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Wall structures associated with dynamic phase transitions in the anisotropicXY-spin system in a temporally
oscillating magnetic fieldh cossVtd in a one-dimensional system are analyzed by using the time-dependent
Ginzburg-Landau model. It is numerically confirmed that there exist two types of magnetic walls, i.e., the Néel
and Bloch walls, and is found that the transition between the two walls can occur for changingh or V. The
phase diagram for the stable regions of each wall is obtained by both numerical and analytical methods.
Furthermore, the critical behavior of the modulus of the Bloch wall around the Néel-Bloch transition point is
studied, and it is found that the transition can be either continuous or discontinuous with respect toh, depend-
ing on V.
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I. INTRODUCTION

Since the establishment of the linear response theory in
the 1950s and nonequilibrium statistical mechanics in the
1960s, the frontier of statistical physics is extending to sys-
tems that are far from equilibrium. A magnetic system under
a temporally oscillating field is one example of far-from-
equilibrium systems. Since the 1990s, many studies with the
mean field theoretical approach[1,2] and Monte Carlo simu-
lations [3–6] as well as laboratory experiments[7–9] have
been carried out to study responses of ferromagnetic systems
to a temporally oscillating, strong magnetic force.

The mean field theoretical analysis made it clear that
when the amplitudeh of the oscillating magnetic field is kept
strong enough, two types of magnetization cycle either with
or without a certain symmetry in time are possible, depend-
ing on the frequencyV of the applied field. WhenV is below
a critical valueVc, the magnetization cycle is described as an
oscillation with a temporal symmetry(symmetry-restoring
oscillation, SRO), and beyondVc it is described as an oscil-
lation without such symmetry(symmetry-breaking oscilla-
tion, SBO). These characteristic oscillating states under os-
cillating magnetic field are calleddynamic phasesand such a
transition between two phases under a change of either the
amplitude or the frequency of the amplified field is called the
dynamic phase transition(DPT) [4].

Furthermore, the Monte Carlo simulation of a two-
dimensional(2D) Ising spin system below the critical tem-
perature proved that for a fixedh the probability density of
the magnetization averaged over one period of the oscillating
field has one peak forV,Vc, and double peaks forV
.Vc therefore the transition is associated with the symmetry
change of the magnetization cycle. In addition, a finite size
scaling analysis proved that the DPT belongs to the same
universality class as the phase transition of a kinetic Ising

spin system in thermal equilibrium[3–6]. This fact was
also confirmed by a Landau expansion near the transition
point [10].

Recently, experimental studies of dynamic phase transi-
tions in a Heisenberg-type ferromagnet with uniaxial aniso-
tropy have been carried out[8,9]. Monte Carlo simulations
of the Heisenberg spin system with uniaxial anisotropy in an
oscillating magnetic field were carried out[11,12]. It was
reported that when the magnetic field is applied to the non-
easy axis of magnetization, magnetization perpendicular to
the applied field is observed[12].

Very recently, in order to study the DPT in a multicom-
ponent system from the mean field theoretical viewpoint, Ya-
sui et al. studied the time-dependent Ginzburg-Landau
(TDGL) equation

ċsr ,td = sTc − Tdc − ucu2c + gc * + ¹2c + h cossVtdsT , Tcd
s1.1d

corresponding to the anisotropicXY-spin system[13]. Here,
csr ,td=Xsr ,td+ iYsr ,td is the complex order parameter, and
X andY are components of the coarse-grainedXY spin c at
the locationr and time t. The parameterg stands for the
magnitude of the magnetic anisotropy, and forg.0s,0d the
X sYd axis corresponds to the magnetic easy axis. In the limit
ugu→`, the above model is reduced to the Ising model, and
it is identical to the isotropicXY model forg=0. The fourth
term implies the local ferromagnetic interaction. The last
term represents the oscillating external force applied in theX
direction, whereh andV are, respectively, its amplitude and
frequency.

With rescalingsc→ sTc−Td1/2c, t→ sTc−Td−1t, ¹→ sTc

−Td1/2¹, g→ sTc−Tdg, h→ sTc−Td3/2h, V→ sTc−TdV, the
equation of motion(1.1) can be transformed into the dimen-
sionless TDGL equation

ċsr ,td = c − ucu2c + gc * + ¹2c + h cossVtd. s1.2d

Noting that thermal noise does not play a crucial role in a
strongly oscillating magnetic field, we have neglected the
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thermal noise in the basic dynamics. In the present paper, we
consider the situation that the system forms a nearly 1D spa-
tial structure, which is supposed to be along thez direction,
in the spatial dimension above 1, and the time evolution can
be described with the 1D version of Eq.(1.2), i.e.,

Ẋsz,td = f1 + g − sX2 + Y2dgX + ]z
2X + h cossVtd,

Ẏsz,td = f1 − g − sX2 + Y2dgY + ]z
2Y. s1.3d

Recently, Yasuiet al. analyzed the spatially uniform oscilla-
tion and clarified the possible types of oscillations, which are
called the Ising-SRO, Ising-SBO,XY-SRO, andXY-SBO os-
cillations (for details, see Sec. II).

So far, many studies have been carried out for magnetic
wall structures in ferromagnetic systems, and in the ordering
process, the interactions among magnetic walls and the do-
main size distribution were studied using the TDGL equa-
tions [14–17]. It is known that in a perturbed parametrically
driven, damped nonlinear Schrödinger equation, as the pa-
rameter is changed, a structural transition of the domain wall
can occur, i.e., the Néel-(Ising-) Bloch transition exists[18].
Furthermore, the dynamical properties of the Bloch wall in
an oscillating magnetic field have been studied for the sine-
Gordon and Landau-Lifshitz equations, respectively[19,20].
However, no study on the change of symmetry and structures
of walls associated with the dynamic phase transition has
been carried out. The fundamental aim of the present paper is
to clarify the wall structures and their dynamics associated
with the dynamic phase transition in the anisotropicXY-spin
system(1.3) in an oscillating magnetic field.

