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Magnetic walls in the anisotropic XY-spin system in an oscillating magnetic field
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Wall structures associated with dynamic phase transitions in the aniso¥gpin system in a temporally
oscillating magnetic fieldh cogQt) in a one-dimensional system are analyzed by using the time-dependent
Ginzburg-Landau model. It is numerically confirmed that there exist two types of magnetic walls, i.e., the Néel
and Bloch walls, and is found that the transition between the two walls can occur for chdngin@. The
phase diagram for the stable regions of each wall is obtained by both numerical and analytical methods.
Furthermore, the critical behavior of the modulus of the Bloch wall around the Néel-Bloch transition point is
studied, and it is found that the transition can be either continuous or discontinuous with respetspend-
ing on ().
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I. INTRODUCTION spin system in thermal equilibriuni3—6]. This fact was

. ) . also confirmed by a Landau expansion near the transition
Since the establishment of the linear response theory iBoint [10].

the 1950s and nonequilibrium statistical mechanics in the Recently, experimental studies of dynamic phase transi-

1960s, the frontier of statistical physics is extending to SyStions in a Heisenberg-type ferromagnet with uniaxial aniso-
tems that are far from equilibrium. A magnetic system U”de"tropy have been carried o{8,9). Monte Carlo simulations

a temporally oscillating field is one example of far-from- 4t ihe Heisenberg spin system with uniaxial anisotropy in an
equilibrium systems. Since the 1990s, many studies with th%scillating magnetic field were carried oft1,12. It was

mean field theoretical approagh,2] and Monte Carlo simu-  eported that when the magnetic field is applied to the non-

lations [3-€] as well as laboratory experiments—9] have a5y axis of magnetization, magnetization perpendicular to

been carried out to _study responses of fer_romagnetlc systemse applied field is observed 2.

to a temporally oscillating, strong magnetic force. Very recently, in order to study the DPT in a multicom-
The mean field theoretical analysis made it clear thal,onent system from the mean field theoretical viewpoint, Ya-

when the amplitudé of the oscillating magnetic field is kept gi et al. studied the time-dependent Ginzburg-Landau
strong enough, two types of magnetization cycle either WithtTDGL) equation

or without a certain symmetry in time are possible, depend-
ing on the frequency) of the applied field. Whef is below l./I(r,t) = (T.- Ty~ |2+ y* + V2 +h cod Qi) (T < Ty
a critical value(), the magnetization cycle is described as an
oscillation with a temporal symmetrgsymmetry-restoring (1.9

oscillation, SRQ, and beyond) it is described as an oscil- ¢ reponding to the anisotropieY-spin systen{13]. Here,
lation without such symmetrysymmetry-breaking oscilla- Ar D=X(r ,)+iY(r 1) is the complex order parameter, and

tion, SBO. These characteristic oscillating states under 0S5 andY are components of the coarse-grainédspin ¢ at
cillating magnetic field are calledynamic phaseand such a the locationr and timet. The parametery stands for the

transition between two phases under a change of either tl‘ma nitude of the magnetic anisotropy, and §0¢ 0(<0) the
amplitude or the frequency of the amplified field is called thex (3) axis correspongs to the magngt%c easf/o;xis. In the limit

dynamic phase transitioOPT) [4], |y — ¢, the above model is reduced to the Ising model, and

. Furthermore, th_e Monte Carlo simulation .O.f a two- it is identical to the isotropiXY model for y=0. The fourth
dimensional(2D) Ising spin system below the critical tem- o - .
term implies the local ferromagnetic interaction. The last

perature proved that for a fixe the probability density of term represents the oscillating external force applied inkthe

the magnetization averaged over one period of the oscillating, . . . )

field has one peak fof)<(), and double peaks fof) f%rlerzlcjté?]r;,ywherm and() are, respectively, its amplitude and

> (). therefore the transition is associated with the symmetry ; o 12 R

change of the magnetization cycle. In addition, a finite size_TVY,gg rescal_:_ngﬁ_wa (hTC -I'I_')—'Il{/ ’3/'[2h_> ((-EC T')I' E’TVQH gc

scaling analysis proved that the DPT belongs to the same ) A v ( c )y, h=(Te=T)*h, —>(_ c— D, the
quation of motior(1.1) can be transformed into the dimen-

universality class as the phase transition of a kinetic Ising’. )
y P ionless TDGL equation

W0 = = g2y + yp* + V2 +heodQy. (1.2
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thermal noise in the basic dynamics. In the present paper, weeansformatiort —t+T/2, X— —X, andY —Y. Owing to this
consider the situation that the system forms a nearly 1D spaymmetry, Eq.(1.3) always has a solution that satisfies
tial structure, which is supposed to be along #irection,  (t)=(1), i.e.,

in the spatial dimension above 1, and the time evolution can

be described with the 1D version of Ed..2), i.e., X(t)==-X(t+T/2), (2.2
. - —(X24 V2
X(z,t) =[1+y- X%+ Y?)]X + #X + h cogOt), YO =Y+ TI2). 2.3
Y(zt)=[1- y=(X2+ Y)Y+ P2Y. (1.3y  We call this type of solution the symmetry-restoring oscilla-

tion and a solution which does not satisfy this relation the
Recently, Yasuet al. analyzed the spatially uniform oscilla-  symmetry-breaking oscillation. In the SRO, the time average
tion and clarified the possible types of oscillations, which aresf the X component over one period satisfies
called the Ising-SRO, Ising-SBXY-SRO, andXY-SBO os-
cillations (for details, see Sec.)ll 1(7

So far, many studies have been carried out for magnetic _f

wall structures in ferromagnetic systems, and in the ordering
process, the interactions among magnetic walls and the do- There is also another kind of symmetry. #(t)=X(t)
main size distribution were studied using the TDGL equa-+jY(t) is a solution of Eq(1.3),
tions[14-17. It is known that in a perturbed parametrically

