<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>糖質の 13C-NMR : II. キシラン系糖質の 13C-NMR</td>
</tr>
<tr>
<td>著者</td>
<td>東 順一・越島 哲夫</td>
</tr>
<tr>
<td>木野研究・資料</td>
<td>木材研究・資料</td>
</tr>
<tr>
<td>発行機関</td>
<td>京都大学</td>
</tr>
<tr>
<td>発行日</td>
<td>1983-03-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/51570</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
資料 (NOTE)

糖質の 13C-NMR

II. キシラン系糖質の 13C-NMR

東 順一*・越島哲夫*

13C-NMR Spectroscopy of Carbohydrates

II. 13C-NMR Spectroscopy of Xylan and Related Carbohydrate

Jun-ichi AZUMA* and Tetsuo KOSHIJIMA*

1. はじめに

FT-NMR の装置の普及とともに糖質の 13C-NMR に関する研究報告は年々増加の一途をたどって増加しており、糖質の 13C-NMR はその構造解析上不可欠な分析手段のひとつとなっている。我国の糖質研究者によって組織される「炭水化合物研究会」主催の第5回糖質シンポジウム（昭和57年7月22～24日、名古屋）をとりあげても、多糖の化学構造の解析を目的として14の研究報告のうち我々の研究報告を含め実に8つの報告までが 13C-NMR を成功例に引用している。13C-NMR は 1H-NMR と並んで非破壊的に分析できるという大きい利点がある。このため、今後この傾向は増々強まり、13C-NMR はその重要性を増していくことが予想される。ところで、我々は植物性糖質の 13C-NMR の研究が集大成を目的として 13C-NMR のデータを集積しつつあり、前報で高等植物の細胞壁全体の約39～43%（一次壁では約20%）を占めるとともに地球上の多糖のうち最大量を誇るセルロース系糖質についての 13C-NMR をとりあげた①。そこで今回、セルロースに次いでポリウラニル系糖質構造多糖であるキシラン系糖質をとりあげ、その 13C-NMR により得られる情報とスペクトルの帰属について、われわれが測定したデータをあわせて述べる。

2. キシランを構成する単糖

2.1. 遊離キシロース、アラビノース及びウロン酸の化学シフト

高等植物の細胞壁を構成している多糖の中では、骨格多糖であるセルロースを除けばヘミセルロースの占めるウェイトが最も高い。ヘミセルロースはマトリックス多糖の中核を成しておりセルロースミクロフィブリルをゲル状に包み込んでいると考えられる。木材中におけるヘミセルロースの構成は針葉樹と広葉樹で著しい差が認められる（表1）③。すなわち、針葉樹ではグルコンマンナンからアラビノ-(4-O-メチルグルコノ-)キシランが主にヘミセルロースであるのに対し、広葉樹ではヘミセルロース中の約90%が4-O-メチルグルコンキシランである。今、これらの値は実際、形成層を除いた木部の総体としての比較であり二次壁の寄与が大きいと考えられる。ちなみに、細胞壁を構成する層別の多糖の組成を表2に示した①。その後最近になって、一次壁の多糖組成はこの表に示されている程度単ぞなものではなく、単子葉植物と双子葉植物で大きく異なっていることが明らかになった（表3④）。高等植物の細胞壁の構造と機能の解明は我々の研究

* 木材化学部門（Research Section of Wood Chemistry）
Table 1. Composition of Hemicellulose in Domestic Soft- and Hardwoods\(^{15}\) (weight %)

<table>
<thead>
<tr>
<th>Hemicellulose</th>
<th>Soft wood</th>
<th>Hard wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4-O-methylglucurono)xylan</td>
<td>1 - 2</td>
<td>20 - 30</td>
</tr>
<tr>
<td>glucomannan</td>
<td>16 - 18</td>
<td>2 - 3</td>
</tr>
<tr>
<td>arabinogalactan(4-O-methylglucurono)xylan</td>
<td>8 - 10</td>
<td>+</td>
</tr>
<tr>
<td>galactoglucomannan</td>
<td>1 - 4</td>
<td>+</td>
</tr>
<tr>
<td>arabinogalactan</td>
<td>2 - 3</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2. Relative Percentage of Polysaccharides in Different Layers of the Cell Wall\(^{5,7}\)

<table>
<thead>
<tr>
<th>Polysaccharide</th>
<th>M + P(^a)</th>
<th>S1 Outer</th>
<th>S2 Outer</th>
<th>S2 + S3 Inner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus sylvestris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactan</td>
<td>20.1%</td>
<td>5.2%</td>
<td>1.6%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Cellulose</td>
<td>35.5</td>
<td>61.5</td>
<td>66.5</td>
<td>47.5</td>
</tr>
<tr>
<td>Glucomannan</td>
<td>7.7</td>
<td>16.9</td>
<td>24.6</td>
<td>27.2</td>
</tr>
<tr>
<td>Arabinan</td>
<td>29.4</td>
<td>0.6</td>
<td>Nil</td>
<td>2.4</td>
</tr>
<tr>
<td>Arabinogalactan-xylan</td>
<td>7.3</td>
<td>15.7</td>
<td>7.4</td>
<td>19.4</td>
</tr>
<tr>
<td>Picea abies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactan</td>
<td>16.4</td>
<td>8.0</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Cellulose</td>
<td>33.4</td>
<td>55.2</td>
<td>64.3</td>
<td>63.6</td>
</tr>
<tr>
<td>Glucomannan</td>
<td>7.9</td>
<td>18.1</td>
<td>24.4</td>
<td>23.7</td>
</tr>
<tr>
<td>Arabinan</td>
<td>29.3</td>
<td>1.1</td>
<td>0.8</td>
<td>Nil</td>
</tr>
<tr>
<td>Arabinogalactan-xylan</td>
<td>13.0</td>
<td>17.6</td>
<td>10.7</td>
<td>12.7</td>
</tr>
<tr>
<td>Betula verrucosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactan</td>
<td>16.9</td>
<td>1.2</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Cellulose</td>
<td>41.4</td>
<td>49.8</td>
<td>48.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Glucomannan</td>
<td>3.1</td>
<td>2.8</td>
<td>2.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Arabinan</td>
<td>13.4</td>
<td>1.9</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Arabinogalactan-xylan</td>
<td>25.2</td>
<td>44.1</td>
<td>47.7</td>
<td>35.1</td>
</tr>
</tbody>
</table>

\(^a\)Also contains a high percentage of pectic acid.

Table 3. Composition of Primary Wall of Higher Plants\(^{6-9}\)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Monocotyledon(^a)</th>
<th>Dicotyledon(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural polysaccharide</td>
<td>cellulose (%)</td>
<td>cellulose (%)</td>
</tr>
<tr>
<td>Matrics polysaccharides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectin</td>
<td>rhamnogalacturonan (%)</td>
<td>arabinoxylan (%)</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>(1-3,1-4)-(\beta)-D-glucan (%)</td>
<td>arabinoxylan (%)</td>
</tr>
<tr>
<td>arabinogalactan</td>
<td>arabinoxylan (%)</td>
<td></td>
</tr>
<tr>
<td>xyloglucan (4)</td>
<td>xyloglucan (%)</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>hydroxyproline-rich glycoprotein (%)</td>
<td>hydroxyproline-rich glycoprotein (%)</td>
</tr>
</tbody>
</table>

Values in the parentheses are in weight %.