The present paper is organized as follows. Section II gives
a brief review of the dynamic phase transition of the spatially
uniform case of the anisotropicXY-spin system studied by
Yasuiet al. In Sec. III, wall structures in an oscillating mag-
netic field and their oscillatory characteristics are studied.
The existence of the Néel-Bloch wall transition is also shown
as either the amplitude or the frequency of the external field
is changed. Section IV shows an analysis for the Néel-Bloch
transition from the Fourier expansion approach. The result is
compared with the numerically obtained one. In Sec. V, theh
dependence of the Bloch wall modulus near the Néel-Bloch
transition point is studied. The numerical result is shown in
Sec. V A, and we develop the Fourier expansion theory of
wall dynamics in Sec. V B. A summary and concluding re-
marks are given in the last section.

II. OSCILLATION AND PHASE DIAGRAMS
OF UNIFORM OSCILLATIONS

In this section we give a brief review of the spatially
uniform oscillations of the TDGL equation(1.3), reported in
Ref. [13]. The uniform solutions of Eq.(1.3) are limit cycles,
which can be classified by two types of symmetries.

First, if cstd=Xstd+ iYstd is a solution of Eq.(1.3), then

ĉstd = − Xst + T/2d + iYst + T/2d s2.1d

(T=2p /V is the period of the magnetic field) is also a solu-
tion of Eq. (1.3), because Eq.(1.3) is invariant under the

transformationt→ t+T/2, X→−X, andY→Y. Owing to this
symmetry, Eq.(1.3) always has a solution that satisfies

cstd=ĉstd, i.e.,

Xstd = − Xst + T/2d, s2.2d

Ystd = Yst + T/2d. s2.3d

We call this type of solution the symmetry-restoring oscilla-
tion and a solution which does not satisfy this relation the
symmetry-breaking oscillation. In the SRO, the time average
of the X component over one period satisfies

1

T
E

0

T

Xstddt = 0. s2.4d

There is also another kind of symmetry. Ifcstd=Xstd
+ iYstd is a solution of Eq.(1.3),

c̃std = Xstd − iYstd s2.5d

is also a solution of Eq.(1.3). Equation(1.3) always has a
trivial solution that satisfies

cstd = c̃std, i.e., Ystd = 0. s2.6d

We call this type of oscillation theIsing oscillationbecause
the oscillator has only theX component. On the other hand,
any solution such thatYstdÞ0 is called theXY oscillation.

In terms of these two types of symmetries, we can classify
the uniform solutions into four types, Ising-SRO, Ising-SBO,
XY-SRO, andXY-SBO. These orbits have different types of
symmetry and are called the dynamic phases, which are
shown in Fig. 1. According to the symmetries described
above, two stable limit cycles coexist in the Ising-SBO and
XY-SRO phases and four stable limit cycles in theXY-SBO
phase. The symmetry of the uniform solution changes as the
amplitude or the frequency of the magnetic field is changed.
This phenomenon is called the dynamic phase transition.

The phase diagram of the uniform solutions is obtained by
applying the Floquet analysis. Letcstd be a uniform solution
and c0std=X0std+ iY0std be one of the limit cycles. The lin-
earized equation for the deviation from the limit cycle solu-
tion dcstd=cstd−c0std=xstd+ iystd is derived as

d

dt
Sxstd

ystd
D = ĜstdSxstd

ystd
D , s2.7d

Ĝstd = S1 + g − 3X0std2 − Y0std2 − 2X0stdY0std
− 2X0stdY0std 1 − g − X0std2 − 3Y0std2D ,

s2.8d

whereĜstd is the period-T matrix. We define the time evo-

lution operatorÛstd by (xstd ,ystd)T=Ûstd(xs0d ,ys0d)T with

the initial conditionÛs0d=1̂, 1̂ being the 232 unit matrix.

The time evolution of Ûstd is described bydÛstd /dt

=ĜstdÛstd, which can be written in the form
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Ûstd = Q̂stdetL̂, s2.9d

whereL̂ is the Floquet matrix defined by

ÛsTd = eTL̂, s2.10d

and Q̂std is a period-T matrix of t. At the DPT point, the

maximum eigenvalue of the matrixL̂ vanishes.
Typical phase diagrams of the uniform solutions, as well

as the magnetic wall solutions, obtained by the Floquet
analysis are shown in Figs. 2–4 for(1) g.1/2 (Fig. 2), (2)
0,g,1/2 (Fig. 3), (3) g,0 (Fig. 4). It should be noted for
g.1/2 that only the Ising-SRO and Ising-SBO phases are
observed. For 0,g,1/2, the four types of dynamic phases
shown in Fig. 1 are present. One should note that the
XY-SBO phase is observed in a small region between the
XY-SRO and Ising-SBO phases. Forg,0, the Ising-SRO
and XY-SRO phases are observed. These phase diagrams
also indicate several types of magnetic wall structures which
exist for certain parameter ranges in each phase of the uni-

form solutions. The magnetic walls will be dealt in Sec. III.
The existence of the DPT is intuitively interpreted as fol-

lows. For 0,g,1/2, if h is fixed beyond a threshold value
andV is changed, we observe four types of dynamic phases.
WhenV is small enough, the time scale of spin relaxation is
much shorter than the period of the oscillating magnetic
field. In this situation a spin follows the temporal variation of
the magnetic field, and as a result, the Ising-SRO phase is
observed. AsV is increased, the time scale of spin relaxation
becomes comparable to that of the magnetic field, and the
spin cannot follow the variation of the magnetic field. As a
result, the spin dynamics has theY component, and itsX
component which measures the extent of the synchronization
to the magnetic field is reduced. That is the intuitive reason
why we observe theXY-type oscillation even when the mag-
netic field is applied along the easysXd axis. As V is in-
creased, the effect of the magnetic field becomes smaller
because the time scale of the magnetic field is much shorter
than that of spin relaxation, the magnetic field is effectively
averaged and makes a weak contribution to the spin dynam-

