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Path-integral virial estimator based on the scaling of fluctuation
coordinates: Application to quantum clusters with fourth-order propagators
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We first show that a simple scaling of fluctuation coordinates defined in terms of a given reference
point gives the conventional virial estimator in discretized path integral, where different choices of
the reference point lead to different forms of the estimator �e.g., centroid virial�. The merit of this
procedure is that it allows a finite-difference evaluation of the virial estimator with respect to
temperature, which totally avoids the need of higher-order potential derivatives. We apply this
procedure to energy and heat-capacity calculations of the �H2�22 and Ne13 clusters at low
temperature using the fourth-order Takahashi-Imada �J. Phys. Soc. Jpn. 53, 3765 �1984�� and
Suzuki �Phys. Lett. A 201, 425 �1995�� propagators. This type of calculation requires up to
third-order potential derivatives if analytical virial estimators are used, but in practice only
first-order derivatives suffice by virtue of the finite-difference scheme above. From the application
to quantum clusters, we find that the fourth-order propagators do improve upon the primitive
approximation, and that the choice of the reference point plays a vital role in reducing the variance
of the virial estimator. © 2005 American Institute of Physics. �DOI: 10.1063/1.2013257�
I. INTRODUCTION

Imaginary-time path integral provides a robust way for
studying quantum statistical mechanics of many-particle
systems.1,2 In the framework of discretized path integral, this
method maps a quantum system into multiple copies of vir-
tual classical systems �called “beads”� connected via har-
monic springs. This isomorphism allows one to calculate
structural and thermodynamic properties using conventional
Monte Carlo or molecular-dynamics methods. In practice,
however, such calculation often becomes much more de-
manding than the classical counterpart, and thus a number of
efficient techniques have been developed, e.g., collective
sampling of multiple beads,2–5 statistical estimators with low
variance,6–16 and accurate approximations to the exact short-
time propagator �or high-temperature density matrix�.3,17–35

Our interest in this paper is in the latter two issues,
namely, the use of better statistical estimators and approxi-
mate propagators. Regarding the estimator, the most conven-
tional path-integral estimators for internal energy are
thermodynamic6 and virial7 estimators. The former is ob-
tained via direct temperature differentiation of the partition
function, while the latter is obtained by eliminating ill-
behaved terms in the former through integration by parts.
The virial estimator has an advantage that its variance is only
weakly dependent on the number of beads, P, in contrast
with the thermodynamic estimator whose variance grows lin-
early with P. We emphasize, however, that this reduction in
the variance is achieved at the expense of using first-order
potential derivatives that are absent in the thermodynamic
estimator. Although the first-order derivatives are often not a
major computational problem, things become worse when
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one constructs a similar double virial estimator for heat ca-
pacity because it requires second-order potential derivatives.
Despite this difficulty, the double virial estimator was used in
a heat-capacity calculation of water because other estimators
exhibited too large statistical errors and could not be con-
verged within simulation time.16 To remedy this problem,
Glaesemann and Fried12,13 proposed a free-particle projec-
tion technique to reduce the variance of the thermodynamic
estimator without using potential derivatives, and applied it
to Ar6 clusters with considerable success at higher tempera-
ture. Predescu et al.15 adopted a different strategy in their
random series path integral �generalized form of the Fourier
path integral�, where they first scaled the amplitude of the
Brownian bridge and then differentiated the scaled partition
function via finite-difference in order to obtain a virial-like
estimator having no potential derivatives. With this method
they calculated the quantum heat capacity of the Ne cluster at
4–14 K with unprecedented accuracy.15

Another issue that impacts the efficiency of path integral
is the accuracy of approximate propagators. There exist a
number of such approximations that aim at faster conver-
gence to the P→� limit than the standard primitive approxi-
mation. In particular, the pair-product approximation2,3 and
the higher-order composite factorizations17–19,23 have proven
to be successful in condensed-phase applications �see Ref. 27
for their useful comparisons�. The pair-product approxima-
tion replaces the exact high-temperature density matrix by
the product of effective pairwise ones, and it has been shown
to drastically reduce the number of beads for monoatomic
fluids.34,36 The fast convergence of this approximation was
also exploited in semiclassical dynamical calculation of nor-
mal and superfluid heliums.37 While powerful for mono-
atomic fluids, the pair-product approximation becomes cum-

bersome when applied to molecular fluids because of the
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increased complexity of pair action. In this regard the higher-
order propagators are appealing in that the molecular fluids
can be treated straightforwardly. In fact, however, the appli-
cation of such propagators to molecular fluids is rather scant
compared to the primitive approximation. One reason may
be that the higher-order propagators involve the first-order
potential derivatives, and the corresponding virial estimator
for energy and heat capacity requires second- and third-order
potential derivatives, respectively, resulting in a significant
computational overhead. �Incidentally, Jang et al.23 showed
that for the Suzuki propagator the required order of potential
derivatives can be reduced by using the virial theorem in
operator form.�

In this paper we present a method for evaluating the
virial and double virial estimators in discretized path integral
without using higher-order potential derivatives. This method
is based on the coordinate scaling idea of Janke and Sauer10

and the finite-difference method of Predescu et al.15 Specifi-
cally, we first show that a simple scaling of fluctuation coor-
dinates defined in terms of a given reference point gives the
conventional virial estimator, where different choices of the
reference point lead to different forms of the estimator �e.g.,
centroid virial�. This procedure reverts to the original coor-
dinate scaling by Janke et al. when the reference point is set
to the coordinate origin. We then take the temperature de-
rivative of the scaled partition function by finite difference in
order to avoid potential derivatives. We illustrate the above
procedure by calculating the energy and heat capacity of the
�H2�22 and Ne13 clusters at low temperature using the fourth-
order composite propagators. This calculation requires up to
third-order potential derivatives if analytical virial estimators
are used, but in practice only up to first-order derivatives
suffice by virtue of the finite-difference scheme above. From
the results of the application, we find that the fourth-order
propagators do improve upon the primitive approximation,
and that the choice of the reference point has a crucial role in
reducing the variance of the virial estimator.

The remainder of this paper is as follows: In Sec. II we
describe the coordinate scaling and finite-difference proce-
dures mentioned above. In Sec. III we apply the present
method to the �H2�22 cluster at 6 K and Ne13 cluster at
4–14 K and calculate their total energy, heat capacity, and
distance distribution functions. Systematic comparisons are
made among different types of propagators and estimators.
In Sec. IV we conclude.

II. PATH-INTEGRAL ESTIMATORS FOR ENERGY AND
HEAT CAPACITY

A. Conventional estimators

We first summarize the conventional thermodynamic6

and virial2,7,8 estimators for subsequent discussion. We sup-
pose an f-dimensional system having the Hamiltonian H
=T+V=�i=1

f pi
2 /2m+V�x� with x= �x1 , . . . ,xf�. Using the

primitive approximation to the canonical density operator,

e−�Ĥ = e−�V̂/2e−�T̂e−�V̂/2 + O��3� , �1�

the partition function at inverse temperature �=1/kBT can be

written as
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Z��� = tr�e−�Ĥ� =� dx1 ¯� dxP��x1, . . . ,xP;��

+ O�1/P2� , �2�

with

��x1, . . . ,xP;�� = � mP

2��2�
�Pf/2

exp	−
mP

2�2�
�
s=1

P

�xs − xs−1�2

−
�

P
�
s=1

P

V�xs�
 , �3�

where xs is the system coordinate in the sth time slice �or
“beads”� with x0=xP. The thermodynamic estimator is ob-
tained by direct temperature differentiation of Eq. �2�:

E��� = −
1

Z���
�Z���

��
� ��T , �4�

with

�T =
Pf

2�
−

mP

2�2�2�
s=1

P

�xs − xs−1�2 +
1

P
�
s=1

P

V�xs� , �5�

where �¯ denotes an ensemble average over the sampling
function ��x1 , . . . ,xP ;��. The drawback of this estimator is
that its variance grows with P due to cancellation of the first
two terms in the right-hand side of Eq. �5�. This difficulty
can be avoided by using the relation,

� dx1 ¯� dxP��
s=1

P

�xs − x*� ·
�

�xs
���x1, . . . ,xP;��

= − �P − g�f � dx1 ¯� dxP��x1, . . . ,xP;�� , �6�

which arises from integration by parts. In Eq. �6�, x* is a
given “reference” point and g is a constant that depends on
the definition of x*. In this paper we consider three choices
of x*, namely, x*=0, xP, and xc, where xc is the centroid of
the imaginary-time path given by

xc =
1

P
�
s=1

P

xs. �7�

With these choices the value of g becomes38

g = 	0, x* = 0,

1, x* = xP and xc.