133
D-キシロピラノノンドデポリマーに近いものや、ある種の海藻のなかには (1→3)-β-D-キシランや (1→3, 1→4)-β-D-キシランが存在している。また、カバ材キシランにはガラクトロン酸が還元末端として著量に存

(1→4)-β-D-xylan

(1→3)-β-D-xylan

(1→3,1→4)-β-D-xylan

(4-O-methylglucurono)xylan

(4-O-methylglucuronoro)xylan

arabino-(4-O-methylglucurono)xylan

arabino-glucurono-xylan

Fig. 1. Schematic chemical structure of xylans

Fig. 2. Constituent monosaccharides in xylan. (1) d-Glucuronic acid; (2) 4-O-Methylglucuronic acid; (3) d-Galacturonic acid; (4) L-Arabinose; (5) d-Xylose

Fig. 3. Proton noise decoupled 13C-NMR spectra in D₂O. (a) D-Xylopyranose, (b) D-Arabinopyranose
東・越島：糖質の 13C-NMR

Table 4. 13C Chemical Shifts for α- and β-D-Xylopyranoses (ppm)

<table>
<thead>
<tr>
<th>α-D-Xylopyranose(6)</th>
<th>β-D-Xylopyranose(7)</th>
<th>Solvent</th>
<th>Temperature (℃)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
</tr>
</tbody>
</table>

在することも報告されている。

以上まとめると、植物体中に含まれるキシラン系糖質を構成する単糖は主として図2に掲げた5種である。キシロピラノースの水溶液中の 13C-NMR スペクトルは前報で述べた β-グロコピラノースの場合と同様数多くの研究者によって測定されており、そのスペクトルを図3（a）に、化学シフト値を表4に列挙した（化学シフトは TMS 標準値として ppm で表わし、CS₂ の場合は 198.5 ppm として TMS 基準に換算した）。β-キシロースは水溶液中ではグルコースと同様ほぼ完全にビラノース型の 13C コンホメーションをとっており、α-アノマー (6) 及び β-アノマー (7) は 34.8:65.2 の平衡混合物として存在し、10個のシグナルを与える。C-1 の化学シフトは Hall と Johnson (10-18) による先駆的な研究により帰属が行なわれた。その他の環内炭素のシグナルは Dorman と Roberts により帰属されたが (18-20)、α-アノマー
の C-2 と C-3 の帰属が誤まっており、D 化した誘導体の同位体効果を用いて修正された完全帰属がなされた。D-キシロースの場合、C-5 以外の化学シフトは D-グルコースと似ているが、C-5 は D-グルコースの場合より高磁場へシフトしている。α-アラビノマーの方が β-アラビノマーより高磁場シフトしているのはグルコースの場合と同様にアラビノース基による違いにより説明される。この違いは Perlin 等により一般化され前報で述べたのでここでは省略する。化学シフトは分子軌道法に基づいて算出した電子密度と相関係があり、Perlin 等により分析された (図 4)。C-1、3 及び 5 は化学シフトと電子密度との間に負の直線関係があるのに対し、C-2 及び C-4 はこの直線から高磁場側へ 5 ppm 以上ずれる。この現象は C-2、3 及び 5 の炭素原子が同一平面上に、そして C-2 及び C-4 の炭素原子が環内酸素原子と同一平面上にあることを示唆している。

次に、キシロース系糖を構成する単糖のなかでもキシロース以外の中性糖としてはアラビノースが差別される。アラビノースの場合、天然にはもっぱらブラノース型で見出されるがピラノースの場合もあわせてその化学シフトを列挙した（表 5）。アラビノースの場合、α-系列（10, 11）で90%以上が \(^1^\)C コホメーシン

<table>
<thead>
<tr>
<th>Table 5. (^1^)C Chemical Shifts for α- and β-D(1-L)-Arabino-pyranoses and -Arabinofuranoses (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>α-D-E-L-Arabino-pyranose (5,11)</td>
</tr>
<tr>
<td>β-D-E-L-Arabino-pyranose (9,10)</td>
</tr>
</tbody>
</table>

Assignment of the resonances indicated by * may be interchanged.

α-アラビノピラノースの化学シフトをとる。そのアラビノピラノースの化学シフトもキシロースと同様 Dorman ら Roberts 等及び Perlin 等によってはじめて帰属されたが、その後重水素処理による同位体効果が検討され β-アラビノピラノースの C-2 と C-4 の帰属が逆であることが明らかになった。α-アラビノピラノースのスペクトルを図 3-（b）に示した。完全なシンガルの帰属には
Table 6. Chemical Shifts for Free Acids and Na Salts of d-Glucuronic and d-Galacturonic acids and Their Methyl Glycosides (ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>α-Form</th>
<th>β-Form</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-Glucopyranuronic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium d-glucopyranurate</td>
<td>92.77</td>
<td>93.02</td>
<td>NaOD·H₂O</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Sodium d-galactopyranurate</td>
<td>92.90</td>
<td>93.04</td>
<td>NaOD·H₂O</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>d-Glucopyranonic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methyl α-d-glucopyranosiduronic acid</td>
<td>100.7</td>
<td>104.3</td>
<td>D₂O</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>methyl β-d-glucopyranosiduronic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methyl (4-O-methyl-α-d-glucopyranosiduronic acid)</td>
<td>101.1</td>
<td>100.9</td>
<td>D₂O</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>methyl (2-O-methyl-α-d-glucopyranosiduronic acid)</td>
<td>98.5</td>
<td>98.3</td>
<td>D₂O</td>
<td>33</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 7. ¹³C Chemical Shifts for Methyl α- and β-Xylopyranosides and Furanosides (ppm)

<table>
<thead>
<tr>
<th>Methyl α-β-Xylopyranoside</th>
<th>Methyl β-β-Xylopyranoside</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1 C-2 C-3 C-4 C-6 OCH₃</td>
<td>C-1 C-2 C-3 C-4 C-6 OCH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.4</td>
<td>104.9</td>
<td>H₂O</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>99.3</td>
<td>104.8</td>
<td>H₂O</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>100.29</td>
<td>104.82</td>
<td>D₂O</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>102.1</td>
<td>106.55</td>
<td>H₂O</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>98.3</td>
<td>105.8</td>
<td>D₂O</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>100.6</td>
<td>105.1</td>
<td>D₂O</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>100.2</td>
<td>105.1</td>
<td>D₂O</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>100.18</td>
<td>105.7</td>
<td>D₂O</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>100.96</td>
<td>104.81</td>
<td>D₂O</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>Methyl α-β-Furanoside</td>
<td>Methyl β-β-Furanoside</td>
<td>Solvent</td>
<td>Temperature (°C)</td>
<td>Reference</td>
</tr>
<tr>
<td>C-1 C-2 C-3 C-4 C-6 OCH₃</td>
<td>C-1 C-2 C-3 C-4 C-6 OCH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.0</td>
<td>109.6</td>
<td>D₂O</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>103.0</td>
<td>109.7</td>
<td>D₂O</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>103.0</td>
<td>109.6</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
</tbody>
</table>
木材研究・資料 第17号（1983）

13Cで濃縮した糖を用いる呼位体法を用いるのが得策と思われる。なお、KotowyczとLemieuxはアモル系の立体配置や水酸基の配向（キシシンとエクアトリアル）をパラメーター化し、ペントピラノースとヘキサピラノースの13C-NMRの化学シフトの経験則を提唱している。