FIG. 1. The limit cycle attractor(s) in the four dynamic phases:(a) Ising-SRO,(b) Ising-SBO, (c) XY-SRO, and(d) XY-SBO. The

horizontal and vertical axes representX andẊ components in(a) and(b) (Ising phases), andX andY components in(c) and(d) (XY phases),
respectively. The other phases except the Ising-SRO phase have plural coexisting stable limit cycles.
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ics. This allows the spin to oscillate along the easy axis, and
we observe the Ising-SBO phase. In the low frequency limit
V→0 with g.0, only Ising oscillations are observed be-
cause the spin can follow the field and oscillates along theX
axis. On the other hand, forg,0, the easy axis isY, and the
XY-SRO phase is observed in a low frequency region. Ifh is
strong enough, the spin can follow the field and the spin
shows the Ising-SRO phase.

III. OSCILLATION OF MAGNETIC WALLS

In the absence of an oscillating magnetic field, below the
critical temperature, domain walls appear reflecting the
breaking of reversal symmetry for the local magnetization
(see Appendix A). The appearance of spatial structures in
connection with symmetry breaking is a universal scenario.
Even in an oscillating magnetic field, several stable limit
cycles can coexist in the Ising-SBO,XY-SRO, andXY-SBO
phases as mentioned in Sec. II. In a spatially extended sys-
tem, each of the degenerate limit cycles can freely occupy
any part of the spatial region and yields domain structures,

FIG. 3. Typical phase diagrams of stable uniform solutions and domain wall solutions for 0,g,1/2: (a) g=0.2, (b) g=0.3, (c) g
=0.33, and(d) g=0.34. Phase diagrams represent the regions of stable uniform solutions and stable domain wall solutions for eachg. For
domain wall solutions, see Sec. III. Here “XN” and “XB” denote theXY-SRO Néel andXY-SRO Bloch wall regions, respectively. Symbols
denote the numerically obtained Néel-Bloch transition line, solid lines represent the transition lines for the uniform solutions obtained by the
Floquet analysis, and the dotted lines stand for the Néel-Bloch transition lines obtained by the Fourier expansion approximation(see Sec.
IV C). h1 andh2 stand for theXY-SRO Néel-Bloch transition line[Eq. (4.22)] and the Ising-SBO Néel-Bloch transition line[Eq. (4.24)],
respectively. The Néel-Bloch transition in the Ising-SBO phase is observed in the regiong̃,g,1/2, whereg̃ is a numerical value in
0.2,g̃,0.3. The region of the Ising-SBO Néel wall rapidly expands asg approachesg=1/3. In theh=0 case, the Bloch and Néel walls
are stable, respectively, forugu,1/3 and 1/3, ugu. The XY-SBO phase exists in a narrow region between theXY-SRO and Ising-SBO
phases.

FIG. 2. Phase diagram of stable uniform solutions and domain
wall solutionssg=0.55d. The phase diagram forg.1/2 is qualita-
tively the same as this figure. For spatially uniform solutions, there
appear two oscillations, the Ising-SRO and Ising-SBO phases, but
theXY-type oscillation is not observed. In the Ising-SBO phase, the
domain wall solution is present, and only the Néel wall is observed.
For domain wall solutions, see Sec. III.
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and thus it is expected that certain types of domain walls
exist. In this section, we discuss possible magnetic wall
structures, and show that the Néel-Bloch transition is caused
by local symmetry breaking as the control parameter is
changed. In this paper, we will not discuss wall structures in
theXY-SBO phase, where only the Bloch walls exist and the
Néel-Bloch transition is absent.

Equation(1.3) was numerically solved by the fourth order
Runge-Kutta method, by replacing]z

2Xs]z
2Yd with fXsn+1d

−2Xsnd+Xsn−1dg / sDzd2sfYsn+1d−2Ysnd+Ysn−1dg / sDzd2d,
whereXsnd denotes theX component at thenth lattice site
at time t. We set the lattice unitDz=0.25 and the system
size L=128 (512 sites). This size is sufficiently larger
than the width of a single magnetic wall. The time stepDt
is Dt=T/ s2048md sm=1,2, . . .d, where the natural number
m is taken to be the minimum value that satisfiesDt,0.01.
The boundary conditions atz=0 andz=L were chosen as
csz=0,td=cs1dstd and csz=L ,td=cs2dstd, where cs1dstd and
cs2dstd are two stable limit cycles of the uniform solutions
in the Ising-SBO (XY-SRO) phase. In order to obtain a
single wall near z=L /2, we set the initial conditions
csz,0d=cs1ds0d+dz szP f0,L /2gd, csz,0d=cs2ds0d+dz

szP sL /2 ,Lgd, where thedz’s are uniform random numbers
ranging inf−0.01,0.01g.

We discuss the stationary periodic motion of the magnetic
walls. In the Ising-SBO phase, we confirmed that there are
two types of magnetic walls, the Néel and Bloch walls. Fig-
ures 5 and 6 represent the oscillation of a single Néel and
Bloch wall, respectively. Due to the spatial symmetry, a
single wall exhibits no drift motion. In the Ising-SBO phase,
the Néel wall solution always exists because Eq.(1.3) always
has the solutionYsz,td=0. The local dynamics around the
wall is described as Ising-SBO for the Néel wall case, and
XY-SBO for the Bloch wall case; namely, the Néel-Bloch
transition is connected with the local symmetry breaking
around the wall.

