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Path integral evaluation of the quantum instanton rate constant for proton
transfer in a polar solvent
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The quantum instanton approximation for thermal rate constants, a type of quantum transition state
theory (QTST), is applied to a model proton transfer reaction in liquid methyl chloride developed
by Azzouz and Borgis. Monte Carlo path integral methods are used to carry out the calculations, and
two other closely related QTST's, namely, the centroid-density and Hansen—Andersen QTST, are
also evaluated for comparison using the present path integral approach. A technique is then
introduced that calculates the kinetic isotope effect directly via thermodynamic integration of the
rate with respect to hydrogen mass, which has the practical advantage of avoiding costly evaluation
of the activation free energy. The present application to the Azzouz—Borgis problem shows that the
above three types of QTST provide very similar results for the rate, within 30% of each other, which
is nontrivial considering the totally different derivations of these QTSTs; the latter rates are also in
reasonable agreement with some other previous re@ifls obtained via molecular dynamics with
qguantum transitionswithin a factor of~2(7) for theH (D) transfer, thus significantly diminishing

the possible range of the exact rates. In addition, it is revealed that a small but nonnegligible
inconsistency exists in the parametrization of the Azzouz-Borgis model employed in previous
studies, which resulted in the largpparentdiscrepancy in the calculated rates. ZD05 American
Institute of Physics.[DOI: 10.1063/1.1832598

I. INTRODUCTION to date!>!" because it was not obvious how to evaluate the
latter theory efficiently using path integral techniques rather
As is well appreciated, the reaction rate of hydrogenthan basis set methods.
transfer is sometimes significantly impacted by nuclear quan- A recent papéf has introduced a different QTST that
tum effects of the transferring hydrogen. This is to be eXwas motivated by an earlier semiclassi¢8iC) transition
pected for reactions at low temperature or with a high actistate theor}’ (also known as the “instanton” modéf and is
vation barrier, but it is also knOV&ﬁ that for some enZymatiC thus referred to as the guantum instan(@) approxima_
reactions the hydrogen transfer proceeds via tunneling evefibn. The similarity between the quantum and SC instanton
under physiological conditions with the help of thermal pro-theories lies in the fact that steepest descent approximations
tein motions(called “promoting” or “gating” vibrations  are used to evaluate the relevant integrals in the quantum
that directly modulate the donor-acceptor distance. A varietynechanical rate expression, while the critical difference is
of theoretical approaches have been used to investigate sughy; the Boltzmann operators involved in the QI rate expres-
an myol\f;i quantum rate  process by computergion gre evaluated fully quantum mechanically rather than
simulation;™™ among which of our concern in this paper yjthin an SC approximatior{Here we recall that the steep-
(ie., related to Feynman's path integral in imaginary gg gescent evaluation of the Boltzmann operator leads to the
time)>'® is the centroid-density quantum transition state, oi_known classical periodic orbit on an “upside-down"
theory (QTST).'"* This method adopts a rate expression otential energy surfacé® The QI theory thus incorporates
identical to the classical TST, but defines the activation fre Il the tunneling contributions correctly and is expected to

energy in terms of the centroid of the imaginary-time path Novercome the guantitative deficiency of the SC instanton

order to account for the quantum delocalization of the hydro'model.zl Indeed, several test applications have shown the QI

gen. Another theoretical method of concern is the QTST de;; . .
veloped by Hansen and Anderséwhich is somewhat more theory to give accurate quantum rates over a wide tempera-
7 Y . . . . ture range, from the “deep” tunneling regime at low tem-
first-principles” and considers a direct short-time approxi- t © th . f barrier d . t high
mation to the rigorous quantum mechanical flux-flux corre-Perature Oég Zf_zgeg'me of over-barrier dynamics at hig
lation function® The application of the Hansen-Andersen temperature.” A practical path integral scheme has also

method, however, has been limited to simple model systemlgeen .develope.d o eyaluatg the QI rate for more complex
chemical reaction& with which the QI theory was applied

to the gas-phase HCH,—H,+ CHjs reaction with all the
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bility of the QI theory to a realistic chemical reaction in a TABLE |. Parameters used in the gas-phase H-bonding potential
condensed phase. To this end we study a model proton tran¥ee("Rag)-

fer reaction in solution developed by Azzouz and Bofgis, Parameter Value
_ a(A? 11.2
AH+B—A +H'B, 1.9 b Ekcal/)mob 7.1x 101
da (B) 0.95
where A, H, and B constitute a typical phenol-amine  dg (&) 0.97
H-bonding complex dissolved in liquid methyl chloride. The ~ Da (kcal/mo) 110
reason for choosing this system is twofold. First, the ™ Eﬁ’lg 191-2462
Azzouz-Borgis model embodies several important aspects 0.776

of condensed-phase proton transfer reacti@g., donor-
acceptor modes that directly modulate the potential barrier

and a polar solvent that qualitatively changes the free energy

profile via electrostatic interactionsSecond, although a va- We employ the following Cartesian form of the gas-
riety of theoretical approaches have been applied to thiphase solute Hamiltonian in order to simplify the path inte-
model?’ ! the calculated rates do not agree well and thuggral calculation,

the exact quantum rate is still unknown. More specifically, . P 21 o

Azzouz and Borgis investigated the above model using a Hgas™ 2MaRA+ 2MgRg+ 2Myi“+Vyp(r,Rap), (2.1)
semiclassical curve-crossing TST and the centroid-densityhere r=|R,~R,| and Rag=|Ra—Rg| with R,(a

QTST? Subsequently it was studied by other groups Using_ A H,B) being the Cartesian coordinates of site Al-
molecular dynamics with quantum transitiofdDQT),”™*"  though the above form is not strictly identical to those used
quantum Kramers appr_ogch@sgnd variational transition in previous work, their difference can be shown to be negli-
state theory with multidimensional tunneling correctionsgiple due to the large disparity in massese Appendix A for
(VTST/MT).3! The calculated rates differ by more than two details. The gas-phase H-bonding potentéls in Eq. (2.1)
orders of magnitude, implying the difficulty of obtaining g given by
guantitatively accurate proton transfer rates in solution. The (r—d)?
Azzouz-Borgis model thus represents a rather nontrivial ap- —he-aR —NAlr—0a
o . Vyug(r,Rag)=be 2™e+D i 1l—exp————

plication for the different QI theory. He(".Rap) A 2r

The remainder of this paper is as follows. In Sec. Il we Ng(Rag—T —dg)?
first summarize the Azzouz—Borgis model and present the +cDA[1—ex;{ e(Ras B H
working expressions of the QI theory. We then describe the 2(Rpg—T)
path integral framework for evaluating the QI rate and how it (2.2)
can be used also to deal with the Hansen—Andersen QTST. A . . . .
technique is then introduced that directly calculates the ki—rvé hiﬁiigmeggf\fv;e;x :nt;]g r'\?v?]ti'lzat?]i s;léiri;ien;?;esteerlt;;hde;ore
netic isotope effectKIE) via thermodynamic integration of crr)ibe the chemical bondir,1 bf with A andB T%e aram-
the rate with respect to hydrogen mass. In Sec. Il we discusd : ) g - 'nep
. eters in Eq.2.2) are listed in Table I. We depict the above
important features of the relevant free energy surfaces, ex: . . . o

