<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>研究報告 (その 2) Benzothiazole 及び Thiazole 誘導体の結核菌発育抑制作用に関する研究 (種々の複素環式化合物の結核化学療法に関する研究)【第 5 部】病理学部</td>
</tr>
<tr>
<td>著者</td>
<td>家森 武夫 森 茂樹 高橋 酉藏 岡田 壽太郎 稲葉 通信 森 芳茂</td>
</tr>
<tr>
<td>出版物</td>
<td>京都大学結核研究所年報</td>
</tr>
<tr>
<td>タイトル</td>
<td>項目 1 項目 2 項目 3 さらなる研究 (詳細は著者様に直接ご連絡ください)</td>
</tr>
<tr>
<td>タイトル</td>
<td>項目 1 項目 2 項目 3 さらなる研究 (詳細は著者様に直接ご連絡ください)</td>
</tr>
</tbody>
</table>

**URL**: http://hdl.handle.net/2433/50897

**タイプ**: Departmental Bulletin Paper

**発行**: Kyoto University
種々の複素環式化合物の結核化学療法に関する研究

(その２) Benzothiazole 及び Thiazole 誘導体の結核菌発育抑制作用に関する研究

家 森 武 夫
森 高 岡 田 稲 蔵 郎
橋 信 芳

1 結 論

Streptomyacin の発見とその実用化以来、抗生物質の研究の進歩は顕著であるが、他方臨床的価値を有する抗結核薬物質の発見を目指して、種々の化学物質の合成研究が続けられている。

そのうち Benzothiazole 誘導体については、特に1940年 E. L. Everitt 及び F. X. Sullivan によりその数種のもののが報告されていたが、1947年 B. L. Freedlander 及び F. A. French は約30種の誘導体について試験管内結核菌発育阻止作用と、更にそのうちの数種についての動物試験の結果を報告している。彼等は 6-Amino-2-(n) butoxybenzothiazole, 6,2-Diaminobenzothiazole, 6-Amino-2-chlorobenzothiazole 等の有効な合成薬品の発見に成功している。

さて日本に於ては、1947年以降、京大医学部薬学科教授高橋教授によって、Benzothiazole (岡田講師) 及び Thiazole (西垣助手) 誘導体が多数合成されるに至った。我々は先づこれ等の合成品の結核菌発育抑制に関する試験管内の実験的研究を行った。

2 実験方法並びに成績

I）方法、本研究、その一と全く同様にして之を行った。

II）実験成績

我々は現在迄に30種の化合物について、試験を行ったが、これらのうち12種は常温に於ては、溶媒として用いた Propyleneglycol にも溶解性であるため、これらについての試験は不可能であった。次に我々が現在迄に得た結果を第1表に掲げる。

第1表 Benzothiazole 誘導体

<table>
<thead>
<tr>
<th>番号</th>
<th>名　称</th>
<th>構　造 式</th>
<th>発育抑制濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 6-Diaminobenzothiazole</td>
<td><img src="image1" alt="構造式" /></td>
<td>10,000</td>
</tr>
<tr>
<td>8</td>
<td>6-Amino-2-allylmercapto-benzothiazole</td>
<td><img src="image2" alt="構造式" /></td>
<td>160,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>320,000</td>
</tr>
<tr>
<td>13</td>
<td>6-Amino-2-(n)butoxy-benzothiazole</td>
<td><img src="image3" alt="構造式" /></td>
<td>40,000</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Structure</td>
<td>IC50 Value</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>14</td>
<td>6-Amino-butylmercaptobenzothiazole</td>
<td><img src="image1" alt="Structure" /></td>
<td>40,000</td>
</tr>
<tr>
<td>16</td>
<td>6-Amino-2-isopropylmercaptobenzothiazole</td>
<td><img src="image2" alt="Structure" /></td>
<td>40,000</td>
</tr>
<tr>
<td>17</td>
<td>6-Amino-2-(n)butoxy benzothiazole</td>
<td><img src="image3" alt="Structure" /></td>
<td>20,000</td>
</tr>
<tr>
<td>30</td>
<td>2-Mercapto-4-propenyl-5-aminothiazole</td>
<td><img src="image4" alt="Structure" /></td>
<td>40,000</td>
</tr>
<tr>
<td>33</td>
<td>2-Dimethylamino 6-chlorobenzothiazole</td>
<td><img src="image5" alt="Structure" /></td>
<td>40,000</td>
</tr>
<tr>
<td>48</td>
<td>6-Amino-2-allyloxy benzothiazole</td>
<td><img src="image6" alt="Structure" /></td>
<td>10,000</td>
</tr>
<tr>
<td>49</td>
<td>2-(0,m-Dichloranilido)-6-nitrobenzothiazole</td>
<td><img src="image7" alt="Structure" /></td>
<td>10,000</td>
</tr>
<tr>
<td>53</td>
<td>2-(0,m-Dichloranilido)-6-aminobenzothiazole</td>
<td><img src="image8" alt="Structure" /></td>
<td>80,000</td>
</tr>
<tr>
<td>54</td>
<td>2-Guanidino-6-amino-benzothiazole</td>
<td><img src="image9" alt="Structure" /></td>
<td>10,000</td>
</tr>
<tr>
<td>57</td>
<td>2-Imino-3-methyl-6-chloro-2,3-dihydrobenzothiazole hydrochloride</td>
<td><img src="image10" alt="Structure" /></td>
<td>5,000</td>
</tr>
<tr>
<td>58</td>
<td>2-Imino-3-methyl-6-methoxy 2,3-dihydrobenzothiazole hydrochloride</td>
<td><img src="image11" alt="Structure" /></td>
<td>5,000</td>
</tr>
<tr>
<td>59</td>
<td>2-Imino-3-methyl-6-ethoxy 2,3-dihydrobenzothiazole hydrochloride</td>
<td><img src="image12" alt="Structure" /></td>
<td>40,000</td>
</tr>
<tr>
<td>表</td>
<td>名称</td>
<td>構造式</td>
<td>結核菌発育抑制濃度</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>61</td>
<td>2-Ethylmercapto-4-propenyl-5-aminothiazole</td>
<td>C₆H₅S-C≡N-C=CH₂CCH₃</td>
<td>40,000</td>
</tr>
<tr>
<td>63</td>
<td>2-(n)Butylmercapto-4-propenyl-5-benzylideneaminothiazole</td>
<td>C₆H₅S-C≡N-C=CH₂CCH₃</td>
<td>160,000</td>
</tr>
<tr>
<td>64</td>
<td>2-Allylmercapto-6-acetamino-benzothiazole</td>
<td>CH₃CONH-C=SCH₂CCH₃</td>
<td>160,000</td>
</tr>
</tbody>
</table>