X(t)dt=0. (2.9
0

driven, damped nonlinear Schrédinger equation, as the pa- Tﬂ(t) = X(1) - iY (1) (2.5
rameter is changed, a structural transition of the domain wall
can occur, i.e., the Néeftsing-) Bloch transition exist§18]. is also a solution of Eq(1.3). Equation(1.3) always has a

Furthermore, the dynamical properties of the Bloch wall intrivial solution that satisfies
an oscillating magnetic field have been studied for the sine-
Gordon and Landau-Lifshitz equations, respectija®§,2Q. () :Tp(t), i.e., Y(t)=0. (2.6
However, no study on the change of symmetry and structures ) o ) o
of walls associated with the dynamic phase transition ha¥ve caII_thls type of oscillation thésing oscillationbecause
been carried out. The fundamental aim of the present paper {8€ oscillator has only th& component. On the other hand,
to clarify the wall structures and their dynamics associate@ny Solution such thaY(t) # 0 is called theXY oscillation
with the dynamic phase transition in the anisotraispin In terms of these two types of symmetries, we can classify
system(1.3) in an oscillating magnetic field. the uniform solutions into four typ_es, Ismg-S_RO, Ising-SBO,
The present paper is organized as follows. Section Il giveXY-SRO, andXY-SBO. These orbits have different types of
a brief review of the dynamic phase transition of the spatiallySymmetry and are called the dynamic phases, which are
uniform case of the anisotropdY-spin system studied by Shown in Fig. 1. According to the symmetries described
Yasuiet al. In Sec. IIl, wall structures in an oscillating mag- aPove, two stable limit cycles coexist in the Ising-SBO and
netic field and their oscillatory characteristics are studiedXY-SRO phases and four stable limit cycles in ¥¥é-SBO
The existence of the Néel-Bloch wall transition is also showrPhase. The symmetry of the uniform solution changes as the
as either the amplitude or the frequency of the external fiel@mplitude or the frequency of the magnetic field is changed.
is changed. Section IV shows an analysis for the Néel-BlocH Nis phenomenon is called the dynamic phase transition.
transition from the Fourier expansion approach. The result is The phase diagram of the uniform solutions is obtained by
compared with the numerically obtained one. In Sec. Vithe applying the Floquet analysis. Lgtt) be a uniform solution
dependence of the Bloch wall modulus near the Néel-Blocind #o(t) =Xo(t) +iY,(t) be one of the limit cycles. The lin-
transition point is studied. The numerical result is shown inearized equation for the deviation from the limit cycle solu-
Sec. VA, and we develop the Fourier expansion theory ofion dy(t)=y(t) - (t) =x(t) +iy(t) is derived as
wall dynamics in Sec. V B. A summary and concluding re-

marks are given in the last section. Q(X(t) ) =& )(X(t)> 2.7
dt\y(t) y() /)’
Il. OSCILLATION AND PHASE DIAGRAMS
OF UNIFORM OSCILLATIONS . B (l +y- 3X0(t)2 _ Yo(t)2 _ 2Xo(t)Y0(t) )
In this section we give a brief review of the spatially ®= = 2X,(1) Y1) 1—y—=Xo(t)2 = 3Yy(1)2)’
uniform oscillations of the TDGL equatiofi.3), reported in 2.8

Ref.[13]. The uniform solutions of Eq1.3) are limit cycles,
which can be classified by two types of symmetries.

N ca ed by . hereG(t) is the peri ix. We define the time evo-
First, if p(t)=X() +iY(1) is a solution of Eq(L.3), then where G(t) is the periodT matrix. We define the time evo

lution operatorU(t) by (x(t),y(t)T=U(t)(x(0),y(0))T with
P(t) ==Xt +T/2) +iY(t+T/2) (2.1 the initial condition0(0)=1, 1 being the 2<2 unit matrix.

(T=27/€ is the period of the magnetic figlds also a solu- The time evolution of U(t) is described bydU(t)/dt
tion of Eg. (1.3, because Eq(l.3) is invariant under the =G(t)U(t), which can be written in the form
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FIG. 1. The limit cycle attractgs) in the four dynamic phasesga) Ising-SRO, (b) Ising-SBO, (c) XY-SRO, and(d) XY-SBO. The

horizontal and vertical axes represMndX components irfa) and(b) (Ising phases andX andY components iric) and(d) (XY phasejy
respectively. The other phases except the Ising-SRO phase have plural coexisting stable limit cycles.

Y101 = O atA form solutions. The magnetic walls will be dealt in Sec. IlI.
U =Qmer, 2.9 The existence of the DPT is intuitively interpreted as fol-
Where]\ is the F|0quet matrix defined by lows. For O0< ’y< 1/2, if his fixed beyond a threshold value
R . and(} is changed, we observe four types of dynamic phases.
U(m =e™, (2.10 When() is small enough, the time scale of spin relaxation is

~ _ ) ) much shorter than the period of the oscillating magnetic
and Q(t) is a periodT matrix of t. At the DPT point, the field. In this situation a spin follows the temporal variation of
maximum eigenvalue of the matrix vanishes. the magnetic field, and as a result, the Ising-SRO phase is
Typical phase diagrams of the uniform solutions, as wellobserved. A€} is increased, the time scale of spin relaxation
as the magnetic wall solutions, obtained by the Floquebecomes comparable to that of the magnetic field, and the
analysis are shown in Figs. 2—4 far) y>1/2 (Fig. 2), (2)  spin cannot follow the variation of the magnetic field. As a
0< y<1/2(Fig. 3), (3) v<O0 (Fig. 4. It should be noted for result, the spin dynamics has tiecomponent, and it
v>1/2 that only the Ising-SRO and Ising-SBO phases areomponent which measures the extent of the synchronization
observed. For & y<1/2, the four types of dynamic phases to the magnetic field is reduced. That is the intuitive reason
shown in Fig. 1 are present. One should note that th&vhy we observe th&XY-type oscillation even when the mag-
XY-SBO phase is observed in a small region between theetic field is applied along the eagX) axis. AsQ is in-
XY-SRO and Ising-SBO phases. Fo 0, the Ising-SRO creased, the effect of the magnetic field becomes smaller
and XY-SRO phases are observed. These phase diagrarhscause the time scale of the magnetic field is much shorter
also indicate several types of magnetic wall structures whictthan that of spin relaxation, the magnetic field is effectively
exist for certain parameter ranges in each phase of the unaveraged and makes a weak contribution to the spin dynam-
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ics. This allows the spin to oscillate along the easy axis, and
we observe the Ising-SBO phase. In the low frequency limit
Q—0 with y>0, only Ising oscillations are observed be-
cause the spin can follow the field and oscillates alongkthe
axis. On the other hand, for<0, the easy axis i¥, and the
XY-SRO phase is observed in a low frequency regioh.i#f
strong enough, the spin can follow the field and the spin
shows the Ising-SRO phase.

