放射線による木材・ポリマー複合体. [

一木材・ポリ塩化ビニリデン複合体の物理的ならびに 機械的性質と難燃性――

 石原茂久・金田
 弘*・南
 正院

 満久崇麿**・後藤田正夫***・竹下
 登****

Note on Wood-Plastic Composite by Ionizing Radiation. I.

-Some Mechanical-and Physical Properties and Flame-Retardancy of Wood-Polyvinylidene Chloride Composite.-

Shigehisa Ishihara, Hiromu Kaneda*, Zeong Woun Nam, Takamaro Maku**, Masao Gotoda*** and Noboru Takeshita****

Summary

Specimens of Buna (*Fagus crenata* BLUME) and Akamatsu (*Pinus densiflora* SIEB. et ZUCC.) were impregnated with vinylidene chloride monomer and exposed to the ⁶⁰Co source under dry and wet conditions.

The treated specimens were tested as to their static and dynamic bending strength, dynamic modulus of elasticity in bending and internal friction, surface hardness, hygroscopicity, dimensional stabilities, and their flame-retardancy.

The specific gravity, surface hardness and dynamic bending strength of the composite were apparently increased with an increase in the polymer loading, but the polymerization of the vinylidene chloride monomer in wood by-radiation had negligible effect on the bending strength, modulus of elasticity in bending and internal friction. A reduction in apparent moisture absorption and volumetric swelling as compared with untreated controls and an increase slightly in the efficiencies of the flame-retardancy and the fire-extinguishment were observed.

1はじめに

これまで木材の寸法安定化,難燃化を目的として,塩化ビニリデン (VDC)を主体とする木材内放射線重

木質材料部門 (Division of Composite Wood)

^{*} 現在, 北海道教育大学函館分校, 函館市八幡町 (Hokkaido Univ. of Education, Hakodate Branch, Hakodate, Hokkaido)

^{**} 本学名誉教授 (Professor Emeritus of Kyoto Univ.)

^{***} 日本原子力研究所高崎研究所, 群馬県高崎市綿貫町 (Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment, Takasaki, Gunma)

^{****} 山陽国策パルプ(株) 岩国研究所,山口県岩国市飯田町 (Sanyokokusaku Pulp Co., Iwakuni Research Lab., Iwakuni, Yamaguchi).

合, さらに得られた木材・ポリマー複合体の性質について若干の検討が行われてきた1~3)。

本研究では、対象木材としてブナとアカマツを用い、塩化ビニリデンモノマーをこれに注入、⁶⁰Co γ 線に よる木材・ポリマー複合体を製造して、これらの材質ならびに難燃性能の検討を行った。いくつかの基礎的 資料が得られたのでこゝに報告する。

2 実 験

2.1 照射試験片の作製と照射

2.1.1 材料

(1) 木 材

本実験に供した木材はブナ (Fagus crenata BLUME) とアカマツ (Pinus densiflora SIEB. et Zucc.) の二樹種 である。

ブナは樹令150年の天然木で大阪営林局尾鷲営林署管内,アカマツは樹令95年の天然木で同営林局神戸営 林署管内においてそれぞれ伐採されたものを製材し,10ヶ月以上天然乾燥した。

試験片はそれぞれの辺材から表1に示す試験項目に適合する形状に調製し、温度25℃ 関係湿度60%の恒 温恒湿室に1週間以上静置した後、温度50℃で72時間、1~2 mmHg で減圧乾燥を行い、含水率0.1%以 下になるように調整した。本実験ではこれを絶乾試験片として用いた。

(2) モノマー

呉羽化学(株)製の約77%の塩素を含む塩化ビニリデンで、その沸点は約 31℃ であった。安定剤として シェル石油(株)製のフェニールグリシジールエーテルを用いた。

2.1.2 モノマーの注入および照射

モノマーの注入および照射は次の二方法をとった。

(1) 気乾照射(以下,気乾という)

2.1.1 で述べた絶乾試験片を温度 25°C,関係湿度60%のデシケータで48時間以上調湿し (含水率 5~6%), その後2時間の脱気を行って (含水率 0.5~1.0) モノマーを注入した。次に窒素置換を行ない,そのま、16 時間放置した後これをとり出してアルミニウム箔で三重につ、み,さらにセロファンテープで完全にシール してモノマーの飛散を防いだ。

照射重合は ⁶⁰Cor線によった。照射条件は以下の通りである。

Dose rate	$2 \times 10^{5} r/hr$
Temperature	22°C
⁶⁰ Co	$1\!\times\!10^4 Ci$

この後, 50°C, 1~2 mmHg で72時間脱気して未反応モノマーの除去を行った。

(2) 飽水照射(以下, 飽水という)

絶乾試験片を1時間脱気した後,純水中に16時間浸漬して,含水率170~200%の飽水状態とした。この試験片を40°C,関係湿度90%の条件のもとで調湿し,木材の含水率を20~25%となるようにした。この後2時間の脱気を行いモノマーを注入した。

モノマーの注入および照射は(1)と同様である。

ローディング率は次式によって求めた。

ローディング率(%)=<u>WPC 重量-絶乾木材重量</u>×100

絶乾木材重量

2.2 材質試験および燃焼試験用試験片の作製

2.1 によって作成されたそれぞれの試験片をマイターソーにより表1の仕上げ寸法となるように鋸断し、

- 54 -

тъ					照				射			材		質		試	馬			(井 土)
坄		Ħ	月初	照射前: 別 定	<u>処理及び</u> 項 目	照射	寸 法	個数	照射後測	定項目	仕上	寸 法	個数	試験前知	処理及 ご項目	試影	余件及	なび測定り	頁目	佣 考
(1) Dim	nensional sta	ability	1			Ì					1		Í			1)
炅	乾照身	ł	絶乾	(重) 注入	>気乾(重)→ >重,寸	6×40>	$\times 40 \text{ mm}$	5	重, 寸	・法	5×30×	30 mm	5	絶(重,	(寸)	飽海	₹, 40°C	C,(重, ⁻	4)	
飽	水 //		絶乾	(重) 注入	>飽水(重)→ ▶重,寸	同	F	5	同	上	同	上	5	同	上	1	同	上		樹種 、ブナ
対	照試片	- 1	44.0	Ŧ \		C 40.	. 40		at some	* (_1.)	E 20	20	5	(4) (千						(アカマ
			一把し	里)→) 壬\、、/	え(里)(寸)	0×40;	× 40 mm	5	里,測疋	E (寸)	5×30×	30 mm	5	杷(里,	· 可)		[H] [=]	.E.		
44	昭 学 4	- 9	和巴人	里)→」	記(里)(リ)		Ŀ	J	[F]	ᅸ	円] 5 \ 20 \	上 30 mm	5	回	Е Ь) E	ـــــــــــــــــــــــــــــــــــــ		
	<u>ля рч Л</u>			o Xuich	t 4+ 田 と わ =1	ļ					3×30×	50 1111		[[H]	-L-	111 - 134	LHI ۱۹۹۲ (۱۹۹۲)	L.		/
(2) 比	重,含水率	ž.	(1)	の測定 算	「結禾より計											 二記証 の室内 含水率	∖ 厥夜⊿]で長期 ると平後	1007% 開静置後の 前寸法の 測	。 (11) (11) (11) (11) (11) (11) (11) (11	
			(1)	の試片	を用いる												(5)	項へ	, -	
(3)曲	げ試験	è				1					1		1							1
気乾	5,飽水照射	fa	絶	(重,	寸)→	$6 \times 35 \times$	230 mm	2	気乾 (20° RH)	°C, 75%	$5 \times 10 \times$	230 mm	6	気乾 (20 % RH)	J°C, 75	曲げヤ	ング	注:残	<i>b</i>	
			(a)	(重,	寸)→注入				(重,	寸)	/このう	ち ー端 を sman		/0)		曲げ	強 度	5×10× 試出を	150mm	
				、 里		一端で柾	目硬さ測		同	上	1として月	「え」。」 利いる /				比重,	含水率	(4) 項~	\sim	〉同 上
対	照 試 片	- 1		同	上	定 <u>(5)</u> 同上(一	<u>温</u> へ 端を <u>(5)</u>	4	同	上	5×10× 同	230 mm 上	6	同	上	同	上	注:	"	
対	照試片	- 2				27					5×10× 同	230 mm 上	6	同	上	同	上	同	F	
(4) 耐	炎試験	ŧ	(3)	のもの	を用いる						$5 \times 10 \times$	150 mm	6	(重	i)	燃焼詞	\$験(重) DTA, '	TGA	1
対	照試片	- 1		百	E						百	E	6	同	E		同	上		〉同 上
対	照試片	- 2		同	上						同	上	6	同	上		同	上)
(5) 硬	さ試験	è	(1)	をび(3)	の試片を用	1										気乾,	数点	(重ね合も	±る)	
<u>2</u> 4	昭就正	- 1	14.3	同	F												同	۲		〉同 上
対	照試片	- 2		同	上												同	上		
(6) 動	的性質	ť	(3)	と同じ	処理	8×10×	100 mm	3			1×10×	90 mm								1
対	照試片	- 1		同	上	同	上				同	上								〉同 上
対	照試片	- 2]					同	上			_)

表1 試験項目および試験片の形状

* 50°C 1∼2 mmHg

**

AA', BB' の寸法測定

重:重量測定 寸:寸法測定

55 1

石原・ほか:放射線による木材・ボリマー複合体Ⅰ

さらに試験片をベルトサンダーで精密に仕上げた。

2.3 材質試験の前処理および試験条件

材質試験に先だって、それぞれの測定に必要な前処理および測定を表1のように行った。また、試験項目 およびこれに用いられる試験片の形状、個数も表1に示す通りである。

表中,重は重量測定,寸は寸法測定を意味する。

2.4 試験方法

2.4.1 材質試験

(1) 比 重

温度 20°C,関係湿度65%における気乾比重を測定した。

- 試験片寸法 ; 30 mm×30 mm×5 mm
- 試験片数 ; 照射線量,ポリマーローディングの各条件につき5枚
- 比重 (\mathbf{r}_u) ; $\frac{W}{V}$

