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Full-dimensional quantum dynamics study on the mode-specific
unimolecular dissociation reaction of HFCO

Takeshi Yamamoto and Shigeki Katoa)

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku,
Kyoto 606-8502, Japan

~Received 17 December 1999; accepted 17 February 2000!

The mode specificity of the unimolecular reaction of HFCO is studied by six-dimensional quantum
dynamics calculations. The energy and mode dependency of the dissociation rate is examined by
propagating a number of wave packets with a small energy dispersion representing highly excited
states with respect to a specific vibrational mode. The wave packets are generated by applying a set
of filter operators onto a source vibrational state. All the information necessary for propagating the
wave packets is obtained from a single propagation of the source state, thus allowing a significant
decrease of computational effort. The relevant spectral peaks are assigned using the
three-dimensional CH chromophore Hamiltonian. The resulting dissociation rate of the CH
stretching excited state is in agreement with that obtained from a statistical theory, while the rates
of the out-of-plane bending excited states are about one order of magnitude smaller than the
statistical rates. A local-mode analysis also shows that the relaxation of the out-of-plane excitation
proceeds very slowly within 3 ps. These results clearly indicate weak couplings of the out-of-plane
bending excited states with other in-plane vibrational states, which is in qualitative agreement with
experimental findings. From a computational point of view, a parallel supercomputer is utilized
efficiently to handle an ultra large basis set of an order of 108, and 200 Gflops rate on average is
achieved in the dynamics calculations. ©2000 American Institute of Physics.
@S0021-9606~00!00918-1#
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I. INTRODUCTION

In recent years, accurate quantum dynamics calculat
have been performed for a variety of small polyatomic s
tems including three- and four-atom molecules as well as
der Waals clusters.1,2 Those rigorous treatments of gas-pha
reactions are of fundamental importance, not only beca
they can provide information on the underlying dynam
and associated quantities from the first-principle calculatio
but also the comparison of computational results with exp
mental ones enables us to assess the reliability of avail
potential surfaces. Another important aspect of those ca
lations is the role as a benchmark for more approxim
treatments such as trajectory-based propagation metho3–7

or multi-configurational time-dependent Hartre
approaches.8 However, the computational cost required f
rigorous quantum dynamics calculations increases expo
tially with basis set size, thus the application to a larg
system becomes more difficult. In fact, rigorous treatme
of four-atom systems involving heavy atoms and/or w
large total energy still present a challenge for theoret
chemists.

In the present paper we study the dissociation dynam
of the highly vibrationally excited states of formyl fluoride
HFCO, on the groundS0 potential surface,

HFCO→HF1CO ~1!

by performing full-dimensional quantum dynamics calcu

a!Electronic mail: shigeki@kuchem.kyoto-u.ac.jp
8000021-9606/2000/112(18)/8006/11/$17.00
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tions. This reaction has received considerable attention
cause of its mode-specific behavior observed in the stim
lated emission pumping~SEP! experiments by Choi and
Moore.9 In their experiments, highly vibrationally excite
HFCO is generated on theS0 surface, and particularly the
out-of-plane bending mode undergoes extremely high e
tation. The striking feature observed in the SEP spectr
that the highly excited states with respect to the out-of-pla
bending mode, the so-called ‘‘extreme-motion’’ states, suf
nearly no state mixing with other in-plane vibrational stat
and it was found that this nature becomes more eviden
the total energy is increased. On the other hand, Cr
et al.10 recently carried out similar SEP experiments
DFCO and reported that the stability of the extreme-mot
states is destroyed in the case of DFCO. This was attribu
to the greatly enhanced resonances between the out-of-p
bending and CO stretching modes due to the change of t
vibrational frequencies.

Theoretically, HFCO has long been the subject ofab
initio quantum chemical studies, in which various reacti
pathways and their barrier heights have been estimated.11–15

Global analytical fits of theS0 potential surface were ob
tained by Wei and Wyatt16 and by the present authors,17 both
of which are capable of describing the dissociation chan
~1!. Budenholzer and Yu18 performed a classical trajector
calculation for this reaction using a modified version of t
potential surface by Wei and Wyatt, and found strong mo
specificity in the dissociation rate depending on the init
distribution of the vibrational energy. They concluded th
6 © 2000 American Institute of Physics
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the CH stretching or bending excitation greatly enhance
dissociation rate, while the out-of-plane or CO stretching
citation results in a significantly slower dissociation. Ve
recently, Viel and Leforestier19 have performed a quantum
mechanical calculation of vibrational eigenstates at the r
tively low energy region using the adiabatic pseudospec
~APS! method,20 and have tested the accuracy of the tw
analytical potential surfaces.

In a previous work,21 we carried out planar four
dimensional~4D! and five-dimensional~5D! quantum dy-
namics calculations of the reaction~1!, where we examined
dependency of the dissociation rate on vibrational chara
or total energy of the initial state. Specifically, we genera
several initial states with different distribution of vibration
energy and compared the dissociation rates by propaga
them in time independently. The resulting time-depend
rates showed a rapid convergence to the same asymp
value with a small fluctuation, which indicated that the i
tramolecular vibrational energy redistribution~IVR! above
the dissociation threshold was considerably fast in the pla
model. This observation was also confirmed by direc
monitoring the time variation of the local-mode energies.

In the present paper we incorporate the out-of-plane
gree of freedom into the dynamics calculations. This allo
us to compare the dissociation rates from the out-of-pl
extreme-motion states with those from other in-plane vib
tional states such as the CH stretch overtone states. For
purpose we adopt basically the same approach as in the
vious work,21 but a new technique is introduced to reduce
computational effort drastically; i.e., energy dependency
the dissociation rate is estimated from a single wave pa
propagation. It should be noted here that the present
describes the dissociation rate of a locally excited wa
packet instead of the statistically averaged rate at a g
total energy, which permits us to study the mode depende
of the dissociation rates.