In the XY-SRO phase, two types of wall exist, and the
Néel-Bloch transition exists. The oscillation manner of the
walls is slightly different from that for the Ising-SBO case.
The XY-SRO Néel wall is defined as a wall for which the
time averageXsz,td;T−1et

t+TXsz,sddsvanishes for anyz and
t (Fig. 7). The X component of the local dynamics is sym-
metric in time, i.e., the local dynamics isXY-SRO type. The
XY-SRO Bloch wall is defined as a wall withXsz,tdÞ0 (Fig.
8). In this case, the local dynamics is not the complete
XY-SRO type oscillation but theXY-SBO type, especially
near the wall region.

IV. METHODS TO DETERMINE NÉEL-BLOCH
TRANSITION POINTS

In this section we show how to determine the Néel-Bloch
transition points as the control parameterh or V is changed.
One is the determination by numerical simulation in the
Ising-SBO andXY-SRO phases, and the other is a theoretical
method with the Fourier expansion approximation.

A. Linear stability analysis of the Néel wall solution
in the Ising-SBO phase

In the case that the stable uniform solution is in the Ising-
SBO phase, there exists a Néel wall particular solution
(XNsz,td ,0). Let (xsz,td ,ysz,td) be a small perturbation from
the Néel wall particular solution at timet. The linearized
equation of motion for the deviationysz,td is given by

ẏsz,td = f1 − g − XN
2sz,td + ]z

2gysz,td ; ĝsz,tdysz,td.

s4.1d

Only the deviationysz,td is relevant to the stability of the
Néel wall solution. The Néel wall solutionXNsz,td is a
period-T function, and thusĝsz,td is a periodic operator,
ĝsz,t+Td= ĝsz,td.

It is convenient to introduce the normmstd by

ysz,td = mstdhsz,td, s4.2d

mstd ;Î1

L
E

0

L

uysz,tdu2dz. s4.3d

FIG. 4. Typical phase diagrams of stable uniform solutions and
domain wall solutions forg,0: (a) g=−0.4 and (b) g=−0.05.
Phase diagrams forg,−1/3 and −1/3,g,0 are qualitatively the
same as(a) and(b), respectively. Diagrams represent the regions of
stable uniform solutions and stable domain wall solutions for each
g. For domain wall solutions, see Sec. III. Symbols denote the
numerically obtained Néel-Bloch transition line, solid lines repre-
sent the transition lines for the uniform solutions obtained by the
Floquet analysis, and the dotted line stands for the Néel-Bloch tran-
sition lineh1 obtained by the Fourier expansion approximation(see
Sec. IV C).
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Note thatkuhu2l=1, where the angular brackets mean the spa-
tial averagekAl;e0

LAszddz/L. Multiplying Eq. (4.1) by h
after the substitution of Eq.(4.2) into it, and taking the spa-
tial average, we get

ṁstd = Lstdmstd, s4.4d

where the expansion rate ofmstd at time t is defined by

Lstd = khĝhl = 1 −g − kXN
2h2l + kh]z

2hl. s4.5d

For sufficiently larget, Eq. (4.4) is solved to yield

mstd , ms0delt, l =
1

T
E

0

T

Lssdds, s4.6d

except for an oscillating prefactor inmstd. The exponentl,
which is equivalent to the time average ofLstd, is relevant to
the linear stability of the Néel wall. Ifl,0, the Néel wall
solution is linearly stable. On the other hand, ifl.0, the
Néel wall is unstable; alternatively, the Bloch wall becomes
stable. The marginal statel=0 stands for the Néel-Bloch

transition point. We confirmed by numerical experiment that
mstd grows exponentially in time, and determined the Néel-
Bloch transition point in the Ising-SBO phase by usingl
obtained by the method of least squares.

Figure 3 shows phase diagrams for the domain wall struc-
tures in the Ising-SBO phase as well as the regions of stable
uniform solutions. The Néel-Bloch transition in the Ising-
SBO phase occurs in the regiong̃,g,1/2, whereg̃ takes a
value within 0.2,g̃,0.3. In the absence of an applied field
sh=0d, the Bloch wall is observed for 0,g,1/3 (Appendix
A). As argued in Sec. II, the presence of the applied oscillat-
ing field brings a tendency to make spins parallel to theY
axis. As a result, in the region 0,g,g̃ [Fig. 3(a)], the Bloch
wall is observed. In the low frequency regime ing̃,g
,1/3, since spins easily respond to the alternation of the
magnetic field and also tend to be parallel to theX axis, the
Néel wall is observed. Figure 3 shows that asg approaches
1/3 the region of the Néel wall rapidly expands[Figs. 3(b)
and 3(c)], and that atg=1/3 the phase diagram abruptly
changes[Fig. 3(d)]. In the region 1/3,g,1/2, although
the Néel wall is observed in the absence of the field, the

FIG. 5. Periodic oscillation of an Ising-SBO Néel wall forg=0.34,h=0.8, andV=1.5. The solid lines indicateXsz,td, and the broken
lines Ysz,td. In the Néel wall case,Ysz,td vanishes.

FIG. 6. Periodic oscillation of an Ising-SBO Bloch wall forg=0.34,h=1.2, andV=1.5. The setting of the graph is the same as Fig. 5.
A Bloch wall has a nonvanishingY component.
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Bloch wall stably exists because spins tend to be parallel to
the Y axis as the amplitude of the field is increased. In the
strong anisotropy regiong.1/2, only the Néel wall is ob-
served, i.e., the Néel-Bloch transition does not occur.