IIl. OSCILLATION OF MAGNETIC WALLS

In the absence of an oscillating magnetic field, below the
critical temperature, domain walls appear reflecting the

rpreaking of reversal symmetry for the local magnetization

wall solutions(y=0.55. The phase diagram foy>1/2 is qualita- (see Ap.pendllx A The appearanpe c.)f spatl'al structures !n
tively the same as this figure. For spatially uniform solutions, thereconneptlon with _symmetry breqkln_g is & universal scenario.
appear two oscillations, the Ising-SRO and Ising-SBO phases, bfV€n in an oscillating magnetic field, several stable limit
the XY-type oscillation is not observed. In the Ising-SBO phase, thecYcles can coexist in the Ising-SB&Y-SRO, andXY-SBO
domain wall solution is present, and only the Néel wall is observedPhases as mentioned in Sec. II. In a spatially extended sys-
For domain wall solutions, see Sec. IIl. tem, each of the degenerate limit cycles can freely occupy
any part of the spatial region and yields domain structures,

FIG. 2. Phase diagram of stable uniform solutions and domai

Ising-SRO Ising-SRO

BO

Ising-SBO Bloch

—-_._,,,.....’<:;-‘1

Ising-8BO Bloch

----- Ising-SBO Néel
0 0
0 1 2 0 1 2
@ P (b) P
2 2
Ising-SRO Ising-SRO "';(Y-SBO
_r_..—"""i’sing-SBO Bloch
< 1 < i -
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(c)

1
Q
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FIG. 3. Typical phase diagrams of stable uniform solutions and domain wall solutionsfer<QL/2: (a) v=0.2, (b) y=0.3,(c) v
=0.33, andd) y=0.34. Phase diagrams represent the regions of stable uniform solutions and stable domain wall solutionsyfdf@ach
domain wall solutions, see Sec. lll. Here “XN” and “XB” denote K¥-SRO Néel anKY-SRO Bloch wall regions, respectively. Symbols
denote the numerically obtained Néel-Bloch transition line, solid lines represent the transition lines for the uniform solutions obtained by the
Floguet analysis, and the dotted lines stand for the Néel-Bloch transition lines obtained by the Fourier expansion apprseas&ien
IV C). hy andh, stand for theXY-SRO Néel-Bloch transition linfEq. (4.22)] and the Ising-SBO Néel-Bloch transition lifiEq. (4.24)],
respectively. The Néel-Bloch transition in the Ising-SBO phase is observed in the fegign<1/2, where’y is a numerical value in
0.2<y<0.3. The region of the Ising-SBO Néel wall rapidly expandsyapproacheg=1/3. In theh=0 case, the Bloch and Néel walls
are stable, respectively, fo]<1/3 and 1/3<|y|. The XY-SBO phase exists in a narrow region between XeSRO and Ising-SBO
phases.
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2 ' (ze(L/2,L]), where thed,’s are uniform random numbers
)( ranging in[-0.01,0.01.
Ising-SRO

We discuss the stationary periodic motion of the magnetic
walls. In the Ising-SBO phase, we confirmed that there are
two types of magnetic walls, the Néel and Bloch walls. Fig-
s 17 XY-SRO Néel 1 ures 5 and 6 represent the oscillation of a single Néel and
Bloch wall, respectively. Due to the spatial symmetry, a
single wall exhibits no drift motion. In the Ising-SBO phase,
the Néel wall solution always exists because E3) always
has the solutiony(z,t)=0. The local dynamics around the
0 05 1 wall is described as Ising-SBO for the Néel wall case, and
(a) 0 XY-SBO for the Bloch wall case; namely, the Néel-Bloch
transition is connected with the local symmetry breaking
around the wall.

In the XY-SRO phase, two types of wall exist, and the
Néel-Bloch transition exists. The oscillation manner of the
walls is slightly different from that for the Ising-SBO case.
The XY-SRO Néel wall is defined as a wall for which the
time averageX(z,t) = T‘lf{”x(z,s)ds vanishes for any and
t (Fig. 7). The X component of the local dynamics is sym-
metric in time, i.e., the local dynamics ¥Y-SRO type. The
o XY-SRO Bloch XY-SRO Bloch wall is defined as a wall witk(z, t) # O (Fig.

0 2 - 8). In this case, the local dynamics is not the complete
) 0 ;2 2 XY-SRO type oscillation but th&Y-SBO type, especially
near the wall region.

Ising-SRO

XY-SRO Néel

FIG. 4. Typical phase diagrams of stable uniform solutions and
domain wall solutions fory<0: (a) y=-0.4 and(b) y=-0.05.
Phase diagrams foy<-1/3 and -1/3< y<0 are qualitatively the
same aga) and(b), respectively. Diagrams represent the regions of
stable uniform solutions and stable domain wall solutions for each | this section we show how to determine the Néel-Bloch

y. For domain wall solutions, see Sec. lll. Symbols denote th&rgnsition points as the control paramelteor () is changed.
numerically obtained Néel-Bloch transition line, solid lines repre-one is the determination by numerical simulation in the

sent the transition lines for the uniform solutions obtained by thelsing-SBO andXY-SRO phases, and the other is a theoretical
Floguet analysis, and the dotted line stands for the Néel-Bloch tranr'nethod with the Fourier expan’sion approximation
sition line h; obtained by the Fourier expansion approximatisee '

Sec. IVQO.