最後に、キシリン系糖類を構成する単糖としてはウロン酸があげられる。ここではグルコン酸（1）とガラクトス酸（3）について13C-NMRを測定し、遊離の状態とナトリウム塩を形成した場合の化学シフトとを比較している（表6）。これらの帰属は以下のようにしてなされた。すなわち、C-1とC-6とはそれぞれアリノ糖とカルボニル炭素であるので他の環内炭素とは明確に分離された。残りのC-2〜C-5のシグナルは遊離酸とナトリウム塩の化学シフトを比較して行なわれた。まず塩形成によるカルボキシル基のイオン化によって最も大きく低磁場シフトする炭素がC-5と帰属され、C-4からC-3、C-2の順にシフトの程度が減少することを利用してC-4〜C-2が帰属された。なお、C-2とC-3の化学シフトは接近していられるため、後で述べるD-グルコン酸のメチルβ-グロコシドのNMRのデータと比較検討した。これらのウロン酸の遊離、塩を問わずいずれの場合においても、次のような共通点が見出された。すなわち、(i)グルコン酸の場合、α-アリノ糖のC-2とC-3はβ-アリノ糖よりも2.5〜3.0 ppm小さい（低磁場側にある）；(ii)グロコン酸のα-アリノ糖のC-1とC-5はガラクトス酸のα-アリノ糖のC-1、2、3及び5の場合と同様にβ-アリノ糖より3.5〜4.5 ppmも小さい；(iii)グロコン酸及びバクチン酸のα-アリノ糖のC-4とC-6の化学シフトは両者共にβ-アリノ糖より0〜1.0 ppm大きい（低磁場側にある）である。これらの特徴は他の中性糖やアミノ糖にも認められている。なおさらに、中性でシフトを測定とした知られているランタンイオン（La³⁺）、ユーロヒウムイオン（Eu³⁺）、プラセオジュウムイオン（Pr³⁺）やネオジュウムイオン（Nd³⁺）の存在下で全素のランタイムイオンを調し、錯体形成、接触及び振接体の三種の効果を分離できることを明らかにした。特にα-アリノ糖のC-1における振接体のβ-アリノ糖の場合より極めて大きいといわれる。

一方、遊離の4-O-メチルグロコン酸については測定例はなく、次にメチルグロコシドの項で詳しく述べる。

2.2 メチルグロコシド及び部分メチル化物の化学シフト

メチルα-L-キシロピラノンド（12）及びβ-L-キシロピラノンド（13）の13C-NMRスペクトルを図5。

Fig. 5. 13C-NMR spectra of methyl α- and β-L-xylopyranosides in D₂O.
(a) Methyl α-L-xylopyranoside; (b) Methyl β-L-xylopyranoside°

—138—
化学シフトを表7に列挙した。両者共に 13C コンホメーションをとっており、β-アノマーはアキシアルプロトンをもつ。一方 α-アノマーはエクワトリアルプロトンをもっている。このアノマー位のメトキシル基はその誘起効果のため水酸基の場合と同様アキシアル C_1-O1 結合した炭素原子の遮へい度を増す。従って α-アノマーの方が β-アノマーより高磁場に現われる。メチル化による α-効果、β-効果及び γ-効果についてはグルコースの場合と同様のことがあてはまる。すなわち、(i) α-炭素の化学シフトが 7～11 ppm 低磁場シフト（α-効果）する；(ii) β-炭素の化学シフトはエクワトリアルの水酸基を持つ場合 1～2 ppm の高磁場シフトし、アキシアルの水酸基を持つ場合 4～5 ppm の高磁場シフトする；(iii) γ-炭素の化学シフトはほとんど置換基効果を受けず $<$0.3 ppm のシフトを示すのみである。なお表7には植物体には見出されていないが、キシロフラノースのメチルグリコンドの化学シフトもあわせて掲げた。

メチル α-L-アラビノピラノノド及び β-L-アラビノピラノノドは 13C コンホメーションをとり、キシロースの場合と同一のことがあてはまる。一方、メチル α-D-アラビノピラノノド及び β-D-アラビノピラノノドの場合は90％以上が 13C コンホメーションをとっている。しかしながら、13C-NMR では D と L との対象体間の区別はできず両者は同一の化学シフトを示す。13C-NMR スペクトルを図6、化学シフトを表8に示した。

![Fig. 6. 13C-NMR spectra of methyl α- and β-D-arabinopyranosides in D$_2$O.](image)

(a) Methyl α-D-arabinopyranoside; (b) Methyl β-D-arabinopyranoside$^{(21)}$
Table 8. \(^{13}\)C Chemical Shifts for Methyl Arabinopyranosides and Furanosides (ppm)

<table>
<thead>
<tr>
<th>Methyl α-L-arabinopyranoside</th>
<th>Methyl β-D-arabinopyranoside</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
</tr>
<tr>
<td>107.0</td>
<td>73.35</td>
<td>75.35</td>
<td>71.15</td>
<td>68.9</td>
</tr>
<tr>
<td>104.06</td>
<td>72.50</td>
<td>70.85</td>
<td>68.35</td>
<td>66.15</td>
</tr>
<tr>
<td>104.76</td>
<td>71.61</td>
<td>73.29</td>
<td>69.15</td>
<td>66.95</td>
</tr>
<tr>
<td>105.1</td>
<td>71.8</td>
<td>73.4</td>
<td>69.4</td>
<td>67.3</td>
</tr>
<tr>
<td>104.96</td>
<td>71.69</td>
<td>73.36</td>
<td>69.05</td>
<td>66.81</td>
</tr>
<tr>
<td>106.8</td>
<td>72.1</td>
<td>74.2</td>
<td>69.0</td>
<td>66.5</td>
</tr>
<tr>
<td>104.90</td>
<td>71.50</td>
<td>73.16</td>
<td>68.96</td>
<td>67.00</td>
</tr>
<tr>
<td>104.83</td>
<td>71.59</td>
<td>73.28</td>
<td>69.02</td>
<td>66.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methyl α-L-arabinofuranoside 94</th>
<th>Methyl β-D-arabinofuranoside 95</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
</tr>
<tr>
<td>109.5</td>
<td>82.0</td>
<td>77.9</td>
<td>84.8</td>
<td>62.5</td>
</tr>
<tr>
<td>109.2</td>
<td>81.8</td>
<td>77.5</td>
<td>84.9</td>
<td>62.4</td>
</tr>
<tr>
<td>109.3</td>
<td>81.9</td>
<td>77.5</td>
<td>84.9</td>
<td>62.4</td>
</tr>
<tr>
<td>109.3</td>
<td>81.9</td>
<td>77.5</td>
<td>84.9</td>
<td>62.4</td>
</tr>
<tr>
<td>109.4</td>
<td>81.8</td>
<td>77.6</td>
<td>84.7</td>
<td>62.31</td>
</tr>
<tr>
<td>109.14</td>
<td>81.55</td>
<td>77.19</td>
<td>84.69</td>
<td>62.09</td>
</tr>
<tr>
<td>109.90</td>
<td>81.73</td>
<td>77.51</td>
<td>84.69</td>
<td>62.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5v n = 14, 15</th>
<th>5v n = 14, 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

ペントピラノドの同位体効果は Ho 等によりなされた(23)。彼らは OH 型のものと OD 型のものを DMSO-4d と D₂O-H₂O 系の溶媒中で測定し、OHの OD 化による水酸基の結合した α-炭素の化学シフトの高磁場シフトは 0.1〜0.2 ppm であるのに対し、他のシグナルの移動は 0.00〜0.05 ppm と小さいことを明らかにした。このシフトの値の大きさは先に述べたメチル基による β-効果に相当している。