 �8�

Because the kinetic action in Eq. �3� is doubled by the “virial
operator” in the square bracket in Eq. �6�,39 the following
path-integral virial theorem holds

� mP

2�2�2�
s=1

P

�xs − xs−1�2 +
1

2P
�
s=1

P

�xs − x*� ·
�V�xs�

�xs
�

=
�P − g�f

2�
. �9�

Eliminating the first two terms in Eq. �5� through the above

relation, we have the following virial estimator for energy:
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�V =
fg

2�
+

1

P
�
s=1

P �1

2
�xs − x*� ·

�V�xs�
�xs

+ V�xs�� . �10�

For convenience we will refer to the above estimator with
x*=0, xP, and xc as the origin-, bead-, and centroid-reference
virial estimators, respectively. We note that the origin-
reference virial estimator gives an incorrect result for
unbound systems2 �e.g., �V vanishes for a free particle� al-
though the bead- and centroid-reference virial estimators re-
main valid. The reason is that in the former the integral of
��x1 , . . . ,xP ;�� over the whole coordinate space is divergent,
which invalidates Eq. �6�, while in the latter the integration
by parts can be performed in one less dimensions with some
coordinate fixed �e.g., xP in the bead-reference virial�. De-
spite this deficiency, the origin-reference virial estimator can
be applied to quantum clusters if the contribution of the cen-
ter of mass is properly taken into account.11,14

Heat-capacity estimators can be obtained in a similar
manner and are fully described in Ref. 13. The resulting
double thermodynamic estimator contains no potential de-
rivatives but its variance grows rapidly as P2. The double
virial estimator has a favorable variance weakly dependent
on P but it requires second-order potential derivatives, re-
sulting in an increased computational cost16

B. Virial estimator via coordinate scaling

The virial estimator in Eq. �10� can also be obtained by
a scaling of fluctuation coordinates as mentioned in the In-
troduction. This is achieved by first considering the partition
function at a different temperature ��,

Z���� =� dx1� ¯� dxP���x1�, . . . ,xP� ;��� , �11�

where � is the density function in Eq. �3�. To eliminate ill-
behaved terms in the thermodynamic estimator, we introduce
a new set of variables �x1 , . . . ,xP� as

xs� = x* +���

�
�xs − x*� , �12�

for s=1, . . . , P. x* in Eq. �12� is a reference point that has the
same meaning as in the preceding section, i.e., x*=0, xP, or
xc. The Jacobian of this transformation is

dx1� ¯ dxP� = ���

�
��P−g�f/2

dx1 ¯ dxP, �13�

where g is given by Eq. �8�. Since the transformation in Eq.
�12� suggests

1

��
�
s=1

P

�xs� − xs−1� �2 =
1

�
�
s=1

P

�xs − xs−1�2, �14�

the partition function in Eq. �11� may be written as

Z���� =� dx1 ¯� dxP��x1, . . . ,xP;��R���� , �15�
with
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R���� = � �

��
� fg/2

exp	−
1

P
�
s=1

P

���V�xs�� − �V�xs��
 .

�16�

Using the above equation the internal energy is obtained as
follows:

E��� = −�� �R����
���

��
��=�

= ��V , �17�

with

�V =� fg

2�
+

1

P
�
s=1

P
�

���
���V�xs��������

��=�

, �18�

where we have explicitly denoted the �� dependence of xs�.
�V in Eq. �18� can be shown identical to that in Eq. �10� by
taking the �� derivative analytically. Instead, here we take
the �� derivative via finite difference in order to avoid po-
tential derivatives,15,40

�V �
fg

2�
+

1

2P��
�
s=1

P

��� + ���V�xs��� + ����

− �� − ���V�xs��� − ����� . �19�

Similarly, the constant volume heat capacity,

CV��� =
dE�T�

dT
= kB�2	 1

Z���
�2Z���

��2 − � 1

Z���
�Z���

��
�2
 ,

�20�

can be obtained using the following expression:

CV��� = kB�2���V
2 − ��V2 − ��V�� , �21�

with

�V� =� −
fg

2�2 +
1

P
�
s=1

P
�2

���2 ���V�xs��������
��=�

, �22�

where we may use finite difference to evaluate the second
derivative with respect to ��. Although there are other
schemes for performing finite difference, e.g.,

E��� � − �R�� + ��� − R�� − ���
2��

� , �23�

it has a narrower range of acceptable values of �� than Eq.
�19� due to the exponential behavior of R����. Therefore we
will use only Eqs. �19� and �22� in the following sections.