This paper is organized as follows: in Sec. II we descr
the theoretical framework for calculating the dissociati
rates of locally excited filter states. In Sec. III we present
assignment of spectral peaks using a three-dimensional
chromophore Hamiltonian and discuss the obtained de
rates of the out-of-plane bending or CH stretching exci
states. In Sec. IV we conclude.

II. METHOD

A. Hamiltonian and basis set

The Hamiltonian describing the dissociation dynamics
written using diatom–diatom Jacobi coordinates in Fig. 1

FIG. 1. The diatom–diatom Jacobi coordinates used in the dynamics c
lations.
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follows ~atomic units\51 is used!:22

Ĥ52
1

2m1

]2

]r 1
22

1

2m2

]2

]r 2
22

1

2m

]2

]R22
1

2I 1~r 1 ,R!
D̂~u1!

2
1

2I 2~r 2 ,R!
D̂~u2!2

1

2I ~r 1 ,r 2 ,R,u1 ,u2!
D̂~f!

1T̂cross1V~r 1 ,r 2 ,R,u1 ,u2 ,f!, ~2!

wherem1 , m2 , andm are the reduced masses associated w
r 1 , r 2 , andR, respectively, while the effective inertia mo
mentsI 1 , I 2 , andI are given as

1

I 1~r 1 ,R!
5

1

m1r 1
2 1

1

mR2 ,

1

I 2~r 2 ,R!
5

1

m2r 2
2 1

1

mR2 , ~3!

1

I ~r 1 ,r 2 ,R,u1 ,u2!
5

1

I 1~r 1 ,R!sin2 u1
1

1

I 2~r 2 ,R!sin2 u2

2
2

mR2 .

The cross termT̂cross in Eq. ~2! is of the form

T̂cross5
1

mR2 $2cosfF̂~u1!F̂~u2!1„cotu1F̂~u2!

1cotu2F̂~u1!…F̂~f!1cotu1 cotu2Ĝ~f!%, ~4!

and one-dimensional operators in Eqs.~2! and~4! are defined
as

D̂~uk!5
1

sinuk

]

]uk
sinuk

]

]uk
~k51,2!,

D̂~f!5
]2

]f2 ,

F̂~uk!5
]

]uk
1

1

2
cotuk ~k51,2!, ~5!

F̂~f!5sinf
]

]f
1

1

2
cosf,

Ĝ~f!5cosf
]2

]f22sinf
]

]f
2

1

4
cosf.

In this paper we consider the dissociation dynamics for to
angular momentumJ50 with A8 vibrational symmetry, and
thus the basis set forf is restricted to even functions.

As for the potential termV in Eq. ~2! we employ the
global analytical function constructed by the prese
authors,17 which was obtained by fitting to a large number
ab initio potential energies computed at the level of Hartre
Fock plus second-order Mo” ller–Plesset perturbation theory
This potential surface has a deep well representing HFC
and the classical barrier height for the reaction~1! is 51.2
kcal/mol. The zero of potential energy is taken at the eq
librium geometry of HFCO throughout this paper.

u-
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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As basis sets for representing a six-dimensional w
function, we adopt the potential optimized discrete varia
representation~PODVR!23 for all the Jacobi coordinates ex
cept forR, and the latter coordinate is represented by us
the sinc-DVR.24 ~This exceptional treatment ofR is related to
a parallelization issue described below.! In order to set up the
PODVR basis we first obtain the eigenstates of the follow
1D reference Hamiltonianĥk for each coordinatexk :

ĥ152
1

2m1

]2

]r 1
2 1v1~r 1!,

ĥ252
1

2m2

]2

]r 2
2 1v2~r 2!,

ĥ452
1

2Ī 1

D̂~u1!1v4~u1!, ~6!

ĥ552
1

2Ī 2

D̂~u2!1v5~u2!,

ĥ652
1

2Ī
D̂~f!1v6~f!,

whereĪ 1 , Ī 2 , and Ī are the inertia moments in Eq.~3! at the
equilibrium geometry of HFCO, andvk(xk) represents a 1D
reference potential function. We then select the lowestnk

eigenstates ofĥk , diagonalize an appropriate coordinate o
erator within the chosen eigenstates, and finally obtain
PODVR basis as a linear combination of the eigensta
Note here that the PODVR basis functions thus obtained
localized around the associated eigenvalues of the coord
matrix, and these eigenvalues~called the PODVR grid
points! are distributed semiclassically; i.e., the density of t
PODVR points becomes larger where the reference pote
is deeper. We can take advantage of this fact in orde
generate a compact multidimensional basis set adaptiv
the global potential features. This is achieved by appro
ately defining the reference potential in Eq.~6!, and in prac-
tice we choosevk(xk) as a minimum energy curve alongxk :

vk~xk!5 min
all xj ~ j Þk!

V~x!, ~7!

wherex denotes (r 1 , r 2 , R, u1 , u2 , f! andV(x) stands for
the global potential function. With this definitionv2(r 2) be-
comes a double-well potential which runs through the int
action zone as well as the product valley. It is also noted
the sum of the reference potentials,(vk(xk), can be re-
garded as a zeroth-order approximation to the global po
tial function.

A six-dimensional wave function is constructed as t
sum of direct products of one-dimensional bases as

uC&5(
I

CI u i r 1
&u i r 2

&u i R&u i u1
&u i u2

&u i f&, ~8!

where I denotes the six indices collectively.u i R& represents
the sinc-DVR basis while the others are the PODVR ba
defined above. When applying the total Hamiltonian onto
six-dimensional wave function, we first rewrite the Ham
tonian as
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Ĥ52
1

2m

]2

]R2 1 (
k~Þ3!

ĥk

1
1

2 S 1

Ī 1

2
1

I 1~r 1 ,R! D D̂~u1!1
1

2 S 1

Ī 2

2
1

I 2~r 2 ,R! D D̂~u2!

1
1

2 S 1

Ī
2

1

I ~r 1 ,r 2 ,R,u1 ,u2! D D̂~f!1T̂cross1Veff~x!,

~9!

whereVeff(x) is the global effective potential,

Veff~x!5V~x!2 (
k~Þ3!

vk~xk!. ~10!