次に、メチルペントフラノドの化学シフトである。臼井等により、メチル (α,β)-リポフラノドとメチル (α,β)-アラビノフラノド (14. 15) については初めて測定された(23)。これらのうちアラビノフラノドの場合の化学シフトも表8に示した。彼らは、1,2-trans の水酸基を有するメチル β-D-リポフラノドとメチル α-D-アラビノフラノド (14) のアミノ酸性炭素の化学シフトが 1,2-cis のメチル α-L-リポフラノドとメチル β-L-アラビノフラノド (15) の場合より 5〜6 ppm 低磁場にあること、及びメチル化ペントピラノドの場合より低磁場にあることを示唆した。彼らの研究はその後 Goring と Mazurek(14) により発展され総括された(表8)。彼らは、メチルアラビノ、リキソ、リポ及びキシロ (α, β) の8種のグリコフラノド及びそれらの部分メチル化物について \(^{13}\)C-NMR を測定した。完全な化学シフトの帰属は部分
<table>
<thead>
<tr>
<th>Compound</th>
<th>Partially methylated α-D-Xylopyranose</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-O-methyl α-D-Xylopyranose</td>
<td>90.63 81.57 72.92 70.39 61.75 60.58</td>
<td>D₂O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>3-O-methyl α-D-Xylopyranose</td>
<td>93.20 71.68 83.35 69.46 62.30</td>
<td>D₂O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>4-O-methyl α-D-Xylopyranose</td>
<td>92.92 72.33 74.92 79.61 59.44</td>
<td>D₂O</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>92.99 72.48 75.10 79.59 57.77</td>
<td>D₂O</td>
<td>80</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Partially methylated β-D-Xylopyranose</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-O-methyl β-D-Xylopyranose</td>
<td>97.30 84.44 76.30 70.28 65.90 58.28</td>
<td>D₂O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>3-O-methyl β-D-Xylopyranose</td>
<td>97.58 74.24 86.09 69.46 65.95</td>
<td>D₂O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>4-O-methyl β-D-Xylopyranose</td>
<td>97.38 72.58 75.61 79.61 63.61</td>
<td>D₂O</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>97.48 72.58 75.69 79.59 63.69</td>
<td>D₂O</td>
<td>80</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Partially methylated methyl α-L-Arabino furanoside</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl 2-O-methyl α-L-Arabinofuranoside</td>
<td>107.3 91.5 75.5 84.3 62.0</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>methyl 3-O-methyl α-L-Arabinofuranoside</td>
<td>109.6 78.8 87.8 84.3 62.7</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>methyl 4-O-methyl α-L-Arabinofuranoside</td>
<td>108.2 87.7 78.3 83.1 73.0</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Partially methylated methyl β-L-Arabino furanoside</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl 2-O-methyl β-L-Arabinofuranoside</td>
<td>101.7 86.1 74.6 83.3 64.2</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>methyl 3-O-methyl β-L-Arabinofuranoside</td>
<td>103.6 77.1 85.8 82.5 64.8</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>methyl 4-O-methyl β-L-Arabinofuranoside</td>
<td>103.3 77.2 75.9 81.0 75.1</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
</tbody>
</table>
重水素化物を用いて同位体効果を分析することによりなされた。その結果、いずれのメチルペントフランソドも低磁場から高磁場へ向かって、C-1, C-4, C-2, C-3, C-5 及びメトキシアルキの順にシフトが現われることが明らかになった。アラビノースとキシロース、及びこれらのメチルグリコンドの化学シフトは Barker と Walker によってまとめられている285。

次に瞬間の結合様式に関する知見を得るために不可欠な部分メチル化物の 13C-NMR スペクトルであるが、ペントースの場合は、ヘキソースの場合と同様に分析されていない。今、キシロピラノースの部分メチル化物の化学シフト及びアラビノースの部分メチル化メチルフラノンドの化学シフトの値を表10に示した。

メチル基は 8〜11 ppm の低磁場シフト（α-効果）と 0.3〜2.0 ppm の高磁場シフト（β-効果）の置換基効果を引きおこすが、この部分メチル化による置換基効果は上記の一般化の範囲に入り、これは逆に化学シフトよりメチル基の置換位置の決定に利用できることを示している。部分メチル化キシロースの化学シフトについては我々のデータを列挙した。

ウロン酸のメチルグリコンドメチルエステルの 13C-NMR については Shashkov 等によって詳細に検討された286。彼らは (29)〜(31) に示した 8 種の化合物について 13C-NMR を測定した。各化合物の化学シフトを表10に示した。上記の種々の部分メチル化物におけるメチル化による置換基効果を分析したところ次のようになった。すなわち、(i) α-効果はメチル基の位置に依存せず一定で 9.0〜10.0 ppm の低磁場シフトする；(ii) β-効果はメチル基の位置により、シフトの大きさも方向も異なる。すなわち、C-2 位がメチル化されている場合は β-効果は常にマイナス（低磁場シフト）で、C-3 より C-1 の方がシフト値が大きい。C-3 位がメチル化されている場合は β-効果はプラス（低磁場シフト）でシフト値も小さく（<0.5 ppm）で不規則であり、C-4 位がメチル化されている場合は C-3 に 0.33〜1.1 ppm の低磁場シフトと C-5 に 0.55〜0.65 ppm の高磁場シフトがおこる；(iii) γ-効果の大きさは <0.75 ppm と小さいがシフトの方向に差が認められる。すなわち、C-4 (HO-2 がメチル化) 及び C-2 (HO-4 がメチル化) での γ-効果はプラスで低磁場シフトをみられる。これに対し、C-6 (HO-4 がメチル化) での γ-効果はマイナスで高磁場シフトがみられる。一方、C-1 及び C-5 (HO-3 がメチル化) での γ-効果は不規則でシフトの方向が一定しない。このような β-効果のメチル基の位置依存性と低磁場シフト及び先に述べた β-効果の不規則性の現象は次のよう説明された。すなわち、メチル化に起因する β-効果はメトキシアルキの誘起効果によってひきおこされる小さい（〜1 ppm）低磁場シフトと β-炭素上のメチルプロトンと隣接位のプロトンとの γ-gauche 相互作用によってひきおこされる高磁場シフトとの二成分の和のかねあ
Table 10. 13C Chemical Shifts for Uronic Acid Derivatives (ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Derivatives of D-glucopyranuronic acid</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl (methyl α-D-glucopyranosid)uronate</td>
<td>C-1 71.95 C-2 73.7 C-3 72.4 C-4 71.87</td>
<td>D$_2$O</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>2-O-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-O-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-O-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-di-O-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methyl (methyl α-galactopyranosid)uronate</td>
<td>C-1 73.7 C-2 76.7 C-3 76.3 C-4 72.4</td>
<td>D$_2$O</td>
<td>33</td>
<td>14</td>
</tr>
</tbody>
</table>

Assignment of the resonances indicated by * may be interchanged.
2.3 モノマーのアセチル誘導体の化学シフト

広葉樹キシロースは C-2 か C-3 位が部分的にアセチル化されている。従ってそのニューティプな状態の
\(^{13}C\)-NMR スペクトルを解析し構造との対応を解明するためには、キシロース及びメチルキシロシドのアセチル誘導体の
\(^{13}C\)-NMR スペクトルの帰属を完全に行なう必要がある。遊離キシロースのアセチル誘導体

\[
\begin{array}{c|c|c|c|c|c|c}
R^1 & R^2 & R^3 & R^4 & R^5 & R^1 & R^2 & R^3 & R^4 & R^5 \\
41 & H & OAc & Ac & Ac & Ac & 54 & OMe & H & Ac & Ac \\
42 & OAc & H & Ac & Ac & Ac & 55 & OAc & H & Ac & Me \\
43 & H & OH & Ac & Ac & Ac & 56 & H & OMe & Ac & Ac \\
44 & H & OAc & H & Ac & Ac & 57 & OMe & H & Ac & Ac \\
45 & H & OAc & Ac & H & Ac & 58 & OMe & Ac & Ac & H \\
46 & H & OAc & Ac & Ac & H & 59 & OMe & Ac & Ac & H \\
47 & OH & H & Ac & Ac & Ac & 60 & OMe & H & Ac & H \\
48 & OAc & H & Ac & Ac & H & 61 & OMe & Ac & H & H \\
49 & OAc & H & Ac & Ac & H & 62 & OMe & Ac & H & H \\
50 & OAc & H & Ac & Ac & H & 63 & OMe & H & Ac & Me \\
51 & OH & H & Ac & Ac & H & 64 & OMe & H & Ac & H \\
52 & OAc & H & Ac & Ac & H & 65 & OMe & H & Ac & H \\
53 & OAc & H & Ac & Ac & H & 66 & OMe & H & Ac & Me \\
\end{array}
\]

