<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>其の3, Benzothiazole誘導体の結核菌発育抑制作用に関する研究 (種々の複素環式化合物の結核化学療法に関する研究 (第6部 病理学部))</td>
</tr>
<tr>
<td>著者</td>
<td>稲葉 通信</td>
</tr>
<tr>
<td>出版</td>
<td>京都大学結核研究所年報 (1952), 3: 180-183</td>
</tr>
<tr>
<td>発行日</td>
<td>1952-03-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/50827</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
種々の複素環式化合物の結核化学療法に関する研究

（其の3）Benzothiazole 誘導体の結核菌発育抑制作用に関する研究（Ⅱ）

稲葉通信

1 緒 論

1949年以來私は京都大学医学部薬学科教室にて合成され、高橋教授より寄呈せられた Benzothiazole 誘導体に就て結核菌発育抑制作用に関する試験管内実験的研究を行って来た。その試験の結果は既に前年度の本年報にて本研究（其の2）に於て発表した。其の後更に同系統の新合成物に就て試験管内の実験的研究を行った。

2 實験方法並びに成績

本研究（其の1）と全く同様の方法にて之を行行った。私は現在迄に49種の新合成物に就て実験を行行ったが、これらの中13種は著者に於ては溶解性を兼ね用いた Propylenglycol にも難溶性であるため、これらに就ての試験は不可能であった。次に私が現在迄に得た結果を表に掲げる。併せて同時に試験した P.A.Sの示す値は概ね33万倍（0.313mg%）である。
<table>
<thead>
<tr>
<th>番号</th>
<th>構造式</th>
<th>発育抑制濃度（倍数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\text{H}_2 \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{Cl})</td>
<td>80,000</td>
</tr>
<tr>
<td>7</td>
<td>(\text{O}_2 \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{N} \cdots \text{C}_2 \text{H}_5)</td>
<td>80,000</td>
</tr>
<tr>
<td>18</td>
<td>(\text{H}_2 \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{N} \cdots \text{C}_2 \text{H}_5)</td>
<td>10,000</td>
</tr>
<tr>
<td>19</td>
<td>(\text{CH} \cdots \text{S} \cdots \text{S} \cdots \text{N} \cdots \text{CH} \cdots \text{C} \cdots \text{H})</td>
<td>10,000</td>
</tr>
<tr>
<td>22</td>
<td>(\text{C}_2 \text{H}_5 \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{N} \cdots \text{C}_2 \text{H}_5 \cdots \text{C} \cdots \text{H}_3)</td>
<td>2,000</td>
</tr>
<tr>
<td>55</td>
<td>(\text{H}_2 \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{O} \cdots \text{C} - \text{Cl})</td>
<td>5,000</td>
</tr>
<tr>
<td>56</td>
<td>(\text{H}_2 \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{O} \cdots \text{C} - \text{Cl})</td>
<td>40,000</td>
</tr>
<tr>
<td>65</td>
<td>(\text{CH}_3 \text{COHN} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{Cl})</td>
<td>10,000</td>
</tr>
<tr>
<td>66</td>
<td>(\text{H}_2 \text{NCOHN} \cdots \text{N} \cdots \text{HC} \cdots \text{S} \cdots \text{N} \cdots \text{C} \cdots \text{NHCOCH}_3)</td>
<td>20,000</td>
</tr>
<tr>
<td>105</td>
<td>(\text{H}_2 \text{NCNH} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{SC}_3 \text{H}_5)</td>
<td>5,000</td>
</tr>
<tr>
<td>106</td>
<td>(\text{CH}_3 \text{CONH} \cdots \text{CH} \cdots \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{SC}_3 \text{H}_5)</td>
<td>10,000</td>
</tr>
<tr>
<td>107</td>
<td>(\text{CH}_3 \text{CONH} \cdots \text{CH} \cdots \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{Cl})</td>
<td>5,000</td>
</tr>
<tr>
<td>108</td>
<td>(\text{C}_2 \text{H}_5 \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{N} \cdots \text{H} \cdots \text{CH}_3)</td>