The matrix representation of the total Hamiltonian is co
posed of exact small matrices for the 1D operators in Eq.~5!
and the multiplicative factors approximated as diago
within the DVR scheme. The overall Hermiticity of th
Hamiltonian matrix is automatically ensured since all the
operators in Eq.~5! are Hermitian or anti-Hermitian.22 Al-
though the diagonal approximation applied to the multiplic
tive factors causes a loss of accuracy, the error associ
with the global potential term can be significantly reduced
subtracting the sum of reference potentials from the glo
potential as in Eq.~10!. This reduction of error probably
comes from the decreased magnitude and curvature of
effective potentialVeff(x) compared to the original potentia
V(x). In other words, zeroth-order variation of the glob
potential surface is incorporated in the 1D reference Ham
toniansĥk in Eq. ~9!. We notice that the above reordering
operators as well as the definition of the PODVR basis
analogous to those used in a recent quantum mecha
study of a HOCl molecule.25

B. Propagation of the filter states

In order to examine the mode specificity of the out-o
plane extreme-motion states observed in experiments,
compare the dissociation rates initiated from two differe
types of highly vibrationally excited states, that is, sta
with high excitation in the out-of-plane bending mode
in-plane CH stretching mode. For this purpose we adop
semiquantitative approach that is an extension of our pr
ous work;21 i.e., instead of computing the individual molecu
lar eigenstates, we examine the time evolution of a wa
packet with a relatively small energy dispersion and spec
vibrational character.

First, we generate a ‘‘source’’ vibrational stateF that is
characterized by excitation of a single vibrational mode
the method described in the next subsection. Roughly sp
ing, this state corresponds to a superposition of sev
eigenstates of a conveniently chosen zeroth-order Ha
tonian. Although this source state has a clear vibratio
character, its time evolution does not directly provide use
information since this state includes a number of molecu
eigenstates with various total energies. In order to extr
information on the dynamics associated with each total
ergy, we apply a spectral filterF̂(E) with a window energyE
to the source vibrational stateF, thus generating a filter stat
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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C(E) that has a relatively small energy dispersion, i.
C(E)5F̂(E)F. Our basic strategy for studying the ener
and mode dependency of the dissociation rate consist
propagating a set of filter states$C(E)% with various win-
dow energies and source states,

C~ tuE!5Û~ t !@ F̂~E!F#, ~11!

and then analyzing the individual wave packets$C(tuE)%
thus obtained. HereÛ(t) denotes the time evolution operat
under the absorbing boundary condition~ABC!.26

In the previous work,21 several filter states with differen
window energies were explicitly generated and propagate
time independently.~For instance, four filter states wer
propagated independently to examine the CH stretch o
tone states withv55, 6, 7, and 8.! An obvious disadvantage
of such a method is that the necessary computational e
increases proportionally to the number of window energ
of interest, which makes it quite expensive to analyze
energy dependency of dynamics.

We find that this computational inefficiency can be ov
come by defining the filter operator as

F̂T0
~E!5E

0

T0
dt eiEt Û~ t !. ~12!

When we write the ABC Hamiltonian26 asĤcªĤ2 iŴ with
Ŵ being an absorbing potential, this filter operator can
integrated usingÛ(t)5exp(2iĤct) as

F̂T0
~E!5

exp$ i ~E2Ĥc!T0%21

i ~E2Ĥc!
, ~13!

hence it converges to the ABC Green’s functioniĜ(E)
5 i (E2Ĥc)

21 whenT0 goes to infinity. Now suppose that
set of filter states$C(tuEk)% with different window energies
$Ek% are generated as$F̂T0

(Ek)F%, and that they are propa
gated in time as

C~ tuEk!5Û~ t !@ F̂T0
~Ek!F#. ~14!

The first key to an efficient calculation is that the time prop
gator and filter operator commute with each other:

@Û~ t !,F̂T0
~Ek!#5F Û~ t !,E

0

T0
dt8eiEkt8Û~ t8!G

5E
0

T0
dt8eiEkt8@Û~ t !,Û~ t8!#50, ~15!

where we have used the fact that the two ABC propaga
Û(t) and Û(t8) commute as long as botht and t8 are posi-
tive. Then, we can exchange the order of these operato
Eq. ~14! as

C~ tuEk!5F̂T0
~Ek!Û~ t !F5F̂T0

~Ek!F~ t !. ~16!

Therefore,C(tuEk) can be obtained by first propagatingF
up to a timet and then applying the filterF̂T0

(Ek) onto the
propagated source stateF(t).
Downloaded 30 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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The second point is to propagate the source stateF(t)
by everyT0 time step. To be specific, let us expand the tim
propagatorÛ(t) for 0,t,T0 in terms of the modified
Chebyshev polynomials:1,27

Û~ t !5 (
n50

NH

an~ t !Qn~Ĥnorm;ĝ ! ~0,t,T0!, ~17!

where the expansion coefficients are given as

an~ t !5
22dn,0

p E
0

p

du cos~nu!exp$2 i ~H̄1DH cosu!t%.

~18!

Here Ĥnorm refers to a scaled Hamiltonian,Ĥnorm5(Ĥ
2H̄)/DH, with H̄5(Hmax1Hmin)/2 and DH5(Hmax

2Hmin)/2, andHmax andHmin are the estimates of the max
mum and minimum eigenvalues of the total Hamiltonia
respectively. The modified Chebyshev polynomia
Qn(Ĥnorm;ĝ) are defined by the following recurrence rel
tions:

Q0~Ĥnorm;ĝ !5 Î ,

Q1~Ĥnorm;ĝ !5e2ĝĤnorm, ~19!

Qn~Ĥnorm;ĝ !5e2ĝ2ĤnormQn21~Ĥnorm;ĝ !