We emphasize that the finite-difference scheme above is
qualitatively different, e.g., from that performed for internal
energy with respect to temperature,

CV��� �
E�T + �T� − E�T − �T�

2�T
. �24�

where E�T� contains statistical error and �T must be taken
sufficiently large so that �E�T+�T�−E�T−�T�� is much
larger than the statistical error in E�T±�T�. On the other
hand, the finite difference in Eq. �19� is performed for a

statistical error-free quantity, ��V�xs������, and thus �� can
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be taken as small as machine precision allows. In practice,
however, acceptable values of �� may depend on the stiff-
ness of the potential as well as thermodynamic conditions
under study �e.g., particle density�, so one needs to check the
convergence by repeating a very short simulation with dif-
ferent values of ��. Our typical choice of �� is 10−4� �see
Sec. III�.

C. Using fourth-order composite propagators

An appealing feature of the finite-difference scheme in
Sec. II B is that it does not require potential derivatives
higher than those existing in the discretized action. This
means that energy and heat capacity can be calculated with
no potential derivatives when the primitive approximation is
used, and only up to first-order derivatives are needed when
the fourth-order composite propagators are used. The gener-
alized Suzuki17,18,23 and Takahashi-Imada19 approximations
fall into the latter category. The Suzuki approximation fac-
torizes the exact short-time propagator as

e−2�H = e−�Ṽe/3e−�Te−4�Ṽm/3e−�Te−�Ṽe/3 + O��5� , �25�

where Ṽm and Ṽe are effective potentials that involve first-
order potential derivatives �see Refs. 18 and 23 for details�.
With this factorization the approximate partition function be-
comes

Z��� =� dx1 ¯� dxP��4��x1, . . . ,xP;�� + O�1/P4� ,

�26�

with

��4��x1, . . . ,xP;�� = � mP

2��2�
�Pf/2

	exp	−
mP

2�2�
�
s=1

P

�xs − xs−1�2

−
�

P
�
s=1

P

wsṼs�xs;��
 , �27�

where Ṽs is a time-slice-dependent effective potential defined
by

Ṽs�x;�� = V�x� + ds��/P�2C�x� , �28�

with

C�x� = �V,�T,V�� =
�2

m
� �V�x�

�x
�2

, �29�

while ws and ds are a set of coefficients given by

ws = 	2/3, s = even

4/3, s = odd,

 �30�
and
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ds = 	
/6, s = even

�1 − 
�/12, s = odd,

 �31�

where 
 is an arbitrary parameter within �0,1�. The partition
function for the Takahashi-Imada approximation19 can also
be expressed in the form �27� with ws=1 and ds=1/24, al-
though this approximation is not based on a genuine factor-
ization such as Eq. �25�. The fourth-order approximation in
Eq. �26� differs from the primitive, second-order one only in
that the bare potential is replaced by the slice-dependent ef-
fective potential in Eq. �28�, and that the weight factors �ws�
are introduced in a way similar to Simpson’s quadrature rule.
It is thus straightforward to apply the procedure in Sec. II B
to obtain finite-difference virial estimators having no higher-
order potential derivatives. Specifically, the statistical aver-
age is now taken over ��4� in Eq. �27�, and we modify R����
in Eq. �16� as

R���� = � �

��
� fg/2

exp	−
1

P
�
s=1

P

ws���Ṽs�xs�;���

− �Ṽs�xs;���
 , �32�

and the virial estimators in Eqs. �18� and �22� as follows:

�V =
fg

2�
+� 1

P
�
s=1

P

ws
�

���
���Ṽs�xs�;�����

��=�

, �33�

�V� = −
fg

2�2 +� 1

P
�
s=1

P

ws
�2

���2 ���Ṽs�xs�;�����
��=�

. �34�

III. APPLICATION TO QUANTUM CLUSTERS

A. „H2…22 cluster at 6 K

We illustrate the above procedure by first calculating the
energy and heat capacity of the �H2�22 cluster at 6 K. The
physical model is identical to that used in the previous
studies.36,41,42 Briefly, the system potential consists of
Lennard-Jones �LJ� pair interactions with �LJ=34.2 K and
�LJ=2.96 Å, where the hydrogen molecules are treated as
distinguishable spherical particles with their mass being
2 amu. Since a cluster in vacuum at any positive temperature
is metastable with respect to evaporation, a confining poten-
tial of the form