3. 考察

1947年 Freedlander 等が報告した Benzothiazole 系誘導体についての実験結果は第2表の如くである。この実験は、供試結核菌は、無毒株607株と有毒株H37 RV、の二株の人型結核菌であってProskauer-Beck 培地を用いて、第18日日に結果を判定したものである。

- 第2表 Freedlander による研究成果

<table>
<thead>
<tr>
<th>名称</th>
<th>構造式</th>
<th>結核菌発育抑制濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzothiazole</td>
<td></td>
<td>10mg%</td>
</tr>
<tr>
<td>2-Aminobenzothiazole</td>
<td></td>
<td>≥10</td>
</tr>
<tr>
<td>6-Aminobenzothiazole</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>2-Mercaptobenzothiazole</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6-Amino-2-mercaptobenzothiazole</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6-Amino-2-methylbenzothiazole</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>6-Amino-2-ethoxybenzothiazole</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6-Amino-2-isopropoxybenzothiazole</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>
この結果によって、我々の試験した化合物と全く同じ化合物である2,6-Diaminobenzothiazole, 6-Amino-2-(n) butoxybenzothiazoleについて比較してみると、我々の得た結果は彼等の報告した4000万倍（0.0025mg％）には遠かに及ばない。この相違は主として次の3点、即ち
1）Proskauer-Beck 培地は全く無添加培地であり、Kirchner 培地は、10％血清加培地であるため菌の発育は後者の方がより容易である。
2） 使用する菌株の性質の相違
3）結果の判定を、彼等は18日目に行っているのに対し、我々の結果は第4週目で判定している事に基くものと思われる。

さて Freedlander は核株に対する発育抑制作用には化学構造上6-位置にAmino 基があることが絶対に必要であり、これに対して、2-位置に2位側鎖が賦活素としての作用をあらわすものであるとして、6-Aminobenzothiazole を基準として、作用の比率を求めるとき、CH₃-1, SH-1, C₆H₅O-0.14, NH₂-10, C₆H₅O-40, 即ち Butoxy 基はAmino 基に比して4倍、Mercapto 基に比して40倍の賦活作用を有するものであると述べている。

我々の結果から、これらの点について考えると、No.1, 2, 6-Diaminobenzothiazole と No.17, 6-Amino-2-(n) butoxybenzothiazole を比較すると、大してその作用には差が認められない。更に No.48, 6-Amino-2-allyloxybenzothiazole と No.8, 6-Amino-2-allymercaptobenzothiazole 及び No.14, 6-Amino-2-butymercaptobenzothiazole と No.17, 6-Amino-2-butoxybenzothiazole を比較すると、2-位置に、mercapto 基がつく場合と、alkoxy 基がつく場合とでは、その作用には大した差異がみられない、或はむしろ mercapto 基のついた方が作用が強い様に思われる。

4 結論
Benzothiazole 及び Thiazole 系新合成品である6-Amino-2-allymercaptobenzothiazole (No.8) は、16万倍（0.625mg％）乃至32万倍（0.313mg％）に於て、結核菌の発育を抑制し、その他の2-(n) Butylmercapto-4-propenyl-5-aminothiazole (No.63)，2-Allymercapto-6-acetaminobenzothiazole (No.64) は16万倍（0.625mg％）に於て、結核菌の発育を抑制する。その他、検査した2系統の化合物は、著明な発育抑制作用を示さない。

この成績に鑑みて、本研究に対して援助をいただいた国立多野療養所長日下部周利博士に感謝の意を表します。

文献
(1) E. L. Everitt & F. X. Sullivan J. Wash Acad. Soc. (1940), 30, 125
(4)  ( ) 1795
(5) ( ) 2005
(6) Vincent C. Barry, L. O. Roarke & D. Tonym Nature (1947), 160, 300,