2e22ĝQn22~Ĥnorm;ĝ !,

wheree2ĝ represents a damping function that enforces
absorbing boundary condition. By substituting the expans
of Û(t) in Eq. ~17! into the definition of the filter operator in
Eq. ~12!, we can see thatF̂T0

(E) can also be expanded i
terms of the same polynomials as

F̂T0
~E!5 (

n50

NH

bn~E!Qn~Ĥnorm;ĝ !, ~20!

with the coefficientsbn(E) written as

bn~E!5E
0

T0
dt eiEtan~ t !, ~21!

or using an integral form ofan(t) in Eq. ~18! as

bn~E!5
22dn,0

p E
0

p

du cos~nu!

3
exp$ i ~E2~H̄1DH cosu!%21

i $E2~H̄1DH cosu!%
. ~22!

Equations~18! and ~22! are suited for accurate numeric
evaluation using high-order Gauss–Chebyshev quadratu28

Combining Eqs.~17! and~20!, we find that ifF(mT0) is
already known, bothF„(m11)T0… and $C(mT0uEk)% with
arbitrary energies$Ek% can be simultaneously obtained b
generating$Qn(Ĥnorm;ĝ)F(mT0)% recursively up toNH

terms:

F„~m11!T0…5 (
n50

NH

an~T0!Qn~Ĥnorm;ĝ !F~mT0!, ~23!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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C~mT0uEk!5 (
n50

NH

bn~Ek!Qn~Ĥnorm;ĝ !F~mT0!. ~24!

In addition, the autocorrelation function of the source stat
an arbitrary timemT01t8 for 0,t8,T0 is obtained using
Eq. ~17! as

C~mT01t8!5^FuF~mT01t8!&

5 (
n50

NH

an~ t8!^FuQn~Ĥnorm;ĝ !F~mT0!&.

~25!

Hence, this scheme provides the source vibrational s
F(t) and a set of filter states$C(tuEk)% at discrete times,t
5mT0(m50,1.2,...), along with the autocorrelation functio
of the source stateC(t) at an arbitrary time. We emphasiz
that no extra computational cost is required for the filter o
eration itself in the practical implementation; i.e., the n
computational effort is only for a single propagation of t
source vibrational state,F(t). Another advantage of this
scheme is that the efficiency of the Chebyshev expansio
Eq. ~17! becomes nearly optimal, since we takeT0 consider-
ably long ~;100 fs! and the resulting expansion orderNH

becomes as large as 3000.

C. Source vibrational states

As the source vibrational statesF mentioned above, we
consider two types of states that are highly excited in
out-of-plane bending mode or CH stretching mode, wh
are denoted asFOP andFCH, respectively.

First, we define FOP as a direct product of one
dimensional vibrational functions as follows:

FOP5NS (
n

wn
~6!~f! D )

k51

5

w0
~k!~xk!, ~26!

whereN is the normalization constant whilewn
(k)(xk) repre-

sents thenth eigenstate of a one-dimensional Hamiltoni
ĥk

dia describing diabatic motion associated with each Jac
coordinatexk , that is,

ĥk
diawn

~k!~xk!5en
~k!wn

~k!~xk!. ~27!

The 1D Hamiltonianĥk
dia is defined in the same manner

the 1D reference Hamiltonian in Eq.~6!, but the potential
term is replaced with a 1D diabatic potential,vk

dia(xk), which
is defined by fixing all other Jacobi coordinates except forxk

at their equilibrium values of HFCO in the 6D potenti
function V(x). Roughly speaking,ĥk

dia can be regarded as
local-mode Hamiltonian describing a local vibration asso
ated with xk , and henceFOP represents a state where th
out-of-plane bending mode, which is approximately iden
fied asf, is highly excited while the other local modes a
constrained to their zero-point vibrations. It may be wo
noting that these definitions are not intended to provid
spectroscopically observable local-mode states, and as
Downloaded 30 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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sult, the quantum numbern in Eq. ~26! does not correspond
to a spectroscopically assigned quantum number. The is
concerning the assignment of extreme-motion states will
discussed in Sec. III.

In contrast to the out-of-plane case described above,
not straightforward to generate the CH stretching exci
state,FCH, since no single Jacobi coordinate can descr
the CH stretching motion. We circumvent this problem
employing the following sequential steps; i.e., we first ge
erate such a state in a bond coordinate system and then t
form the resulting wave function into the Jacobi coordina
representation.

In the first step, the CH stretching excited stateFCH
B is

defined using the Bond coordinates xB

5(r CH,r CF,r CO,uHCO,uFCO,fB) as

FCH
B 5NS (

n
wn

~1!,B~r CH! D )
k52

6

w0
~k!,B~xk

B!, ~28!

where $wn
(k),B(xk

B)% are eigenfunctions of the following 1D
local-mode Hamiltonians:

ĥk
dia,B(r CX!52

1

2mCX

]2

]r CX
2 1vk

dia,B~r CX!

~X5H,F,O for k51,2,3),

ĥk
dia,B~uXCO)52

1

2I XCO

1

sinuXCO

]

]uXCO
sinuXCO

]

]uXCO

1vk
dia,B~uXCO! ~X5H,F for k54,5),

~29!

ĥ6
dia,B~fB)52

1

2I OP

]2

]fB
2 1v6

dia,B~fB),

with the reduced masses and inertia moments as

1

mCX
5

1

MC
1

1

MX
~X5H,F,O),

1

I XCO
5

1

mCXr̄ CX
2 1

1

mCOr̄ CO
2 ~X5H,F), ~30!

1

I OP
5

1

I HCOsin2 ūHCO

1
1

I FCOsin2 ūFCO

2
2

mCOr̄ CO
2 ,

whereMX denotes the mass of atom X. These definitions
based on the diagonal parts of the full-dimensional kine
operator in the bond coordinates.29 Note that we distinguish
quantities associated with the Bond and Jacobi coordin
by superscripts B and J, respectively.

In the second step, we transformFCH
B in Eq. ~28! into

that in the Jacobi coordinate representation,FCH
J . By impos-

ing the conservation of probability density as

uFCH
J u2 sinu1 sinu2dxJ5uFCH

B u2 sinuHCOsinuFCOdxB,
~31!

and also using the coordinate transformation rule as
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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dxB5U]xB

]xJUdxJ, ~32!

we can expressFCH
J as a product ofFCH

B and an appropriate
correction factor as follows:

FCH
J 5FCH

B H sinuHCOsinuFCO

sinu1 sinu2
U]xB

]xJUJ 1/2

. ~33!

