCV>1 is equivalent to

T̄2>2T̄2,

or in other words,

T̄2

2T̄
>T̄. ~15!

The left-hand side of this relation is

E
0

`

dT expF2E
0

T

dul~ t1u!G
and its integrand satisfies Jensen’s inequality~see, for in-
stance, Ref.@13#!,

expF2E
0

T

dul~ t1u!G>expF2E
0

T

dul~ t1u!G5e2Tl̄.

Using this, we can prove Eq.~15!,
04191
tes
t

T2

2T̄
5E

0

`

dT expF2E
0

T

dul~ t1u!G
>E

0

`

dT exp~2Tl̄ !5
1

l̄
5T̄. ~16!

Namely, the coefficient of variationCV is larger than or
equal to unity for a spike sequence of infinite length gen
ated by any kind of time-dependent Poisson process.
equality holds if the spike rate is constant in time, that is,
the case of a fixed Poisson process.

VI. EVALUATION OF INTERVAL STATISTICS

In this section, we evaluate the three statistical coe
cientsCV , S, andR analytically and also report the results
their numerical evaluation for the three kinds of tim
dependent Poisson processes defined above: pulse regu
sinusoidally regulated, and doubly stochastic. Among th
three processes, the first two are not stationary. If the sta
tical coefficients are evaluated in a finite interval of time f
those nonstationary processes, they are generally not in
ant with respect to the shift of time. But if the number
intervals n used for the evaluation is sufficiently large
overcome the nonstationary time scale, the statistical co
cients evaluated in this section for infinite length sequen
are expected to be close to those for finite length sequen
The obtained results are compared with the experime
data displayed in Fig. 1 to elucidate the potentiality of t
respective models for describing neuronal spiking behav
in vivo.

A. Pulse regulated Poisson process

The pulse regulated Poisson process, whose spike ra
expressed by Eq.~5!, is analytically tractable. Though thi
modulation is periodic, the spiking behavior it generates d
fers significantly from that in the sinusoidally regulated ca
As the spiking probability is given by the Diracd function,
the model tends to generate multiple spikes at a single ti
This is reminiscent of the spiking behavior of intrinsic burs
ing cells and chattering cells, both of which generate bu
of several successive spikes that appear at intervals of a
milliseconds, while the interburst interval is typically of th
order of several tens of milliseconds or several hundreds
milliseconds@14#.

The probability of the number of spikesn generated at
each time at which the argument of the delta function of E
~5! vanishes (t5•••,0,s,2s,3s,•••) is distributed according
to the Poisson distribution
0-5
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pn5
nn

n!
e2n. ~17!

The statistical quantities necessary to deriveCV , S, and R
are readily derived from this probability distribution as

T̄5
s

n
,

T25
s2

n S 11e2n

12e2nD ,

T35
s3

n F114e2n1e22n

~12e2n!2 G ,

TiTi 115s2F e2n

~12e2n!2G .

We thus see that the ISI depends linearly ons. For this rea-
son, nondimensional spiking statistics such asCV , S, andR
do not depend ons but only onn.

Figure 2 displays statistical coefficients for the pulse re
lated Poisson process. In the limit ofn→0, the values of the
statistical coefficients converge to their Poisson values,CV
51, S52, andR50. Negative values ofR and small values
of S are two main characteristics of this process that eme
as n is increased from 0. In this pulse regulated caseS
asymptotically approaches the lineS5CV for large n. This
behavior, however, is not consistent with the experimen
data displayed in Fig. 1. In that figure, we see that a la
number of the data points have values ofS that are distrib-
uted well above theS5CV line. In addition, the values ofR
generated by this model are inconsistent with the experim
tal values, as the former are shifted in the negative direc
with respect to 0, while the latter are shifted in the posit
direction. From these results, we see that the spike seque
recorded from monkey prefrontal cortical neurons cannot
described by the pulse regulated Poisson process.