Vc = �LJ�
i=1

N � �ri − R�
Rc

�20

�35�

is added to the sum of the LJ potentials to prevent any mol-
ecules from permanently leaving the cluster. In Eq. �35�, ri is
the position of particle i, R is the center of mass of the
cluster, N is the number of particles, and Rc is the confining
radius chosen as 4�LJ.

Statistical sampling of imaginary-time paths was per-
formed with Monte Carlo �MC� methods, where 1 cycle is
defined such that each particle is moved once on average by

3–5
the staging algorithm. The implementation is the same as
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described in Ref. 5. The staging length j �the number of
beads that are collectively moved� was determined by adjust-
ing the acceptance ratio to 50%, which resulted in j� P /4
regardless of the value of P. In addition to the staging move,
we applied the whole-chain move2 every 2 cycles to accel-
erate the statistical convergence. A single run consisted of
5	105 cycles for equilibration followed by 4	106 cycles
for data accumulation, which took several days for P=160
using a Pentium 4 3.8-GHz workstation.

Tables I and II list the energy and heat capacity obtained
using the primitive, Takahashi-Imada, and Suzuki approxi-
mations. Figure 1 illustrates the systematic convergence of
those values to the P→� limit. The centroid-reference virial
estimator was used throughout based on the finite-difference
scheme presented in Sec. II B. The relative statistical error
was estimated to be on the order of 0.1% and 1% for energy
and heat capacity, respectively, by using a blocking proce-
dure with 2000 blocks each of 2000 cycles. The present cal-
culation needed only up to first-order potential derivatives as
mentioned in the Introduction. Acceptable values of the step-
size �� ranged broadly from 10−3� to 10−6�, where the
smallest value was determined by round-off errors in the heat
capacity. In this paper we set �� to 10−4�, which practically
gave the same result as when the analytical virial estimator
was used.

Figure 1 shows that the fourth-order approximations im-
prove remarkably upon the primitive approximation for both
the energy and heat capacity. For example, to achieve a sys-
tematic error in the energy less than 0.25 K/molecule,36,41,42

the primitive approximation requires P�200 while the Su-
zuki approximation having 
0.5 attains the same accuracy
with P=60, thus reducing the necessary value of P by a
factor of �3. This acceleration of systematic convergence is

TABLE I. Internal energy �K/molecule� of the �H2�22

based on the finite difference scheme in Sec. II B. PA
Suzuki approximations, respectively. 
 is an arbitrar
mation. The figure in parentheses is one standard de

P PA TIA

20 −27.52�1� −21.80�1�
40 −21.54�1� −18.80�1�
60 −19.78�1� −18.13�1�
80 −18.98�1� −17.90�1�

100 −18.56�1� −17.79�1�
120 −18.34�1� −17.76�1�
160 −18.09�1� −17.73�1�

TABLE II. Heat capacity �in unit of kB� of the �H2�22

in Sec. II B. Other details are the same as in Table I

P PA TIA

20 80.6�4� 59.3�5�
40 55.5�4� 44.5�5�
60 47.7�4� 38.9�4�
80 42.5�4� 37.7�4�

100 40.7�4� 35.8�4�
120 39.3�4� 35.7�4�
160 37.6�4� 34.6�4�
Downloaded 30 Mar 2008 to 130.54.110.22. Redistribution subject to 
similar to that observed by Brualla et al.29 in the study of
liquid 4He at 5.1 K using the Takahashi-Imada approxima-
tion. Regarding the converged values of internal energy, the
present result �E=−17.68±0.01 K/molecule� obtained using
the Suzuki approximation with P=160 and 
=0.5 is in ex-
cellent agreement with the most accurate estimate
�E=−17.69±0.01 K/molecule� obtained by Predescu et al.42

using the Wiener-Fourier reweighted path-integral method.
Comparing different fourth-order propagators, we see that
the Suzuki propagator with 
=0.5 and 1.0 converges some-
what faster than that with 
=0.0 or the Takahashi-Imada
approximation.