The actual implementation of Eq.~33! requires first trans-
forming all the Jacobi coordinates on the grid points into
bond coordinates and then interpolating the functional val
of FCH

B at the obtained bond coordinates. SinceFCH
B is writ-

ten as a direct product of 1D functions as in Eq.~28!, the
interpolation can be easily and accurately carried out,
thus the overall transformation is not computationally d
manding. In addition, the PODVR basis functions in the
cobi coordinates have an interpolating nature similar to t
of the DVR based on the Gaussian quadrature, and this
is fully utilized in the transformation step.

D. Computational details

As mentioned above we use the sinc-DVR for the sc
tering coordinateR and the PODVR for the other Jaco
coordinates. As a primitive basis for obtaining the eige
states of the 1D reference Hamiltonians in Eq.~6!, we em-
ploy the sinc-DVR forr 1 andr 2 , first-order associated Leg
endre functions foru1 and u2 , and cosine functions forf,
respectively. The following coordinate operators, i.e.,r 1 , r 2 ,
cosu1, cosu2, and cosf, are then diagonalized using th
lowest nk eigenstates ofĥk , respectively. The number o
PODVR basis along with the minimum and maximum valu
of the PODVR grid points are listed in Table I. Although th
resulting direct product basis set is not truncated and
number of the whole basis becomes as large as 1.53108, this
huge basis set is handled efficiently by using a parallel
percomputer as described below. The damping functione2ĝ

in the Chebyshev recursion formula in Eq.~19! is defined
simply as exp@2„(R2Rabs)/DRabs…

2# for R.Rabsand 1 oth-
erwise withRabs52.7 Å andDRabs50.1 Å.

As is often the case, the central task of the present
culation consists of a large number of repeated operation
the Hamiltonian onto a vector. Therefore, from a compu
tional point of view it is important not only to reduce th
total number of the Hamiltonian operations but to minimi
the CPU time required for a single operation step.

TABLE I. The number of basis functions. The PODVR is used for all t
Jacobi coordinates except forR, while the sinc-DVR is employed forR.
Minimum and maximum values of the grids are listed in Å and degrees.
basis functions off are restricted to even functions.

x n xmin xmax

r 1 7 1.08 1.35
r 2 25 0.76 2.93
R 80 1.30 2.90
u1 39 9.1 97.5
u2 20 98.6 151.9
f 14 262.7 62.7
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For the first issue we must take into account the fact t
the number of the Hamiltonian operations needed for a fix
time propagation via Eq.~17! increases proportionally to th
spectral range of the Hamiltonian. As such, reducing
spectral range directly leads to a saving of computatio
effort. For the present Hamiltonian in Eq.~9!, we find that
the term

1

2 S 1

Ī
2

1

I ~r 1 ,r 2 ,R,u1 ,u2! D D̂~f!, ~34!

enlarges the spectral range most significantly, where the l
est eigenvalues of the term arise from combinations of
smallest values of the inertia moment and the largest ne
tive eigenvalues ofD̂(f). Since we can expect that compo
nents with too high eigenvalues would be irrelevant in d
scribing the dynamics, we cut off such components
replacing the term in Eq.~34! with the following:

(
n

udn&gF1

2 S 1

Ī
2

1

I ~r 1 ,r 2 ,R,u1 ,u2! D dn ;EcutG ^dnu, ~35!

where dn and udn& are eigenvalues and eigenvectors
D̂(f), respectively, while the cutoff functiong@E;Ecut# is
chosen asE for E,Ecut andEcut otherwise. Within the DVR
scheme, eigenstates of the term in Eq.~34! are given simply
as

uI 8,n&5u i r 1
&u i r 2

&u i R&u i u1
&u i u2

&udn&, ~36!

where I 8 stands for the five indices for DVR bases and w
denote the associated eigenenergies asE@ I 8,n#. The modifi-
cation in Eq.~35! is justified if the following sum of popu-
lations of these eigenstates,

(
I 8,n

u^I 8,nuC~ t !&u2 ~E@ I 8,n#.Ecut!, ~37!

remains negligible during a time propagation ofC(t). In the
present case we choseEcut as 200 kcal/mol. Despite its sim
plicity, this procedure was found to reduce the half spec
rangeDH from 750 to 500 kcal/mol, thus leading to a fact
of 1/3 reduction of the whole numerical effort. Similar met
ods of energy cutoff have been employed in several previ
papers.30,31

For the second issue concerning a single multiplicat
of the Hamiltonian, we take full advantage of the paral
supercomputer, Fujitsu VPP-800, consisting of a numbe
vector processors, and we use 40 processors in the pre
work. To parallelize the computer code we divide the fu
dimensional wave function according to the scattering co
dinateR, and hence each processor contains a portion of
complete wave function for 2 grid points ofR. With this
scheme a full-dimensional wave function needs only
Mbytes core memory on each processor, compared to
size of 2.4 Gbytes of the complete wave function. Note t
the interprocessor communication occurs only for the kine
energy operator forR in Eq. ~2!. In order to reduce the
amount of data transfer associated with this operator,
utilize a truncated version of the sinc-DVR matrix that
obtained by letting the off-diagonal elements withu i 2 j u
.8 to be zero~i and j denotes indices for theR grid!. This

e
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modification is essentially the same as using a 15-point
merical difference formula32 and is useful to avoid all-to-al
communication among processors. Since the parallel su
computer used here provides the asynchronous commu
tion mechanism that enables a simultaneous executio
computation and data transfer, essentially no extra CPU
is required for data transfer itself as long as the time requ
for communication does not exceed that for computati
This feature leads to a nearly linear scaling with the num
of processors, and in fact an approximately 200 Gflops
on average is achieved in the present calculation~in other
words, each vector processor runs with 5 Gflops!. Also, it
takes about 40 CPU hours to propagate a wave packet f
ps. Since each processor has a relatively large memory
Gbytes, all filter states are stored directly on the c
memory, which permits an explicit analysis of the co
structed filter states.