B. Sinusoidally regulated Poisson process

The activity of the neurons of alert animals may be te
porally modulated by brain waves. Types of brain waves
classified according to their frequency range asa waves
~8–13 Hz!, b waves~13–30 Hz!, u waves~4–7 Hz!, andd
waves~0.5–4 Hz! @15#. As a simple model to examine th
effects of a smooth periodic modulation of this kind, w
consider here the sinusoidally regulated Poisson process
cussed briefly above, whose spike rate is given by Eq.~6!.
We note here that sinusoidally regulated noisy lea
integrate-and-fire models have been studied by Lansky@16#
and Bulsaraet al. @17# in different contexts, related to sto
chastic resonance phenomena.

In the present case of a periodically modulated spike r
the ‘‘long-time’’ average
04191
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Ā5 lim
U→`

1

UE
0

U

dtA~ t !

can be replaced by the time average over one period of
modulation,

Ā5
1

2psE0

2ps

dtA~ t !.

This replacement enables us to perform numerical integ
tion of Eqs.~11!, ~12!, and~14! to obtainT2, T3, andTiTi 11,
which yield the quantitiesCV , S, andR.

The value of these quantities obtained by analytic integ
tion are valid forl0.D. The results obtained with this direc
integration method are depicted in Fig. 3. We have also p
formed numerical simulations of the original stochas
model with various parameters, but we do not include
simulation results in the figures, as they essentially coinc
with those obtained from the numerical integration metho

If the modulation of the spike rate is much more rap
than the mean spike rate (s!1/l0), the coefficientsCV , S,
and R take on their values for a Poisson process. In t
regular modulation, it would be possible to catch the ra
regular modulation by means of the other kind of statist
such as the autocorrelation function, but we are presently
interested in those statistics. As seen in the figure, the v
of CV increases ass is increased from 0, while the values o
S and R first decrease from the Poisson values 2 and 0,
spectively, and then reverse, eventually exceeding these
ues ass approaches the order of the mean interval 1/l0. The
large values ofCV , S, andR produced for large modulation
D/l0 of long-time scalesl0 reproduce the experimental da
displayed in Fig. 1, but the values obtained for values of
smallsl0 do not correspond well with the experimental da

C. The doubly stochastic Poisson process

Even if a neuron generates spikes randomly in time
would also be subject to slowly fluctuating current and t
resulting spike rate may fluctuate accordingly in time. As
simple model to express the random temporal fluctuation,
would like to consider the doubly stochastic Poisson proce
whose spike rate is given by Eq.~7!,

l~ t !5l01Dh~ t !,

whereh is the correlated Gaussian noise with the ensem
characteristicŝh(t)&50 and^h(t)h(t8)&5exp(2ut2t8u/s).

Here we assume that the ergodicity and thus the long-t
average over one sample,

Ā5 lim
U→`

1

UE
0

U

dtA~ t !,

can be replaced by the ensemble average^A& over the
Gaussian distribution of the ensemble ofh(t). In this Gauss-
ian model,l(t) is distributed normally aboutl0 with devia-
tion of orderD. Accordingly,l(t) can take negative value
0-6
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FIG. 2. ~Color! Pulse regulated
Poisson process. The statistic
coefficientsCV , S, andR depend
only on n. In the limit n→0, the
statistical coefficients converge t
the Poisson values CV51,
S52, and R50. ~a! The CV-S
plane. We see thatCV increases
monotonically as a function ofn,
while S first decreases and the
asymptotically approaches th
dashed line representingS5CV .
~b! The R-S plane. Here we see
that R remains negative for alln.
re

istri-
and this results in errors in the analysis. The analytical
sults can be considered reliable for 2sD2!l0.

The mean interval value is given simply by

T̄5
1

l0

and the higher moments (n>2) are given by
04191
-
T̄n5

n~n21!

l0
E

0

`

dTTn22e2l0TK expF2DE
0

T

duh~u!G L .

~18!

The ensemble average with respect to the Gaussian d
bution of h(t) is analytically obtained as~see Appendix B!