. - ; . é,)_as-phase potentidyg in Fig. 1. It is seen from this figure
amine the statistical convergence rate of path integral estim hat the presen hich is based on the parametrization
tors, and compare the resulting QI rates with the previou Ham%es-Scﬁi?f('arWa:’ld ITuIF;? has a barFr)ier heiglhzt cl)f
results. In Sec. IV we summarize the main conclusions in~y2 kcalimol smaller than that o;‘ Azzouz and Borgisg. 1

this paper. in Ref. 27. This difference has not been emphasized in pre-
vious work but is non-negligible in discussing the rate con-
stants(see Sec. Il

II. METHODOLOGY The Azzouz-Borgis model treats the solvent methyl

A. The Azzouz—Borgis model for proton transfer chloride molecule as a rigid, polar, nonpolarizable diatomic,

in polar solvent where the methyl group is reduced to a united atom. The

solvent-solvent interaction potentidlgg, is given by a TIPS

In this section we describe the key aspects of thgyansferable intermolecular potential functidisrm as fol-
Azzouz—-Borgis model’ We follow the specific version of lows:

the model given by Hammes-Schiffer and Tdftpecause all
the previous studies except for Ref. 27 have employed their
parametrization. The present model deals with a phenol-
amine H-bonding comple¢dHB) dissolved in liquid methyl
chloride, whereA andB are two Lennard-Jong$J) centers CsCp
with masses corresponding to phenbl (=93 amu) and tri- - m
methylamine Mg=59 amu), respectively, while the proton koK
H (with my=1amu) is constrained to move along tA8  where Rg stands collectively for the solvent coordinates,
axis, i.e., the complex is treated as a collinear triatomic molwhile Rf is the Cartesian vector of sife on thekth solvent
ecule. molecule. The TIPS parameters in E@.3) are listed in

) ALA
AgYs n BB

1
VSS(RS):_ 2 7 7
2 IRE-RE | IRE-RE ™

k#k' 8,8’ =Me,Cl

, 2.3
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3.0 TABLE II. TIPS parameters for the methyl chloride solvent model.
_ Site q(e) A? (kcal mol t A1?) C? (kcal molt A®)
o<
o 28 CH;, +0.25 7.95¢10° 2750
= cl —-0.25 5.25¢10° 2950
26
20
g 10 H:Hgas+TS+VSS{RS)+VCS(r1RA-RBaRS)r (26)
_;3 whereTg is the translational and rotational kinetic energies
"m0 of the solvent molecules.
T
=
-10

08 1 12!’ (;5"; 16 18 2 B. Quantum instanton theory for rate constants
In this section we present the working expressions of the
FIG. 1. Gas-phase H-bonding potentifle(r,Rag) in Eq. (2.2. Zero of Q| theory® The derivation of the QI rate expression begins

energy is taken to be the infinite separation lichitl + B [thus a constant with the following formally exact ex ressidﬁ'
cD, is subtracted fronV,z(r,Rag)]. (@) Contours are plotted for energies 9 y P '

of —6,—2,...,18kcal/mol; (b) section atR,g=2.7 A. The present result is 1 (27Tﬁ)2

shown by solid line. The corresponding potential curve of Azzouz and Bor-  k(T)= f dEe AE

gis is reproduced from Fig. 1 in Ref. Zline with circles. 2mhQp 2
Xt[FS(E-H)FS(E-H)], 2.7

Table II. The interaction potential between the H-bonding®"d Uses & steepest descent approximation to establish an
complex and the solvent moleculdgss, is the sum of Cou- approximate relation between the microcanonical density op-

lomb and LJ interaction potentials, erator S(E—H) and the Boltzmann operat@ "2, The
integral ovelE in Eq.(2.7) is also evaluated within the steep-

Vedr,Ra,Rg,Re) = 2 qa(r)q/é; est descent approximatioQ, in Eq. (2.7) is the reactant

a=ABH K pNecl R~ R partition function 3 is inverse temperature X4T), andF is

o 12 a flux operator given by
«ZAB K p=Mecl |IR,—R{| . PV AT
F=5—[bo(f—rH)+a8(F—rH)pl, (2.9
o 6 2my

B IR,— RE|> (24 wherep, is the conjugate momentum of We note that the

dividing surface is defined as=r*, i.e., using the proton

with the_ LJ parameters ande chosen as 3.5 A an_d 200 K, coordinater rather than a collective solvent coordinate such
respectlvely. An important fea_ture of the model is that theas an energy gap function. This choice is simply to facilitate
partial charges on the H-bonding complex(a=A,H,B),

comparison with the result of Azzouz and Bor§is?r* in
changes 9reatly froLn the reactant covalent statgl ( Eq. (2.9 is an adjustable parameter that is chosen according
= —O.5e,q£_|: +0.5e,q|B=0) to the product ionic stategy 15 g appropriate stationary conditiésee below. The ap-
=—1.0e,qy=+0.%,gg= +0.%), which is represented by oximations described above lead to the following QI

a smooth switching function as expressiort?
Au(r)=[1=f(N)]ae+F(r)a,, (259 S DA (L 29
f(r= | 1e ——T0 (2.5b) T 2 an |
2 Jr=rg)?+12 whereCy(0) is the zero time value of the flux-flux correla-
with ro=1.43 A andl=0.125A. The product ionic state 1O function as defined by Milleet al,’®
s exis 2 rgedple momentnd s SEbIZeGSUOngl oo ARSI, 210
total Hamiltonian of the solution becomes while AH is a particular type of energy variance given by

t{ F2e AH25(F — r¥)e AHI2s(f — )] —tif e AH25(p —r ) Ale APz s(p — 1 ¥)]
tr[ e AH25(t —r¥ e~ AH2s(F —1¥)] ’