Figure 2 compares statistical errors in the energy and
heat capacity obtained with different estimators. The discreti-
zation was performed using the Suzuki approximation with

=0.5. This figure shows that the thermodynamic estimator
has a growing variance with P while the virial estimators
have a nearly constant variance. We should note, however,
that the variance of the virial estimator strongly depends on
the choice of the reference point x* in Eq. �12�. That is, the
origin-reference virial estimator exhibits a significantly
larger variance than the bead-or centroid-reference estima-
tors, indicating that it is more advantageous to choose x* in
Eq. �12� as xP or xc than the coordinate origin.

Figure 2 also plots the statistical error of the modified
centroid virial estimator that may be used in path-integral
molecular dynamics.5,8 In the latter method the fourth-order
composite propagators become expensive if ��4� in Eq. �27�
is used directly as a sampling function, because the “forces”
exerted on the beads require second-order potential deriva-
tives. This problem can be avoided, for example, by exclud-
ing the force square terms in Eq. �29� from the sampling

r at 6 K calculated using the centroid virial estimator
, and SA denote the primitive, Takahashi-Imada, and
ameter within �0,1� involved in the Suzuki approxi-
n on the last digit.

�
=0� SA �
=1/2� SA �
=1�

3.24�1� −20.94�1� −21.66�1�
9.41�1� −18.34�1� −18.38�1�
8.41�1� −17.86�1� −17.78�1�
8.08�1� −17.72�1� −17.61�1�
7.90�1� −17.66�1� −17.60�1�
7.84�1� −17.68�1� −17.63�1�
7.76�1� −17.68�1� −17.65�1�

er at 6 K calculated with the finite difference scheme

=0� SA �
=1/2� SA �
=1�

�5� 58.8�5� 64.2�5�
�4� 42.5�5� 44.4�5�
�4� 36.9�5� 36.4�5�
�4� 35.8�4� 35.1�5�
�4� 35.2�4� 34.5�4�
�4� 34.9�4� 34.8�4�
�4� 34.3�4� 33.6�4�
cluste
, TIA
y par
viatio

SA

−2
−1
−1
−1
−1
−1
−1
clust
.

SA �


65.5
47.4
40.9
38.5
37.3
35.6
35.5
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function.23 The resulting modified expression for the energy
is

E��� � −
����Vmod

���mod
, �36�

with

�� = exp	− �
s=1

P

wsds��/P�3C�xs�
 , �37�

where various symbols are the same as in Sec. II C �¯mod in
Eq. �36� denotes an ensemble average over the following
sampling function:

�mod�x1, . . . ,xP� = exp	−
mP

2�2�
�
s=1

P

�xs − xs−1�2

−
�

P
�
s=1

P

wsV�xs�
 . �38�

This method gives the true expected value of energy as P is
increased, but the statistical error becomes larger than the
original scheme in Sec. II.23 Figure 2 shows that the variance
obtained with this method is quite large for small values of P
but is reduced to a manageable size if P is increased to �40.
Thus, excluding force square terms from the sampling func-
tion seems a viable option if molecular-dynamics methods
are used as a statistical sampler.

Figure 3 illustrates the classical and quantum results of
the pair radial distribution function and the distance distribu-
tion function from the cluster center of mass �c.m.� defined

FIG. 1. Systematic convergence of �a� energy �K/molecule� and �b� heat
capacity �in unit of kB� of the �H2�22 cluster at 6 K as a function of the
Trotter number P.
by
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ppair�r� ���
i�j

N

�
s

��r − rij
�s��� �39�

and

pc.m.�r� ���
i=1

N

�
s

��r − �ri
�s��� , �40�

respectively, where rij = �ri−r j� and �ri= �ri−R�. The sum
over time slices is performed for all �only even� values of s
when the primitive �Suzuki� approximation is used.23 Here
we do not consider the Takahashi-Imada approximation be-
cause it requires a nontrivial modification to the estimator.27

We see from Fig. 3 that the classical cluster has a rigid,
solidlike structure at this temperature,43 while the quantum
cluster has a liquidlike structure due to large zero-point en-
ergies and tunneling effects. This figure also shows that both
the primitive and Suzuki approximations with P=20 already
give a good approximation to the practically exact result ob-
tained with P=160, indicating that structural properties con-
verge much faster than the energy and heat capacity as a
function of P.

