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Dynamics of two-sign point vortices in positive and negative temperature states is ex-
amined by a special-purpose supercomputer (MDGRAPE-2). Temperature T is determined
by random sampling of 107 states for microcanonical ensemble in which system energy and
angular impulse are kept constant. Distributions of the vortices in time-asymptotic equi-
librium state are obtained by time development simulations for various values of T . When
T > 0, both-sign vortices mix with each other and neutralize. When T < 0, a part of the
vortices condenses and forms the clumps exclusively consisting of the same-sign vortices,
while the other part of the vortices distributes outside the clumps uniformly. It is found that
the vortices inside the clumps gain energy and the ones outside the clumps lose energy to
keep the total energy constant. It suggests the common and essential role of the background
vortices in the energy-conserving system that assists the formation of the clumps as well
as the crystallization and generation of symmetric configuration observed in the nonneutral
plasma experiments.

§1. Introduction

An existence of negative temperature state was first predicted by Onsager.1) The
negative temperature state appears in systems that occupies only finite amount of
phase space volume. It means that the density of states W for such systems goes
down to zero in the limit of infinite energy. In other words, W has at least a peak
at some E = Ec. In the energy region of E > Ec, entropy decreases with increase
of energy, and inverse temperature β = dS/dE = d log W/dE becomes negative.
Equilibrium properties in negative temperature states were discussed by Kida and
Smith et al. in axisymmetric and nonaxisymmetric configurations.2),3) The first
demonstration of negative temperature state by numerical simulations was done by
Joyce and Montgomery.4) Since then, much research effort in numerical simulations
has been devoted to understand the negative temperature states.5)–8) However, the
number of particles and states are not sufficient in statistical meaning for lack of
computational power.

In this paper, we demonstrate a dynamics of two-sign point vortices in nega-
tive and positive temperature states by massive simulations using a special-purpose
supercomputer for molecular dynamics simulations called MDGRAPE-2.9) An ob-
jective of this paper is to characterize the equilibrium states of the two-sign vortex
system by inverse temperature β. Thus, we first determine temperature of the sys-
tem as a function of system energy E and angular impulse I. In other words, we
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obtain a density of states W (E, I) for the microcanonical ensemble consisting of ran-
domly generated 107 states. Then, inverse temperature of the system is determined
by β = dS/dE = d log W (E, I)/dE where S is entropy and the Boltzmann constant
is normalized to unity. There is a peak at (E, I) = (Ec, 0) in the obtained density of
states. When E > Ec and I = 0, temperature becomes negative.

To reveal the characteristics of the equilibrium state at positive and negative β,
distributions of the vortices in time-asymptotic state are obtained by time develop-
ment simulations. Because the vortex system is energy conservative, the temperature
can be determined by the initial configuration of the vortices that specifies the total
energy. When T > 0, both-sign vortices mix with each other and neutralize. On the
other hand, when T < 0, a part of the vortices condenses and forms the clumps. The
produced clumps seem to be very stable. Thus, the obtained configuration should
be equilibrium one. Condensing the same-sign vortices needs positive energy, so that
the other part of the vortices must lose the energy to keep the total energy constant.
As a result of the energy balance, there remain a positive and a negative clumps and
uniform background distribution in the time-asymptotic equilibrium state.

In the following, we present the density of states in §2, time asymptotic equilib-
rium state obtained by the time development simulations in §3. Finally, discussion
is given in §4.

§2. Density of states

Let us consider a system of N/2 positive and N/2 negative point vortices with
circulation ±Γ0 confined in a circular boundary of radius R. Constants of motion of
this system are Hamiltonian
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4π

N∑

i

N∑

j �=i

ΓiΓj ln |ri−rj |+ 1
4π

N∑

i

N∑

j

ΓiΓj ln |ri−r̄j |− 1
4π

N∑

i

N∑

j

ΓiΓj ln
R

|rj | ,

(2.1)
and angular impulse

I =
N∑

i

Γi|ri|2, (2.2)

where ri ≡ (xi, yi) and Γi are the position vector and the circulation of the ith point
vortex, respectively. The circular boundary of radius R is represented by the image
vortices at r̄i = R2ri/|ri|2.

To determine temperature of the system, we employ a random sampling of 107

states for microcanonical ensemble and obtain number of states (density of states)
associated with a cell bounded by E ∼ E + dE and I ∼ I + dI. In calculating
energy for each state, Hamiltonian (2.1) must be evaluated that needs calculation
time proportional to N2. To accelerate the calculation of Hamiltonian, a special-
purpose computer called MDGRAPE-2 is used, which was originally designed for
molecular dynamics simulations. The obtained number of states is given in Fig. 1.
The peak of the number of states is located at (Ec, Ic) = (29.0, 0.0). The profile is
symmetric about I = 0 but asymmetric about E = Ec. Temperature of the system
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Fig. 1. Density of states is plotted against (a) E and I, and (b) E2 with I = 0.

becomes negative when E > Ec in I = 0 plane. In the negative temperature region,
W (E, I) is approximately proportional to −E2. Thus, the scaling of β ∝ −E is
obtained, so that β goes down with increase of E. Note that β is proportional to
−1/E in the ideal gas at positive temperature.