W;試験片の重量 (g)

V;重量測定時の試験片の体積 (cm³)

(2) 柾目面および木口面の硬さ

ブリネル (Brinell) 硬さを以下によって測定した。 これは直径 10 mm の鋼球による凹みの 投影面積で、 そのときの荷重を割った値である。

試験片寸法 ; 5 mm×10 mm×150 mm⁽¹⁾

 $5 \text{ mm} \times 30 \text{ mm} \times 30 \text{ mm}^{(2)}$

注,(1): 柾目面試験片は曲げ試験用試験片から,(2): 木口面試験片は吸湿試験片から採取した。

試験片数 ; 各条件につき6枚

- 測 点 ; 2ヶ所
- ブリネル硬さ; $\frac{P}{10\pi h}$ (kg/mm²)

P; 圧力深さhが 1/π (=0.32 mm) になるときの荷重 (kg)

h; 圧力深き=0.32 mm

(3) 平衡含水率

温度 20°C,関係湿度65%における平衡含水率を求めた。

- 試験片寸法 ; 30 mm×30 mm×5 mm
- 試験片数 ; 各条件につき5枚
- 平衡含水率 ; <u>W-W₀</u>×100 (%)
 - W;20°C,関係湿度65%の恒温恒湿室に放置し恒量に達したときの試験片の重量(g)
 - W₀;試験片の絶乾重量(g)

(4) 静曲げ弾性係数および静曲げ強度

曲げ性能は曲げ弾性係数および強度を単純支持中央集中荷重により求めた。

試験片寸法 ; 5 mm×10 mm×150 mm

試験片数 ; 各条件につき6枚

曲げ弾性係数; $\frac{P_p l^3}{4vbh^3}$ (kg/cm²)

-56-

石原・ほか: 放射線による木材・ポリマー複合体 I

曲げ強度 ; <u>3Pl</u> (kg/cm²) P:破壊時の中央集中荷重 (kg) P_p:比例限度における荷重 (kg) l:スパン (cm) b:試験片の幅 (cm) h:試験片の厚さ (cm) y:比例限度における荷重点のたわみ (cm) (5) 動的曲げ弾性係数および内部摩擦 (tand) 振動リード法により共振周波数を求め,下式により計算した。

試験片寸法 ; 1 mm×5 mm×75 mm (スパン:半径方向)

```
試験片数 ; 各条件ともに3枚
```

動的曲げ弾性係数; $38.4 \cdot \frac{14\delta}{d^2} \cdot f^2$ (kg/cm²)

内部摩擦 $(\tan \delta)$; $\frac{\Delta f}{f}$ f: 共振周波数 (C/S) d: 試験片厚さ (cm)

- l : 試験片長さ (cm)
- δ :密度 (g/cm³)

 Δf :半価幅

(6) 吸湿率および膨張率

試験片を 40℃, 飽湿の恒温恒湿器中に静置し, 6, 24および72時間後の接線方向(T)および半径方向(R)の寸法ならびに重量をそれぞれ測定し,下式により求めた。

```
試験片寸法 ; 30 mm×30 mm×5 mm
```

試験片数 ; 各条件ともに5枚

吸湿率 ;
$$\frac{W_t - W_u}{W_0} \times 100$$
 (%)

膨張率 ; $\frac{T_{72}-T_u}{T_0} \times 100$ (%) (接線方向)

$$\frac{R_{72}-R_u}{R_0}$$
×100 (%) (半径方向)

W_t:t時間後における試験片重量(g)

Wu:試験片気乾重量 (g)

W₀:試験片絶乾重量 (g)

T₇₂, R₇₂:72時間後の接線方向および半径方向の長さ (cm)

Tu, Ru:気乾状態における接線方向および半径方向の長さ (cm)

T₀, R₀:絶乾状態における接線方向および半径方向の長さ (cm)

2.4.2 燃焼試験

図1に示すような内径 1.1 cm の ブンゼンバー上 4.0 cm に試験片 の 先端が位置するよう試験片保持台 に 45°の角度をもって試験片を保持し、一次空気を混入しない長さ 5.0 cm の拡散炎によって下端 から一定時 間加熱する方法をとった。

加熱時間は2分間とした。

本実験においては以下の項目を測定した。

- (1) 消炎時間:加熱中に試験片が消炎する時間、すなわち、加熱炎が試験片の下端に接触している状態で 発炎燃焼が完全に停止するまでの時間(秒)
- (2) 炎の拡がり:試験片の下端より 5 cm および 10 cm の位置に炎の先端がそれぞれ到達する時間(秒)
- (3) 炭化長:燃焼後の炭化部の長さ (cm)
- (4) 残炎時間:加熱炎を除いた後、試験片が炎を発して燃える時間(秒)
- (5) 残じん時間:発炎燃焼の後、灼熱燃焼が終了する時間(秒)
 - 試験片の寸法; 5 mm×10 mm×160~180 mm

(静曲げ試験に供した 5 mm×10 mm×230 mm の試験片の一端を用いた。)

試験片数 ; 各条件につき5個

3 結果と考察

3.1 木材・ポリ塩化ビニリデン複合体のポリマーローディング

塩化ビニリデン(VDC)の r線および電子線照射による木材内重合については すでに検討されたが^{1~3)}. こゝでは表1に示すような形状をもつブナおよびアカマツについて3種類の試験片におけるポリマーローデ ィングとγ線照射量の関係について検討し、その結果を図 2,3 に示す。これによるとポリマーローディン グは、樹種ならびに試験片の形状によって異なるが、dimensional stability (DS) 測定用のアカマツ(気乾) 試験片を除いていずれの場合も r 線照射量が 1.6 Mrad までの範囲では、それの増加により急な増加が認め られ、後藤田らのカバ・VDC+MMA 複合体²⁾のそれと同様な傾向が認められる。

なお 1.6 Mrad 以上の照射については、カバ・VDC+MMA 複合体において 1.6 Mrad 以上の照射でポ リマーローディングが飽和値に達すると述べている後藤田らの実験²⁾にもとづき、これは省略した。さらに 木材・PVDC 複合体における VDC のコンバージョン についてはすでに後藤田らが報告³⁰ しているのでこ ゝでの検討は省略した。

樹種とポリマーローディングの関係をみると形状が 6 mm×35 mm×230 mm の機械的性質試験用試験片 と 8 mm×10 mm×100 mm の動的性質測定用試験片の 0.4 Mrad を除いていずれもアカマツにおいてポリ

石原・ほか:放射線による木材・ポリマー複合体 I

マーローディングが大きい。

ポリマーローディングは試験片の形状によってかなり異なり、機械的性質測定用試験片, DS 測定用試験 片,動的性質測定用試験片の順に増大し、その差はかなり大きい。また上述のように機械的性質測定用なら びに動的性質測定用試験片のポリマーローディングは γ線照射量の増加によって比例的に増大するが, DS 測定用のそれでは γ線照射量が 1.0 Mrad 近傍において飽和する傾向が認められた。以上のように試験片の 形状ならびに木取りによってポリマーローディングはかなり大きな影響をうけるようであるので、ポリマー ローディングに対する試験片の寸法効果の検討を今後の研究に待ちたい。

ポリマーローディングに対し照射時における木材中の水分効果をみるために DS 測定用試験片のポリマー ローディングと 7 線照射量の関係を示したものが図2 である。これによるとポリマーローディングは 7 線の 照射量の多小にかかわらず、ブナ、アカマツともに含水率の低いものがいずれも高い値を示し、とくにアカ マツでその傾向が顕著で、カバ・VDC+MMA 複合体²⁰ における水分効果と逆の結果が得られた。

3.2 物理的ならびに機械的性質

3.2.1 比 重

標準試片および木材・PVDC 複合体の比重とポリマーローディングならびに r 線照射線量の関係を図 4,5 および表 2 に示した。これによると r 線を 0.4 Mrad から 1.6 Mrad の範囲で照射を試みたが,標準試片で はブナ,アカマツともに照射による影響は認められない。木材・PVDC 複合体では軽度の照射におけるポリ マーローディングのサンプル数が少ないため明瞭なことはいえないが,一般にポリマーローディングの増加