B. Determination of the Néel-Bloch transition point
in the XY-SRO phase

The linear stability analysis for a period-T domain wall
solution in theXY-SRO phase is intricate compared with that
in the Ising-SBO phase. LetcWsz,td=XWsz,td+ iYWsz,td be a
magnetic wall solution in theXY-SRO phase, anddcsz,td
;csz,td−cWsz,td=xsz,td+ iysz,td be the deviation from
that. From Eq.(1.3) the linear equation of motion fordcsz,td
is written as

d

dt
Sxsz,td

ysz,td
D = ĜscWsz,tddSx

y
D , s4.7d

ĜscWd = S1 + g − 3XW
2 − YW

2 + ]z
2 − 2XWYW

− 2XWYW 1 − g − XW
2 − 3YW

2 + ]z
2D .

s4.8d

It is found that Eq.(4.7) always has a particular solution

dcsz,td = ]zcWsz,td, s4.9d

which corresponds to the translational mode belonging to the
zero eigenvalue. The translational mode is not relevant to the
change of stability of wall solutions. It is therefore necessary
to eliminate the zero mode fromdc in order to determine the
Néel-Bloch transition point in theXY-SRO phase. This fact,
however, makes a numerical scheme based on the linear sta-
bility analysis difficult because of the unavoidable error due
to numerical differentiation. Avoiding this difficulty, we de-
termine the Néel-Bloch transition point by setting a threshold
value for the maximum valueXB of uXsz,tdu; namely, after an
initial transient process has passed, the wall type is classified
as a Bloch or Néel wall by checking whetherXB is beyond or

FIG. 7. Periodic oscillation of anXY-SRO Néel wall forg=−0.05,h=1.5, andV=1.5. The solid and broken lines indicateXsz,td and
Ysz,td. Xsz,td vanishes even thoughXsz,tdÞ0 at any time.

FIG. 8. Periodic oscillation of anXY-SRO Bloch wall forg=−0.05,h=0.5, andV=1.5. The setting of the graph is the same as Fig. 7.
Xsz,td does not vanish in the wall region.
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below the given threshold value, which was set to be 10−3.
As will be shown in Sec. V, a hysteresis may be present at
the Néel-Bloch transition point for certain parameter regions.
In this case, we obtained phase diagrams through the estima-
tion of the transition point for both cases of increasing and
decreasingh per one fixed value ofV.

In the XY-SRO phase, the Néel-Bloch structure transition
exists for −1/3,g,1/2. The phase diagrams are shown in
Figs. 3 and 4. In the regiong,−1/3 [Fig. 4(a)], only the
Néel wall is observed. When the Néel-Bloch transition ex-
ists, Néel and Bloch walls are observed, respectively, for the
high and low amplitude regimes of applied field. The Néel-
Bloch transition accompanies the symmetry breaking as de-
scribed in the previous section.

C. Determination of the Néel-Bloch transition point
with Fourier expansion method and comparison

with numerical experiment

In this subsection an analytical method to determine the
Néel-Bloch transition point is developed. By using the Fou-
rier expansion with the fundamental frequencyV of the ap-
plied field,Xsz,td andYsz,td are expanded as follows:

Xsz,td = o
n=−`

`

Xnsz,tdeinVt, Ysz,td = o
n=−`

`

Ynsz,tdeinVt.

s4.10d

Since X and Y are real, we getXn
* =X−n and Yn

* =Y−n. Let
us assume that the time scale of the variation of the coeffi-
cients hXnj and hYnj is sufficiently longer than the period
Ts=2p /Vd of the oscillating field. Substituting the series of
expansion into Eq.(1.3), we obtain the equations of motion
for the Fourier coefficientshXnj andhYnj [13]. In this article,
we use a truncation approximation keeping only the terms
including the coefficients for harmonicsnVsn=0, ±1d. Fur-
thermore, we use the approximation forX1 andY1 that they
are regarded to be spatially homogeneous and stationary. The
detailed derivation is shown in Appendix B. Using the com-
plex variablec0szd=X0szd+ iY0szd, the equation for the sta-
tionary state is obtained as

0 = c0c0 − uc0u2c0 + g0c0
* + ]z

2c0, s4.11d

c0 = 1 − 4uX1u2, s4.12d

g0 = g − 2uX1u2 s4.13d

for the situation in which the stable uniform solutions are
in the Ising-SBO phase or theXY-SRO phase. This is just
the same form as Eq.(A1) for the stationary state without
an oscillating field. Now let us find a single domain wall
solution under the boundary conditionsuX0szduz→±`=X0

±

and uY0szduz→±`=Y0
±. X0

± and Y0
± are the two stable uniform

solutions ofX0szd andY0szd (Appendix B). One should note
that X1 is the solution of the equation

X1 = −
hei tan−1sV/Ad

2ÎV2 + A2
, s4.14d

A = 1 +g − 3uX0
+u2 − uY0

+u2 − 3uX1u2. s4.15d

In the Ising-SBO phase, one obtainssX0
+d2=sX0

−d2=1+g
−6uX1u2, Y0

±=0, X1Þ0, and Y1=0. In the XY-SRO phase,
the relationsX0

±=0, sY0
+d2=sY0

−d2=1−g−2uX1u2, X1Þ0, and
Y1=0 hold (Appendix B). The averaging procedure of the
effect due to the oscillating field renormalizes the coeffi-
cientsc0 andg0. c0 andg0 may be regarded to be an effective
reduced temperature and an effective magnitude of aniso-
tropy, respectively. From Eqs.(4.12) and (4.13) and the
conditions for each of coefficients, for both the Ising-SBO
and theXY-SRO phases, one findsc0,1 andg0,g. These
facts may be interpreted as that the oscillating field raises
the effective temperature and reduces the magnitude of the
anisotropy.