IV. METHODS TO DETERMINE NEEL-BLOCH
TRANSITION POINTS

A. Linear stability analysis of the Néel wall solution
and thus it is expected that certain types of domain walls in the Ising-SBO phase

exist. In this section, we discuss possible magnetic wall . L )
structures, and show that the Néel-Bloch transition is caused N the case that the stable uniform solution is in the Ising-
by local symmetry breaking as the control parameter i>BO phase, there exists a Néel wall particular solution
changed. In this paper, we will not discuss wall structures ifXn(z,1),0). Let (x(z,1),y(z,1)) be a small perturbation from
the XY-SBO phase, where On|y the Bloch walls exist and thethe Néel wall partlcu|ar solution at time The linearized

Néel-Bloch transition is absent. equation of motion for the deviatioy(z,t) is given by
Equation(1.3) was numerically solved by the fourth order

Runge-Kutta method, by replacingX(é2Y) with [X(n+1) y(zt) =[1-y- X}z + Zly(z 1) = 4z Dy ).

=2X(n)+X(n=1)1/(A24[Y(n+1)-2Y(n)+Y(n-1)]/(A2)?), (4.1)

where X(n) denotes theX component at thath lattice site
at timet. We set the lattice uninz=0.25 and the system Only the deviationy(z,t) is relevant to the stability of the
size L=128 (512 sitey. This size is sufficiently larger Néel wall solution. The Néel wall solutioxXy(z,t) is a

than the width of a single magnetic wall. The time st®p  periodT function, and thusj(z,t) is a periodic operator,
is At=T/(2048n) (m=1,2,..), where the natural number gz t+T)=§(z,1).

m is taken to be the minimum value that satisfi&s<0.01. It is convenient to introduce the norm(t) by
The boundary conditions a=0 andz=L were chosen as
P(z=0,0)=y V(1) and y(z=L,t)=¢2(t), where y/V(t) and vz =mt) n(zY), 4.2)

(1) are two stable limit cycles of the uniform solutions
in the Ising-SBO(XY-SRO) phase. In order to obtain a

single wall nearz=L/2, we set the initial conditions _ /1 t 2
Wz 0=y D0)+8,  (ze[0.L12), Wz0=yd(0)+s, mo =), M@l “3
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Qt=r/2

X(z.1), Y(z.t)

20 25 30

Qt=3rn/2

X(z.1), Y(z.t)

0 5 10 15 20 25 30
z

FIG. 5. Periodic oscillation of an Ising-SBO Néel wall fp=0.34,h=0.8, and(2=1.5. The solid lines indicat¥(z,t), and the broken

lines Y(z,t). In the Néel wall caseY(z,t) vanishes.

Note that(| 7?)=1, where the angular brackets mean the spatransition point. We confirmed by numerical experiment that

tial average(A)= [5A(2)dz/L. Multiplying Eq. (4.1) by %
after the substitution of Eq4.2) into it, and taking the spa-
tial average, we get

m(t) = A(t)m(t), (4.9

where the expansion rate of(t) at timet is defined by

AO= (@ =1-y=- /) +(nFm. (4.5
For sufficiently larget, Eq. (4.4) is solved to yield
T
m(t) ~ m(0)eM, A= %f A(s)ds, (4.6)
0

except for an oscillating prefactor im(t). The exponeni,

which is equivalent to the time average/®ft), is relevant to
the linear stability of the Néel wall. Ik <0, the Néel wall
solution is linearly stable. On the other hand\if-0, the

m(t) grows exponentially in time, and determined the Néel-
Bloch transition point in the Ising-SBO phase by using
obtained by the method of least squares.

Figure 3 shows phase diagrams for the domain wall struc-
tures in the Ising-SBO phase as well as the regions of stable
uniform solutions. The Néel-Bloch transition in the Ising-
SBO phase occurs in the regign< y<1/2, wheréey takes a
value within 0.2<"y<0.3. In the absence of an applied field
(h=0), the Bloch wall is observed for€ y<1/3 (Appendix
A). As argued in Sec. Il, the presence of the applied oscillat-
ing field brings a tendency to make spins parallel to Yhe
axis. As a result, in the region0y<"y [Fig. 3a)], the Bloch
wall is observed. In the low frequency regime <y
<1/3, since spins easily respond to the alternation of the
magnetic field and also tend to be parallel to ¥exis, the
Néel wall is observed. Figure 3 shows thatyaapproaches
1/3 the region of the Néel wall rapidly expanfsgs. 3b)
and 3c)], and that aty=1/3 the phase diagram abruptly

Néel wall is unstable; alternatively, the Bloch wall becomeschanges[Fig. 3(d)]. In the region 1/3<y<1/2, although
stable. The marginal state=0 stands for the Néel-Bloch the Néel wall is observed in the absence of the field, the

Qt=z/2

X(z.t), Y(z,t)

X(z.Y), Y(z.t)

20 25 30

20 25 30

Q=3 n/2

X(z1), Y(z.t)

X(z.t), Y(z.t)

25 30

10 20 25 30

FIG. 6. Periodic oscillation of an Ising-SBO Bloch wall fgr=0.34,h=1.2, and()=1.5. The setting of the graph is the same as Fig. 5.

A Bloch wall has a nonvanishing component.
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L i Qt=0 | N Qt=n/i2
S = |
> ok I > of
< e X b e
At 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
z b4
b Qt=rn ] 1k Qt=3x/2
2 oot I {1 Z o
>3 o Xl e
1t 1 A F
0 5 10 15 20 25 30 0 5 10 15 20 25 30
z z

FIG. 7. Periodic oscillation of aXY-SRO Néel wall fory=-0.05,h=1.5, and()=1.5. The solid and broken lines indicaxéz,t) and
Y(z,t). X(z,t) vanishes even though(z,t) # 0 at any time.