			表2 4	勿理的, 幾 械	的性質の	まとめ	(A:ブナ, B:	アカマツ)
N	脳	泉	#	H H	注 《 令	キ 田 旧 ロ 上	載した。	来这世流行世锋
100.	$\begin{array}{c} \operatorname{Dose} \\ (\operatorname{Mrad}) \end{array}$	含水率(%)) loading (%)	H H	+ 演 Ω ∱ + (%)	↑HE H H W C (kg/mm ²)		財曲(7.1 0^3 kg/cm ²)
A-0				$0.52 \sim 0.54 \sim 0.56$	$9.8 \sim 10.3 \sim 10.6$	$1.17 \sim 1.29 \sim 1.39$	$349\!\sim\!422\!\sim\!463$	$64.5 \sim 75.4 \sim 84.3$
A-3-1	0.4	6.0	13	$0.55 \sim 0.56 \sim 0.57$	$4.6 \sim 4.7 \sim 4.9$	$1.42 \sim 1.62 \sim 1.77$	$385 \sim 438 \sim 515$	$68.3 \sim 76.0 \sim 82.1$
A^{-3-2}	0.4	6.2	15	$0.55 \sim 0.57 \sim 0.59$	$5.3 \sim 5.4 \sim 5.5$	$1.48 \sim 1.60 \sim 1.73$	$467 \sim 480 \sim 496$	$79.4 \sim 81.9 \sim 85.4$
A-3- 3	0.8	6.1	29	$0.66 \sim 0.67 \sim 0.68$	$5.3 \sim 5.4 \sim 5.5$	$1.86 \sim 1.92 \sim 1.97$	$468 \sim 490 \sim 510$	$71.8 \sim 75.5 \sim 77.8$
A-3- 4	0.8	6.2	27	$0.60 \sim 0.64 \sim 0.67$	$4.5 \sim 5.0 \sim 5.3$	$1.63 \sim 1.75 \sim 1.86$	$441 \sim 471 \sim 487$	$78.5 \sim 80.5 \sim 83.6$
A-3-5	1.2	6.0	33	$0.64 \sim 0.65 \sim 0.66$	$5.4 \sim 5.5 \sim 5.6$	$1.69 \sim 1.91 \sim 2.13$	$388 \sim 438 \sim 475$	$75.5 \sim 80.3 \sim 84.4$
A^{-3-6}	1.2	5.9	30	$0.62 \sim 0.64 \sim 0.67$	$4.3 \sim 4.6 \sim 5.1$	$1.49 \sim 1.76 \sim 1.92$	$438 \sim 476 \sim 497$	79.6~82.2~87.1
A-3-7	1.6	6.0	99	$0.85 \sim 0.86 \sim 0.88$	$4.7 \sim 5.0 \sim 5.3$		$418 \sim 500 \sim 577$	73.8~82.3~90.4
A-3-8	1.6	6.2	50	0.73~0.76~0.79	$4.4 \sim 5.3 \sim 6.2$	$1.68 \sim 2.09 \sim 2.23$	$485 \sim 498 \sim 520$	81.2~87.4~91.6
A-3-11	0.4	5.0	0	$0.53 \sim 0.54 \sim 0.54$	7.5~7.6~7.7	1.18~1.37~1.48	$441 \sim 455 \sim 470$	$79.4 \sim 82.8 \sim 85.4$
A-3-12	0.4	4.8	0	$0.53 \sim 0.55 \sim 0.57$	$6.8 \sim 6.9 \sim 7.1$	1.38~1.55~1.72	$413 \sim 468 \sim 542$	75.2~83.8~91.7
A-3-13	0.8	4.9	0	$0.51 \sim 0.52 \sim 0.54$	$7.2 \sim 7.4 \sim 7.5$	$1.18 \sim 1.30 \sim 1.39$	$412 \sim 463 \sim 539$	75.1~83.8~92.1
A3-14	0.8	4.7	0	$0.53 \sim 0.54 \sim 0.56$	7.1~7.5~7.7	1.33~1.43~1.52	$405 \sim 430 \sim 462$	74.3~75.4~77.4
A-3-15	1.2	5.0	0	$0.55 \sim 0.57 \sim 0.58$	7.6~7.7~7.8	1.27~1.37~1.49	$541 \sim 566 \sim 600$	$94.0 \sim 99.9 \sim 106.0$
A - 3 - 16	1.2	4.9	0	$0.55 \sim 0.57 \sim 0.58$	7.5~7.5~7.5	$1.23 \sim 1.36 \sim 1.48$	$513 \sim 560 \sim 600$	91.2~97.9~104.1
A^{-3-17}	1.6	4.7	0	$0.52 \sim 0.54 \sim 0.56$	$6.7 \sim 7.0 \sim 7.2$	$1.02 \sim 1.21 \sim 1.34$	$442 \sim 467 \sim 492$	$70.5 \sim 78.2 \sim 83.8$
A-3-18	1.6	4.9	0	$0.54 \sim 0.54 \sim 0.56$	$6.8 \sim 6.9 \sim 7.2$	1.25~1.33~1.41	$341 \sim 417 \sim 477$	$72.6 \sim 76.5 \sim 80.5$
R_0	1	i 	-	$0 \ 32 \sim 0 \ 41 \sim 0 \ 45$	$9.6 \sim 10.2 \sim 10.5$	$0 67 \sim 0 92 \sim 1 14$	$285 \sim 413 \sim 490$	$60\ 2\sim 90\ 3\sim 108.0$
B^{-3-} 1	0.4	5.4	11	$0.42 \sim 0.45 \sim 0.48$	$5.2 \sim 5.3 \sim 5.3$	$0.63 \sim 1.13 \sim 1.41$	$377 \sim 432 \sim 498$	$65.0 \sim 71.8 \sim 83.6$
B-3-2	0.4	5.5	11	$0.41 \sim 0.47 \sim 0.53$	$5.4 \sim 5.6 \sim 5.7$	$0.73 \sim 1.19 \sim 1.47$	$362 \sim 407 \sim 440$	63.2~67.2~74.3
B-3- 3	0.8	5.6	19	$0.47 \sim 0.49 \sim 0.51$	$6.0 \sim 6.2 \sim 6.7$	$0.96 \sim 1.14 \sim 1.37$	$413 \sim 439 \sim 481$	58.9~67.3~78.5
B -3- 4	0.8	5.4	19	$0.50 \sim 0.52 \sim 0.56$	$5.8 \sim 5.9 \sim 6.0$	$1.15 \sim 1.43 \sim 1.70$	$422 \sim 432 \sim 440$	$56.3 \sim 59.8 \sim 63.2$
B-3-5	1.2	5.9	31	$0.52 \sim 0.56 \sim 0.60$	$6.1 \sim 6.5 \sim 7.0$	$1.15 \sim 1.43 \sim 2.10$	$346 \sim 398 \sim 436$	$60.8 \sim 65.0 \sim 67.9$
B -3- 6	1.2	5.4	42	$0.57 \sim 0.60 \sim 0.65$	$5.2 \sim 5.6 \sim 6.0$	$1.20 \sim 1.51 \sim 2.05$	$415 \sim 422 \sim 429$	$61.2 \sim 62.7 \sim 64.9$
B-3-7	1.6	5.0	52	$0.58 \sim 0.63 \sim 0.70$	$5,2 \sim 5.8 \sim 6.3$	$1, 15 \sim 1.37 \sim 1.50$	$413 \sim 467 \sim 494$	$66.9 \sim 70.2 \sim 71.9$
B -3- 8	1.6	5.3	73	$0.60 \sim 0.69 \sim 0.75$	$5.2 \sim 5.7 \sim 6.0$	$1.05 \sim 1.35 \sim 1.80$	$439 \sim 477 \sim 525$	$70.3 \sim 76.5 \sim 82.5$
B - 3 - 9	0.4	5.2	0	$0.43 \sim 0.44 \sim 0.46$	$6.5 \sim 6.7 \sim 6.8$	$1.20 \sim 1.45 \sim 1.80$	$328 \sim 369 \sim 391$	$56.1 \sim 60.9 \sim 67.7$
B - 3 - 10	0.4	5.5	0	$0.40 \sim 0.42 \sim 0.43$	$6.7 \sim 6.8 \sim 6.9$	$0.75 \sim 1.17 \sim 1.25$	$409 \sim 434 \sim 474$	$64.8 \sim 67.0 \sim 68.5$
B-3-11	0.8	5.5	0	$0.41 \sim 0.45 \sim 0.47$	$6.4 \sim 6.7 \sim 7.0$	$0.98 \sim 1.27 \sim 1.47$	$407 \sim 452 \sim 490$	$63.2 \sim 68.5 \sim 71.4$
B -3-12	0.8	5.7	0	$0.39 \sim 0.43 \sim 0.45$	$6.5 \sim 6.7 \sim 7.1$	$0.95 \sim 1.20 \sim 1.55$	$351 \sim 392 \sim 418$	$55.2 \sim 59.9 \sim 62.4$
B -3-13	1.2	5.2	0	$0.40 \sim 0.41 \sim 0.42$	$7.0 \sim 7.1 \sim 7.2$	$0.74 \sim 1.01 \sim 1.16$	$422 \sim 431 \sim 436$	$58.8 \sim 67.1 \sim 71.7$
B -3-14	1.2	4.8	0	$0.41 \sim 0.44 \sim 0.46$	$6.1 \sim 6.4 \sim 6.7$	$0.98 \sim 1.28 \sim 1.54$	$406 \sim 428 \sim 446$	$59.6 \sim 62.2 \sim 64.5$
B -3-15	1.6	4.8	0	$0.38 \sim 0.41 \sim 0.45$	7.3~7.5~7.6	$0.83 \sim 1.07 \sim 1.37$	$378 \sim 404 \sim 421$	$57.8 \sim 68.2 \sim 77.7$
B-3-16	1.6	5.5	0	$0.39 \sim 0.42 \sim 0.46$	$6.8 \sim 6.9 \sim 7.0$	0.90~1.12~1.41	$367 \sim 375 \sim 385$	$61.1 \sim 63.0 \sim 64.2$
(注:)	A-0, B-	0は標準試	片)					

により当然みかけの比重は増加し,アカマツでは 1.6 Mrad (ポリマーローディング:73%)の場合には標準 試片の約 1.7 倍,ブナでは 1.6 Mrad (ポリマーローディング66%)で 1.6 倍になることが認められた。

3.2.2 硬 さ

標準試片および木材・PVDC 複合体の硬さは柾目面および木口面について試験を行ない, 以下の結果を得た。

(1) 柾目面の硬さ

図6および7ならびに表2に標準試片および木材・PVDC 複合体の柾目面の硬さを示す。これらによる と、素材の柾目面の硬さはr線照射によってかなり大きな影響をうけブナ,アカマツともに0.4 Mrad 程度 の照射によってブリネル硬度は増大し、標準試片に対しブナでは6~20%、アカマツでは27~57%の増大が 認められた.一方、0.8 Mrad 以上の照射では照射線量が高くなるに従い硬度が低下する傾向にある。木材・ PVDC 複合体においても類似の傾向が認められ、本実験の範囲では複合体の硬度は標準試片のそれに対し てブナにおいて24~62%、アカマツにおいて22~64%の増加がある。またポリマーローディングの増加とと もにブリネル硬さは増大し、特にブナにおいてこの傾向を顕著であった。

(2) 木口面硬さ

木口面の硬さは早材,晩材の平均値として求めた。表 4~6 に示すようにブナ素材では気乾照射, 飽湿照 射ともに r線照射によって硬さの低下が認められ, 柾目面にみられた軽度の照射による硬度の増加はなかっ