K expF2DE
0

T

duh~u!G L 5ef ~T!, ~19!
0-7
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FIG. 3. ~Color! Sinusoidally regulated Poisson process: In this case the statistical coefficientsCV , S, andR depend on two parameters
D/l0 andsl0. In either limit D→0 or s→0, the statistical coefficients converge to the Poisson values,CV51, S52, andR50. The curves
represent the iso-D curves~D50.4, 0.6, 0.8, and 1.0!. ~a! The CV-S plane. We see thatS first decreases from the Poisson value 2 ass is
increased from 0, and then it reverses its course ass approaches the order of the mean intervall0

21, while CV increases monotonically with
s. ~b! The R-S plane. Here it is seen thatR first decreases from the Poisson value 0 ass is increased from 0, and then it reverses its cou
ass approaches the order ofl0

21.
041910-8
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f ~T!5D2s2~T/s211e2T/s!,

and the final analytical integral form of the moments is giv
by

Tn5
n~n21!

l0
E

0

`

dTTn22 e2l0T1 f (T). ~20!

This integral formula is used for the evaluation of statisti
coefficientsCV and S. It should be noted that the momen
given in Eq.~20! can, in principle, be derived from the prob
ability distribution of intervals given by Cox and Lewis@7#,
~pp. 179–183!. But the straightforward method described
Appendix B enables us to derive the following further r
sults.

First, the average over the consecutive intervals is writ
as the ensemble average,

TiTi 115
1

l0
E

0

`

dT1E
0

`

dT2

3K l~T1!expF2E
0

T11T2
dul~u!G L . ~21!

The integrand on the right-hand side is carried out by me
of the functional derivative, as explained in Appendix B, a
we arrive at the final single integral form of the correlatio

TiTi 115
1

l0
E

0

`

dT@l0T22 f ~T!# e2l0T1 f (T). ~22!

This formula is used for the evaluation of the correlati
coefficientR.

The statistical coefficientsCV , S, andR evaluated by the
analytical integration of the integrals in Eqs.~20! and ~22!
are plotted in Fig. 4. If the modulation of the spiking pro
ability fluctuates very rapidly in comparison with the me
spike rate (s!1/l0), as seen in the figure, this modulatio
does not alter the statistics from that obtained for the Pois
process,CV51, S52, andR50.

The values of the statistical coefficients obtained by p
forming the numerical simulation of the original dynamic
equations are displayed in Fig. 5. We find that the analyt
results are in agreement with the simulation results only
smallsD2/l0. It is thus concluded that numerical simulatio
are necessary to determine the general behavior of the s
tical coefficients in this case. An important point regardi
the present results is that the values ofS significantly larger
04191
l

n

s

,

n

r-

l
r

tis-

than 2 and the positiveR values, which are exhibited by
some significant percentage of the experimental data
corded from the monkey prefrontal cortex~Fig. 1!, can be
reproduced by the present doubly stochastic Poisson pro
in the case whenD is larger than 0.5l0 ands is larger than
1/l0, that is, with a fairly large modulation and slow tim
scale.

VII. CONCLUSION

In the present paper, we have obtained values for th
quantities describing interval statistics for three kinds
time-dependent Poisson processes: pulse regulated, sin
dally regulated, and doubly stochastic. The values of th
quantities obtained for each process were compared with
tributions of the data recorded from the monkey prefron
cortex. We find that among these three processes, the do
stochastic Poisson process corresponds best to the ex
mental data. It would be interesting to perform more detai
statistical tests to examine the consistency of this model w
the experimental data. It is also desirable to examine how
statistics depend on the area of the brain from which they
taken, as well as on the nature of the individual neuron us
We are proceeding with this study in these directions.
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APPENDIX A

In this appendix, we derive Eq.~14! from Eq.~13!. Using
the relation

]

]T2
expF2E

0

T11T2
dul~ t1u!G

52l~ t1T11T2!expF2E
0

T11T2
dul~ t1u!G ,

the numerator of Eq.~13! can be simplified as
E
0

U

dtE
0

`

dT1E
0

`

dT2l~ t !T1l~ t1T1!T2l~ t1T11T2!expF2E
0

T11T2
dul~ t1u!G

5E
0

U

dtE
0

`

dT1E
0

`

dT2l~ t !T1l~ t1T1!expF2E
0

T11T2
dul~ t1u!G .