Bloch wall stably exists because spins tend to be parallel to . 1+y- 3X\2/v‘ Y\2N+ (95 - 2XwYw

the Y axis as the amplitude of the field is increased. In the G(¥w) = 5 2 2, 2]
strong anisotropy regioy>1/2, only the Néel wall is ob- ~ 2XwYw L=y=Xu=3Yw* 4,
served, i.e., the Néel-Bloch transition does not occur. (4.8

It is found that Eq(4.7) always has a particular solution

B. Determination of the Néel-Bloch transition point _
in the XY-SRO phase OY(z,1) = dahn(Z,1), (4.9

which corresponds to the translational mode belonging to the
zero eigenvalue. The translational mode is not relevant to the
change of stability of wall solutions. It is therefore necessary
to eliminate the zero mode fro#y in order to determine the
Néel-Bloch transition point in th&XY-SRO phase. This fact,
however, makes a numerical scheme based on the linear sta-
bility analysis difficult because of the unavoidable error due
to numerical differentiation. Avoiding this difficulty, we de-
termine the Néel-Bloch transition point by setting a threshold
value for the maximum valukg of [X(z,t)|; namely, after an
g(x(z,ﬂ) _ é(zp\,\,(z,t))@), 4.7 initial transient process has passed, the wall type is classified

The linear stability analysis for a period-domain wall
solution in theXY-SRO phase is intricate compared with that
in the Ising-SBO phase. Lek(z,t) =Xy (z,t) +iY\(z,t) be a
magnetic wall solution in theXY-SRO phase, andy(z,t)
= i(z,t) - h(z,t)=x(z,t) +iy(z,t) be the deviation from
that. From Eq(1.3) the linear equation of motion fa¥y(z,t)
is written as

dt\y(zt) as a Bloch or Néel wall by checking whethég is beyond or

) Qt=0 i ] Qt=x/2
S s
= Z of \
3 )
> .. >

1 - T e ——

0 5 10 15 20 25 30 0 5 10 15 20 25 30
z z
T Qt=r 1 Qt=3n/2

X(z), Yz)
! =)
X(z), Yiz,)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
z z

FIG. 8. Periodic oscillation of aXY-SRO Bloch wall fory=-0.05,h=0.5, and(0=1.5. The setting of the graph is the same as Fig. 7.
X(z,t) does not vanish in the wall region.
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below the given threshold value, which was set to be®10 A=1+y- 3|x3|2_ |Y5|2— 3|x1|2_ (4.15
As will be shown in Sec. V, a hysteresis may be present at
the Néel-Bloch transition point for certain parameter regionsin the Ising-SBO phase, one obtairiX;)?=(X;)?=1+y
In this case, we obtained phase diagrams through the estima#6|X,2, Y;=0, X;#0, and Y;=0. In the XY-SRO phase,
tion of the transition point for both cases of increasing andhe relationsX5=0, (Y§)2=(Yy)?=1-y-2/X,?, X, #0, and
decreasindh per one fixed value of). Y;=0 hold (Appendix B. The averaging procedure of the
In the XY-SRO phase, the Néel-Bloch structure transitioneffect due to the oscillating field renormalizes the coeffi-
exists for —1/3<y<1/2. The phase diagrams are shown incjentsc, andy,. ¢, andy, may be regarded to be an effective
Figs. 3 and 4. In the regioly<<-1/3 [Fig. 4@)], only the  reduced temperature and an effective magnitude of aniso-
Neel wall is observed. When the Néel-Bloch transition ex-tropy, respectively. From Eqg4.12 and (4.13 and the
ists, Néel and Bloch walls are observed, respectively, for theonditions for each of coefficients, for both the Ising-SBO
high and low amplitude regimes of applied field. The Néel-and theXY-SRO phases, one findg<1 andy,< y. These
Bloch transition accompanies the symmetry breaking as defacts may be interpreted as that the oscillating field raises
scribed in the previous section. the effective temperature and reduces the magnitude of the
anisotropy.
Depending on the magnitude of the renormalized aniso-
tropy parametery,, the stationary solution of Eq4.1) is
obtained as follows. For the cagg>cy/3, the Ising-SBO

. . . ) Néel wall solution
In this subsection an analytical method to determine the

Neéel-Bloch transition point is developed. By using the Fou-  x (7)= + ¢, + |?’o|-tan}[z\g’—(co+ /2], Yo(2) =0,
rier expansion with the fundamental frequerieyof the ap-

C. Determination of the Néel-Bloch transition point
with Fourier expansion method and comparison
with numerical experiment

plied field, X(z,t) and Y(z,t) are expanded as follows: (4.16
oc . 0 . is stable. For the case<0y,<cy/3, the Ising-SBO Bloch
X(zt) = D X,(zH)e™™ Y(zt) = D Y,(zt)e" wall solution
n=-« n=-«
(4.10 Xo(2) = pXp tan(Z/&pg),
Since X and Y are real, we geX,=X_, and Y,=Y_,. Let Yy(2) =qY'B sechizi) @17

us assume that the time scale of the variation of the coeffi-
cients {X,} and{Y,} is sufficiently longer than the period a1

is stable, whereXy® =+ ol, Yo =\co—3|yl, and &g
T(=2m/()) of the oscillating field. Substituting the series of _ /\2|y0| p and g take values of +1 or —1. For the case

expansion into Eq(l1.3), we obtain the equations of motion —Cy/3< 75<0, theXY-SRO Bloch wall solution
for the Fourier coefficient§X,,} and{Y,} [13]. In this article, Y

we use a truncation approximation keeping only the terms Xo(2) = pXXB sectiziéye),

including the coefficients for harmonicg€)(n=0, *1). Fur-

thermore, we use the approximation ¥y and Y, that they -

are regarded to be spatially homogeneous and stationary. The Yo(2) =qYy~ tanh(z/éxp) (4.18
detailed derivation is shown in Appendix B. Using the com-
plex variablen(z) =Xq(2) +1Yo(2), the equation for the sta-
tionary state is obtained as

is stable, whereXX®=1co—3]yo, Y5B=\co+|yol, and éxg
=1/v2|y,|. For the casey,<—c,/3, theXY SRO Néel wall

solution
0 = Cotho ~ |l %o+ Yotho + Foibo, (4.12) N -
Yo(2) = o+ | yoltanH zV(co + | y0])/2], Xo(2) =0,
Co=1-4X,?, (4.12 (4.19
Yo = = 2X/? (4.13 is stable.