図7 柾目面硬さと線量,ポリマーローディン グの関係

た。アカマツにおいても素材ではブナと同様な傾向が認められた(表5)。なお照射時の含水率の影響はブ ナのそれより顕著で、飽湿照射の硬度低下が気乾照射のそれより大であった。また、木材・PVDC 複合体 では柾目面硬さと同様にポリマーローディングの増加により硬さは増加したが木口面硬さに対する照射時の 試験片含水率の影響はとくに認められなかった。照射線量の増加による硬度の低下は明確でなかった。

3.2.3 平衡含水率

温度 20°C,関係湿度65%の恒温恒湿器に静置したときの無処理材,照射材および木材・PVDC 複合体の 平衡含水率を図8および9ならびに表2に示す.これらによる無処理標準試片のブナおよびアカマツの平衡 含水率はともに約10%であって、一般素材のそれの約12%より若干低い値を示した。次いで、照射材のそれ をみると 0.4 Mrad の照射でブナでは平均値で 7.2%、アカマツでは 6.2%となり、標準試片に対して前者で 約30%、後者で約40%の低下が認められ、r線照射によって非結晶領域における水酸基の拘束がかなり大き いものと考えられる。しかしながら照射線量の増加による平衡含水率の変化はほとんどなく、アカマツにお いてわずかに増加する傾向が認められるに過ぎない。

木材・PVDC 複合体ではブナ,アカマツともに標準試片のそれに対して約50%あるいは約40%の低下が あり,照射材のそれに比較しても若干低い値を示した。また,ポリマーローディングの増加とともに平衡含 水率はやゝ低下する傾向が認められる。このような木材・PVDC 複合体における 低平衡含水率の原因は非 親水性の PVDC による親水基の拘束より照射による影響の方が大きいものと判断される。

3.2.4 静的曲げ弾性係数および曲げ強度

(1) 弾性係数

ブナおよびアカマツの標準試片,照射材および木材・PVDC 複合体の静的曲げ弾性係数をそれぞれ 図10, 11および表2に示した。これらによると、ブナ照射材において 1.2 Mrad で際立って大きな値を示している が、全般的な傾向からみて、これを異常値と考えれば照射量による弾性係数の変化はあまりないということ ができる。一方、ブナ・PVDC 複合体ではポリマーローディングと弾性係数の関係がきわめて複雑である が、全般的にみてその影響はあまり顕著でないということができよう。

アカマツでは照射材が標準試片に比べて非常に低い値を示しており、この弾性率低下の割合はブナのそれ に比べて著しい。この低下の原因は r線照射によってセルロースの分子量の低下が 0.5 Mrad 近傍からかな り顕著になるとする K. V. RAMALINGAM の報告⁴⁰から、セルロースの劣化に伴うものとも判断されるが、ブ ナにおいてこれが顕著でないことから、これの原因が何によるものか本実験の範囲では明らかでない。また ブナとの相異が樹種によるものかどうかについても明らかではない。

図8 平衡含水率と線量,ポリマーローディン グの関係

アカマツ

図9 平衡含水率と線量ならびにポリマーロー ディングの関係

石原・ほか:放射線による木材・ポリマー複合体 I

アカマツ・PVDC 複合体の弾性率は照射量による影響はほとんどなく、ポリマーローディングの増加とともに若干増加するに過ぎない。

(2)曲げ強度

ブナとアカマツの標準試片,照射材および木材・PVDC 複合体の曲げ強度を図12,13および表2に示す. 本実験に供したブナ標準試片の曲げ強度はわが国のブナの平均的なそれ⁵⁾よりかなり低いものであった。

照射材の曲げ強度は 1.2 Mrad において非常に高い値を示したが、上述のように全般的な傾向から異常値 と判断されることによりこれを除外すると 0.4~1.6 Mrad の範囲では 7 線照射の影響が顕著ではないと考え られる。

ブナ・PVDC 複合体ではポリマーローディングが 13%から 66%の広い範囲にわたっているにも拘らず静 的曲げ強度の変化はとくに顕著ではなく、ポリマーローディングの増加に従ってわずかに増加する傾向が認 められるに過ぎない。

一方,アカマツ標準試片の曲げ強度もわが国の平均的なそれ⁵⁰ に比較してかなり低い値を示した. 照射材 およびアカマツ・PVDC 複合体に対する r 線照射量の影響は明らかではなく, 複合体においてポリマーロ ーディングの増加に伴うわずかな増加が認められたに過ぎない。

A. BURMESTER は松材に対して r 線照射を行ない 各種の強度に 及ぼす影響に ついて検討し 曲げ強度では 0.1~1.0 Mrad の範囲で若干の向上を認めている⁶⁰ が、本実験ではとくにその傾向を把握することはできな かった。

本実験において、照射材および木材・PVDC 複合体の曲げ性能の向上はとくに認められないが、これら

— 63 —

図14 木材・PVDC 複合体および照射材の比強度と線量の関係

の比強度をとって図14に示した。これによると、ブナ、アカマツともに PVDC との複合体ではともに r 線 照射量の増加によって比強度は減少し、一方、照射材では 1.2 Mrad をピークにしてブナにおいてはかなり の増加、また、アカマツにおいて若干の増加の傾向があり、r 線による木材の PVDC 複合化が静的な曲げ性 能の向上に寄与していないことを示すとともに 0.5~1.5 Mrad の範囲の r 線照射が ブナおよび アカマツ素 材の曲げ性能の向上に若干の寄与を示していることがわかる。

3.2.5 動的曲げ弾性係数および内部摩擦 $(tan \delta)$

振動リード法によって得られた標準試片,照射材および木材・PVDC 複合体の動的曲げ弾性率および内部 摩擦 ($\tan \delta$)を表 3 にまとめて示した。

(1) 曲げ弾性係数

ブナおよびアカマツの PVDC 複合体の動的曲げ弾性係数はともに照射線量の増加とこれに伴うポリマー ローディングの増加によって高くなり、標準試片の約2倍もの高い値を示した。また、照射材の場合もアカ マツの2,3の例外を除いて動的曲げ弾性率の若干の増加の傾向が認められたが、いずれの場合も照射線量と の間に比例的な関係は認められない。

なお,動的曲げ弾性係数と静的曲げ弾性係数の場合では試験片の繊維方向とスパンの相互関係が異なるた め両者の値を比較することはできなかった。

(2) 内部摩擦 (tan δ)

本実験に供したブナおよびアカマツの標準試片における内部摩擦は文献値⁷に近いそれを示した。

照射材ではブナ,アカマツともに標準試片に比べてかなり低下する傾向が認められたのに対し、木材・ PVDC 複合体では増加の傾向があり、これはポリマーローディングの増加によって増加したが、r線照射量 との間に比例的な関係は認められなかった。

表3	動的弾性係数	(E') と内部摩打	察 (tan δ) のま	とめ (A	:ブナ, B:アカマ	ツ)
	照	射 条	件		E'	
No.	Dose (Mrad)	含水率 (%)	loadiug (%)	比 重	$(\times 10^9 dyn/cm^2)$	tan o
A-0- 1	一標			0.57	11.8	0.035
A-0- 2	準計			0.60	13.0	0.034
A-0- 3	片			0.63	13.8	0.032
A-5-1	0.4	6.5	75	0.86	21.9	0.032
A-5-2	0.4	6.5	52	0.76	20.0	0.027
A-5-3	0.8	6.5	87	0.91	21.5	0.045
A-5-4	0.8	6.4	81	1.02	24.4	0.041
A-5- 5	1.2	6.4	89	1.05	24.5	0.038
A-5-6	1.2	6.3	87	0.86	23.4	0.041
A-5- 7	1.6	6.4	84	0.87	23.7	0.033
A-5-8	1.6	6.3	86	1.03	27.0	0.040
	0.4	6.3	0	0.60	11.0	0.023
A-5-10	0.4	6.3	0	0.54	13.9	0.021
A-5-11	0.8	5.9	0	0.58	15.6	0.022
A-5-12	0.8	6.3	0	0.59	16.7	0.020
A-5-13	1.2	6.3	0	0.60	15.9	0.023
A-5-14	1.2	6.3	0	0.58	15.7	0.023
A-5-15	1.6	6.3	0	0.58	16.8	0.018
A-5-16	1.6	6.2	0	0.60	14.3	0.023
В-0-1	標			0.47	11.9	0.031
в-0-2	学			0.45	9.3	0.031
В-0-3	片			0.43	8.5	0.027
В−5− 1	0.4	6.3	52	0.67	20.4	0.035
B-5-2	0.4	6.5	60	0.67	14.8	0.031
B-5-3	0.8	6.0	91	0.87	19.0	0.047
B-5-4	0.8	6.3	99	0.90	26.5	0.057
В5- 5	1.2	6.5	125	0.96	23.4	0.054
В-5-6	1.2	6.4	107	0.83	24.1	0.049
в-5-7	1.6	6.5	125	0.94	25.0	0.061
B-5-8	1.6	5.0	144	0.85	20.8	0.050
B-5-9	0.4	6.0	0	0.51	9.8	0.025
в –5–10	0.4	5.7	0	0.47	12.5	0.023
в-5-11	0.8	5.7	0	0.48	7.7	0.024
B-5-12	0.8	5.6	0	0.49	9.5	0.023
B-5-13	1.2	5.5	0	0.51	10.2	0.024
$_{\rm B}$ –5–14	1.2	5.5	0	0.49	13.2	0.023
B515	1.6	5.5	0	0.50	10.3	0.025
<u>В-5-16</u>	1.6	5.5	0	0.46	8.8	0.022