Depending on the magnitude of the renormalized aniso-
tropy parameterg0, the stationary solution of Eq.(4.11) is
obtained as follows. For the caseg0.c0/3, the Ising-SBO
Néel wall solution

X0szd = ± Îc0 + ug0utanhfzÎsc0 + ug0ud/2g, Y0szd = 0,

s4.16d

is stable. For the case 0,g0,c0/3, the Ising-SBO Bloch
wall solution

X0szd = pX0
IB tanhsz/jIBd,

Y0szd = qY0
IB sechsz/jIBd s4.17d

is stable, whereX0
IB=Îc0+ ug0u, Y0

IB=Îc0−3ug0u, and jIB

=1/Î2ug0u. p and q take values of +1 or −1. For the case
−c0/3,g0,0, theXY-SRO Bloch wall solution

X0szd = pX0
XB sechsz/jXBd,

Y0szd = qY0
XB tanhsz/jXBd s4.18d

is stable, whereX0
XB=Îc0−3ug0u, Y0

XB=Îc0+ ug0u, and jXB

=1/Î2ug0u. For the caseg0,−c0/3, theXY-SRO Néel wall
solution

Y0szd = ± Îc0 + ug0utanhfzÎsc0 + ug0ud/2g, X0szd = 0,

s4.19d

is stable.
At the Néel-Bloch transition point, the relationug0u

=c0/3 holds. By using Eqs.(4.12) and(4.13), this relation is
rewritten as

zg − 2uX1u2z =
1 − 4uX1u2

3
. s4.20d

In the following, we deal with the two cases according to the
sign of g0.

(1) g0=g−2uX1u2,0. This case concerns the domain wall
solutions in theXY-SRO phase. The solution of Eq.(4.20) is
given by
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uX1u2 =
3

10
S1

3
+ gD . s4.21d

The conditiong−2uX1u2,0 is then reduced tog,1/2. Ad-
ditionally 1+3g.0 must hold from Eq.(4.21). TheXY-SRO
Néel-Bloch transition is, therefore, allowed in the region
−1/3,g,1/2. Substituting Eq.(4.21) into the modulus of
Eq. (4.14), we obtain the Néel-Bloch transition pointh
=h1sVd, where

h1sVd =Î6

5
S1

3
+ gDSV2 +

s17g − 1d2

100
D . s4.22d

(2) g0.0. This case concerns the domain wall solutions in
the Ising-SBO phase. The solution of Eq.(4.20) is given by

uX1u2 =
3

2
Sg −

1

3
D . s4.23d

The conditiong0.0 combined with Eq.(4.23) leads to the
result that the Ising-SBO Néel-Bloch transition is allowed in
the region 1/3,g,1/2. Substituting Eq.(4.23) into the
modulus of Eq.(4.14), we obtain the Néel-Bloch transition
point h=h2sVd, where

h2 =Î6Sg −
1

3
DSV2 +

s41g − 19d2

4
D . s4.24d

Figures 3 and 4 show the Néel-Bloch transition curves
obtained both theoretically and numerically. The Fourier ex-
pansion approximation mentioned above leads to the result
that the Néel-Bloch transition does not appear in the region
0,g,1/3. Although the theoretical result for the transition
lines based on the present simply truncated Fourier expan-
sion yields a qualitatively same result to the numerical ex-
periments in the high frequency region, the theoretical result
disagrees with the numerical experiment in the low fre-
quency regime. This is because, in the present approxima-
tion, the Fourier expansion takes into account only the terms
until the first order ofV, which is not applicable for the low
frequency regime, where higher order harmonics become ef-
fective.

The Néel-Bloch transition point in theXY-SRO phase is
close to the prediction of the present Fourier expansion ap-
proximation. Since in theXY-SRO phase the movement of
the wall center is inconspicuous(see Figs. 7 and 8), higher

order harmonics give no dominant contribution. This may be
the reason why the present treatment works well.

V. CRITICAL BEHAVIOR OF THE BLOCH WALL
MODULUS AROUND THE NÉEL-BLOCH

TRANSITION POINT

In order to characterize the Néel-Bloch transition in the
oscillating magnetic field, we study theh dependence of the
modulus of the Bloch wall at the neighborhood of the Néel-
Bloch transition point. The modulus of the Bloch wallYB
sXBd in the Ising-SBO(XY-SRO) phase is defined as the
maximum of the period average of theY sXd component
(Fig. 9).

A. Numerical results

Figure 10 shows the numerical result for theh depen-

FIG. 9. A schematic figure of the modulus of the Bloch wall.
The solid line indicatesXsz,td, and the broken line indicatesYsz,td.
The above figure corresponds to the Ising-SBO case, whereYB is
the modulus of the Bloch wall. In theXY-SRO case, the modulus
XB is the peak value ofXsz,td.

FIG. 10. The relation betweenh and YBshd around the Ising-
SBO Néel-Bloch transition pointsh=h2d. The parameter values are
g=0.3 andV=0.5. The symbols and solid line represent the nu-
merical result and the function formYB=0.379Î0.675−h.

FIG. 11. The relation betweenh andXBshd around theXY-SRO
Néel-Bloch transition point sh=h1d. Parameter values are
g=−0.05 andV=1.0. The symbols and broken line represent the
numerical results and the function formXB=2.90Î0.6689−h. The
Néel-Bloch transition is continuous, and the relationXB~Îh1−h
holds below the transition point.
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dence of the modulus of the Bloch wall in the Ising-SBO
phase for a fixedV. It reveals thatYB behaves as

YBshd ~ Îuh − h2u s5.1d

around the Néel-Bloch transition pointsh=h2d. When g
.1/3sg,1/3d, the Bloch wall appears above(below) h2. In
this case no hysteresis is observed.

In the XY-SRO case, below the Néel-Bloch transition
point sh=h1d the modulus of the Bloch wall is also scaled as
XB~Îh1−h almost always for a largeV (Fig. 11). However,
we observed a hysteresis near the transition point in a narrow
region forgø0 whenV is small (Fig. 12). This fact shows
that in this case the transition is discontinuous.

B. Theoretical analysis

In order to analyze the critical behavior of the modulus of
the Bloch wall, we apply the Fourier expansion analysis.
Since the modulusYB of the Ising-SBO Bloch wall corre-
sponds toY0

IB in Eq. (4.17), we get

YB = Îc0 − 3ug0u = Î1 − 3g + 2uX1u2, s5.2d

c0 = 1 − 4uX1u2, g0 = g − 2uX1u2 . 0.