III. RESULTS AND DISCUSSION

A. Assignment of spectral peaks

Employing the aforementioned method we propaga
the two source vibrational states in Eqs.~26! and ~28! up to
3 ps. Spectra of these states, or square modulus of the o
lap with molecular eigenstates, were calculated by Fou
transforming the autocorrelation functions in Eq.~25!. Figure
2 displays the spectrum of the CH stretching source st
FCH, where we can see two clumps of peaks correspond
to the overtone states withv56 and 7. Since the dissociatio
threshold is 60.9 kcal/mol in the present potential surfa
the overtone states forv56 and 7 are located just below an
well above the dissociation threshold. We also show in Fig
the spectrum of the out-of-plane bending source state,FOP,
where three clumps of highest peaks along with two clum
with moderate heights can be seen. We found that the for
highest peaks correspond to the extreme-motion states
are assigned to 616, 618, and 620, respectively, while the
latter moderate peaks have the character of 11614 and 11616

FIG. 2. Spectrum of the CH stretching source state obtained by Fo
transforming the autocorrelation function of this state. The zero of energ
set at the minimum of the potential surface of HFCO. The zeroth-or
assignment, 1n , represents that the mode 1~CH stretch! is excited withn
vibrational quanta.
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vibrational states.~Note that modes 1 and 6 denote the C
stretching and out-of-plane bending modes, respectively,
614 represents a state with 14 quanta in the mode 6.! Since
these assignments are not trivial, we first describe a mean
assignment in some detail.

Since full-dimensional wave functions of the individu
molecular eigenstates are not available in this work, it is
possible to make an assignment by inspecting the nodal
tern of the wave functions. Therefore, a means of assignm
not explicitly relying on the full-dimensional eigenstates
required. Here we utilized the fact that the motion of the
atom can be approximately described by using onlyr 2 , u2 ,
andf degrees of freedom, and obtained information on
spectral peaks in Figs. 2 and 3 by analyzing the eigenst
of a subsystem describing the CH chromophore. First,
defined a 3D CH chromophore Hamiltonian by fixing th
other Jacobi coordinates at their equilibrium values of HFC
in the total Hamiltonian as

Ĥ3D52
1

2m2

]2

]r 2
22

1

2I 2~r 2 ,R̄!
D̂~u2!

2
1

2I ~ r̄ 1 ,r 2 ,R̄,ū1 ,u2!
D̂~f!

1
1

mR̄2 $cotū1F̂~u2!F̂~f!1cotū1 cotu2Ĝ~f!%

1V~ r̄ 1 ,r 2 ,R̄,ū1 ,u2 ,f!. ~38!

Eigenstates of this Hamiltonian,Fn
3D , were obtained by a

direct diagonalization with the same PODVR bases. Ne
we generated the following reduced source state:

FOP
3D5NS (

n
wn

~6!~f! Dw0
~2!~r 2!w0

~5!~u2!, ~39!

which was derived from the original source stateFOP by
discarding the 1D vibrational functions for the fixed coord
nates. Expanding the reduced source state in terms of the
chromophore eigenstates,Fn

3D , we obtained a stick spectrum

er
is
r

FIG. 3. Spectrum of the out-of-plane bending source state. The mod
denotes the out-of-plane bending mode. The square modulus of the
function with window energy of 57 kcal/mol is depicted as a dashed cu
~the height is scaled!.
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in Fig. 4, which displays the distribution of overlap modul
squared,u^Fn

3DuFOP
3D&u2, versus the 3D chromophore eigene

ergy plus the zero-point energy for the fixed coordinates.
comparing this stick spectrum with the original spectrum
Fig. 3, we find that clear correspondence of peaks ex
between these spectra. In fact, the reduced spectrum in F
can be regarded as a zeroth-order approximation to the
dimensional case in Fig. 3, and each stick peak in the for
splits into many peaks in the latter due to the interact
between the CH chromophore and the remaining bath mo
Interestingly, the extent of state mixing, or splitting of th
individual stick peaks, is significantly different between 62m

and 1162m22 bands; the latter bands suffer more strongly
effect of state mixing with the bath modes than the form
which indicates much stronger couplings among the in-pl
vibrational modes. Figure 5 illustrates several 2D section
the 3D wave functions corresponding to the strong st

FIG. 4. Spectrum of the reduced out-of-plane source state obtained a
square modulus of overlap with the 3D chromophore eigenstates. The
scissa is the chromophore eigenenergy plus the zero-point energy fo
fixed Jacobi coordinates.

FIG. 5. Plots of the CH chromophore eigenstates:~a! and~b! correspond to
the 616 state, while~c! and~d! represent the 11614 state. The contour lines o
the potential surface are with the spacing of 10 kcal/mol, from 10 to
kcal/mol.
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peaks in Fig. 4. From the nodal patterns we can assign
stick peaks as 62m , 1162m22 , and 1262m24 , respectively,
and thus these assignments are given to the original spec
in Fig. 3. The energies of 62m peaks that are indicated b
asterisks in Fig. 3 are listed in Table II, which shows that
agreement between these energies and the experimen
observed band origins is very good, especially consider
the accuracy of the potential function used. We think th
this agreement supports the validity of the procedure for
assignment employed here. We also applied a similar pro
dure to the CH stretching source state and assigned the
clumps of peaks in Fig. 2 asv56 and 7 by actually inspect
ing the relevant 3D wave functions.