H2

(2.11
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which can also be written as

B Cud0) r/z
2C4(0)]

AH=# (2.12

where Cy44(0) and C4y(0) are the zero-time value and its

J. Chem. Phys. 122, 044106 (2005)

accuracy of QTSY, butCy4(0) may be used instead because
the latter exhibits essentially the same exponential behavior
as a function ofr*. The use ofCy(0) has the practical
benefit that it is simpler to evaluate via standard statistical
sampling methodsgsee below.

second derivative, respectively, of the “delta-delta” correla-C. Path integral evaluation of the quantum

tion function,
Cad(t) =tr e PH25(F —r¥)e~ AHiZgiHtA
><5(f—r¢)e*il:|t/ﬁ]. 013

In practice theAH above is modified as follows to correct
the free particlgor high-temperatupelimit,

AH—AH+(7—Vv2)IB,

which is found to somewhat improve the QI réafe.

(2.14

The location of the dividing surface, namely, the value of

the parameter® in Eq. (2.9), is determined by the following
stationary conditiort®33

dCq4q0
dol ):0.

instanton rate

The QI rate in Eq(2.9) is expressed solely in terms of
the Boltzmann operator and can be evaluated with imaginary
time path integral techniquég? In this section we present
key steps of the implementation as well as the relevant path
integral estimatoré? For simplicity of notation, hereafter we
consider the classicabr single time-slicglimit of the bath
coordinatesR=(R,,Rg,Rs) (see Sec. Il F for the quantum
treatment of the latter

To proceed, we rewrite the QI rate in EQ.9) as

kQ|: pV, (21@
with
_Cud0) _ Cy(0) Vuhi
T Q' "7 Cud0) 28" =19

This condition originates from a semiclassical consideratiorwherep and v are quantities similar in nature to the activa-
on the instanton trajectory, but it can also be regarded as dion probability and the pre-exponential factor in the classi-

approximate condition for minimizing dynamical “recross-

cal TST, respectively. The factqn can be obtained with

ing” effects that cannot be captured by QTST. More pre-methods of rare events such as umbrella sampling or thermo-

cisely, according to Predescu and Milf8rC¢(0) should be
minimized with respect to* in order to suppress an oscilla-
tory behavior ofCk(t) (or equivalently, to obtain the best

_ CadOira.ry)  JAR[Ar®---fdr® exp(— BD) 8(rO—r ) 5(r PP —ry)

dynamic integration. To be specific, we discretize the Boltz-
mann operator irCy44(0) andQ, using the standard proce-
dure as

P(ra.rp)= On

where the proton coordinate is discretized intoP slices,
{r®, . r®1 and the corresponding action is

P P
my P 1
b=—m>D, (rO—rE"24 = > V(IO R).
2155 2, 0 S VR
(2.19
In Eqg. (2.18, h(x) is the Heaviside step function amg is

~ fARSfAr®---fdr® exp — go)h(r, —rD)h(r, —r(F2)>

(2.18

with p(r’)=p(r,=r',r,=r’). The above procedure can be
achieved, e.g., via two-dimensional umbrella sampling,
where a biagor umbrella potential of ¢(®,r("/2)y is added

to the discretized actio® in Eqg. (2.19 and the bias is re-
moved afterward from the resulting free energy. A particular
version called adaptive umbrella sampling is used in Ref. 22
in the context of the QI theory. An alternative way of com-
puting p(r) is thermodynamic integration with respect to the

an adjustable parameter that roughly discriminates betweeamaction coordinate:

the reactant and product regions. Note thét,,ry) is de-
fined such that the parametet can artificially take two in-
dependent values,, andry, which leads to a simple nor-
malization ofp(r,,rp) in the reactant space,

r* r*
f draf drpp(ra,rp)=1. (2.20

The necessary value pfis obtained by generating a normal-
ized histogram of ((9,r(P?) and finding the stationary
point of the “free energy” curve defined by

W(r")=—B"tInp(r’) (2.20)

IAW(r")
ar’

ri
p(r*)=|o(rA>exp[—Bfr dr’ : (2.22

wherer 5 is an arbitrary constant that is chosen close to the

minimum of the free energy curve in the reactant region, and

the “mean force”—dW(r')/dr’ is calculated via

() [ oD o s
o T \gro Tt em o (2.23

where the constrained path average is defined by
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- :defdr(l)mfdr(P) exp(— BD)S(r@—r")s(rP2—rry(--) (2.24
C fdRSdr®D- fdr® exp(— BD) S(r@—r")s(rPP—r ) '
|
While the determination of the reference valug ») in Eq. Cud0) 1
(2.22 still requires a two-dimensional histogram calculation, 0 =— ﬁ<F2+ G4 (2.31

no bias potential is necessary so longrasis sufficiently

close to the bottom of the reactant well. Due to this aspectvith

the thermodynamic integration may be more straightforward

than two-dimensional umbrella sampling in some situations _ My (8) _ ¢ (5=1)y2_ /() | n(5)

(e.g., when a good bias potential is difficult to constyuct F_szl (ZﬁzAEZ(r v ]C (2.323
The factorv in Eq. (2.16), on the other hand, is a quan-

tity associated with the top of the activation barrier and canand

be obtained from appropriate constrained sampling. This fac- P

tor consists of two ratioG(0)/Cyg(0) andCyqy(0)/Cys(0) ngl

[via Eq.(2.12]. The first one can be evaluated as

1 my
ZAIBZ_hZABS(

r(s)_ r(S]-))z] (C(S))Z,

(2.32h

Cx(0) where VO=[V(r® R)+V(r& 1 R)]/2, and the coeffi-
= (1(0),,(P/2) ) ) ,
Cyd(0) CRCRRES 229 Gientsc® are defined by
where (- --); is the constrained path average in Ef.24 1/(P/2—2), 1<s<P/2
with r’=r*, and the “velocity” factorv(® is defined by c®={ —1/(P/2—2), P[2+1<s<P, (2.33

0, otherwise
v =——— (r(sT —(s71)y (2.2
2hAB whose derivation is summarized in Appendix B. We refer to

with A 8= B/P. The statistical estimator in E¢2.25 is ob- the above two estimators fu¢(0)/Cqq(0) in Egs.(2.28

tained by applying the flux operator in EQ.8) directly onto and(2.3]) as the “di'r ect” and “thermgdynqmic" est'imators,
the neighboring high-temperature Boltzmann Operatorsrespectwely, following the conventions in the literatfre

exp(—A,Bﬂ), in the discretized path integral expression for[nOte thatk in Eq. (2.30 has the same physical units As