石原・ほか:放射線による木材・ポリマー複合体 I

d≒0.1 cm

振動リード法による。

20°C, 45% RH 恒温恒湿室中

	₩ 第	E					<u>ئ</u>	IJ	K	·	照	ন্	F.				-\					7211	Į{ 		•	6	5	\$						
アカマツ)	木口面硬さ	$(\mathrm{kg}/\mathrm{mm}^2)$	3.43	3.25	3.33	3.65	3.95	4.18	4.50	3.78	3.52	3.83	3.92	4.17	4.23	4.08	4.08	3.25	2.55	2.98	2.98	3.33	2.83	3.23	2.58	2.90	2.87	2.70	2.95	2.95	2.85	2.95		
ブナ, B:	8当りの (%)	R	0.169	. 166	.172	. 198	. 183	. 208	.216	.210	. 191	.204	.206	.215	. 185	.206	. 169	0.128	.113	. 126	.119	. 113	.112	. 122	.134	. 127	. 124	. 125	. 143	. 132	.117	.124		
: Y)	含水率1% 膨張率1%	H	0.503	.455	.400	.511	.548	.584	.606	.569	.525	.569	.554	.614	.510	.628	.575	0.378	.363	.358	.350	.358	.353	.348	.370	.364	.344	.347	.370	.339	.337	.354		
	×*2) 72 h (%)	R	2.24	2.07	2.02	2.42	2.18	2.41	2.36	2.10	1.87	1.77	1.94	1.87	1.71	1.90	1.74	2.54	2.48	2.14	2.21	2.56	1.91	2.21	2.21	2.22	2.32	2.01	2.59	2.32	1.97	2.01		
€ -V #4	膨	F	6.71	5.75	4.86	6.32	6.46	6.89	6.68	5.73	5.21	5.01	5.25	5.38	4.75	5.81	5,95	7.54	8.00	6.11	6.54	6.99	6.10	6.34	6.22	6.38	6.51	5.63	6.73	6.04	5.75	5.81		
1U 10	(%)	72 h	13.1	12.3	11.7	12.0	11.6	11.5	10.7	9.90	9.70	8.60	9.30	8.60	9.10	9.00	10.1	19.5	21.6	16.8	18.3	18.9	16.8	17.9	16.4	17.1	18.4	15.8	17.7	17.3	16.7	16.1		
L 」	1*李	24 h	11.1	10.4	10.3	10.4	10.5	9.30	8.90	8.19	8.38	7.62	7.37	7.00	7.77	7.79	8.93	16.6	17.5	15.1	15.7	17.0	16.4	15.7	15.7	15.6	17.5	15.3	16.9	17.9	15.5	15.1	0	
× − × −	吸	6 h	7.14	6.62	6.72	6.49	6.45	5.34	5.14	5.12	5.33	5.06	4.56	4.19	4.91	4.66	5.44	10.1	11.2	10.0	12.0	9.85	11.0	9.37	9.27	9.30	9.54	10.2	10.0	10.7	10.3	10.4	$\frac{1}{n}$ - R_{u} × 10	K ₀
表4-1 L	試験開始	時合水率 (%)	8.1	7.7	7.8	7.7	8.0	7.4	7.4	6.9	7.2	7.0	6.8	6.4	6.8	6.6	7.3	10.9	11.1	11.0	11.1	11.1	10.6	10.8	10.6	10.7	10.8	10.6	11.0	10.9	10.6	10.5	$ imes 100, \frac{\mathbf{R}_{72}}{2}$	
	件	loading (%)	44	46	47	45	47	63	59	66	82	64	77	82	64	69	59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$T_{72}-T_{u}$.T.
	射条	合 水 銜 (%)	5.7	5.7	5.7	5.5	5.5	5.4	5.5	5.8	5.6	5.6	5.6	5.7	5.5	5.6	5.4	5.4	5.5	5.4	5.3	4.9	5.8	6.0	6.1	6.1	5.8	5.8	6.0	5.9	5.8	5.8	× 100, *2)	
	照	Dose (Mrad)	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5	$W_t - W_u$	W_0
	No	.04	A-1-1	A-1-2	A-1-3	A^{-1-4}	A - 1 - 5	A-1-6	A-1-7	A-1- 8	A-1-9	A-1-10	A - I - 11	A-1-12	A - I - 13	A - 1 - 14	A - 1 - 15	A-1-16	A^{-1-17}	A-1-18	A-1-19	A-1-20	A - 1 - 21	A - 1 - 22	A-1-23	A-1-24	A-1-25	A-1-26	A - 1 - 27	A-1-28	A-1-29	A-1-30	*1)	•

木材研究資料 第12号(1978)

語	E A	/-				¥	Ĥ	К	Ē	悉	1	À				_	/-				別	ЪХ.	舟		6	7	\$				-\
木口面硬さ	(kg/mm^2)	3.22	3.25	3.33	3.05	3.35	3.71	3,83	3.50	3.68	3.66	4.13	3.64	4.18	3.90	3,83	3.03	2.63	2.70	2.60	2.72	2.69	2.78	2.39	2.73	2.58	3.03	2.97	3.13	2.48	2.53
(%) (%)	R	0.142	. 151	.147	. 159	. 139	.215	.259	.200	.210	.200	.204	. 182	.212	.208	. 194	0, 149	. 156	. 126	. 142	.092	.113	. 121	. 144	.114	. 130	. 136	. 149	.141	. 125	. 141
含水率1 膨張率	Г	0.412	.426	.398	.393	.397	.528	.566	.546	.539	.490	.541	.492	.553	.516	.526	0.404	. 332	.330	.345	.243	.308	.352	.346	. 336	.322	.344	.336	.318	. 336	.320
_{落*2)} 2 h(%)	Я	1.67	1.78	1.74	2.07	1.67	1.91	1.97	1.91	1.92	2.02	1.57	1.97	1.67	1.77	1.74	1.89	2.59	1.99	2.74	1.82	2.03	2.09	2.72	1.82	2.08	2.06	2.32	2.26	2.12	2.22
膨張7	Ę.	4.90	5.08	4.74	5.16	4.79	4.72	4.43	5.27	5.02	5.13	4.22	5.42	4.42	4.45	4.76	5.19	5.54	5.26	6.75	4.93	5.70	6.33	6.60	5.40	5.23	5.22	5.30	5.12	5.73	5.10
(%)	72 h	11.6	11.6	11.6	12.8	11.8	8.70	7.50	9.40	9.10	10.2	7.60	10.7	7.80	8.40	8.80	12.5	16.3	15.5	18.9	19.7	17.9	17.0	18.6	15.6	15.8	14.9	15.4	15.7	16.7	15.6
承*1〕	24 h	10.6	10.6	10.1	11.1	10.6	7.85	6.67	7.95	7.56	8.63	6.92	9.23	6.71	7.13	7.30	14.4	15.1	14.7	16.7	13.8	14.9	15.7	16.7	14.4	14.5	14.0	14.4	14.5	15.3	14.2
吸	6 ћ	7.51	7.59	7.30	7.81	7.58	5.02	4.33	4.98	4.96	5.48	4.56	5.63	6.64	4.64	4.78	10.4	10.0	10.3	10.5	10.3	9.87	9.66	9.94	9.69	9.94	9.62	9.84	9.68	10.4	10.2
試験開始	時含水率 (%)	9.2	9.1	9.1	9.2	9.2	7.6	7.1	7.4	7.1	7.4	7.3	8.5	6.8	7.0	7.0	12.1	11.7	11.7	12.1	11.7	11.7	11.8	11.8	11.6	11.6	11.5	11.7	11.7	11.7	11.6
件	loading (%)	31	25	31	26	28	68	20	72	60	57	62	46	74	70	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
射 条	合 水 奉 (%)	25	16	24	25	25	25	27	25	24	26	26	25	25	25	25	25	25	25	24	24	24	24	25	24	25	25	24	25	25	24
照	Dose (Mrad)	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5
No		1^{-2-1}	-2-2	-2-3	-2-4	-2-5	-2-6	1-2-7	1-2-8	-2-9	$^{-2-10}$	-2-11	2-12	-2-13	2-14	-2-15	-2-16	-217	-2-18	-2-19	-2-20	-2-21	-2-22	223	-2-24	-2-25	-2-26	-2-27	-2-28	-2-29	-2-30

石原・ほか:放射線による木材<u>・ポリマー複合体 I</u>

	将 世	ę E		€ ∜	₩ #	몇 구		
アカマツ)	木口面硬さ	(kg/mm^2)	3.50	3.38	3,33	3.68	3.28	
ブナ, B :	%当りの (%)	R	0.142	.131	. 137	.123	. 145	
: V)	合水率1- 膨張率1	Н	0.371	. 392	.397	.388	.367	
(3)	^{案*2)} 72 h(%)	R	2.43	2.11	2.18	2.06	2.22	
まとめ	膨	Г	6.34	6.63	6.31	6.51	5.62	
5 10	(%)	72 h	17.1	16.9	15.9	16.8	15.3	
口倾	¥¥1)	24 h	15.2	14.8	14.5	15.2	14.2	
S と ★	吸	6 h	9.58	9.17	9.29	9.40	9.19	
表4-3 D	試験開始	時含水率 (%)	11.3	11.1	11.0	11.3	11.1	
	件	loading (%)						
	计条	名 大 (%)						と同じ
	照	$\begin{array}{c c} Dose & \downarrow \\ (Mrad) & \uparrow \end{array}$						*2) 表4-1/
	N.o.		A -0- 1	A-0-2	A -0- 3	A -0- 4	A-0- 5	*1),

3.2.6 吸湿率および膨張率

温度 40°C における飽湿の恒温恒湿器中に試験片を 6,24 および 72時間静置したときの吸湿, 膨張試験の結果を表 3~5 に示し, 図15 および図16にブナおよびアカマツのそれぞれ特徴的な吸湿経過を示 した。

(1) 吸湿率

照射材について表および図をみると、ブナの吸湿率は照射条件が 気乾, 飽湿ともに標準試片に対して若干高い値を示し, γ線照射に よって吸湿のわずかな増加のあることがわかるが、本実験の範囲で は照射線量の大小が直接大きく影響することはないようであり、ア カマツのそれも、気乾、飽湿ともにブナの場合よりも標準試片に対 する吸湿率の増加はさらに少なく、吸湿率に対するγ線照射の作用 はほとんどないものと考えられる。