The modulusXB of the XY-SRO Bloch wall corresponds to
X0

XB in Eq. (4.18), we obtain

XB = Îc0 − 3ug0u = Î1 + 3g − 10uX1u2, s5.3d

c0 = 1 − 4uX1u2, g0 = g − 2uX1u2 , 0.

If c0−3ug0u,0, no Bloch wall solution exists and the pos-
sible wall is the Néel wall. Therefore, the Néel-Bloch transi-
tion point is determined by the conditionc0=3ug0u. In the
Ising-SBO phase, the Néel-Bloch transition is continuous
when YB changes continuously withh, i.e., s] /]hdusc0

−3ug0uduh=h2
exists. If we expandYB

2 around the transition
point sh=h2d as

YB
2 = usc0 − 3ug0uduh=h2

+
]

]h
usc0 − 3ug0uduh=h2

sh − h2d + ¯ ,

s5.4d

the first term in the right-hand side(RHS) vanishes, and we
find

YB ~ Îuh − h2u, s5.5d

to the lowest order inuh−h2u, provided that the coefficient in
the second term in the RHS is a positive definite value. In the
same way, we can show thatXB~Îuh−h1u near theXY-SRO
Néel-Bloch transition point, if the transition is continuous.
On the other hand, for the case that the transition is discon-
tinuous as shown in Fig. 12, the above-mentioned argument
should be revised. In the same line as the expansion Eq.
(5.4), we supposed that the discontinuity of the transition
was due toh being a nonmonotonic function ofuX1u2. Note
that c0−3ug0u is a function ofuX1u2, and thath and uX1u2 are
related to the modulus squared of Eq.(4.14). However such
a nonmonotonic behavior ofh could not be proved; this may
depend on the present approximation, and the problem re-
mains unsolved. This suggests that we need to take the spa-
tial variation of the Fourier coefficients other than the 0th
order or further higher harmonics of those into account in
order to obtain more reliable expressions ofXB andX1.

Applying the Landau expansion, we can also show the
scaling near the Ising-SBO Néel-Bloch transition point. In
the present case theY component is relevant to the critical
behavior. The perturbation(0,ysz,td) from the Néel wall
structure concerns the stability of the Néel wall solution
(XNsz,td ,0) near the transition point. The time evolution of
ysz,td becomes

ẏsz,td = f1 − g − XN
2sz,td + ]z

2gy − y3. s5.6d

The solution of Eq.(5.6) can be formally written as

ysz,td = Usz,tdysz,0d, s5.7d

Usz,td = exp+SE
0

t

dsf1 − g − XN
2sz,sd + ]z

2gD ; Qsz,tdetLszd,

s5.8d

where exp+f¯g is the time ordered exponential andQsz,td is
a period-T operator, i.e.,Qsz,t+Td=Qsz,td, due to the Flo-
quet theorem.Lszd is the Floquet operator defined by
Usz,td=eTLszd. Rewriting ysz,td as ysz,td=Qsz,tdỹsz,td and
substituting this expression into Eq.(5.6), we get

ẏ̃sz,td = Lszdỹ − fQsz,tdg−1sQỹd3. s5.9d

Expandingỹ as ỹ=oaaastdfaszd by using the eigenfunctions
faszd of Lszd and retaining only the coefficient correspond-
ing to the largest eigenvaluesa=0d, we obtain

ȧ0std . l0a0std − cstdfa0stdg3, s5.10d

wherecstd is a period-T function. The numerical results im-
ply that l0,h2−h nearh=h2. Applying the averaging pro-

FIG. 12. The relation betweenh andXBshd around theXY-SRO
Néel-Bloch transition point, wheng=−0.05 andV=0.5. The sym-
bols1 (3) indicates the numerical results forh being varied down-
ward (upward). The result shows a hysteresis, and therefore the
Néel-Bloch transition is the first order transition.
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cedure forcstd over one period, the stationary solution for
a0std is obtained as

a0
st =Îl0

c̄
~ Îuh − h2u, s5.11d

wherec̄ is assumed to be positive. This result gives the scal-
ing YB,uh−h2u1/2.

VI. SUMMARY AND CONCLUDING REMARKS

In the present paper, we studied the magnetic wall struc-
tures of the 1D anisotropicXY-spin system under an oscil-
lating magnetic field by making use of the Ginzburg-Landau
model from the nonlinear mechanical viewpoint, particularly
the wall structures in the Ising-SBO andXY-SRO phases. It
was numerically shown that there exist two types of walls,
i.e., the Néel and Bloch walls, and that there exists a transi-
tion between the states where the Néel wall and Bloch wall
stably exist as either the amplitude or the frequency of the
applied field is changed.

We observed the phase diagram for the stable wall struc-
tures spanned by the amplitude and the frequency of the
external field. We found that the Ising-SBO Néel wall and
Ising-SBO Bloch wall are stable, respectively, forg̃,g, g̃
being a value in between 0.2 and 0.3, and 0,g,1/2 and
that theXY-SRO Néel wall and theXY-SRO Bloch wall are
stable respectively forg,1/2 and −1/3,g,1/2. Further-
more, we compared these results with those of the Fourier
expansion analysis. The qualitative agreement on the Néel-
Bloch transition is quite good for theXY-SRO phase. How-
ever, the analysis was incapable of explaining the appearance
of the Néel wall in the low frequency region forg̃,g
,1/3 associated with the Ising-SBO Néel-Bloch transition.