=1/kgT]. As is often the case, the two estimators exhibit
Cit(0). In contrast, the second rati€y(0)/Cad(0), can be  quite different statistical behavior, which will be examined

obtained in several different ways. For example, one may,umerically in Sec. 111 C.
expressCy4(0) as

) i o
Cad0)= —trle BH/zg[Hﬁ(f —r¥)]e BH/Z% D. Other path integral quantum transition state theory

As mentioned in the Introduction, several different types

x[ﬂ,&(f—r*)]], (2.27)

of QTST already exist, and it is thus informative to compare
the results of the QI theory with some of the other versions.

and eliminate the kinetic energy operator in the commutator© this end we consider the following two QTSTs that are

through integration by parts to give

Cad0)
— — (1,(0);,(P/2),0,(0)\/(P/2)
Cad(0) (T TPW W)

(2.28

wherev® is the velocity factor in Eq(2.26), while w(® is
defined by

my - V(IO R)
W(S):ﬁzAﬂ(Zr(s)_r(5+1)_r(3 l))+AIBW
(2.29

An alternative method is to take the derivative ©f4(t)
along the imaginary-time axig.e.,t=—i%\),

2

. 1 d ]
Cdd(O)Z—ﬁWCdd(—lﬁ?\) ,
A=0

(2.30

which gives

directly amenable to path integral evaluation. The first is the
centroid-density QTST that defines the activation free energy
in terms of the centroid of the imaginary-time path!

K(T)=k(T)= (2.39

1
t
— r ,
\/mpc( C)
where the centroid density, is given by
SdRfdr@---rdrP) exp(— BP)S(TF—r.)

pc(rc): deJ‘dr(l). "fdl’(P) exq—ﬂq))h(r* —=T)
(2.35

with the path centroid@ being
P

1P ),
s=1

The value ofriE in Eq.(2.349) is chosen such that it minimizes
the centroid densitp.(r.). The above method can be imple-
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mented rather straightforwardly and has already been applied The KIE is thus given in terms of the QI rate of Eq.
to numerous condensed-phase reactions including th@.16) as follows:
Azzouz—Borgis model in Sec. Il A.

kQI(mH) _ p(my) v(my)

The second QTST of interest is that proposed by Hansen = , (2.4
and Andersen? which employs the following short-time ap- Kqi(Mp)  p(mp) »(mp)
proximation to the flux-flux correlation function in Eq. where the dependence of relevant quantities on hydrogen
(2.10, massm is indicated. Our strategy is to calculate the ratio
a6 p(my)/p(mp) directly via thermodynamic integration with
Ci()~CHAt) = (2.36  respect tan. [We note that the evaluation pfis more costly
[t°+ (7 BI2)7] than v because the former requires umbrella sampling etc.,
with while the latter can be obtained from a single constrained
R . average in Eq(2.24 with r’=r*.] As such, we rewrite the
e 7,3) Ca(0), b= (ﬁ;)z N 2CC;f((OO))' (237 rato ofp as
f p(my) Mp d
The corresponding approximate rate is given by p(Mp) :eXP{ - JmH dm&—mm P(m)], (2.42
_ _ i e ~HA and by substituting the discretized path integral expression
k(T =kua(1) = Qa fo dtCy™ (V). 238 o p(m) in Eq. (2.18 into the log derivative op(m), we
have

This method is based on a Padapproximation to

d In[Cy(z¥®)]/dz, and it reproduces the correct short-time J B

behavior of the tru€(t), satisfies known analyticity prop- Sminp(m) = —[(K(m));—(K(m)al, (2.43
erties of the latter, and becomes exact for a free particle.
Despite these appealing features the above method has nY 0
been utilized in realistic condensed-phase problems becau§&€9Y:

of the lack of practical implementation schemes. Here we p mp

pereK(m) is the thermodynamic estimator for the kinetic

find that such a scheme can be established in a straightfor- K(m)= 28 WE (r®—r=1)2 (2.49
ward manner by rewriting Eq2.38 as s=1
cio) [ Co(0) (= 5 3/2)3eb? The bracke{---); in Eq. (2.43 has the same meaning as in
Kna(T) = of ){ #(0) t 2( pl2) e2 3/2], Eq.(2.25, while (- - ), is the equilibrium path average in the
Qa | Cud0) Jo  [t°+(hB/2)7] reactant space defined by
(2:39 JARfdr®---fdr(P exp(— Bd)ha(:-+)
and evaluating the ratio€44(0)/Qa, Cx(0)/Cy0), and ()= (2.49

- : - _ _ JARSdr®---fdr®® exp(— BD)h,
C«(0)/C«(0) [in coefficientb in Eqg. (2.379)] using the ) ) (P12) ,
present path integral approach in Sec. I1C. An ingredienWith Pa=h(r, —r")h(r, —ri™). Thus, the KIE is ex-

required here is the statistical estimator ©§(0)/Cy(0), pressed in terms of the average kinetic energy in the reactant

which can be generated by combining the estimators foi"md barrier regions as follows:

C#(0)/Cy4(0) in Eq. (2.25 and that forCyy(0)/Cyy(0) in Koi(my) — v(my)
Eqg. (2.31) as follows(see Appendix B for more detajls koi(Mp) — v(mp)

Cx(0) 1 (0O PR(F2+G)), me

Ca0) A2 (0Ot (2.40 xexp B - dm(K(m))a—(K(m));]/my.
Thus the Hansen—Andersen QTST can be evaluated simulta- (2.49

neously with the present QI theory. An important point here is thgK(m)) is generally a slowly

varying function ofm, suggesting that a simple quadrature
with only a few points should suffice for practical purposes.
This feature will be illustrated numerically in Sec. Il D. We
The H/D KIE, k(my)/k(mp), provides an experimen- note also that the above procedure is equally applicable to a
tally important clue to understand the degree of nucleawide class of other rate theories including the centroid-
guantum effects in a given reaction. A conventional way ofdensity and Hansen—Andersen QTST.
estimating the KIE by computer simulation is to calculate the
absolute ratek(my) andk(mp) separately, but one can also
evaluate the rati&(m,)/k(mp) directly without generating
the absolute rates. In this section we describe such an ap- All the path integral expressions in the preceding sec-
proach based on thermodynamic integration of the rate witlions were presented in the classi¢a., single time-slice
respect to hydrogen mass. The primary benefit of this metholimit of the bath degrees of freedonR=(R,,Rg,Rg).
is that one can avoid costly evaluation of the activation freé/Nhile this approximation seems excellent due to the large
energy for theH andD transfer. masses associated wit) one can examine its accuracy with