We then carry out another partial integration, using the relation
0-9
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FIG. 4. ~Color! Doubly stochastic Poisson process~analytical integration!. Here too, the statistical coefficientsCV , S, andR depend on
the two parameters,D/l0 and sl0. Once again, in either limitD→0 or s→0, the statistical coefficients converge to the Poisson val
CV51, S52, andR50. From the results of numerical simulations, however, we find that these analytical results are only relia
2sD2!l0. The curves represent the iso-D curves (D50.4, 0.6, 0.8, and 1.0).~a! TheCV-S plane. Here we see that bothCV andS increase
ass is increased from 0.~b! The R-S plane. Here,R also increases from the Poisson value 0 ass is increased from 0.
041910-10
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FIG. 5. ~Color! Doubly stochastic Poisson process~numerical simulation!, Each statistical coefficient is evaluated from a sequence
1 000 000 numerically generated intervals. The curves represent the iso-D curves (D50.4, 0.6, 0.8, and 1.0).~a! The CV-S plane.~b! The
R-S plane. The departure of the analytical results from this numerical simulation results becomes significant ass becomes comparable t
D2l0. In this case, the present numerical results are more reliable.
041910-11
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]

]t
expF2E

0

T

dul~ t1u!G5@l~ t !2l~ t1T!#expF2E
0

T

dul~ t1u!G ,
whereT5T11T2. Ignoring theO(1) end effects and retaining only the bulk integration, the numerator can be rewritte

E
0

U

dtE
0

`

dT1E
0

`

dT2T1l~ t1T1!l~ t1T11T2!expF2E
0

T11T2
dul~ t1u!G1O~1!.
ef

ob
Repeating this kind of partial integration, neglecting end
fects ofO(1), wearrive at

E
0

U

dtE
0

`

dT1E
0

`

dT2l~ t1T1!expF2E
0

T11T2
dul~ t1u!G

1O~1!.

This gives the final formula, Eq.~14!,

TiTi 115
1

l̄
E

0

`

dT1E
0

`

dT2

3l~ t1T1!expF2E
0

T11T2
dul~ t1u!G .

APPENDIX B

In this appendix, we perform the Gaussian integral to
tain Eqs.~19! and ~22!. First, the average

K expF2DE
0

T

duh~u!G L
taken over the Gaussian distribution ofh(t), with ^h(t)&
50 and^h(t)h(t8)&5exp(2ut2t8u/s) is readily obtained as
04191
-

-

K expF2DE
0

T

duh~u!G L
5expF1

2
D2E

0

T

duE
0

T

dv^h~u!h~v !&G
5expFD2E

0

T

du~T2u!e2u/sG
and this finally leads to Eq.~19!,

K expF2DE
0

T

duh~u!G L 5ef ~T!,

f ~T!5D2s2@T/s211exp~2T/s!#.

Second, Eq.~21! contains the average

K h~T1!expF2DE
0

T11T2
duh~u!G L .

By regardingD as a time-dependent quantityD(u), and us-
ing the functional derivative

d

dD~v !
D~u!5d~u2v !,

this can be rewritten as
K h~T1!expF2DE
0

T

duh~u!G L 52
d

dD~T1! K expF2E
0

T

duD~u!h~u!G L
52

d

dD~T1!
expF1

2E0

T

duE
0

T

dvD~u!D~v !^h~u!h~v !&G
52D~T1!E

0

T

dve2uT12vu/s expF1

2E0

T

duE
0

T

dvD~u!D~v !euu2vu/sG ,

0-12
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whereT5T11T2. By resettingD(t)5D, we can rewrite this
as

2DE
0

T

dve2uT12vu/s expFD2E
0

T

du~T2u!exp~2u/s!G
52Ds~22exp2T1 /s2exp2T2 /s!ef ~T!

In this way, Eq.~21! becomes
rk

s

an

04191
TiTi 115E
0

`

dT1E
0

`

dT2 @l02D2s~22e2T1 /s2e2T2 /s!#

3e2l0T1 f (T).

Finally, by transforming the variables from (T1 ,T2) to
(T1 ,T), the above integral is reduced to the single integ
given in Eq.~22!,

TiTi 115
1

l0
E

0

`

dT@l0T22 f ~T!# e2l0T1 f (T).
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