B. Dissociation rates

We now discuss the results obtained for the individu
filter states. In order to examine the dissociation dynamic
different energies, we applied a set of filter operators w
different window energies,$F̂T0

(Ek)%, onto a single source
state, thus generating the same number of filter states.
window energies$Ek% were located over the energy range
55–70 kcal/mol with equal spacings of 1 kcal/mol. The ro
of the filter operator can be schematically viewed by plotti
the square modulus of the following filter function:

f T0
~E;Ek!5

exp@ i ~Ek2E!T0#21

i ~Ek2E!
, ~40!

which is obtained by replacing the ABC HamiltonianĤc

with a real energyE in Eq. ~13!. One example of the filter
function withEk557 kcal/mol is plotted as a dashed curve
Fig. 3. We define the filter width,DE, as the spacing be
tween the two zeros ofu f T0

(E;Ek)u nearest toEk , thus it
becomes 4p/T0 . Practically, the choice ofDE or T0 remains
somewhat arbitrary, and in the present case we choseT0 as
4000 a.u..100 fs so thatDE became about 2 kcal/mol~this
width is the same as that used in the previous work21!.

We defined the survival and dissociation probability
each filter state as

Ps~ tuEk!5u^C~ tuEk!uC~ tuEk!&u2,

Pd~ tuEk!512Ps~ tuEk!,

whereC(tuEk) denotes a filter state in Eq.~14!. The varia-
tion of Pd(tuE) vs E is plotted fort51.0, 1.5, 2.0, 2.5, and
3.0 ps in Fig. 6, which shows a monotonic increase of

the
b-

the

0

TABLE II. A comparison of the energies and dissociation rates of the o
of-plane extreme-motion states. The calculated energies and rates c
spond to the center of peaks indicated by asterisks in Fig. 3 and the
average ofk(tuE) over t51 – 3 ps in Fig. 7, respectively. The experiment
values are taken from Ref. 5~c!.

Assignment

E (kcal/mol) log@k(s21)#

Calc. Expt. Calc. Expt.

616 57.4 57.4 7.9 <5.70
618 62.7 62.6 9.0 >8.70
620 68.0 67.8 9.8 9.84
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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dissociation probability with time. Also, the dissociatio
threshold is marked by the arrow. Figure 6 clearly indica
that the dissociation of the out-of-plane bending filter sta
COP(tuE), is much slower than that of the CH stretchin
filter states,CCH(tuE). For example,Pd(tuE) for the out-of-
plane case withE568 kcal/mol ~which corresponds to the
620 band in Fig. 3! is only 2% att53 ps, while that of the
CH stretching case already amounts to 25% at the same t
Also, at the window energy of 63 kcal/mol corresponding
the 618 band,COP(tuE) exhibits almost no dissociation, bu
CCH(tuE) dissociates by more than 10% att53 ps. A simi-
lar comparison for the 616 band atE557 kcal/mol is difficult
with this figure, since the corresponding filter states are
cated deep in the tunneling region and thus essentially
dissociation occurs for those states.

The difference in the dissociation rates can be m
clearly seen by examining the time-dependent decay co
cient,k(tuEk), defined by

d

dt
Ps~ tuEk!52k~ tuEk!Ps~ tuEk!. ~41!

Since Ps(tuEk) is available only at discrete times,t5mT0

(m50,1,2,...), we evaluatek(tuEk) approximately using a
finite difference scheme as

kS S m1
1

2DT0UEkD.2
2

Pm11,k1Pm,k
3

Pm11,k2Pm,k

T0
,

~42!

wherePm,k is the abbreviation ofPs(mT0uEk). We show in
Fig. 7 the time variation ofk(tuE) for fixed energies corre
sponding to the 1n and 62m states. It is seen from this figur
that the decay ratesk(tuE) for the 16 and 17 states increase
rapidly within 0.5 ps and subsequently fluctuate around th
asymptotic values. As discussed in the previous paper,21 this
behavior of k(tuE) comes from the fast energy exchan
between the in-plane CH stretch and bend through a str

FIG. 6. The dissociation probabilityPd(tuE) as a function of window en-
ergy E. Circles and triangles represent the CH stretching and out-of-p
bending filter states, respectively. The curves are plotted fort51.0, 1.5, 2.0,
2.5, and 3.0 ps. The dissociation probability increases monotonically
time. The arrow indicates the dissociation threshold~60.9 kcal/mol!.
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Fermi resonance, followed by slower energy redistribut
into the remaining bath modes. For the 62m filter states, the
decay rates exhibit a gradual increase over the entire ti
which reflects a much slower energy transfer from the ini
out-of-plane excitation into the other in-plane vibration
modes.

Figure 8 displays the time average ofk(tuE) over t
51–3 ps@denoted ask̄(E)# as a function of window energy
E. The RRKM rate with tunneling correction33,34 is also
shown as a solid curve. We first confine attention to the ra
above the dissociation threshold. The time-averaged
k̄(E) for the 17 state (;1010.9) is in good agreement with the
RRKM rate (;1010.8). In fact, k̄(E) for all the CH stretching
filter states above the dissociation threshold are close to
RRKM estimates, indicating that the dissociation of tho

e

th

FIG. 7. The decay ratek(tuE) as a function of timet. The window energyE
is fixed at 57, 63, and 68 kcal/mol for the out-of-plane bending filter sta
~solid curves! and 59 and 66 kcal/mol for the CH stretching filter stat
~dashed curves!, respectively.

FIG. 8. The time-averaged decay ratek̄(E) as a function of window energy
E. k̄(E) is a time average ofk(tuE) over t51 – 3 ps. Circles and triangles
represent the CH stretching and out-of-plane bending filter states, res
tively. The RRKM rate with tunneling correction is shown by the so
curve. The dissociation threshold is marked by the arrow.
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states can be well characterized by statistical theories. On
other hand, the averaged decay rates of the 618 and 620 states
are about one order of magnitude smaller than those of
CH stretching filter states or the RRKM rates. This diffe
ence of rates should not be regarded simply as apparent
RRKM behavior arising from the different initial distributio
of vibrational energy,33 since the growth of the rates for th
62m states in Fig. 7 is extremely slow as compared to
case of initial in-plane excitations studied here and in
previous work.21 Also, as will be shown by a local-mod
analysis below, the initial out-of-plane vibration of 62m

states relaxes only slightly within 3 ps. These features cle
indicate that the couplings between the out-of-plane exc
states and other in-plane vibrational states are weak, whic
in qualitative agreement with the experimental findings.