Furthermore, we showed that the Néel-Bloch transition
can be either continuous or discontinuous depending on the
value of the frequency of the applied magnetic field. When
the transition is continuous, the numerical simulation shows
that the modulus of the Bloch wall is scaled as the square
root of the deviation from the critical value of control param-
eter. It was shown that this result is capable of being ex-
plained by making use of the Fourier expansion analysis.
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APPENDIX A: MAGNETIC WALL (NÉEL AND BLOCH)
STRUCTURES IN THE ABSENCE OF FIELD

This section briefly reviews domain wall solutions of the
TDGL equation below the critical temperature in the absence
of the applied field,

ċsz,td = c − ucu2c + gc * + ]z
2c = −

dH
dc*

. sA1d

HereH is the Landau free energy

H =E S− ucu2 +
1

2
sucu2d2 −

g

2
sc2 + c*2d + u]zcu2Ddz,

sA2d

and is also a Lyapunov function. In terms of real and imagi-
nary parts, Eq.(A1) is rewritten as

Ẋsz,td = f1 + g − sX2 + Y2dgX + ]z
2X, sA3d

Ẏsz,td = f1 − g − sX2 + Y2dgY + ]z
2Y. sA4d

This set of equations is invariant under the transformation
g→−g followed by the change of the role of the components
X andY. Therefore we restrictg to be positive without loss
of generality in this appendix.

The stable uniform solutionsXss of Eqs. (A3) and (A4)
are

Xss= H s±Î1 + g,0d sg . 0d,

scosu0,sinu0d su0 arbitraryd sg = 0d,
J sA5d

i.e., for gÞ0 there are two stable uniform solutions with
reversal symmetry. These symmetric states cause domain
wall structures in the spatially extended system. In a 1D
system, it is well known that two types of wall solution ap-
pear depending on the degree of anisotropy. The analytical
expressions for those walls are given by solving Eqs.(A3)
and (A4) with the boundary conditionssX,Yd→ s±Î1+g ,0d
for z→ ±`. For g.1/3, the stable domain wall is the so-
called Néel wall, and is given by

XNszd = ± Î1 + g tanhSÎ1 + g

2
sz− z0dD, YNszd = 0.

sA6d

The Néel wall solution has only one nonvanishing compo-
nent. Herez0 is the position of the wall. For 0,g,1/3, the
stable domain wall is the so-called Bloch wall, and is given
by

XBszd = pÎ1 + g tanhfÎ2gsz− z0dg, sA7d

YBszd = qÎ1 − 3g sechfÎ2gsz− z0dg, sA8d

wherep andq take values of either +1 or −1. The combina-
tions sp,qd=s+1, +1d and s−1,−1d are energetically equiva-
lent. The Bloch wall has two components around the bound-
ary of different domains. Figure 13 represents these two
types of solution.

In the Bloch wall, for one signspd of function XB, there
are two different walls with two opposite signssqd of func-
tion YB. These correspond to two opposite(right and left)
rotations of spins along thez axis, and the so-called chirality,
which is quantified byq/p (see Fig. 13).

The qualitative reason for the Néel-Bloch transition as the
anisotropy parameter is changed is the following. The Lan-
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dau free energy Eq.(A2) has the anisotropy energy term
gsc2+c*2d /2, which is minimized when the spins are paral-
lel to an easy magnetization axis and, thereby, has the effect
of a tendency to form a Néel wall structure. On the other
hand, the termu]zcu2 has the effect of smoothing the spatial
variation of the rotation angle of spins(twist), and has the
effect of a tendency to form a Bloch wall structure. The
Néel-Bloch transition results from the competition of these
effects.

APPENDIX B: EQUATIONS OF MOTION
FOR FOURIER COEFFICIENTS

In this section, we give a brief summary of the reduced
equations of motion for the Fourier coefficients obtained in
the Fourier expansion approximation introduced in Ref.[13].
Substituting the Fourier expansion Eq.(4.10) into the TDGL
equation(1.3), the time evolution ofXnsz,td and Ynsz,td is
written as

Ẋn + inVXn = s1 + gdXn − o
n1,n2

Xn1
Xn2

Xn−n1−n2

− o
n1,n2

Yn1
Yn2

Xn−n1−n2
+ ]z

2Xn +
h

2
sdn,1 + dn,−1d,

sB1d

Ẏn + inVYn = s1 − gdYn − o
n1,n2

Yn1
Yn2

Yn−n1−n2

− o
n1,n2

Xn1
Xn2

Yn−n1−n2
+ ]z

2Yn. sB2d

For the sake of simplicity, we retain only the harmonicsn

=0, ±1, and neglect spatial variation ofX1 and Y1, where
both variablesX0

2 and Y0
2 appearing in the equations forX1

andY1 are replaced by their stable uniform solutions. For the
Ising-SBO andXY-SRO phases, there are two stable limit
cycle uniform solutions with broken symmetry, and we rep-
resent their 0th Fourier coefficients asX0

± andY0
± (the signs6

denote the two broken symmetric states). For the Ising-SBO
phase, the symmetry of oscillation yieldsX0

−=−X0
+, Y0

±=0,
andY1=0. For theXY-SRO phase, it yieldsX0

±=0, Y0
−=−Y0

+

andY1=0. By using these facts, the equations of motion for
X0, Y0, andX1 are written as

Ẋ0sz,td = f1 + g − 6uX1u2 − sX0
2 + Y0

2dgX0 + ]z
2X0, sB3d

Ẏ0sz,td = f1 − g − 2uX1u2 − sY0
2 + X0

2dgY0 + ]z
2Y0, sB4d

Ẋ1std + iVX1 = f1 + g − 3sX0
+d2 − sY0

+d2 − 3uX1u2gX1 +
h

2
.

sB5d

The Fourier coefficientsX0
± and Y0

± can be obtained as the
stationary uniform solutions of Eqs.(B3) and (B4). In the
Ising-SBO phase, from the stable uniform solutions of Eq.
(B3) with X0Þ0 andY0=0, we have the relationsX0

±d2=1
+g−6uX1u2. On the other hand, in theXY-SRO phase, from
the stable uniform solutions of Eq.(B4) with X0=0 andY0
Þ0, we also have the relationsY0

±d2=1−g−2uX1u2. The sta-
tionary equation for Eqs.(B3) and (B4) leads to Eq.(4.11),
and that for Eq.(B5) yields Eq.(4.14).
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