（41～52, 55）の化学シフト値を表11に、メチルグリコンドのアセチル化物（53, 54, 56～62, 66～69）の
場合を表12にそれぞれ列挙した。表4と比較すると、完全アセチル化物の場合アセチル基が置換した炭素原子
の化学シフトは未置換物の値より相対的に高磁場シフトしている。この現象はグルコースの場合と同様で

（1983）
Table 11. 13C Chemical Shifts for Partially Acetylated Xylopyranose (ppm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Partially acetylated α-Xylopyranose</th>
<th>Solvent Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Xylopyranose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-tetra-O-acetyl</td>
<td>93.08 72.38 73.75 70.28 61.81</td>
<td>CDC$_3$</td>
<td>30</td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl</td>
<td>92.93 69.446 69.446 68.706 60.7341</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,3,4-tri-O-acetyl</td>
<td>90.2273 71.9420 69.4000 69.3039 58.4008</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-tri-O-acetyl</td>
<td>91.9023 69.8127 72.4499 68.3500 60.7342</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-tri-O-acetyl</td>
<td>88.7176 71.8617 69.0359 71.5070 60.9041</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2,3-di-O-acetyl</td>
<td>90.4458 72.3129 73.4396 68.9368 61.5352</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>β-Xylopyranose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl</td>
<td>97.51 74.96 76.74 70.12 66.01</td>
<td>CDC$_3$</td>
<td>30</td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl</td>
<td>92.1093 69.6839 71.1478 68.4593 62.9345</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,3,4-tri-O-acetyl</td>
<td>95.8589 73.0554 71.7546 69.1330 62.7246</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-tri-O-acetyl</td>
<td>94.5481 70.6137 73.8179 68.8174 63.0402</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,2,3-tri-O-acetyl</td>
<td>92.4605 72.2694 71.9488 71.4633 63.0402</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,2-di-O-acetyl</td>
<td>92.4363 69.9835 74.8860 68.0549 65.8802</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3-O-methyl</td>
<td>92.8975 72.7256 75.0802 70.1525 66.2201</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1,2,4-tri-O-acetyl</td>
<td>92.1935 69.4951 78.1630 69.2786 62.1420</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Table 12. 13C Chemical Shifts for Partially Acetylated β-Xylopyranosides (ppm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Partially acetylated methyl β-Xylopyranoside</th>
<th>Solvent Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl α-Xylopyranoside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl</td>
<td>96.40 70.66 69.10 68.77 57.86 54.73</td>
<td>D$_2$O</td>
<td>30</td>
</tr>
<tr>
<td>2,3-di-O-acetyl</td>
<td>96.9 71.0 73.3 69.0 61.4 55.2</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>2,4-di-O-acetyl</td>
<td>97.0 73.4 68.8 71.8 58.3 55.3</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3,4-di-O-acetyl</td>
<td>99.3 71.1 72.8 68.9 58.6 55.6</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>α</td>
<td>99.5729 71.0749 73.0166 69.1087 58.8465</td>
<td>CDC$_3$</td>
<td>30</td>
</tr>
<tr>
<td>2-O-acetyl</td>
<td>97.2 73.3 72.0 70.3 61.0 55.5</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3-O-acetyl</td>
<td>70.6 70.6 76.6 68.4 61.7 55.4</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4-O-acetyl</td>
<td>99.6 71.5 72.3 71.5 58.6 55.4</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Methyl β-Xylopyranoside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl</td>
<td>102.2 - - - 57.5</td>
<td>DMSO-d$_4$</td>
<td>9</td>
</tr>
<tr>
<td>α</td>
<td>100.95 70.21 70.99 68.32 61.30 55.84</td>
<td>D$_2$O</td>
<td>30</td>
</tr>
<tr>
<td>β</td>
<td>101.6362 70.8322 71.6040 69.046 62.0449</td>
<td>CDC$_3$</td>
<td>34</td>
</tr>
<tr>
<td>3,4-di-O-acetyl</td>
<td>104.2921 71.7548 73.8660 69.3757 62.5394</td>
<td>CDC$_3$</td>
<td>34</td>
</tr>
<tr>
<td>2-O-acetyl</td>
<td>102.3 73.9 74.9 70.1 65.4 55.9</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3-O-acetyl</td>
<td>103.9 71.2 77.5 68.8 65.1 57.0</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4-O-acetyl</td>
<td>104.1 73.3 73.3 71.5 62.5 57.1</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4-O-methyl-1,2,3-di-O-acetyl</td>
<td>101.90 71.34 73.39 77.01 62.97 56.70 65.00 59.00</td>
<td>CDC$_3$</td>
<td>24</td>
</tr>
</tbody>
</table>

Assignment of the resonances indicated by * may be interchanged.

\[\delta_{\text{H}} = \delta_{\text{C}} + \delta_{\text{Ac}} \times C_{\text{Ac}} \]

\[\Sigma_{\text{Ac}} \quad (\alpha \text{ から} \beta \text{ にいたる炭素原子で、遊離水酸基をアセチル化した時の化学シフトの移動}) \]

この式を用いて例えば、2,3-ジ-0-アセチル-α-D-キシロースの化学シフトは次のようにして計算される。

\[\delta_{C-1}^{\prime} = \delta_{C-1} \times \frac{\text{Ac}}{\text{Ac} + \text{Ac}_2} \]

実測値と計算値とは比較的よく一致していることがわかる。同様にして、メチル（α 及び β）-キシロピラノノドのアセチル誘導体の場合も測定されたが、アセチル基の β-位の炭素は明瞭な高磁場シフトを示すものの、遊離のキシロースの場合と同様アセチル基の置換基効果はグルコースやラムノースのメチル誘導体と異なり簡単ではないことが明らかにされた。なお測定例は少ないがアラビノース及びそのメチルグリコリドのアセチル化物（70～73）の化学シフトを表13に示した。

![Diagram](image)

Table 13. \(^{13}\text{C}\) Chemical Shifts for Arabinose Derivatives (ppm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Acetylated α-arabinopyranose and α-arabinopyranoside</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-α-arabinopyranose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-tetra-O-acetyl-</td>
<td>(\delta \approx 92.16)</td>
<td>CDCl(_3)</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>1,2,4-tri-O-acetyl-</td>
<td>(\delta \approx 92.1)</td>
<td>CDCl(_3)</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>1,2,4-tri-O-acetyl-</td>
<td>(\delta \approx 92.1)</td>
<td>CDCl(_3)</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>β-α-arabinopyranose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-tetra-O-acetyl-</td>
<td>(\delta \approx 90.9)</td>
<td>CDCl(_3)</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl α-α-arabinopyranoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl-</td>
<td>(\delta \approx 101.9)</td>
<td>CDCl(_3)</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl β-α-arabinopyranoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4-tri-O-acetyl-</td>
<td>(\delta \approx 97.43)</td>
<td>CDCl(_3)</td>
<td>30</td>
<td>13</td>
</tr>
</tbody>
</table>

グルコロン酸のメチルエステルメチルグリコリドのアセチル誘導体（63～65）の \(^{13}\text{C}\)-NMR スペクトルは Schashkov 等により詳細に検討され（表10）遊離水酸基をアセチル化した場合の化学シフトの移動に関して次の通則が明らかにされた。すなわち，（i）アセチル基に対し α-炭素はコンホメシジ
のに柔軟な場合、アセチル化によりほとんどのワッペン（0～2 ppm）の低磁場シフトする（α-効果）；(ii) アセチル基に対しβ-炭素はアセチル化によりメチル化の場合より一定（約 2 ppm、立体配置の変化に無関係）高磁場シフトする（β-効果）；(iii) γ-効果は小さい（<0.5 ppm）という通則である。