At the Néel-Bloch transition point, the relatiohy|
for the situation in which the stable uniform solutions are=c,/3 holds. By using Eqg4.12 and(4.13), this relation is
in the Ising-SBO phase or th€Y-SRO phase. This is just rewritten as
the same form as EqA1) for the stationary state without
an oscillating field. Now let us find a single domain wall
solution under the boundary conditionXo(2)|, .+..=X
and Yy(2)|,.+.=Yg. X5 and Y; are the two stable uniform
solutions ofXy(z) andYy(2) (Appendix B. One should note In the following, we deal with the two cases according to the
that X; is the solution of the equation sign of y,.

(1) %=v-2/%,2<0. This case concerns the domain wall

1 - 4Xy|?
ly=2x?= === L (4.20

P
__hem@s solutions in theXY-SRO phase. The solution of E@L.20) is
Xy=— @149
2VQ% + A? given by
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0.07
- -
> [ A 0.05 | o,
B S
3 0.04 |
s i . 2 003t ~,
20 -10 0 10 20 *,
z 0.02 | ™,
\‘\
FIG. 9. A schematic figure of the modulus of the Bloch wall. 0.01 | "\
The solid line indicateX(z,t), and the broken line indicaté4z,t).
The above figure corresponds to the Ising-SBO case, wiglis &n frem— |
the modulus of the Bloch wall. In th&Y-SRO case, the modulus -0.01 " . . L . . .
Xg is the peak value oK(z,1). 0.65 0.655 0.66 0.665 0.67 0675 0.68 0685 0.69
h
, 3(1 FIG. 10. The relation betweeh and Yg(h) around the Ising-
|X1| = E g ty (4.21) SBO Néel-Bloch transition pointh=h,). The parameter values are

v=0.3 and=0.5. The symbols and solid line represent the nu-
The conditiony—2|Xl|2<0 is then reduced tg<<1/2. Ad- merical result and the function forivig=0.379/0.675-.

ditionally 1 +3y>0 must hold from Eq(4.21). The XY-SRO

Néel-Bloch transition is, therefore, allowed in the regionorder harmonics give no dominant contribution. This may be

-1/3<y<1/2. Substituting Eq(4.2]) into the modulus of the reason why the present treatment works well.
Eq. (4.14, we obtain the Néel-Bloch transition poitt

=h,(Q), where V. CRITICAL BEHAVIOR OF THE BLOCH WALL
MODULUS AROUND THE NEEL-BLOCH
6/1 17y - 1)? TRANSITION POINT
hy(Q) = \/—(—W)(Q%u). (4.22
5\3 100 In order to characterize the Néel-Bloch transition in the

(2) 7>0. This case concerns the domain wall solutions inoscillating magnetic field, we study tliedependence of the

the Ising-SBO phase. The solution of B4.20) is given by ~ Modulus of the Bloch wall at the neighborhood of the Néel-
Bloch transition point. The modulus of the Bloch walg

X |2_§ 1 (4.23 (Xg) in the Ising-SBO(XY-SRO phase is defined as the

79 Y 3/ ' maximum of the period average of thé (X) component
Fig. 9).

The conditiony,>0 combined with Eq(4.23 leads to the (Fig-9

result that the Ising-SBO Néel-Bloch transition is allowed in A. Numerical results

the region 1/3 y<<1/2. Substituting Eq(4.23 into the
modulus of Eq.4.14), we obtain the Néel-Bloch transition
point h=h,(Q)), where

Figure 10 shows the numerical result for thedepen-

0.4

_ 2
h, = \/6(7—%)<QZ+M). (4.24) R

4 03 v,

Figures 3 and 4 show the Néel-Bloch transition curves 5]
obtained both theoretically and numerically. The Fourier ex- 2,
pansion approximation mentioned above leads to the resul , 92} "
that the Néel-Bloch transition does not appear in the region™ 45} Y
0<y<1/3. Although the theoretical result for the transition 5
lines based on the present simply truncated Fourier expan  91f Y
sion yields a qualitatively same result to the numerical ex- ¢gs| }
periments in the high frequency region, the theoretical result
disagrees with the numerical experiment in the low fre-
quency regime. This is because, in the present approxima g5 . : ‘ - . .
tion, the Fourier expansion takes into account only the terms 065 066 0665 067 0675 068 0685 069
until the first order of}, which is not applicable for the low h

freq.uency regime, where higher order harmonics become ef- F|G. 11. The relation betwedmandXg(h) around theXY-SRO
fective. Néel-Bloch transition point (h=h;). Parameter values are

The Néel-Bloch transition point in th¥Y-SRO phase is  y=-0.05 and2=1.0. The symbols and broken line represent the
close to the prediction of the present Fourier expansion apumerical results and the function fork=2.90/0.6689-h. The
proximation. Since in theXY-SRO phase the movement of Néel-Bloch transition is continuous, and the relatdge vh,—h
the wall center is inconspicuoysee Figs. 7 and)8higher  holds below the transition point.