<td>2,000</td>
</tr>
<tr>
<td>109</td>
<td>(\text{NH}_2 \text{CONH} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{SC}_3 \text{H}_5)</td>
<td>40,000</td>
</tr>
<tr>
<td>110</td>
<td>(\text{NH}_2 \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{NH} \cdots \text{Cl} \cdots \text{Cl})</td>
<td>20,000</td>
</tr>
<tr>
<td>116</td>
<td>(\text{CH}_2 \text{CONH} \cdots \text{CH} \cdots \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{NH}_2)</td>
<td>5,000</td>
</tr>
<tr>
<td>117</td>
<td>(\text{CH}_2 \text{CONH} \cdots \text{CH} \cdots \text{N} \cdots \text{S} \cdots \text{N} \cdots \text{C} - \text{NH} \cdots \text{Cl} \cdots \text{Cl})</td>
<td>5,000</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Value</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>118</td>
<td>$\text{CH}_3\text{CONH} - \text{CH} - \text{NH}_2\text{NH}_2$</td>
<td>5,000</td>
</tr>
<tr>
<td>119</td>
<td>$\text{C}_2\text{H}_5\text{COO} - \text{C} - \text{NH}_2\text{NH}_2$</td>
<td>10,000</td>
</tr>
<tr>
<td>120</td>
<td>$\text{NH}_2 - \text{C} - \text{SC}_5\text{H}_1\text{t}$</td>
<td>20,000</td>
</tr>
<tr>
<td>122</td>
<td>$\text{CH}_3\text{O} - \text{C} - \text{Cl}$</td>
<td>20,000</td>
</tr>
<tr>
<td>123</td>
<td>$\text{HO} - \text{C} - \text{Cl}$</td>
<td>5,000</td>
</tr>
<tr>
<td>124</td>
<td>$\text{HO} - \text{C} - \text{N} \leftarrow \text{CH}_3$</td>
<td>2,000</td>
</tr>
<tr>
<td>128</td>
<td>$\text{CH}_3\text{CONH} - \text{C} - \text{SO}_2\cdot\text{CH}_3$</td>
<td>40,000</td>
</tr>
<tr>
<td>139</td>
<td>$\text{NH}_2 - \text{C} - \text{SO}_2\cdot\text{C}_2\text{H}_5$</td>
<td>2,000</td>
</tr>
<tr>
<td>140</td>
<td>$\text{CH}_3\text{CONH} - \text{C} - \text{SO}_2\cdot\text{C}_2\text{H}_5$</td>
<td>10,000</td>
</tr>
<tr>
<td>141</td>
<td>$\text{CH}_3\text{OCNH} - \text{C} - \text{SO}_2\cdot\text{C}_3\text{H}_7$</td>
<td>10,000</td>
</tr>
<tr>
<td>142</td>
<td>$\text{NH}_2 - \text{C} - \text{SO}_2\cdot\text{C}_4\text{H}_9$</td>
<td>10,000</td>
</tr>
<tr>
<td>143</td>
<td>$\text{NH}_2 - \text{C} - \text{SO}_2\cdot\text{C}_3\text{H}_5\cdot\text{HCl}$</td>
<td>10,000</td>
</tr>
<tr>
<td>144</td>
<td>$\text{NO}_2 - \text{C} - \text{SC}_2\text{H}_4\text{Cl}$</td>
<td>50,000</td>
</tr>
<tr>
<td>145</td>
<td>$\text{Cl} - \text{C} - \text{CH}:\text{CH}$</td>
<td>25,000</td>
</tr>
<tr>
<td>156</td>
<td>$\text{NH}_2 - \text{C} - \text{SO}_2\cdot\text{C}_3\text{H}_7$</td>
<td>10,000</td>
</tr>
<tr>
<td>157</td>
<td>$\text{CH}_3\text{CONH} - \text{C} - \text{SO}_2\cdot\text{C}_4\text{H}_9$</td>
<td>40,000</td>
</tr>
<tr>
<td>158</td>
<td>$\text{NH}_2 - \text{C} - \text{SO}_2\cdot\text{C}_5\text{H}_1\text{t}$</td>
<td>10,000</td>
</tr>
<tr>
<td>161</td>
<td>$\text{Cl} - \text{C} - \text{CH}:\text{EH}$</td>
<td>25,000</td>
</tr>
<tr>
<td>167</td>
<td>$\text{Cl} - \text{C} - \text{NH}_2$</td>
<td>80,000</td>
</tr>
</tbody>
</table>
3 考 察