E. Direct evaluation of the kinetic isotope effect

F. Quantizing the bath degrees of freedom
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minimal computational effort by using only a few time slices with Ag=8/P andAB’'= B/P’. The numbers of partial de-
for R, following the procedure described in Ref. 35: Specifi-grees of freedonf, and f,g in Eq. (2.49h are 1 and 6,
cally, the original “beads” forR, namely{R™,... R(P)}, are  respectively, while the average potentials and the con-
first grouped intd®’ (<P) segments of length, where the  tracted coefficient€!?! are defined by

oth segment consists oR® with sy+Lo<s<sy+L(o _

+1), ands, is an arbitrary integer offset. For convenience, ~ V®=3{V(r® RY®! REGI Ry

the first bead in each segment is denoted R’

s—1 o(s—1 o(s—1
=R L) Since the bath degrees of freedom in the present V(e D RYEILRYEVLRg) (2.50
system are close to classical entities, the separation betweand
neighboring beadsR® and RG™Y, remains extremely sotLo
small, and thus one may neglect the dependence of the po- ¢lol— 2 c(® (2.5
tential function on{R®} within a given segment, s=sotL{o-1)+1
V(r® RO)~V(r® RI7O] (2.47) (see Appendix B for the derivationHere we should empha-

size that the quantum solvent contributions are neglected in
with o(s)= mt[(s so)/L]. This approximation permits all Ed- (2.49. Although it is formally possible to include the
R except forRI”®)! to be integrated out from the original Solvent terms, it is not attempted in this paper because the
path integral, which leads to a modified expression for thdesulting estimator may exhibit prohibitively large statistical

partition function of the form errors. In the subsequent calculations, therefore, we use the
aboveF andG functions approximately when the solvent is
o ®) (] ('] quantized as well as the proton and the donor-acceptor
Q= | drivs-- [ dr dR™--- | dR modes[Note, however, that all the other quantities suclp as
b in Eq. (2.16 are treated rigorously, including the quantiza-
2 tion of the solvent.
X r(S) e_BTr/P r(s_l)
I (rje-#Ter7jre-)
P’ A Ill. RESULTS AND DISCUSSIONS
ol|a— BTR/P’ o—1
X (rﬂl (Rl[e~FTrIPIRIT 1) A. Computational details

p The simulation conditions in this paper were chosen
Xexp{ _ E z V(r(s),R[a(s)])] ’ (2.48 identical to those in_ R_ef. 28. Specifically,_the simulatiqn was
Ps=1 performed with periodic boundary condition for a cubic box
R R of length 28 A at a temperature of 249 K, where the box
whereT, andTg is the kinetic energy operators forandR,  contained one reactive AHB complex and 255 solvent mol-
respectively. ecules with the density being=0.012 A~3. To facilitate
Other path integral expressions in Sec. || C can also beomparison with the previous studies, the Coulombic poten-
generalized through similar arguments. One exception thatal for the solvent-solvent and solvent-complex interactions
requires care is the thermodynamic estimator forwas smoothly truncated at 13.8 A using the Steinhauser
Cud(0)/Cyq(0) in Eq.(2.31), where theF andG functionsin  function?®
Eg. (2.32 are modified as follows: In the path integral calculations, the Boltzmann operator
was discretized using the primitive approximatios, €/
~e V2e=€Te=<V2 for all the degrees of freedom. Since
the solvent in the Azzouz—Borgis model is a collection of

(8) — (s 1))2 (S)] (s)
rigid rotors, the following rotational density matrix was used

my
F:sgl [Zﬁ Ap (r

P’ M, in conjunction with the primitive approximatiotf:
+ 2 5o gz (RWI-RYH)?

#1 [ 20%(A 8" ) , 2141

(Q'exp(— T @) = ZO

+ —ZMB—,Z(R[B“]— R[B"‘”)Z]c[ol (2.493

2h%(AB") I(1+1)A?

Xexg —e—— P(Q"-Q),
and
5 (3.
G=> ( fr ,— M S (1 —y(s~1))2 }(C(s))Z whereT . is the rotational kinetic energy of a rigid rotd®,

&1 (2(AB)° w3(AB)? and| is its orientational unit vector and inertia moment, re-

spectively, andP,(x) is the Legendre polynomial. Since the
Rl7—11)2 above matrix element depends only on ge)"- Q) we
A prepared a numerical table of the matrix element and inter-
polated it as necessary during the simulation.
Mg _ The sampling of discretized path f d with
_ lo] _ plo—11\2| [ ~[0])2 pling of discretized paths was performed wi
2(AB )3(RB Re” ™) J(C ) (2.498 Monte Carlo methods. The proton path was sampled effi-

S(R,[AU] -

fAB MA
+2 {2(AB T H2AB)
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3.0 3.0 T b—////
L o8 L o8 6\\
a a
< <
o o

26 26 _
12 12 .
° °
E s E s -
© ©
2 4 24 ]
2 2

0 0 (b) 4

08 1 12 14 16 18 2 08 1 12 14 16 18 2
r(A) r(A)

FIG. 2. Classical free energy surface associated with the probability densitiFIG. 3. Centroid free energy surface associated with the probability density
Pi(r,Rag) in Eq. (3.2. Zero of energy is taken as the minimum of the p.(r,Rag) in Eq. (3.3. Zero of energy is taken as the minimum of the
reactant well.(a) Contours are plotted for energies of 0,4,28kcal/mol; reactant well.(a) Contours are plotted for energies of 0,2,20 kcal/mol;

(b) section atRyg=2.7 A. The present result is shown by solid line, while (b) section atR,g=2.7 A. The present result is shown by solid line. The
the result obtained by McRaet al. (Ref. 31 using two-dimensional ther-  corresponding free energy curve of Azzouz and Borgis is reproduced from
modynamic integration is shown by dashed li@most indistinguishable  Fig. 9a) in Ref. 27(line with circles. The classical free energy in Fig. 2 is
from the present resyltThe corresponding free energy curve of Azzouz and also plotted for comparisofdashed line in pandb)].