2.4. スピン結合定数

13C で標識した単糖のアノマール位の炭素と水素間のスピン結合定数（1J_{13C-H}) が α 及び β の両アノマーの差を反映していることは糖質の 13C-NMR の初期の研究において明らかにされた29。例えば α-と β-D-[1-13C] グルコースの 1J_{C-1,H-1} 値はそれぞれ 168 Hz と 160 Hz である。糖質の 1J_{C,H} 値はアノマー炭素が最も大きく、他の炭素については 13C の遮蔽が増大するにつれ次第に減少する。PFT 法では n.o.e.を保持したままの gated-decoupling 法により 13C を標識しない天然の糖を用いて容易に測定することが可能。Bock らにより組織的に研究がなされた30,31。C1 コンホメーションをとっているメチルグリコシドのアノマールの水素原子を有する場合（β-アノマー）、1J_{C-1,H-1} の値は 158～162 Hz であるのに対し、エタリアシルの水素原子を有する場合（α-アノマー）は 169～171 Hz であり差が約 10 Hz も存在する。この現象は環内酸素の二つの有効電子対とアノマーのプロトンとの二面体角に起因し、この角度が小さい程スピン結合が大きく影響を及ぼす。以上のことから、1J_{C-1,H-1} の値はオリゴ糖や多糖のアノマーの立体配置に依存することがわかる。従って 1J_{C-1,H-1} の値はアノマーの立体配置の決定に用いることとができる。ペントースの 1J_{C-1,H-1} の値はヘキソースの場合とよく一致しており表 14 及び 15 にキシロース、アラビノースのスピン結合定数を掲げた。

D-キシロピラノース及びそのメチル 配糖体の 1J_{C-1,H-1} 値については、α-アノマーの場合 170 Hz であるのに対し、β-アノマーの場合は 158～160 Hz でありほぼ100％が C1 コンホメーションをとっているこ

Table 14. 13C-H Coupling Constants for D-Xylose Derivatives (Hz)

<table>
<thead>
<tr>
<th>Compound</th>
<th>1J_{C1-H1}</th>
<th>1J_{C2-H2}</th>
<th>1J_{C3-H3}</th>
<th>1J_{C4-H4}</th>
<th>1J_{C10a-H10a}</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-D-Xylopyranose</td>
<td>(6) 170</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D2O</td>
<td>room temp.</td>
<td>39</td>
</tr>
<tr>
<td>methyl α-D-Xylopyranoside</td>
<td>(6) 170</td>
<td>145</td>
<td>145</td>
<td>147</td>
<td>151</td>
<td>D2O</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl 2,3,4-tri-O-acetyl-α-D-Xylopyranoside</td>
<td>171.0</td>
<td>153</td>
<td>155</td>
<td>147.5</td>
<td>142</td>
<td>CDCl3</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>1,2,3,4-tetra-O-acetyl-α-D-Xylopyranoside</td>
<td>(4) 177</td>
<td>153</td>
<td>152</td>
<td>148</td>
<td>-</td>
<td>CDCl3</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>methyl 2,3,5-tri-O-acetyl-α-D-Xylopyranoside</td>
<td>176.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CDCl3</td>
<td>-</td>
<td>61</td>
</tr>
<tr>
<td>β-D-Xylopyranose</td>
<td>(7) 150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D2O</td>
<td>room temp.</td>
<td>39</td>
</tr>
<tr>
<td>methyl β-D-Xylopyranoside</td>
<td>(7) 169.5</td>
<td>147.5</td>
<td>145</td>
<td>147</td>
<td>150</td>
<td>D2O</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl 2,3,4-tri-O-acetyl-β-D-Xylopyranoside</td>
<td>(6) 158</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D2O</td>
<td>room temp.</td>
<td>39</td>
</tr>
<tr>
<td>1,2,3,4-tetra-O-acetyl-β-D-Xylopyranoside</td>
<td>(6) 159</td>
<td>144</td>
<td>144</td>
<td>147</td>
<td>150</td>
<td>D2O</td>
<td>30</td>
<td>13</td>
</tr>
</tbody>
</table>

東・越島：糖質の 13C-NMR
Table 15. 1C-H Coupling Constants for Arabinose Derivatives (Hz)

<table>
<thead>
<tr>
<th>Compound</th>
<th>γ_1</th>
<th>γ_2</th>
<th>δ_1</th>
<th>δ_2</th>
<th>δ_3</th>
<th>δ_4</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-arabinopyranose</td>
<td>160</td>
<td>143</td>
<td>160</td>
<td>150</td>
<td>145</td>
<td>150</td>
<td>D$_2$O</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl α-arabinopyranose</td>
<td>158</td>
<td>143</td>
<td>146</td>
<td>150</td>
<td>145</td>
<td>150</td>
<td>CD$_2$N</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>methyl β-arabinopyranose</td>
<td>160.6</td>
<td>143</td>
<td>146</td>
<td>150</td>
<td>145</td>
<td>150</td>
<td>D$_2$O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>methyl γ-arabinopyranose</td>
<td>160.0</td>
<td>143</td>
<td>146</td>
<td>150</td>
<td>145</td>
<td>150</td>
<td>D$_2$O</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>methyl 2,3,4-tri-O-acetyl-α-arabinopyranose</td>
<td>159</td>
<td>153</td>
<td>148</td>
<td>152</td>
<td>150</td>
<td>143</td>
<td>CDCl$_3$</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>1,2,3,4-tetra-O-acetyl-α-arabinopyranose</td>
<td>168</td>
<td>156</td>
<td>149</td>
<td>150</td>
<td>147.5</td>
<td>147.5</td>
<td>CDCl$_3$</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl β-arabinofuranoside</td>
<td>168</td>
<td>153</td>
<td>146</td>
<td>149</td>
<td>143.5</td>
<td>143.5</td>
<td>D$_2$O</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>methyl β-arabinopyranose</td>
<td>168</td>
<td>153</td>
<td>146</td>
<td>149</td>
<td>143.5</td>
<td>143.5</td>
<td>D$_2$O</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>methyl β-arabinopyranose</td>
<td>168</td>
<td>153</td>
<td>146</td>
<td>149</td>
<td>143.5</td>
<td>143.5</td>
<td>D$_2$O</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>methyl 2,3,4-tri-O-acetyl-β-arabinopyranose</td>
<td>171</td>
<td>153</td>
<td>152.5</td>
<td>152</td>
<td>151.5</td>
<td>151.5</td>
<td>CDCl$_3$</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>methyl 2,3,4-tri-O-acetyl-β-arabinopyranose</td>
<td>176</td>
<td>154</td>
<td>153</td>
<td>154</td>
<td>152</td>
<td>152</td>
<td>CDCl$_3$</td>
<td>30</td>
<td>13</td>
</tr>
</tbody>
</table>

とを示している。従って、β-アノマーはアキシアルの H-1 を、α-アノマーはエクアトリアルの H-1 をもつわけである。また、キシロースのテトラアセチル誘導体の場合、$J_{\gamma_{C-H1}}$ の値は α-アノマーの場合 177 Hz であり β-アノマーの場合 166 Hz であり非アセチル化物に比較して 6~7 Hz 大きいが対応するアラビノースの場合と一致している。$J_{\gamma_{C-H1}}$ の値がアセチル化により分大さくなるが差は約 10 Hz を保持している。これらのことから、キシローステトラアセチテートにおいてもほぼ 100% が 4Cl コンホメーションをとっていることが示唆されている。

D-アラビノピラノース及びそのメチル誘導体の $J_{\gamma_{C-H1}}$ 値については、α-アノマーの場合が 160 Hz であるのにに対して、β-アノマーの場合 168~169 Hz であり、90% 以上が 4Cl コンホメーションをとっていることを示している。また、D-アラビノピラノースのテトラアセチル誘導体の場合、$J_{\gamma_{C-H1}}$ の値は α-アノマーの場合 168 Hz であり約 20% が 4Cl コンホメーションをとっていることが示された。一方、β-アノマーの場合、$J_{\gamma_{C-H1}}$ の値は 176.5 Hz でありほぼ 100% 近く 4Cl コンホメーションであることを示している。