§3. Time evolution of the vortices

Now the temperature of the system is obtained from the density of states by
specifying initial energy, i.e., initial configuration of the vortices, because the system
energy is conserved. To characterize the time-asymptotic state by β, we carried out
the time development simulations starting from various values of β. The governing
equation for ith point vortex ri = (xi, yi) is given by

Γi
dxi

dt
=

∂H

∂yi
, Γi

dyi

dt
= −∂H

∂xi
, (3.1)

or in explicit form,

dri

dt
= − 1

2π
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2π
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Equation (3.2) is the discretized Biot-Savart integral. Its second term in right-
hand side represents the boundary effect by the image vortices. In the simulations,
velocity of each point vortex is evaluated exactly on the position of the vortex and no
approximation, e.g., vortex-in-cell method, is introduced. Typical results for β > 0
and β < 0 are shown in Fig. 2. In Fig. 2 (a), positive β case is shown. In the initial
distribution, the centers of the clumps are arranged on the circle of radius Rc = 0.2R
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Fig. 2. Time evolution of the vortices in (a) positive and (b) negative temperature states are shown.

The values of the energy and angular impulse are (a) E = 24.1, I = 0 and (b) E = 2.69 × 104,

I = 0.

at regular angular intervals. Each clump consists of the same-sign 346 vortices, and
the polarity of the clump changes in turn in clockwise direction. The number of
clumps is 10 for positive and 10 for negative clumps. The total number of vortices
N = 6920 is chosen at the same order as the one used for the random sampling to
determine the density of states. Parameters are initial radius of a clump rc = 0.07R,
and time scale of self-rotation of a clump in unbounded plane τc = 9.3. Because the
clumps partially overlap each other, we see only the outline of the clumps at τ = 0.
In this case, positive and negative vortices mix with each other. In the final state at
τ = 200, the distribution is almost neutralized and velocity at some position inside
the circular boundary vanishes. Thus, the time scale of the vortex motion is long
compared with the negative β case shown in Fig. 2 (b).

In Fig. 2 (b), negative β case is shown. Each clump consists of the same-sign
1681 vortices. The right and the upper clumps consist of the positive vortices, and
the left and the lower clumps consist of the negative vortices. The number of total
vortices is 6724. The values of the parameters are rc = 0.2R and τc = 15.6. At
τ = 16, merger of the same-sign vortices occurs and clumps consisting of exclusively
single-sign vortices are created. The condensation of the same-sign vortices is a
remarkable feature at β < 0. The two oppositely polarized clumps continue orbiting
inside the circular boundary and further merger does not occur until the end of the
simulation τ = 200. It is likely that this state is equilibrium one.

Energy belonging to the vortices inside the clumps increases and the one belong-
ing to the vortices in the background decreases during the condensation keeping the
total energy constant.9) Thus, the background vortices enable the condensation of
the same-sign vortices. This observation indicates the common and essential role of
the background vortices in the condensation of the same-sign vortices as well as in
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the crystallization observed in the nonneutral plasma experiments.10)–12) The size of
the clumps in the final state decreases as the system energy increases. Thus, another
specific feature at β < 0 is summarized as the energy concentration in a subsystem.
Let us briefly examine the energy concentration to the clumps at β < 0 by employing
a simple model. Consider a system consisting of a positive point vortex at (r0, 0) and
a negative point vortex at (−r0, 0). In this model, no background vortices are con-
sidered because their contribution to the total energy vanishes in the case of uniform
distribution. The circular boundary is represented by image vortices at (R2/r0, 0)
and (−R2/r0, 0). The total energy of four-vortex system is written as a function
of r0 and is maximized when r0 = (

√
5 − 2)1/2R ≈ 0.49R. While the two clumps

continue orbiting motion after the merger, time-averaged configuration of the two
clumps in Fig. 2(b) resembles the maximum energy configuration discussed above.
We conclude that the vortices that are going to form the clump absorb the system
energy as much as possible. The amount of energy belonging to the vortices in the
clumps depends on the amount of energy released by the rest of the vortices. The
vortex condensation is enabled on the existence of the background vortices in the
energy conserving system.

§4. Discussion

We have demonstrated the dynamics of two-sign point vortices confined in the
circular boundary by the massive numerical simulations using the special-purpose
supercomputer called MDGRAPE-2. The density of states W (E, I) is determined
by the large-scale numerical sampling, and the existence of the negative temperature
state has been confirmed. Time-asymptotic equilibrium configurations of the vortices
are obtained by the time-development simulation. A characteristic feature at β < 0
is the condensation of the same-sign vortices. A part of the vortices gains the energy
to form the clumps, while the other part of the vortices loses the energy to keep the
total energy constant. It elucidates the important role of the background vortices in
the energy conserving system.

There remains mush issue in the two-dimensional vortex system. It would be
interesting to understand the probability of each metastable state in crystallization
under the constraint of given energy and angular impulse. The vortex system may
continue giving impetus to the nonlinear statistical physics.
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