木材・PVDC 複合体について吸湿率をみると ブナ. アカマツと もにポリマーローディングが増すに従いかなり低下することがわか るが. PVDC は非吸湿性で吸湿するのは木質部のみであるので図 中にみることができるように、木材を基準として吸湿率の計算をす ると矢印をつけた◎印のようになり、標準試片の吸湿性とほぼ同様 な経過をたどり、γ線照射による PVDC との複合化によって木材 自身の吸湿性の改善はほとんどなされていないことがわかる。

(2) 膨張率

表により72時間の吸湿後における照射材の膨張率および含水率が 1%変化するときのそれをみると吸湿率と同様とくに著しい傾向は 認められないが、気乾、飽湿ともにT方向においてわずかながら膨 張率の低下が認められる。また、アカマツの場合では、飽湿状態で 照射した試験片においてブナのそれと同様わずかに低下の傾向がみ られるが、気乾状態で照射したそれでは標準試験片との間にはほと んど差をみることができない。以上の結果から、照射線量 0.5 Mrad から 1.6 Mrad の範囲では ブナ および アカマツの吸湿性と dimensional stability に対する γ線照射の影響はきわめて小さいかある いはほとんどないものと判断される。

木材・PVDC 複合体の吸湿に伴う膨張率は照射条件によって若 干の相異があり、気乾に比べ飽湿のそれが低い値を示し、この傾向 はブナにおいてわずかに強く、わずかながら dimensional stability の改善が認められた。

木材・PVDC 複合体の含水率1%の変化に対する 膨張率の変化 はブナの気乾の場合, T方向で約 0.4~0.6%, R方向で約 0.2%, 飽湿 T 方向で約 0.4~0.5%、 R 方向で 0.14~0.26 %となり 標準試 片のT方向の0.4%, R方向の0.14%に比較してバラッキは認めら れるがかなり大きな値を示す。またアカマツでは気乾のT方向で約 0.5~0.6%, R方向で約 0.2~0.3%, 飽湿の T方向で約 0.4~0.5%, R方向で0.15~0.26%となり、標準試片T方向の約0.03%、R方

- 68 -

漄 水		/-				;	Ĥ	ĸ		照	ΨT	14 1				\	-				ZH	K	舟		6	1	Ł				-\
木口面硬さ	(kg/mm^2)	2.76	2.37	3.15	2.78	2.73	3.03	3.16	2.84	3.45	3.50	3.35	3.08	3.22	3.25	2.92	1.83	3.13	2.45	2.60	1.90	2.43	2.30	2.38	2.18	2.25	2.38	2.38	2.22	2.38	2.15
8単りの (%)	R	0.200	. 177	.211	.208	. 195	.243	.251	.246	.300	.312	.226	.256	.214	.232	.259	0.112	. 125	. 130	. 133	.118	. 124	. 124	. 136	. 138	.104	. 145	. 149	. 134	.111	.118
00 秋後Ⅰ 憲張禄Ⅰ	F	0.492	.505	.511	. 484	.477	.547	.495	.533	.629	.621	.515	.552	.526	.551	.624	0.274	.269	.284	.269	.286	.276	.276	.263	.286	.240	.306	.290	.286	.289	.336
² 1 (%)	Я	1.96	1.80	1.93	2.00	1.87	2.06	2.07	2.06	2.04	2.02	1.93	2.13	1.76	1.76	1.84	2.14	2.32	2.36	2.56	2.08	2.25	2.18	2.38	2.38	2.08	2.38	2.52	2.28	1.91	2.08
煛 服	L	4.92	5.19	4.75	4.70	4.64	4.75	4.13	4.52	4.33	4.08	4.48	4.64	4.40	4.26	4.44	5.31	5.05	5.21	5.24	5.08	5.09	4.91	4.67	5.02	4.84	5.09	4.97	4.91	5.05	5.07
(%)	72 h	9.70	10.0	00.6	9.40	9.40	8.40	8.10	8.30	6.70	6.40	8.50	8.20	8.10	7.50	7.00	18.9	18.1	17.9	18.9	17.1	17.9	17.2	17.1	16.9	19.6	16.1	16.6	16.7	17.0	17.2
(1***	24 h	8.50	8.88	8.20	8.74	8.91	7.25	6.99	7.21	5.96	5.88	7.21	7.05	6.97	6.53	6.28	17.4	16.8	16.6	16.8	16.5	16.5	15.9	15.6	15.6	19.6	15.4	15.6	15.6	16.0	16.5
函	6 h	5.71	5.86	5.55	6.02	6.31	4.65	4.47	4.69	3.90	4.00	4.78	4.58	4.60	4.30	4.21	12.0	11.7	11.3	11.2	12.0	11.9	10.7	10.2	10.3	13.7	11.1	10.6	10.6	11.3	12.2
試験開始	時合水浄 (%)	7.6	8.1	7.6	7.9	8.3	7.1	0.0	7.0	6.5	6.5	7.3	7.4	7.7	6.9	6.5	11.7	11.3	10.9	11.5	11.8	11.8	11.8	12.1	11.9	8.8	12.2	12.0	11.9	12.0	12.2
件	loading (%)	86	77	88	76	76	112	117	104	121	139	120	115	94	109	128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
射条	合	5.5	5.6	5.7	5.8	5.9	5.8	5.8	5.8	5.8	5.7	5.8	5.6	5.0	5.4	5.6	5.8	5.7	5.6	5.6	5.6	4.8	5.5	5.5	5.0	5.2	5.3	5.5	5.0	5.3	5.4
麗	Dose (Mrad)	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5
No.		B11	B-1-2	B-1-3	B-1-4	B-1-5	B-1-6	B-1-7	B-1-8	B-1-9	B-1-10	B-1-11	B-1-12	B-1-13	B-1-14	B-1-15	B-1-16	B-1-17	B-1-18	B-1-19	B-1-20	B-1-21	B-1-22	B -1-23	B-1-24	B-1-25	B -1-26	B -1-27	B-1-28	B -1-29	B –1–30

石原・ほか:放射線による木材・ポリマー複合体 I

*1), *2) 表4-1に同じ

	相 一 相	Ç	/-				ţ,	ij	K		照	4	÷.			um***	-\	-				ΗZ	Ľ.	ال ة ا	•	6		ŧ				-
アカマツ)	木口面硬さ	(kg/mm^2)	2.87	2.45	2.85	2.50	2.89	3.23	3.17	3.09	3.34	3.92	3.44	3.12	3.15	3.03	3.66	2.30	2.68	2.43	2.40	1.85	1.90	2.03	1.87	2.00	2.00	1.83	2.08	2.08	2.05	1.90
ブナ, B:	8当りの (%)	Я	0.179	. 146	. 173	. 160	. 150	. 193	.216	.229	. 222	.262	. 193	.212	. 168	.224	.222	0.127	.135	.140	.110	.115	. 125	.115	. 129	.116	.119	.119	. 133	.150	. 132	. 182
: V)	仓水率1- 题張率1-	H	0.381	.328	.410	.476	.366	.447	.415	.400	.438	.422	.472	.480	.376	.471	.421	0.277	.286	.292	.272	.261	.273	.302	.292	.294	.298	.288	.296	.294	.318	. 282
(5)	^{率*2)} 72 h(%)	R	2.08	1.74	1.81	1.85	1.77	1.61	2.03	2.21	1.98	2.30	1.70	1.80	1.71	1.87	1.98	1.99	2.27	2.33	1.86	1.98	1.92	1.82	2.15	1.95	1.95	1.81	2.05	2.33	2.12	2.89
が	测 服,	E	4.48	3.96	4.35	4.41	4.38	3.77	3.97	3.93	3.96	3.76	4.16	4.12	3.86	3.97	4.07	4.39	4.83	4.96	4.66	4.55	4.26	4.88	4.95	4.99	4.96	4.43	4.64	4.21	5.20	4.53
6 70	(%)	72 h	11.4	11.7	10.3	11.4	11.6	8.20	9.30	9.50	8.80	8.60	8.70	8.40	10.0	8.20	8.80	15.4	16.4	16.4	16.6	16.9	15.1	15.6	16.4	16.4	16.2	14.9	15.2	15.5	15,8	15.6
口通	1 本*〕	24 h	9.90	9.97	9.21	10.0	10.5	6.77	7.70	7.97	7.52	7.53	6.64	6.78	8.10	6.75	7.23	15.0	15.3	15.3	15.5	15.8	14.2	14.5	14.9	15.0	15.2	14.2	14.2	14.3	14.4	14.5
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	汲	6 h	6.70	6.70	6.24	7.05	7.78	4.58	5.05	5.15	5.00	5.09	4.27	4.42	5.20	4.47	4.88	11.2	11.1	10.9	11.2	11.8	10.6	10.2	10.4	10.5	10.9	10.3	9.76	9.84	10.0	10.6
表5-2 1	試験開始	時水含率 (%)	8.4	8.3	8.2	8.6	8.8	6.7	7.5	7.7	7.6	8.0	6.9	7.0	7.5	6.8	7.6	13.2	13.0	13.2	13.0	12.9	12.7	13.0	12.8	13.1	13.0	13.1	13.0	13.0	13.0	12.6
	中	loading (%)	26	54	59	46	43	100	06	91	101	75	110	96	100	102	85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	患条	合 水 苓 (%)	22	22	25	23	25	24	22	22	19	24	24	22	25	25	24	22	23	24	25	23	25	24	25	23	24	24	22	23	21	24
1	照	Dose (Mrad)	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5
	Q Z		B-2-1	B -2- 2	B -2- 3	B -2-4	B -2- 5	B-2-6	B -2-7	B -2-8	B-2-9	B-2-10	B-2-11	B-2-12	B-2-13	B-2-14	B-2-15	B-2-16	B-2-17	B-2-18	B-2-19	B -2-20	B-2-21	B -2-22	B -2-23	B -2-24	B -2-25	B -2-26	B -2-27	B -2-28	B -2-29	B -2-30

- 70 -

*1), *2) 表4-1に同じ

石原・	ほか	: 放射線によ	る木材・	ポリ	マー複合体 I
-----	----	---------	------	----	---------

考 **嫖準試片** 雘 40 $B: 7 h \neq \gamma)$ (kg/mm 木口面硬 2.75 2.78 2.60 2.60 2.80 2.73 . 123 . 123 . 126 . 124 e% 0.119 $(A: \vec{j}, \vec{f}),$ Ц 汌 % .286 .295 .302 .306 299 水張率率 F 合態 % 2.09 2.10 2.02 2.06 1.99 ₽ ₩ К 9 72 ନ୍ଦ 張 $\begin{array}{c} 5.04 \\ 5.05 \\ 4.95 \\ 5.02 \\ 4.82 \\ 4.82 \end{array}$ J Έ 폜 ₩6 9 17.6 17.1 16.4 16.4 Ч % 72 N 後*1) 匧 16.2 15.8 15.4 15.4 15.2 Ч \square 24 К 阋 11.7 11.4 11.4 11.3 11.4 Ч J G 殹 $\boldsymbol{\Omega}$ Ω 試験開始 時含水率 (%) 表5-3 12.0 12.1 12.3 12.2 12.3 loading (%) ŧ **承**% ≪ 表4-1に同じ × 射 ₹nī Dose (Mrad) 照 *2) *1), 3 2 4 ŝ B -0-B -0-B -0-B-0-B -0-No.