OF LR I T I I T 2 R T TR T Sy
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0.8

J
07\ ] Y2|3= (Co‘3|70|)|h:h2+%(C0‘3|70|)|h:h2(h‘h2)+""
06 | oy . - (5.4)
05 b . . . . .
the first term in the right-hand sid®HS) vanishes, and we
s 047 1 find
x 03}
. R
ol Yg < \lh—hy, (5.5
01} - ] to the lowest order ith—h,|, provided that the coefficient in
the second term in the RHS is a positive definite value. In the
o1 same way, we can show th¥g o y|h—h,| near theXY-SRO

_0_1 1 1 1 1 1 A - T H H +1 H H
037 0s75 028 osss 039 0595 04 Néel-Bloch transition point, if the transition is continuous.

h On the other hand, for the case that the transition is discon-
tinuous as shown in Fig. 12, the above-mentioned argument
FIG. 12. The relation betwedmandXg(h) around theXY-SRO  should be revised. In the same line as the expansion Eg.
Néel-Bloch transition point, whey=-0.05 and(2=0.5. The sym-  (5.4), we supposed that the discontinuity of the transition
bols + () indicates the numerical results foeing varied down-  was due toh being a nonmonotonic function ¢X,[%. Note
ward (upward. The result shows a hysteresis, and therefore thehat c,—3|y,| is a function of|X,|?, and thath and |X,|? are
Néel-Bloch transition is the first order transition. related to the modulus squared of E4.14). However such
a nonmonotonic behavior ¢f could not be proved; this may
dence of the modulus of the Bloch wall in the Ising-SBO depend on the present approximation, and the problem re-

phase for a fixed). It reveals thatyz behaves as mains unsolved. This suggests that we need to take the spa-
— tial variation of the Fourier coefficients other than the Oth
Yg(h) o \[h = hy| (5.1 order or further higher harmonics of those into account in

order to obtain more reliable expressionsXafand X;.

Applying the Landau expansion, we can also show the
scaling near the Ising-SBO Néel-Bloch transition point. In
the present case thé component is relevant to the critical
behavior. The perturbatio0,y(z,t)) from the Néel wall
structure concerns the stability of the Néel wall solution
\g\,XN(z,t),O) near the transition point. The time evolution of
y(z,t) becomes

around the Néel-Bloch transition poirth=h,). When y
>1/3(y<1/3), the Bloch wall appears aboybkelow) h,. In
this case no hysteresis is observed.

In the XY-SRO case, below the Néel-Bloch transition
point (h=h,) the modulus of the Bloch wall is also scaled as
Xg\h;—h almost always for a larg€ (Fig. 11). However,
we observed a hysteresis near the transition point in a narro
region for y=<0 when() is small(Fig. 12. This fact shows
that in this case the transition is discontinuous. Yz =[1-y- Xz + Ely - y°. (5.6)

B. Theoretical analysis The solution of Eq(5.6) can be formally written as

In order to analyze the critical behavior of the modulus of y(z,t) =U(zt)y(z0), (5.7
the Bloch wall, we apply the Fourier expansion analysis.

Since the modulug’y of the Ising-SBO Bloch wall corre- t
sponds toYy in Eq. (4.17), we get U(zt) = EXp*(f dy1-y-X3(z9 + 6&]) = Q(z,)e\ @,
0
Yg=VCo— 37| = V1 - 3y+2|X,[?, (5.2 (5.9
Co=1-4%2 yo=y-2%2>0. where expl[- -] is the time ordered exponential a@{z,t) is

a periodT operator, i.e.Q(z,t+T)=Q(z,t), due to the Flo-
The modulusXg of the XY-SRO Bloch wall corresponds to quet theorem.A(z) is the Floquet operator defined by

X3 in Eq. (4.18), we obtain U(z,t)=e™ @, Rewriting y(z,t) asy(z,t)=Q(z,1)y(z,t) and
Xg = \Co— 3]y = V1 + 3y - 10X,|%, (5.3 substituting this expression into E¢h.6), we get
Yzt = A@Y - [QzHTHQY)°. (5.9

Co=1-4XP, y=y-2X[*<0.
Expandingy asy== ,a,(t)¢,(2) by using the eigenfunctions

If co—3|yo <O, Bloch wall soluti ist d th - v -
Co=3| %0l no Bloch wall SOUon &xsts an © pos ¢.(2) of A(2) and retaining only the coefficient correspond-

sible wall is the Néel wall. Therefore, the Néel-Bloch transi-. _ . _

tion point is determined by the conditiamy=3|y,|. In the "G 0 the largest eigenvalu@=0), we obtain

Ising-SBO phase, the Néel-Bloch transition is continuous )~ _ 3

when Yg changes continuously with, i.e., (d/dh) (c, ag(t) = Noao(t) — c(t)[ag(t)]*, (5.10
-3 yo|)|h=h2 exists. If we expandy3 around the transition wherec(t) is a periodT function. The numerical results im-
point (h=h,) as ply that \g~h,—h nearh=h,. Applying the averaging pro-
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cedure forc(t) over one period, the stationary solution for . 5
ay(t) is obtained as Wz = =[PP+ yp* + K=~

s (AD

)\ .
agl= /%0 o \m (5.11) Here’H is the Landau free energy

1 y .
- _ 24, = 22 _ L 2 2
wherec is assumed to be positive. This result gives the scal- H _J ( Jf*+ 2(|¢| ) 2('ﬁ2+ ¥%) + oy )dz,
ing Yg~|h—h,|Y2.

(A2)
and is also a Lyapunov function. In terms of real and imagi-
VI. SUMMARY AND CONCLUDING REMARKS nary parts, Eq(AL) is rewritten as
In th t tudied th ti Il struc- ' -
n the present paper, we studied the magnetic wall struc X(z,t) =[1 +y— X2+ Y)IX + X, (A3)

tures of the 1D anisotropiXY-spin system under an oscil-

lating magnetic field by making use of the Ginzburg-Landau : _ . 2

model from the nonlinear mechanical viewpoint, particularly Yz =[1-y= (X+ Y)Y + Y. (A4)

the wall structures in the Ising-SBO ai¥-SRO phases. It ' Thjs set of equations is invariant under the transformation
was numerically shown that there exist two types of Walls-y—>—yfollowed by the change of the role of the components

i.e., the Néel and Bloch walls, and that there exists a transix anqy. Therefore we restricy to be positive without loss
tion between the states where the Néel wall and Bloch walpt generality in this appendix.

stably exist as either the amplitude or the frequency of the The stable uniform solutionXs of Egs. (A3) and (A4)
applied field is changed. are