We compare in Table II the time-averaged decay rate
62m states with the experimental values.9 The calculated
rates for 618 and 620 states are in good agreement with t
experimental ones, but that for 616 state is greatly overesti
mated by two or more orders of magnitude than the exp
mental one. In addition,k̄(E) for the CH stretching filter
states in Fig. 8 deviates significantly from the RRKM rat
below the dissociation threshold. Hence, it is found that
calculated decay rates are larger than the RRKM estimate
the entire tunneling region regardless of the source sta
This is not an artifact coming from insufficient accuracy
the Chebyshev expansion in Eq.~17!, which was confirmed
by changing the expansion orderNH or the parameters in th
damping function. One of the possible reasons for this is
deficiency of the potential function; since the dissociation
this energy region is dominated by penetration of tails o
wave packet through the barrier, the decay rates are
sensitive to the accuracy of the potential function around
barrier. Another reason may be that a small amount of h
energy components included in each filter state make
decay rates larger, which is possible because the magn
of the filter function in Eq.~40! decays only algebraically a
E2Ek is increased.

Finally, we show the result of a local-mode analysis. W
consider here the average vibrational energy in the out
plane bending and CO stretching modes, which is comp
tionally convenient because these modes are well chara
ized byf andr 1 of the Jacobi coordinates and hence all t
calculations can be done within this coordinate system.
out-of-plane vibrational energy,Evib

OP, is defined as a
weighted average of eigenenergies of the 1D diabatic Ha
tonian ĥ6

dia in Eq. ~27!:

Evib
OP~ tuEk!5(

n
en

~6!Pn
~6!~ tuEk!, ~43!

wherePn
(6)(tuEk) represents a probability for finding thenth

eigenstate ofĥ6
dia in a filter stateC(tuEk), that is:

Pn
~6!~ tuEk!5(

I 8
u^ i r 1

u^ i r 2
u^ i Ru^ i u1

u^ i u2
u^wn

~6!u•uC~ tuEk!&u2,

~44!

where I 8 denotes the five indices of PODVR bases colle
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tively. Since the norm of the filter state decreases with tim
appropriate normalization is applied to the probabiliti
$Pn

(6)(tuEk)%. The CO stretching energy,Evib
CO, is also de-

fined in a similar manner. Figure 9 shows the local-mo
energies of the out-of-plane filter states att50 and 3 ps. It is
seen from this figure thatEvib

OP for 62m states atE557, 63,
and 68 kcal/mol remain more than 30 kcal/mol even at
53 ps, which indicates the stability of these states aga
IVR. This slow IVR contrasts well with the fast IVR initiated
from the CH stretching excitation that proceeds considera
within 3 ps.21

Although all the filter states exhibit a large out-of-plan
vibrational energy in Fig. 9, the degree of excitation diffe
according to the window energy. As expected from the sp
tral assignment in Fig. 3,Evib

OP for the 62m states exhibit the
largest values, and those atE.60 and 65 kcal/mol corre-
sponding to the 1162m22 states are the second largest. F
the window energy at which there are only small peaks
Fig. 3, e.g., atE559 or 64 kcal/mol,Evib

OP is further de-
creased, and hence the corresponding filter states are
excited in the in-plane modes. These differences of out
plane excitation in the filter states seem to cause the osc
tion of k(tuE) in Fig. 8, since the dissociation becomes fas
if the initial in-plane excitation is larger.@Note in passing
that k(tuE) for the CH stretching case does not exhibit
similar oscillation in Fig. 8. Since there are energy regio
where no strong peaks exist in Fig. 2, the filter states in th
regions should be more or less excited in other vibratio
modes. The decay rates of these states, however, bec
similar to the RRKM rates probably due to the strong co
plings among the in-plane modes.# We also applied the local
mode analysis to the CH stretching filter states, and the
ergy transfer from the initially excited CH stretch to the ou
of-plane bending or CO stretching modes was found

FIG. 9. The local-mode vibrational energy versus window energyE ob-
tained for the out-of-plane bending filter states. Solid and dashed lines
dicate the local-mode energy att50 and 3 ps, while triangles and square
represent the out-of-plane bending and CO stretching energies, respect
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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proceed slowly within 3 ps, thus showing nonresonant IV
into these two modes.

IV. CONCLUSIONS

In this work we focused on comparing the dissociati
rates of the out-of-plane bending or CH stretching exci
states. Since the calculation of the individual molecu
eigenstates near the dissociation threshold was computa
ally too expensive, we examined the relevant dynam
quantities by actually propagating the wave packets
were locally excited in a specific vibrational mode. A signi
cant reduction of the computational effort became poss
by using the commutation relation between the filter opera
and the time evolution operator. The time-dependent de
coefficients of the filter states reflected the different types
underlying dynamics, and the slow IVR from the out-o
plane excitation was concluded by the decay rate const
as well as the local-mode analysis.

Hose and Taylor35 discussed previously the origin of th
stability of extreme-motion states against IVR from two d
ferent points of view: one is the effect of an adiabatic d
namical potential that decouples a highly excited mode fr
other vibrational modes, and the other is the smallness of
number of effective coupling elements between such
extreme-motion state with other zeroth-order states.
amples of such extreme-motion states may include hig
excited SO stretching states of the SO2 molecule36,37and the
bending excited states in acetylene,38 both of which have
been studied with an emphasis on the normal-to-local m
transition. An interesting question concerning these state
whether all vibrational modes have their correspond
extreme-motion states. In the case of HFCO, there remai
possibility that the in-plane vibrational modes show su
states, but the study of this problem would require the qu
tum mechanical calculation of all the molecular eigensta
near the dissociation threshold. Once these eigenstate
explicitly calculated, the correlation between the sta
resolved decay rates and the vibrational character of e
eigenstate could be analyzed, which would yield crucial
formation on how a statistical dissociation or IVR is realiz
from the set of resonance states. It is also of interest to s
the rotational effect on the dissociation rates that is known
be dramatical in HFCO.9 All of these remain a challenge fo
future work.
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