（その 2）に於て述べた如く, Freedlander は結核菌に対する発育抑制作用には化学構造上, 6-位置に Amino 基があることが絶対に必要であるとし, 之に対して 2-位置に於て側鎖基を賦活剤としての作用をあらたとし, 前報告（共の 2）にて述べた如く, Benzothiazole の 2 の位置に allyl mercapto 基のつくるものが, 作用が最も大であるが既報の化合物にて前回及び今回試験したものは No. 8, 64, 109, 106, 105 である。このうち 6 の位置に Amino 基のつくるものが作用が最も強大で, acetamino 基の附着したものに作用が幾分劣り, methoxy, hydroxy 乃至 P-acetamino-benzylidene-amino 基のつくる場合はその作用遠かに低下する。

又 2 の位置に chlor のつくる Benzothiazole 誘導体にて試験を経たものは No. 2, 65, 107, 122, 123 であるが, 矢張 6 の位置に amino 基の附着せる所の 2-chlor-6-amino-benzothiazole (No. 2) は抑制が認められ作用が最大 (8 倍) である。然し Freedlender の示す如き発育抑制が 400 乃至 4000 倍という如き値を得られなかった。この場合 6 の位置に Acetamino 基の附着せるもの (No. 65) はその作用が幾分劣るようである。又 methoxy 基と hydroxy 基がついてもは原の作用がみられなかった。

さて 6 の位置に Amino 基のつくる Benzothiazole 誘導体にて 2 の位置に種々の異なる側鎖のつくるものは, 前回（共の 2）報告せられた (No. 1, 8, 13, 14, 16, 17, 48, 53, 54)。私は更に No. 2, 18, 55, 56, 120 をこれに加えることが出来た。このうち No. 2 及び No. 56 にて 4 乃至 8 倍の発育抑制を認め得たのみで, 6-Amino-2-allyl mercapto-benzothiazole (No. 8) に優る如き化合物は得られなかった。

6 の位置に Nitro 基のつくる Benzothiazole 誘導体は前回 No. 49, 53, 本報告にて No. 7, 144 であるがこのうち前回報告した No. 53 の他に No. 7 及び No. 144 も差, 若や優れた抑制作用 (8 乃至 5 倍) を示した。

次に No. 138 乃至 143, No. 156 乃至 158 にては Benzothiazole の 2 の位置に Sulfon 基が附着させるものであるということが出来るが, この場合 No. 139 と 140, No. 156 と 141 との比較により, 6 の位置に amino 基がつくる場合 (No. 139, 156) と acetamino 基がつくる場合 (No. 140, 141) の優劣は必ずしも一定の関係を示さなかった。又この場合 Sulfon に allyl 基のつくる (No. 143) は必ずしも優秀な抑制作用を示すことはならなかった。むしろ methyl (No. 138) か n-butyl (No. 157) が優秀な場合の抑制作用は 4 倍であり, allyl 基に優るということが出来る。

又今回の chlor-Benzothiazole の 2 の位置に Styryl 誘導体がつくる所の 3 化合物 (No. 145, 161, 167) を試験したが, これらの作用はいずれも比較的強い抑制作用を有し, 殊に No. 167 は 8 倍にて発育を抑制した。

結 論

1) Benzothiazole 誘導体36種の試験管内結核菌発育抑制作用を試験し, 之を前回報告（共の 2）に於ける16薬と比較した。

2) 前報告による6-Amino-2-allyl mercapto-benzothiazole (No. 8) の16乃至32倍に優る所の化合物を発見し得なかった。

3) 今回の試験した本系統の化合物に於て 6-Amino-2-chlor-benzothiazole (No. 2), 6-Nitro-2-diethylamino-benzothiazole (No. 7), 2-p-Aminostyril-6-chlorobenzothiazole (No. 167) は8倍にて結核菌の発育を抑制する。これは同時に試験した P. A. S. の作用に比較して幾分劣る程度の作用である。2-β-chlonethoxymercapto-nitro-benzothiazole (No. 144) は5倍の抑制作用を示した。