We observed the phase diagram for the stable wall struc- N

, { 1+ 7.0 (>0,

(cosby,sinfy) (6, arbitrary (y=0),

tures spanned by the amplitude and the frequency of the
external field. We found that the Ising-SBO Néel wall and
Ising-SBO Bloch wall are stable, respectively, fpr<y, 7 ) . _
being a value in between 0.2 and 0.3, and §<1/2 and  I-€-, for v+ 0 there are two stable uniform solutions with
that theXY-SRO Néel wall and th&Y-SRO Bloch wall are ~ feversal symmetry. These symmetric states cause domain
stable respectively foy<1/2 and -1/3< y<1/2. Further- wall stru_ct_ures in the spatially extended system. I_n a 1D
more, we compared these results with those of the FouriefyStem, it is well known that two types of wall solution ap-
expansion analysis. The qualitative agreement on the Néepear depending on the degree of anisotropy. The analytical
Bloch transition is quite good for th&Y-SRO phase. How- expressions for those walls are given by solving Ha)

ever, the analysis was incapable of explaining the appearané®d (A4) with the boundary conditionéX,Y) — (£v1+y,0)

of the Néel wall in the low frequency region féy<y  for z— . For y>1/3, the stable domain wall is the so-

< 1/3 associated with the Ising-SBO Néel-Bloch transition. called Néel wall, and is given by

Furthermore, we showed that the Néel-Bloch transition . 1+
can be either continuous or discontinuous depending on the XN(z)= + 1 + ytan}-( \ /—y(z— zo)), YN(z) = 0.
value of the frequency of the applied magnetic field. When 2

the transition is continuous, the numerical simulation shows (AB)
that the modulus of the Bloch wall is scaled as the square 3 . _—_

root of the deviation from the critical value of control param- | "€ Néel wall solution has only one nonvanishing compo-

eter. It was shown that this result is capable of being ex€nt: Herex is the position of the wall. For & y<1/3, the

plained by making use of the Fourier expansion analysis. stable domain wall is the so-called Bloch wall, and is given

(A5)

by
XB(2) = p\1 + ytani\2y(z- )], A7
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types of solution.
In the Bloch wall, for one sigrip) of function XB, there

APPENDIX A: MAGNETIC WALL (NEEL AND BLOCH) are two different walls with two opposite sigiig) of func-

: 5 o
STRUCTURES IN THE ABSENCE OF FIELD tion Y . These_ correspond to two oppositéght and _Ief)_
rotations of spins along theaxis, and the so-called chirality,

This section briefly reviews domain wall solutions of the which is quantified byg/p (see Fig. 13
TDGL equation below the critical temperature in the absence The qualitative reason for the Néel-Bloch transition as the
of the applied field, anisotropy parameter is changed is the following. The Lan-
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X(2), Y(@)

X(2), Y(2)

FIG. 13. Néel(left) and Bloch(right) walls in the absence of an applied field. The horizontal axis is the spatial coordjrete the
solid and dotted lines represeXtand Y components of the wall solutions, respectively. For the Néel wall, thomponent vanishes
but for the Bloch wall it is present. The Bloch wall structure corresponds to the cagefoandq=1 [see Eq.A8)] with the chirality

q/p=1.

dau free energy Eq(A2) has the anisotropy energy term =0, +1, and neglect spatial variation &f and Y;, where

W ¢?+¢?)12, which is minimized when the spins are paral- both variablesx3 and Y3 appearing in the equations fof;

lel to an easy magnetization axis and, thereby, has the effeeihdY, are replaced by their stable uniform solutions. For the

of a tendency to form a Neéel wall structure. On the otherlsing-SBO andXY-SRO phases, there are two stable limit

hand, the termd,y{? has the effect of smoothing the spatial cycle uniform solutions with broken symmetry, and we rep-

variation of the rotation angle of spirgwist), and has the resent their Oth Fourier coefficients ¥$andYs (the signs*

Néel-Bloch transition results from the competition of thesephase  the symmetry of oscillation yield§=-X2, Y:=0,

effects. andY;=0. For theXY-SRO phase, it yield¥=0, Y,;=-Y;
APPENDIX B: EQUATIONS OF MOTION andY;=0. By using these facts, the equations of motion for

FOR FOURIER COEFFICIENTS Xo» Yo, andX; are written as

In this section, we give a brief summary of the reduced
equations of motion for the Fourier coefficients obtained in
the Fourier expansion approximation introduced in RES].
Substituting the Fourier expansion Ed.10) into the TDGL
equation(1.3), the time evolution ofX,(z,t) and Y, (z,t) is
written as

o : h
X +iNOX, = (1+9)Xy = 2 X0 X0 X n, Xp (1) +iQX; = [1+y-3(X5)% = (Yg)? — 3|Xq|2]X, + >

ny,Ny

Xo(z,t) =[1+y = 6]Xq2 = (X2+ Y2)IXo + PXo, (B3

Yoz t) =[1-y=2X,2 = (Y2 + XD Yo+ 2Yo, (BA)

h (B5)
- E YnlYnzxn—nl-n2 + 53)(” + 5(5n,1 + 5n,—].)v
Ny The Fourier coefficients; and Y can be obtained as the
(B1)  stationary uniform solutions of Eq$B3) and (B4). In the
Ising-SBO phase, from the stable uniform solutions of Eq.
Yn+ inQY,=(1-yY,- > Yo Yo Yoo on (B3) with X,#0 andY,=0, we have the relatioXg)?=1
toe e +y—-6/X4/%. On the other hand, in th¥Y-SRO phase, from

NN
5 the stable uniform solutions of EgB4) with X,=0 andY,
- Xn, Xn,Yn-n,-n, + 7 Yn. (B2) %0, we also have the relatiofYs)?=1-y-2X,|2. The sta-
Moz tionary equation for Eq¥B3) and (B4) leads to Eq(4.11),

For the sake of simplicity, we retain only the harmonics and that for Eq(B5) yields Eq.(4.14.
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