L-アラビノピラノース及びそのメチル誘導体の $J_{\gamma_{C-H1}}$ 値については、α-アノマーの場合 168 Hz であるのにに対して、β-アノマーの場合 168 Hz でありほぼ 4Cl コンホメーションをとっていることを示している。また、$J_{\gamma_{C-H1}}$ の値はアグリコンの性質によってほとんど変化しない。

以上の結果を、ピラノース型の場合は α-アノマーと β-アノマーの場合は $J_{\gamma_{C-H1}}$ の値が約 10 Hz も差が認められたアノマーの立体配置を決定することができると、フランソース型の場合は $J_{\gamma_{C-H1}}$ の値のみではアノマーの立体配置の決定は困難である。すなわち、メチル α-L-アラビノファラノドの場合 $J_{\gamma_{C-H1}}$ の値は 172.4 Hz であるのにに対し、メチル β-D-アラビノファラノドの場合は 174 Hz で差が約 1.6 Hz しか存在しない。このため、ファラノドのアノマーの立体配置の決定には化学シフトも考慮に入れ全体的に把
東・越島：糖質の 13C-NMR

掲載した後これを行う必要がある。

ヘキセンジルビラノースの C-5 の二つのプロトンが環内酸素原子に対し，H-1 と同様の位置にあり，$J^{(C)}(H_3C(5)) < J^{(C)}(H_3C(6))$ と予想される。今，遊離糖とメチル配糖体の場合の実測値がそれぞれ約142 Hz と 150 Hz であり予想と一致している。なおアセチル化物の場合は少し J 値が増大する。

2.5. 緩和時間

13C-1H 間雙極子緩和に対するスピン-スピース丁緩和時間 (T_1) は分子運動の関与した動的性質に関する情報を得える。また T_1 は分子運動の解析のみならず 13C-NMR の化学シフトの帰属にも有用である。キシロビラノースとアラビノビラノースの場合それぞれグルコとガラクトの立体配置をとっているのでこれらの T_1 値と類似していると推察されるが未だ詳細に検討された例はない。

一方ウロソ酸の T_1 については Casu 等により先駆的な研究がなされた。すなわち，D-ガラクトソロン酸のナトリウム塩は α-アセチルのみがガドリニュウムイオン（Gd$^{3+}$）と反応し，C-1 と C-6 のシグナル強度は著しく減少する。この現象はウロソ酸とランタヌドの比が低下する程，pH 7 以上で顕著に認められ pH 2 では消失する（図7）。

Fig. 7. 13C-NMR spectra (22.6 MHz) of (a) sodium α, β-D-galacturonate (mM) in deuterium oxide, and (b) the same solution containing Gd(NO₃), 100 nM

次いで第 5 章①の常温性物質の添加によるウロソ酸の T_1 の変化を測定した⑤. Gd$^{3+}$ を 0.1 mM 添加したグロクトソロン酸とガラクトソロン酸のナトリウム塩（pD 7.0）の各炭素の T_1 値を表16に示した。グロクトソロン酸の C-5 の化学シフトが α 及び β で重なるため正確な T_1 値を求めることができないので 25 mM のニーロソロンの存在下で両者をシフトさせて分離して測定した。ラシジオニオンの非存在下では β-グロクトソロン酸の C-4 以外はほぼ等しい T_1 値を示す。この β-アセチルの C-4 の T_1 値は他よりももかなり小さくなっておりこの C-4 の緩和は D-グロクトピラノース系の他炭素でも認められている。この点については次回以降に述べる。一方，Gd$^{3+}$ イオンの存在下ではすべての炭素の T_1 値が低下しておりこの傾向は C-6 において最も著しい。次いで変化の著しいのは両アセチルのアセチルの C-1 である。これは当該炭素の緩和機構が Gd$^{3+}$ によって変調されたものと解釈される。以上のことと結合間距離から
Table 16. Spin-lattice Relaxation Times in the Presence (T_1^{obs}) and Absence (T_1) of 0.1 mM Gadolinium Nitrate for 1.5 M Sodium α-D-Glucopyranuronate and α-D-Galactopyranuronates at pH 7.0

<table>
<thead>
<tr>
<th>Compound</th>
<th>Carbon</th>
<th>T_1 (sec)</th>
<th>T_1^{obs} (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without addition</td>
<td>With 25 mM Eu³⁺ (With 0.1 mM Eu³⁺)</td>
</tr>
<tr>
<td>Sodium α-D-glucopyranurate</td>
<td>C-1</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>C-2</td>
<td>0.85</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>C-3</td>
<td>0.84</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>C-4</td>
<td>0.89</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>C-5</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>C-6</td>
<td>15.1</td>
<td>4.91</td>
</tr>
<tr>
<td>Sodium β-D-glucopyranurate</td>
<td>C-1</td>
<td>0.86</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>C-2</td>
<td>0.81</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>C-3</td>
<td>0.82</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>C-4</td>
<td>0.84</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>C-5</td>
<td>5.9</td>
<td>5.38</td>
</tr>
</tbody>
</table>

* The spin-lattice relaxation rate for the carbon in the Eu³⁺-bound molecule.
* Not measurable because of overlapping of the signals.
* Not measured.

Fig. 8. The Most probable coordination structures for complexes between lanthanide ions (Ln) and sodium α-D-glucopyranuronate (a) and α-D-galactopyranuronate (b)
3. キシロオリゴ糖とキシロオリゴウロン酸

キシロオリゴ糖の構造を 13C-NMR を用いて解明するためには、構成単糖の組み合わせを特定するために高エネルギーオリゴ糖の 13C-NMR を測定し、高分子としての性質を帯びるに到る過程を明らかにすることが望ましいと考えられる。

3.1. キシロオリゴ糖

β (1→4) 結合したキシロオリゴ糖の 13C-NMR の測定は 1980 年に Gast 等によりはじめて行われた（図 9、表 17, 18)。この場合キシロオリゴ糖の化学シフトはキシロピースの非還元末端の C-1 の化学シフトを 102.7 ppm とセットして換算しているのでスペクトルの重合度依存性を正確に評価できないがキシロへキシロ糖の 13C-NMR 上の差異は十分に理解できる。

表17及び18には我々の得た化学シフトも掲げており、これは化学シフトの換算をしていない。また表17には β (1→3) 結合のキシロピース (78, 79) の化学シフトを示した。これらは化学シフト値を前回述べたセロオリゴ糖の値と比較検討すると、β (1→4) 結合したキシロオリゴ糖の 13C-NMR はセロオリゴ糖の場合と同様の特徴をもっていることがわかる。すなわち、(i) 還元末端と非還元末端のキシロピース残基の化学シフトは糖鎖の長さに関係である；(ii) 還元末端のキシロピース残基の C-1α と C-1β の化学シフトは α-キシロピース残基の値と同一とみなされる；(iii) 中央のキシロピース残基の化学シフトも糖鎖の長さに無関係である；(iv) 非還元末端のキシロピース残基の C-4 の化学シフトも 1-キシロピース残基の値と同一とみなしたほうがよい；(v) 化学シフトは非還元末端、中央及び還元末端の三つのグループに分類することができます。また、キシロピースからキシロリボースの化学シフトを比較すると、(i) C-2 及び C-5 の化学シフトはキシロピースの値と 0.2 ppm 以上はかからない；(ii) C-1 及び C-4 の化学シフトは変化し中央領域で少し異なったコンホメーショーンをとる；(iii) 中央の C-3 の化学シフトはわずか高磁場シフトすることがわかる。

