Title: Development of a novel transformation system in basidiomycetes

Author(s): Sakatoku, Naofumi

Citation: Sustainable humanosphere : bulletin of Research Institute for Sustainable Humanosphere Kyoto University (2006), 2: 31-31

Issue Date: 2006-08-31

URL: http://hdl.handle.net/2433/51104

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Development of a novel transformation system in basidiomycetes

Naofumi Sakatoku
Laboratory of Biomass Conversion, RISH, Kyoto University

White rot fungi are known to degrade plant cell lignin and also various aromatic pollutants. Intensive research has been done to make use of their special function for a novel carbon recycle system and also bioremediation of polluted environments, which will contribute for development of a sustainable society. Especially, a selective white rot basidiomycete, Ceriporiopsis subvermispora is a promising microorganism which is effective as a biocatalyst to degrade lignin in industrial processes, including pulp and paper manufacture, and conversion of lignocellulosic biomass to various compounds. However, there is no report on development of a transformation system in this fungus. Transformation techniques are valuable tools for not only molecular biological analysis of the selective lignin degradation system but also strain improvement of desired phenotype.

Transforming vector plasmids were designed to contain bialaphos resistant marker gene (bar), from Streptomyces hygroscopicus, under control of homologous gpd promorter and terminator. In pCsG-bar, promorter was fused directly with the cording sequence of bar gene, whereas in pCsGi-bar, the promorter and the first intron of gpd gene were inserted at the 5'end of the cording sequence of bar gene, since Ma et al. reported that an intron insertion enhanced GFP expression [1].

In this research, we tried to develop a transformation system for basidiomycete C. subvermispora using the recombinant plasmids including pCsG-bar and pCsGi-bar by PEG/CaCl₂ protocol and particle bombardment. Moreover, as a control, transformation of Pleurotus ostreatus by particle bombardment was performed.

REFERENCE