Borgis is reproduced from Fig. 4 in Ref. Zline with circles.

ciently with the staging algorithri¥.3° For the rotational ., JdR[dre #Ys(r—r’) 8(Rag—Rap)
motion of the solvent, no such algorithms exist that can Pei(r’,Rap) = [dRfdre AV '
sample the rotational kinetic action exactly. We thus utilized (3.2
the multiple “time step” Monte Carlo method of Hetgi

o . . whereV is the total potential of the system. The above den-
where the total potential is separated into a rapidly_. : N . .
sity was generated using a simplified version of the adaptive
) umbrella sampling methodé,where 20 sets of short simu-
performs several successive moves¥Wprand accepts or re- . . )
: , i . ) : lations with 16 Monte Carlo cycles were performed itera-
jects the resulting configuration according\ty in order to . . )
: : tively to construct a good global bias potential, and a long
make the evaluation 0¥ less frequent than otherwise. In _. . . : :
simulation with 6x10° cycles was run with the resulting

the present paper we chose the rapidly varying part as thgias potential to obtain Fig. 2. The number of bins faand

rotational density _matnx in Eq3.1) gnd the sloyvly varying Rag Were set to 100 and 50, respectively. Other free energy
part as the potential energy terms in the path integral action, . . : .
. : : . . . . surfaces in this section were also generated with the same
This choice resulted in substantial savings in CPU time be- . R -
. o rocedure. The classical free energy in Fig. 2 exhibits a deep

cause the evaluation of the total potential is much mor

costly than that of the rotational density matrix product well that is absent from the gas-phase potential in
The numbers of time slices. i.&.for the rot.on and’ Fig. 1, which results from electrostatic stabilization of the
for the bath degrees of fref’ed.o}ﬁ werep set ®,K') ionic product by the polar solvent. Figure 2 compares the
=(40,4) in all the path integral simL;Iations. This cc,)mbina-present classicgll free energ:yolid line) with that obtainegd
tion was found to be sufficient for reducing the discretizationby “{lCRieet al.h_ Ed_as_hed IlnkhandhA?zouz and B;)rg%
errors in the relevant quantities t65%. The number of (circles, from which itis seen that the free energy of McRae

Monte Carlo cycles was set to 24 for computing a et al. agrees almost perfectly with the present result while

! . . that of Azzouz and Borgis has a barrier heigh® kcal/mol
single ensemble average, which converged most of the rati Saher than the present one. This discrepancy is probably due
such asCx(0)/Cy4(0) within <10% statistical errors. g P ) pancyis p Y

to the slightly different parametrization of the gas-phase po-
tential Vg in Refs. 27 and 28, as manifested in Fig. 1. The
difference in the gas-phase potential also affects the centroid

Figure 2 displays the classical free energy surface assdree energy surface displayed in Fig. 3, where the associated
ciated with the probability density probability density is defined as

et al,*®

varying partV, and a slowly varying pary,,. This method

B. Classical and quantum free energy surfaces

" _ JARJdr®---1dr® exp( — BO) (T — 1) S(Rag— Ragp)
pc(rcr AB)_ defdr(l)“‘fdl'(P)eXF(_,Bq))

(3.3
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FIG. 4. Quantum free energy surface associated with the probability density
p(rary) in Eq. (2.18. Zero of energy is taken as the minimum of the
reactant well. (@) Contours are plotted for energies of-2,
—1,...,10 kcal/mol; (b) section at ,=r, that corresponds to a single divid-
ing surface.

o 1 2 3 4
(b) 108 Monte Carlo cycles
Although there are other factors that may contribute to the
difference in the free energy surfadesg., details of the path
integral calculation we think that the most dominant factor
would be the gas-phase potential as shown above.

Next, we plot in Fig. 4 the quantum free energy surface
relevant to the QI theory, i.e., which defined in terms of the
probability densityp(r,,r,) in Eqg. (2.18. This free energy
surface exhibits a double-well structure in the direction of
(ra+ry)/2, as in the classical and centroid cases, while it
grows nearly quadratically with increasihg,—r,| (see Ref. -4.0
22 for the interpretation of this behavjorThe QI rate is
calculated using the dividing surface corresponding to the
top of the free energy curve in Fig(B), i.e., withr,=ry FIG. 5. Statistical convergence of path integral estimators for the QI theory
=r¥=1.30 A in this particular example. We note in addition and the Hansen—Andersen QTST. Results of three independent runs are plot-
that although the latter potential curve was obtained fronfed in each panel as a function of Mont“e Carlo cyc(e)s?l'r’}e esFimator for
two-dimensional umbrella sampling, it can equally be genergﬁ(o)/cd"(o) " Ea. (225; (b).the. thermOdynan.“C esm.nator for
ated via thermodynamic integration of the factpmith re- Cyd(0)/Cyq(0) in Eq. (2.3) (solid line) and the direct estimator for

Cdd(O)/Cdd(O) in Eq. (2.289 (dashed ling (c) the estimator for

spect to the reaction coordinate, as described in Sec. Il C. &4(0)/C,(0) in Eq. (2.40.