向の約0.12%に比較して大きく、ブナの場合よりさらに大きくなり、 若干の例外は認められるが、ポリマーローディングが大きくなるに 従い増加の傾向が認められた。

3.3 難燃性能

燃焼試験の結果を表6および7に示し,各測定項目により,それ ぞれの防火特性の概要を以下に述べる。

3.3.1 消炎性

合成高分子材料の燃焼試験における消炎性能は、一般的には加熱 炎(源)を除いてから消炎に至る時間をもって判定し、これを消炎 時間としているが、本実験では加熱炎(源)による材料の着火から 材料の発炎燃焼が停止するまでの時間、すなわち、加熱時間内(加 熱炎が試験片に接触している状態)で試験片が完全に発炎を停止す る時間をもって消炎時間とし、これによって消炎性能を判定した。 上述の理由により本実験における消炎性能の判定は合成高分子材料 の燃焼試験におけるそれよりかなり厳しいものとなった。

表中消炎時間の項に示すように、ブナ,アカマツともに標準試片 および照射のそれでは全く消炎性を示さず,発炎燃焼を阻止する作 用は皆無であった。

一方,木材・PVDC 複合体は自己消炎性を現わし,図17はポリ マーローディングと消炎時間の関係を示したものである。これによ るとブナ・PVDC 複合体ではポリマーローディィング13~15%で は消炎性はないが、それが25%に達すると自己消炎性を示すように なり、一方、アカマツ・PVDC 複合体では11%のポリマーローデ ィングで消炎性を現わすが未だ十分ではなく19%に至ってかなり良 好な発炎燃焼阻止作用を示すようになる。

ブナ・アカマツの PVDC 複合体はともに一定のポリマーローデ ィング以上の それでは消炎時間に顕著な変化はなく, PVDC の消 炎作用はブナにおいて29%, アカマツにおいて19%でほゞ飽和する ものと考えられる。

アカマツ・PVDC 複合体がブナの それより10%低い ポリマーロ ーディングで消炎性を示すが樹種によるものかどうかは本実験では 明らかではない。

本実験において 消炎性能を現わす木材・PVDC 複合体の 燃焼性 状をみると加熱炎に試験片が触れて白煙を生じ,これによって発炎 燃焼が停止するに至る経過をたどる。この消炎機構は火炎温度にお いて PVDC が熱分解して,塩化水素をはじめとする含塩素化合物 による燃焼連鎖の阻止によるものと考えられるが,著者^{8,9)}らの他 の研究に比較して消炎性能がかなり低い。この詳細については今後 の研究に待たねばならない。

3.3.2 展炎性

展炎性は材料表面における火炎の拡がりを示すもので、これを阻

木材研究資料 第12号(1978)

図16 吸 湿 経 過 (40°C, 飽湿)

石原・ほか:放射線による木材・ポリマー複合体 I

			照	 针	条	件	炎の拡	広がり						
No.		Dese	絶乾	含水	WPC	landing			消炎	残炎	残じん	炭化長	備	考
		(Mrad	重量	率	絶乾重		5 cm	10 cm	時间 (sec)	時间 (sec)	吁 (sec)	(cm)		
ánn hn III	1	[(5)	(70)	里(5)	(70)	26	80		BE*	60			
無処埋	1 9	ţ					18	55		D. E.	/00			
	4	i.					24	60		"	"			
	4			l			17	59	•	"	"			
	5			ł			18	53		11	"		1	
	av.						20.6	61.4			"			
A -3-1	1)					18	43		B.E.	>60		易炒	
11	2	0.4	23,962	6.0	27.166	13	14	48			11)	11	`
	3	,						_			11			
	av.										"			
A -3-2	1)					13	36		B.E.	>60		易燃	
	2	0.4	24.555	6.2	28.252	15	12	38		"	"	i	<i>~</i> //	× ·
	3	•}					11	32		"	"			
	av.						13	35.3			"			
A- 3-3	1)					13		65		23	6.5	20秒前 で激し	後まく然
	2	8.0	24.993	6.1	32.152	29	17		70		21	7	える	
	3)					11		75	1	30	9	"	
	av.						13.7		70		24.6	7.5		
A -3-4	1)	(8	78	88		18	11		
	2	0.8	24.716	6.2	31.450	27	9	91		B.E.	,	[
	3	j					8		75	1	21	8		
	av.						8.3							
A-3-5	1)					16		73		20	6		
	2	1.2	24.032	6.0	31.895	33	11		82		24	8.5		
	3	}					13	58	75		18	10.5		
	av.			,	1		13.3		76.7		20.6	8.3		
A-3-6	1)					16		85		18	8.5		
-	2	1.2	24.177	5.9	31.372	30	26	84		В.Е.		•		
	3)					24		86		24	9		
	av.						22							

表6-1 燃 焼 試 験 結 果 (1) ブ ナ

* B.E.: 試験片上端まで燃焼したことを示す。

			照	射	条	件	炎の扨	よがり Sec)						
No.		Dose (Mrad	絶乾重量	含水率	WPC 絶乾重	loading	5 cm	10 cm	消炎 時間	残炎 時間	残じん時間	炭化長	備	考
A 2 7	1		<u> </u> (g)	(%)	<u>更(g)</u>	(%)	56		(sec)	(sec)		(cm)		
A-J-7	1 9	16	25 045	6.0	41 593	66	21		90		25 31	5.5 6		
	3	1.0	20.010	0.0	11,000		20		73		20	55		
)' 					20.0		07.0		04.6			
	av.	<u> </u>	1	é l			32.3		87.3		24.6	5.7		
A- 3- 8	1						13		78		21	7		
	2	1.6	24.810	6.2	37.102	50	13	66	85		26	12		
	3)					12		74		18	7.5		
	av.						12.7		79		21.6	8.8		
A-3-11	1)					13	39		В.Е.				
	2	0.4	25.190	5.0			22	61		11				
	3	}					14		75		19	9		
	av.						16.3							
A-3-12	1)			1	1	14	1	60		32	8.5		
	2	0.4	26.231	4.8	:	1	12	47		В.Е.	>60			
	3)	i.		1		12	43		//	"			
	av.						12.7							
A-3-13	1)			1		10	40		В.Е.	>60			
	2	8.0	25.129	4.9			8	66		//	"			
	3)					9	39		//	//			
	av.						9	48.3			"			
A-3-14	1	1				40 HILL	9	34		В.Е.	>60			
	2	8.0	26.150	4.7	1						"	1		
	3	}					11	38		В.Е.	//			
	av.										"			
A-3-15	1)					12	43		В.Е.	>60		易炒	 饮
	2	1.2	26.636	5.0	1	:	8	36		//	11		11	
	3)					8	41		//	"		//	
	av.						9.3	40			//			
A-3-16	1	}					13	44		В.Е.	>60		易炒	然
	2	1.2	26.994	4.9	1		11	41		//	//			
	3	}			1	1	12	43		//	"			
	av.	14					12	42.7			"			

表6-2 燃 焼 試 験 結 果 (2) ブ ナ

石原・ほか:放射線による木材・ポリマー複合体 I

<u></u>			照,	射	条	件	炎の <u>肋</u> (よがり (sec)	湛火	建火	建じ ↓			
No.		Dose	絶乾 重量	含水率	WPC 絶乾重	loading	5 cm	10 cm	時間	<u>我</u> 灾 時間	残しん 時間	炭化長	備	考
		(Mrad)	$\overline{(g)}$	(%)	量 (g)	(%)			(sec)	(sec)	(sec)	(cm)		
A- 3 -17	1						9	42		В.Е.	>60		易燃	
	2	} 1.6	26.167	4.7			8	37		11	11		//	
	3	}					14	47		"	"		//	
a	v.						10.3	42			"			
A-3-18	1)					11	50		B.E.	<60		易燃	
	2	1.6	25,993	4.9			9	41		11	11		//	
	3	ļ					11	39		"	"		"	
a	v						10.3	43.3			"			

表6-3 燃焼 試験 結果(3) ブナ

止することは防火上きわめて重要である。

本実験では、材料表面の一定の距離を炎が拡大進行してゆく時間を「炎の拡がり」、その後に形成される 炭化部分の長さを「炭化長」とし、これらによって材料の展炎性を検討した。

試験片の下端から 5cm および 10 cm の距離に炎の先端が到達する時間を表6 と7 にみると標準試片,照 射試片および木材・PVDC 複合体の間には顕著な差は認められないが,前2 者は「残炎」の項で述べる通 り試験片上端まで燃焼し (BE),木材・PVDC 複合体のように途中で展炎の停止はない。これは図18の炭化 長とポリマーローディングの関係からも明らかなように標準試料および照射試料では BE であるのに対し, 木材・PVDC 複合体では,ブナにおいては15%のポリマーローディングで BE,27%で BE~8 cm の炭化長 となり,展炎性に対する抑制効果が認められる。アカマツのそれでは11%のポリマーローディングで BE~