B. Ne13 cluster at 4–14 K

Ne13 is one of the smallest clusters that exhibit solid–
liquid-like �or melting� transition, and it has been studied

14,15,44–48

FIG. 2. Statistical error in �a� energy �K/molecule� and �b� heat capacity �in
unit of kB� of the �H2�22 cluster at 6 K as a function of the Trotter number P.
Five different estimators are compared: the thermodynamic estimator, the
virial estimator with different choices of the reference point, and a modified
virial estimator in Eq. �36�. Errors in the heat capacity were estimated using
the prescription given in Ref. 15.
extensively using a variety of theoretical methods.
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The classical melting point is located at around 10 K and it is
lowered by about 10% due to prominent quantum effects.
The heat capacity is a useful quantity for characterizing such
a cluster phase transition. Neirotti et al.14 calculated the heat
capacity of Ne13 using a double virial estimator �in analytical
form� designed for the Fourier path integral, but unfortu-
nately their results exhibited a large statistical error �about
10kB� in the low-temperature region. Predescu et al.15 calcu-
lated the same quantity using their virial-like estimator �in
finite-difference form� in the framework of random series
path integral, and as mentioned in the Introduction they ob-
tained highly converged results with statistical errors less
than 1kB. Because the two calculations used the same num-
ber of Monte Carlo samples, this reduction in statistical error
corresponds roughly to 100 times acceleration in conver-
gence rate. Then a natural question that arises is what is the
dominant factor that reduced the statistical error. We find,
however, that this question is rather difficult to answer be-
cause there are quite a few technical differences in their cal-
culations.

As such, to get some insights into the above question, we
have recalculated the heat capacity of Ne13 using the dis-
cretized path integral. The computational details are basically
the same as in the preceding section, and the relevant param-
eters were set as closely as possible to those in Refs. 14 and
15. Specifically, the Lennard-Jones parameters were set to
�LJ=35.6 K and �LJ=2.749 Å, and the mass of Ne was
20.0 amu. The confining radius Rc in Eq. �35� was chosen as

6

FIG. 3. �a� Pair radial distribution function and �b� distance distribution
function from the center of mass of the �H2�22 cluster at 6 K. SA and PA
denote the quantum results obtained with the Suzuki and primitive approxi-
mations, respectively. The classical result is plotted in short dashed line
�with its height scaled by a factor of 1 /2 to fit in the panel�.
2�LJ. The number of Monte Carlo cycles was 4	10 . We
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also performed the replica-exchange �or parallel tempering�
Monte Carlo49–51 to avoid nonergodicity problem at low tem-
perature. The number of replicas was set to 21, and the rep-
lica temperatures were distributed over the interval �4,14� K
with even spacing. The exchange move was attempted every
Monte Carlo cycles. This setting ensured the acceptance ratio
of exchange moves to be �10%.

Figure 4 plots the heat capacity thus obtained as a func-
tion of temperature. Four combinations of the approximate
propagator and the heat-capacity estimator are examined,
namely, �a� primitive approximation+double thermodynamic
estimator, �b� primitive approximation+origin-reference
double virial estimator, �c� primitive
approximation+bead-reference double virial estimator, and
�d� Suzuki approximation �
=0.5�+centroid-reference
double virial estimator.

In cases �b�, �c�, and �d� the virial estimator was evalu-
ated using the finite-difference scheme in Sec. II B, while in
case �a� the heat capacity was calculated using the double
thermodynamic estimator

CV��� = kB�2	��T
2 − ��T2 − � ��T

��
�
 , �41�

where �T is given by Eq. �5�. In all cases the number of time
slices was set to P=8–24. Also shown in Fig. 4 is the highly
accurate results obtained by Predescu et al.15 �circles� and
the classical heat capacity �dotted line�. This figure reveals
that the origin-reference virial estimator has much larger sta-
tistical errors than the other three cases. Also interesting is
the fact that the variance of the double thermodynamic esti-
mator is rather small and close to the bead- and centroid-
reference double virial estimators. This tendency is qualita-
tively similar to that observed for the heat capacity of the
hydrogen cluster in Fig. 2, where the origin-reference virial
estimator has the largest statistical error in the small P re-
gion. Regarding the systematic convergence to the P→�
limit, Fig. 4�d� shows that the Suzuki propagator again pro-
vides a noticeable improvement over the primitive approxi-
mation, and that P=20 is sufficient to reach systematic con-
vergence within 1kB.