0 1 2 3 4
() 10® Monte Carlo cycles

C. Statistical convergence of path integral estimators

The QI theory requires the evaluation of several ratios
such asCgx(0)/Cyy(0), which can be obtained simulta- errors. This difference in convergence rate stems partially
neously from a constrained path average in @24 with from different information content in the two estimators, i.e.,
r’'=r* A practically important issue here is the rate of sta-the direct estimator is based exclusively on the time slices
tistical convergence of these estimators, because it directlijears=0 andP/2 through thev® andw® factors, while
affects the computational time required. Figure 5 illustrateghe thermodynamic estimator utilizes all the time slices in an
the convergence behavior of relevant estimatorsy where ea@ﬂUiVBjGﬂt manner. We also find that the direct estimator is
panel contains results of three independent runs. From thigot favorable for an extrapolation procedure to the lifit
figure it is seen that the estimator f@%(0)/Cy4(0) in Eq. — because its statistical error grows too rapidly with in-
(2.25 [panel(a)] converges very rapidly and the ratio can be crease inP (not illustrated in Fig. & Finally, the estimator
obtained quite accurately with minimal numerical effort. for C4(0)/Cx(0) in Eq. (2.40 [panel(c)] converges some-
Next, comparing two types of estimators 104(0)/Cy4(0) what more slowly than the thermodynamic estimator for
[panel (b)], we see that the “thermodynamic” estimator in Cyq(0)/Cq4(0) because of the additional velocity factors.
Eqg. (2.3)) (solid line) converges as rapidly as the estimator Thus, the Hansen—Andersen QTST is computationally
for C4(0)/C4¢(0) in panel(a), whereas the direct estimator slightly more costly than the QI theory if the same statistical
in Eqg. (2.28 (dashed lingexhibits drastically large statistical accuracy is to be obtained.
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TABLE IlI. Rate constantgin unit of 10:° s~ for the H and D transfer and
H/D KIEs calculated with the quantum instanton theory, the Hansen— S 20}
Andersen QTST, and the centroid-density QTST. Results of three quantiza- E
tion schemesl)—(Ill) are compared, where scheiie quantizes the proton ?03 0.\9\'9\9*0
only, schemg(ll) quantizes the proton and the donor-acceptor modes, and =< 10}
schemg(lll) quantizes the whole solution. >
()]
Method H D H/D KIE & 007
Q m“——-g___
Scheme(l) @ - eeg-—--p
Quantum instanton 21 0.48 44 < -10¢
Hansen—Andersen 16 0.45 36
Centroid density 14 0.38 37 1 12 14 16 1.8 2
Hydrogen mass (amu)
Scheme(ll)
Quantum instanton 17 0.37 46 FIG. 6. Average kinetic energiek(m)), (solid line with circle$ and
Hansen—Andersen 13 0.34 38 (K(m)); (dashed line with squaress a function of hydrogen mass,
Centroid density 11 0.27 41 which is related to the KIE via E¢2.46).
Scheme(lll)
uantum instanton 17 0.36 47 . .
Sansen_Andersen 13 0.33 39 ested only in the KIE itself rather than the absolute rates,
Centroid density 12 0.28 43 since no calculation of activation free energy is required.

Table IV compares the present QTST rates with those
obtained previously by other groufsRows two and three
contain the rates calculated by Azzouz and Borgis using a
D. Rate constants and H/ D kinetic isotope effects semiclassical curve-crossing TST and the centroid-density
QTST. A critical point here is that their centroid rategew

Table Ill summarizes the rate constants obtained with thef\h 3 h der of itud ller th
QI theory as well as the centroid-density and Hansen- reg are more than one order of magnitude smafler than our

Andersen QTST! This table contains results of the three result(the last row despite the fact that the same methodol-
quantization scheme@)—(Ill), where schemél) quantizes ogy has been used. As discussed above, this discrepancy pre-

the proton only, scheméll) includes the donor-acceptor sumably originates from the gas-phase potentia in Eq.

modes Rx,Rg) into the quantum treatment, and scheme_(z'z)' Because all the other studies listed in Tableiivclud-

(1) quantizes the whole solution. Note that scheinecor- ng the present wotkwere performed with th? parametriza-
responds to the treatment by Azzouz and Bdfgiand tion of Vg by Hammes-Scmﬁ‘er and Tully, it follows that
Hammes-Schiffer and Tulk? while scheme(l) broadly to the absplute rates in rows two and three should not be com-
McRaeet al3! and Kim and Hammes-Schiffé%.Comparing pared dlrec_tly with the remaining rates. Now focusing on the
the rates within a given quantization scheme, we find that thgther rows in the table, we f_|nd that the present QTST results
three QTSTs provide very similar estimates of the rate 39'€€ reasc_mgbly well ‘with the results of MDQT and
within ~30% of each other, which is not trivial if one recalls VTST/MT within a factor of~2(7) for theH(D) transfer.

the totally different derivations of the three QTSTs. Next,

comparison of different quantization schemes reveals that t
guantization of donor-acceptor modes reduces the rate
20%—-30%, which is in agreement with the results obtained

h'FABLE IV. Comparison of the present QTST rates with the results of pre-
ous studies.

by McRaeet al. and primarily due to the zero-point energy Method H D H/D KIE
difference between the reactant and transition state regiongjassical Tst 75x104  53x10 14
Table Il also shows that the quantum effect of the solvent iScurve-crossing TST 0.78 0.017 46
even smaller, which is to be expected because the prese@entroid-density QTST 11 0.026 40
solvent model involves no “fast” degrees of freedom such agvPQT" (1D, reversaf 78 2.0 3.9
methane hydrogens or electronic polarizabflitfhe small ng; gg' o :zzgzgz ig 3(2) g'g
quantum effect of the bath modes hence validates the use QT2 ('Es)f 16 10 16
mixed quantum/classical approximations in the previous/TsT/MT? (NES) 13 0.85 15
studies. Quantum instanton thedty 17 0.36 47
TheH/D KIE in Table Ill was calculated with the abso- Hansen—Andersen QTST 13 033 39

lute rates for théd andD transfer. As discussed in Sec. Il E, Centroid density QTST 12 0.28 43

it can also be obtained through thermodynamic integratiomvicRaeet al. (Ref. 33.
with respect to hydrogen mass. Figure 6 displays the kei’Azzouz and BorgigRef. 27.

" : : : Hammes-Schiffer and TullyRef. 28.
guantities in Eq{(2.46, namely, the average kinetic energy ) . )
. . . 1D scheme quantizes the proton only, while 2D scheme quantizes the pro-
in the reactant and barrier reg'or’(ﬁ(m».A a}nd<Kl(m)>iv ton and the donor-acceptor distarRgs; . “Reversal” refers to the velocity
as a function of hydrogen mass From this figure it is seen  reversal procedure for classically forbidden transitions in surface hopping
that the mass dependence(&f(m)) is very weak and close  algorithm. _
to linear inm. Thus only a few points af should suffice for /i and Hammes-SchiffefRef. 29. . .