— 75 —

No. Date (Mra) Base (g) Base (g) basis (g) bas bas basis (g)	.			照	肘	条	件	炎の扨	広がり (sec)	酒水	建公	産じょ			
mum 1 (xe) (xe) <t< td=""><td>No.</td><td></td><td>Dose (Mrad</td><td> 絶乾 重量</td><td>含水率</td><td>WPC 絶乾重</td><td>loading</td><td>5 cm</td><td>10 cm</td><td>旧 時間 (sec)</td><td>成页 時間</td><td>成しれ 時間</td><td>炭化長</td><td>備</td><td>考</td></t<>	No.		Dose (Mrad	絶乾 重量	含水率	WPC 絶乾重	loading	5 cm	10 cm	旧 時間 (sec)	成页 時間	成しれ 時間	炭化長	備	考
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4#F. bn 779		 	(g)	(%)	里(8)	(%)	18	54	(sec)		60			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	無処理	2			1			20	60		D. E.	/00	l.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3						20	55		"	"			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4			1			20	70		"	"			
6 7 8 1 15 51 9 9 9 av. 1<		5	5					20	75		11	11			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6						15	51		"	"			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7						18	52		11	11			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		av.						17.7	59.3			"			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B -3-1	1)					20	40		B.E.	>60			
3 1 1 40 n n n av. av. <td></td> <td>2</td> <td>0.4</td> <td>20.352</td> <td>5.4</td> <td>22.627</td> <td>11</td> <td>19</td> <td>45</td> <td></td> <td>"</td> <td>11</td> <td>a da a</td> <td></td> <td></td>		2	0.4	20.352	5.4	22.627	11	19	45		"	11	a da a		
av. av. av. av. av. av. b a b a b a b b b b b b b b b b b b b b		3)					15	40		11	"			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		av.						18	41.7			"			
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	B-3-2	1)					7	95	95		23	13		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	2	0.4	20,763	5.5	22.945	11	13	60	102		18	10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3)									1			
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		av.													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В33	1)					35	95	95		13	12		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	8.0 {	20.429	5.6	24.228	19	14	75		B.E.	>60			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	}					17	110	115		26	11		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		av.						22	93.3						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В-3-4	1)			1		35		100		31	8		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	0.8	21.633	5.4	25.727	19	18		80		28	8		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	J					21		65		23	6.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		av.						24.7		81.7		27.3	7.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В-3-5	1)		1			25		62		18	6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	1.2	21.398	5.9	28.068	31	24	ļ	110		24	7		
av. 27 79 19.3 6 B-3-6 1 3 1.2 21.176 5.4 29.970 42 29 70 22 5.5 av.		3	}		1			32		65		16	5 ·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		av.						27		79		19.3	6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В−3−6	1)	·		1		30		70		22	5.5		
3) av.		2	1.2	21.176	5.4	29.970	42	29	,	70		15	5		
av.		3)			ĺ									
	and provide the second second second	av.													

表7-1 燃焼 試験 結果(4) アカマツ

石原・ほか:放射線による木材・ポリマー複合体 I

	昭 射 条 件				炎の拡がり							
No.	Dose	総乾		WPC	loading	5 om	(sec)	消炎 時間	残炎 時間	残じん 時 間	炭化長	備考
	(Mrad)	里重 (g)	乎 (%)	耙取里 量(g)	(%)	5 Cm	10 cm	(sec)	(sec)	(sec)	(cm)	
В-3-7 1	1			(12	68	78		18	14	
2	1.6	21.179	5.0	32.135	52	20		72		21	8	
3	}					40		110		16	5	
av.						24		83.3		18.3	9	·
 B-3-8 1	h					20		75		19	5.5	
2	1.6	20.351	5.3	35,183	73	20		59		15	8	
3	}					35		100		24	5.5	
av.						25		78		19.3	6.3	
в-3-9 1	h					21	68		В.Е.	>60		易燃
2	0.4	21.452	5.2			18	74		"	"		"
3)]				16	51		"	"		11
av.						18.3	64.3			"		
В-3-10 1	h					16	48		В.Е.	>60		易燃
2	0.4	20.416	5.5			13	53		"	"		11
3	J					16	39		11	11		"
av.						15	46.7			"		
B3-11 1	h					21	56		B.E.	>60		易燃
2	8.0	21.829	5.5			18	51		11	"	ļ	"
3	1					20	61		"	11		"
av.						19.7	56			"		
В-3-12 1	h					17	40		В.Е.	>60		易燃
2	8_0	20.729	5.7			17	59		11	"		"
3)					18	70		11	"		"
av.						17.3	61.7		"	"		
B-3-13 1						13	59		В.Е.	>60		易燃
2	1.2	20,108	5.2			19	56		11	"		
3	5					24	70.	78		25	13.5	
av.						18.7	61.7					
В-3-14 1	h					12	65		В.Е.	>60		
2	} 1.2	22.299	4.8			20	74		"	"		
3	J					18	58		11	"		
av.						16.7	65.7			"		

表7-2 燃焼試験結果(5) アカマツ

No.			照	肘	条	件	炎の拡がり (sec)		湖水	难火	たい /			
		Dose	絶乾	含水	WPC 絶彭重	loading	5 cm	10 cm	時間	及 灭 時間	残しん時間	炭化長	備	考
		(Mrad)	(g)	(%)	量 (g)	(%)			(sec)	(sec)	(sec)	(cm)		
В-3-15	1)					19		80		28	9		
	2	1.6	20.012	4.8			19	67		B.E.	>60		易	燃
	3	}					14	37		"	"		"	
	av.						17.3							
<u>В -3-16</u>	1)					12	61		В.Е.	>60		易	燃
	2	} 1.6	20.614	5.5			18	52		11	"		//	
	3	ļ					17	49		11	11		11	
	av.						15.7	54			"			

表7-3 燃焼試験結果(6) アカマツ

10 cm の範囲の炭化長となり展炎性の抑制が明らかにされている。

ポリマーローディングと炭化長の関係は、ポリマーローディングの増加とともに炭化長は低下するが、ブ ナとアカマツとの間にかなりの差があり、消炎性能と同様な傾向が認められた。

3.3.3 残炎と残じん

表に示されているように、ブナ、アカマツともに標準試片、照射試片および木材・PVDC 複合体の消炎 性能の弱い試料ではいずれも BE となり、試験片全体が燃焼するが、残炎時間は塩素を含まない前二者に比 較してかなり短縮され ポリマーローデァングの 多いもの程その 傾向が強いことがわかる。 これは BE の木 材・PVDC 複合体であっても、 放出された塩素化合物がわずかならら燃焼連鎖阻止に寄与しているものと 考えることができる。

木材・PVDC 複合体のブナにおいては ポリマーローディングが29%以上で、 アカマツにおいては19%で

加熱中に完全に消炎し,残炎は全くない。なおアカマツのポリマーローディングの11%はロットによって異なり,BE(残炎:51~63秒)と完全消炎の二つのグループが認められた。

木材に対する含ハロゲン防火剤の最小有効限界添加率は、一般的には 5~15%^{8,9)}であるのに対し本木材・ PVDC 複合体のポリマーローディングはかなり高い。これは Sb₂O₃ やリン,ホウ酸等を含む助剤を併用し ないことにもよるが PVDC の熱分解によって生成される塩素化合物の性状、生成温度、時間等が関係する ものと考えられる。実用化の過程では上述の助剤の併用を必要としよう。

一方、ハロゲンでは固体表面での灼熱燃焼を阻止することはできない。

ブナ,アカマツともに標準試片および照射のみのグループは 60~280 秒の残じんがあり,防じん性は皆無 である。これに対し、木材・PVDC 複合体では図19に示されるようにその残じんが短縮されてきている。

ハロゲンは、リンやホウ素あるいは窒素が存在しない限り防じん性を発現しないから¹⁰⁾,本複合体で認め られる残じんの短縮は化学的作用によるものではなく、むしろ塩素によって発炎燃焼が阻害されるために灼 熱燃焼を維持するに足る十分な熱量が供給されないという物理的作用によるものと考えられる。

4 お わ り に

木材の材質の改良と難燃性附与を目的とし、塩化ビニリデンを用いて、⁶⁰Coγ線による木材・ポリマー複 合体を得た。

ブナおよびアカマツを対象とした木材・ポリマー複合体の材質および性能は上述の通りであるが、物理的、 機械的性質の向上はとくに顕著ではない。これは木材の特徴である空隙構造にポリ塩化ビニリデンを充てん した高比重の複合体を得たのにとゞまり、とくに材質の改善に大きく寄与しているとは考えられず、今後の 研究に待つところが多い。

一方,難燃性能は他は方法によるそれに比較して特筆すべきものはないが,消炎性能にかなりの効果があり,相乗効果の期待できる複合モノマーを用いた木材・ポリマー複合体の検討が望まれる。

文 献

- 1) M. GOTODA et al, JAERI, 5022, No. 2, p. 125 (1969).
- 2) M. GOTODA et al, ibid, 5022, No. 2, pp. 135, および 144 (1969).
- 3) 後藤田正夫, 竹下 登, *ibid*, 5026, No. 3 pp. 80, および 94 (1970).
- 4) K. V. RAMALINGAM, et al, J. Polym. Sci., C2, 153 (1963).
- 5) 林業試験場, 木材工業ハンドブック, p. 234 (1972).
- 6) A. BURMESTER, Holz als Roh-u. Werkstoff, 25, 11 (1967).
- 7) 5) Ø p. 164.
- 8) 石原茂久, 満久崇麿, 木材研究, No. 34, 156 (1965), No. 37, 16 (1966).
- 9) S. ISHIHARA and T. MAKU, Wood Research, No. 52, 72 (1972).
- 10) 石原茂久,木材および木質材料の防火処理に関する研究, p. 139 (1975),京都大学学位請求論文.