What is more important about the question discussed
above is that cases �b� and �c� correspond qualitatively to the
calculation by Neirotti et al.14 and Predescu et al.,15 respec-
tively. More precisely, the double virial estimator of Neirotti
et al. may be regarded as origin reference because their es-
timator vanishes when the interaction potential is set to 0
�and thus the contribution of the center of mass was treated
separately�, while the finite-difference estimator of Predescu
et al. may be viewed as bead reference because the relevant
Brownian bridge is defined in terms of a set of “physical
coordinates” �equivalent to a single bead�. Thus, we think
that the dominant factor that made a large difference in their
calculations is the choice of the reference point in the virial
estimator, rather than whether the estimator was evaluated
analytically14 or numerically via finite difference15 if we con-
sider the fact that cases �b�, �c�, and �d� above were treated
using the finite-difference method in Sec. II B.

Finally, Fig. 5 illustrates the pair distribution functions at

4 and 10 K, which are very similar to those presented in
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Refs. 46 and 47. The cluster takes a solidlike structure at 4 K
while it starts to form a liquidlike structure at 10 K �slightly
above the melting temperature�. Comparing the classical and
quantum results, we see that the positions of the classical
peaks are shifted outward and their widths broadened when
quantum effects are made operative. The degree of broaden-
ing is much smaller than that observed for the hydrogen
cluster in Fig. 3 due to the quasiclassical nature of Ne13.
Figure 5 also shows that the primitive and Suzuki approxi-
mations with P=24 give almost indistinguishable results,
verifying the fast convergence of structural properties with
respect to P.

IV. CONCLUSIONS

In this paper we have presented a coordinate scaling pro-
cedure for obtaining the conventional virial estimator and
discussed its efficient evaluation using finite difference with
respect to temperature. This procedure allowed us to apply
the fourth-order propagators to quantum clusters using only
the first-order potential derivatives. From the results of the
application, we find that setting the reference point in the
virial estimator to the coordinate origin �the path centroid�
gives the largest �smallest� statistical errors. This result is
also in qualitative agreement with previous studies on Ar
clusters and liquid water.12,13,16 Thus, despite its extensive
use in the literature, it is not recommended to use the origin-
reference virial estimator in quantum clusters and condensed

FIG. 4. Heat capacity of the Ne13 cluster as a function of temperature. S
approximations, respectively. Different estimators are used in each panel: �a
estimator; �c� bead-reference double virial estimator; �d� centroid-referenc
comparable with the width of the line while that in panel �b� is about 5kB in
al. �Ref. 15� are plotted by circles. The classical result is plotted in dotted l
A and PA denote the quantum results obtained with the Suzuki and primitive
� double thermodynamic estimator in Eq. �41�; �b� origin-reference double virial
e double virial estimator. The statistical errors in panels �a�, �c�, and �d� are
the low temperature region. The highly accurate results obtained by Predescu et
ine.
phase systems because of the large variance as well as un-
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FIG. 5. Pair radial distribution functions of the Ne13 cluster at �a� 4 K and
�b� 10 K. SA and PA denote the quantum results obtained with the Suzuki
and primitive approximations, respectively. The classical result is plotted in

dashed line.
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necessary complication due to unbound degrees of freedom.
Finally, we mention some possible application of the

present method. One example is a short-time approximation
to the quantum correlation function CAB�t�, e.g.,

CAB�t� = CAB�0� +
1

2
C̈AB�0�t2 + ¯

� CAB�0�exp�1

2

C̈AB�0�
CAB�0�

t2� . �42�

Taking the real-time derivatives of CAB�t� at t=0 along the
imaginary-time axis results in a path-integral calculation
similar to that of heat capacity, which implies a similar re-
duction in statistical errors via coordinate scaling. Such an
idea is particularly relevant, e.g., to an approximate calcula-
tion of chemical reaction rates52–56 or vibrational relaxation
rates.57 Another possible application is the path-integral
ground state �or variational path-integral� methods,2,58,59

where several different estimators arise in natural analogy to
finite temperature path integral.
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