. o . . ES” and “NES” stands for the equilibrium and nonequilibrium solvation

accurate discretization of the mass integral in E2}46), models, respectively.

leading to considerable savings in CPU time if one is inter<9scheme(lil) in Table Iil.
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This magnitude of difference is much smaller than that asfree energy but still the mass integral in EG.46 can be
sumed previouslyi.e., two orders of magnitudethus sig- calculated with tolerable statistical noise using a few-point
nificantly reconciling different theoretical methodologies quadrature over hydrogen mass.

used. On the other hand, the uncertainty inki® KIE still The present application of the QI theory to the Azzouz—
remains rather largé4—48, due mainly to the large varia- Borgis problem shows that three different QTSRamely,
tion in the D transfer rate. the QI theory, the Hansen—Andersen method, and the

Further tracking down the remaining discrepancy incentroid-density QTSTgive very similar estimates of the
Table 1V is difficult with the present information available, rate, within 30% of each other, and the resulting rates are in
but it is worth noting that the QTST rates are likely to morereasonable agreement with the results of MDQT and
or less overestimate the true rates of the Azzouz—Borgi¥ TST/MT (within an order of magnitude Further, it was
model. As is well known, a family of QTST provide their identified that the large discrepancy in the previously calcu-
best accuracy when the relevant dynamics is of “direct” na-lated rates is partially due to slightly different parametriza-
ture, i.e., when there is no recrossing of thermal wave packtion of the Azzouz—Borgis model.
ets. The violation of this condition usually leads to an over-  Although dynamical recrossing may be nonnegligible in
estimation of the rate due essentially to the neglect othe present work due to the simplicity of the Azzouz—Borgis
recurrences in the flux-flux correlation function. In fact, themodel, such effects are not of serious concern in more prac-
QI theory overestimates the rate constant of the gas-phagieal applications, because in the latter cases the hydrogen
collinear CHHCI reaction atT=250 K by a factor of 2, atom moves in full 8 space and this largely diminishes the
since the heavy chlorine atoms cannot dissipate the fast hyecrossing effect* as indicated by numerous simulation
drogen motions very rapidf? On the other hand, the erroris studies on enzymatically catalyzed hydrogen transfer
diminished to as small as 10% for the<#€DCI reaction be- reaction£®® On the other hand, the present path integral
cause of the reduced difference in the relevant time séales.based QTST has the clear advantage that all the tunneling
Here we recall that the AHB complex in the Azzouz—Borgis contributions are included without bigge., one does not
problem is a typical collinear “heavy-light-heavy” system; need to specify a tunneling pathand that it is possible to
i.e., the Lennard-Jones centé&sandB are given unusually include the quantum effects of proximate heavy atoms with
large masses of phend®3 amy and trimethylamineg(59  mild increase in CPU time. To see whether these features of
amu, respectively, while the proton is restrained to movethe QI theory can indeed be exploited in more practical prob-
along the AB axis. It is thus possible that this simplified lems in solution phase and in biological systems, however,
feature of the Azzouz—Borgis model may enhance the dyneeds further theoretical studies.
namical recrossing of the proton than in other realistic hy-
drogen transfer reactions in condensed phase, although the
coupling with the polar solvent should suppress the recros ACKNOWLEDGMENTS
ing effect to some extentlt is thus highly desirable to quan- This work was supported by the Director, Office of Sci-
tify the degree of recrossing by using some approximate reaknce, Office of Basic Energy Sciences, Chemical Sciences,
time propagation methotfs*® or numerical analytic Geosciences, and Biosciences Division, U.S. Department of
continuation approaché8;* but this is clearly beyond the Energy under Contract No. DE AC03-76SF00098 and by the
scope of this paper and will be addressed elsewhere. National Science Foundation Grant No. CHE-0096576. We
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IV. CONCLUDING REMARKS ing Center(NERSO.

We have demonstrated that it is feasible to apply the QI
theory, a recently proposed QTST, to a realistic proton transappeNDIX A: KINETIC ENERGY OF THE H-BONDING
fer reaction in a condensed phase. The necessary compu@oOMPLEX
tional effort was rather moderate and slightly greater than o . ] o
that required for the centroid-density QTST, the additional ' Ne solute kinetic energy in E(.1) is not strictly iden-
cost arising from the evaluation of the factein Eq. (2.17.  tical to that employed in previous work, but the difference
We have also described how the present path integral a$@n be shown to be negl|g|bI3el as follqws. First, the kinetic
proach can be used to evaluate the Hansen—Andersen QTSHergy é‘_sed by McRaet al” and Kim and Hammes-
This is of practical significance because there were no estamchiffer is of the form
lished computational schemes for the latter except for quan- ) ) i )
tum basis set methods, which severely hindered the applica- Tgas=3 M RZ .+ 3(f RAB)ﬂ( Rt 21(r,Rap) Q2
tion of the Hansen—Andersen QTST to realistic chemical AB (A1)
reactions. Another key ingredient in this paper is the idea of )
obtaining the kinetic isotope effe¢kIE) directly from ther- ~ WhereM=Ma+Mg+my, Rem is the center-of-mass of the
modynamic integration of the rate with respect to hydrogerti-Ponding complexu is the effective mass tensor,
mass. This thus avoids repeated calculations of the activation 1 [(Ma+Mg)my —myMg )

free energy for thed andD transfer and is useful in situa- r=W
tions where one’s interest is in KIE rather than in the abso-
lute rates, or when it is difficult to evaluate the activationl(r,R,g) is the inertia moment,

(A2)
—myMg (Ma+my)Mpg
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I(r,Rag)=(r Rap)p (A3)

"
Rag/’

and Q is the orientational unit vector of the complex. Now

approximating the mass tensor as

= :
0 mas
and the moment of inertia a$~uxgRig With wag

:MAMB/(MA+MB) based on the faCt thmH<MA,MB,
we obtain the following kinetic energy:

(A4)

Tgas M RZ .+ 3(Myi?+ uapRip) + 3 4asRAE1%
(A5)

The above form neglects the kinetic coupling betweemd
Rag and was employed initially by Azzouz and Bordfs.

J. Chem. Phys. 122, 044106 (2005)

p’

x| TT (R exp —ApIITR)|RIOH)
o=1

P
xexp[ — > ABOVO L (B2
s=1

whereV® is the average potential in EQ.50, andA gL
is defined by

SotLo

Aplol= AB® = pIP’+Clol\

s=sptL(oc—1)+1

(B3)

with Cl?! given by Eq.(2.51). Taking the second derivative
of Eq. (B2) with respect to\ yields the desired estimator. We
note that the coefficierd® in Eq. (2.33 is chosen such that
it vanishes for time slices=1, P/2, P/2+ 1, andP which

neighbor the flux operator i€4(0). Theindependence of

Further neglecting the contribution of the proton to the transthese slices from greatly simplifies the resulting estimator

lational energy of the solute, IVPR2 .., and combining all

for C4(0)/C¢(0) in Eq. (2.40, since the action of the flux

the terms related to th& andB sites, we arrive at the present operator and the derivative with respect Xocan be per-

Cartesian form of the kinetic energy in E@.1). Although

formed independentlysee Ref. 22 and its Appendix A for

we have also carried out some additional path integral calcurelated discussions

lations to quantify the effect of the coupling betwereand

Rag, the resulting changes in the rate were at most a few

percent and did not affect the main conclusions in this paper
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