次にキシロオリゴ糖のメチルグリコンドの 13C-NMR スペクトルは Kováč 等により詳細に研究された(6)。化合物の構造を (89～94) にその化学シフトを表19に示した。化合物 (93) はスペクトルの模式図を図10、化学シフトを表20 (a) に示した。重合度が高くなるにつれて、中間のキシロピース残基のシグナル強度が強くなっているのが観察されている。また (82～87) の結合様式の異なる 6 種のキシロピースの 13C-NMR スペクトルを解析する上で特徴的なシグナルがキシロピース残基の結合による α 及び β-効果がまとめられている (表21)。彼らはこれらのキシロピース残基に得られた結果とキシロピース残基
Table 17. 13C Chemical Shifts for Xylobiose (ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>C-1'</th>
<th>C-2</th>
<th>C-3'</th>
<th>C-4'</th>
<th>C-5'</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>102.7</td>
<td>73.7</td>
<td>76.5</td>
<td>70.1</td>
<td>66.1</td>
<td>α</td>
<td>92.8</td>
<td>72.3*</td>
<td>71.9*</td>
<td>77.5</td>
<td>D$_2$O</td>
<td>room temp.</td>
<td>42</td>
</tr>
<tr>
<td>75</td>
<td>β</td>
<td>97.8</td>
<td>74.9</td>
<td>74.9</td>
<td>77.3</td>
<td>63.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>102.63</td>
<td>73.63</td>
<td>76.58</td>
<td>70.13</td>
<td>66.08</td>
<td>α</td>
<td>92.86</td>
<td>71.92</td>
<td>72.33</td>
<td>77.40</td>
<td>D$_2$O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>75</td>
<td>β</td>
<td>97.39</td>
<td>74.86</td>
<td>74.95</td>
<td>77.39</td>
<td>63.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>100.3496</td>
<td>73.3081</td>
<td>74.2791</td>
<td>70.8322</td>
<td>63.0887</td>
<td>β</td>
<td>98.5776</td>
<td>74.0364</td>
<td>64.3772</td>
<td>70.7575</td>
<td>DMSO-d$_6$</td>
<td>—</td>
<td>34</td>
</tr>
</tbody>
</table>

Assignment of the resonances indicated by * may be interchanged.

Table 18. 13C Chemical Shifts for Xylooligosaccharides (D.P. 3–5) (ppm)

<table>
<thead>
<tr>
<th>Degree of polymerization (DP)</th>
<th>Non-reducing end-unit</th>
<th>Internal unit</th>
<th>Reducing end-unit</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C-1 C-2 C-3 C-4 C-5</td>
<td>C-1 C-2 C-3 C-4 C-5</td>
<td>C-1 C-2 C-3 C-4 C-5</td>
<td>D$_2$O</td>
<td>room temp.</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>102.7 73.6 76.3 70.0 66.1</td>
<td>102.5 73.6 74.5 77.2 63.8</td>
<td>α 92.8 72.2* 71.8* 77.2 59.7</td>
<td>D$_2$O</td>
<td>room temp.</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>β 97.3 74.8 74.8 77.2 63.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>102.69 73.64 76.57 70.11 66.10</td>
<td>102.46 73.53 74.62 77.34 63.90</td>
<td>α 92.88 71.91 72.33 77.34 59.97</td>
<td>D$_2$O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>β 97.41 74.86 74.96 77.34 63.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>102.7 73.5 76.4 70.0 66.1</td>
<td>102.5 73.5 74.5 77.2 63.8</td>
<td>α 92.8 72.2* 71.8* 77.2 59.7</td>
<td>D$_2$O</td>
<td>room temp.</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>β 97.3 74.7 74.7 77.2 63.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S* 73.5 76.4 70.0 66.1</td>
<td>102.5 73.5 74.5 77.2 63.8</td>
<td>α 92.8 72.2* 71.8* 77.2 59.7</td>
<td>D$_2$O</td>
<td>room temp.</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>β 97.3 74.7 74.7 77.2 63.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>102.71 73.65 76.60 70.12 66.10</td>
<td>102.5 73.56 74.63 77.31 63.89</td>
<td>α 92.91 71.93 72.36 77.31 59.97</td>
<td>D$_2$O</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>β 97.42 74.82 74.93 77.31 63.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A shoulder on the 102.5 ppm peak.

Assignment of the resonances indicated by * may be interchanged.
Fig. 9. Comparison of the 13C-NMR spectra of xylo-biose, -triose, -tetrose, and -pentaose
(88〜93) やキシロテトラオース (94) で得られた結果と比較検討し, キシロオリゴ糖の ¹³C-NMR スペクトルを解析する際に重要な次のような諸点を指摘している。すなわち, (i) α-D-キシロピラノース残基の存在は C-1 (<102 ppm) 及び C-5 (<63 ppm) で, β-D-キシロピラノース残基の存在は C-1 (>102, 3 ppm) 及び C-5 (>63 ppm) でそれぞれ判別することができる; (ii) 82〜85 ppm には 3-O-置換した β-D-キシロピラノースの C-3 のシグナルが現われ, 1→3 結合に特徴的となっている; (iii) 3-O-置換したキシロピラノースがさらに 2 位あるいは 4 位に置換した場合 (2,3-あるいは3,4-二置換体) の C-3 は β-効果により高濃度シフトする; (iv) キシロピラースの還元性末端のキシロピラノースの C-1 の化学シフトはほとんど変化しない; (v) これに対し, 非還元性末端のキシロピラノースの C-1 の化学シフトは結合様式 (1→2, 1→3 あるいは 1→4 及び α か β か) によって変化する; (vi) 置換による置換基効果 (低濃度シフトの α-効果及び高濃度シフトの β-効果) が認められるが, その程度は置換の位置とアモーメー中心の立体配置に依存する; (vii) メチル化分析では 4-O-置換のピラノースと 5-O-置換のフラノースとの区別がつかない
Table 19. 13C Chemical Shifts for Methyl β-D-Xylotrioside and Tetraside44 (ppm)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Residue</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>OMe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl β-D-xylpyranoside</td>
<td>105.2</td>
<td>74.2</td>
<td>77.0</td>
<td>70.4</td>
<td>66.4</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>A</td>
<td>105.4</td>
<td>78.5</td>
<td>75.5</td>
<td>70.7</td>
<td>66.1</td>
<td>58.5</td>
</tr>
<tr>
<td>83</td>
<td>A</td>
<td>105.3</td>
<td>72.7</td>
<td>74.2</td>
<td>70.7</td>
<td>66.2</td>
<td>58.4</td>
</tr>
<tr>
<td>84</td>
<td>A</td>
<td>100.1</td>
<td>72.9</td>
<td>74.3</td>
<td>71.0</td>
<td>65.4</td>
<td>58.4</td>
</tr>
<tr>
<td>85</td>
<td>A</td>
<td>105.2</td>
<td>74.4</td>
<td>76.0</td>
<td>79.4</td>
<td>65.3</td>
<td>57.8</td>
</tr>
<tr>
<td>86</td>
<td>A</td>
<td>104.9</td>
<td>81.8</td>
<td>76.4</td>
<td>70.2</td>
<td>65.9</td>
<td>58.1</td>
</tr>
</tbody>
</table>

東・越島：糖質の 13C-NMR

が、13C-NMR スペクトルによってビラノースかフラノースかの決定をすることができる。

次にキシロオリゴ糖のアセチル化物の 13C-NMR であるがこれら Kováč と Hirsch40 や Utille と Vottero45 を中心に研究されている。まず Utille と Vottero は（95～103）の化合物について 13C-NMR スペクトルを測定し（表22）。次いで Kováč 等は化合物（93）のアセチル化物及び（104）の化合物について 13C-NMR スペクトルを測定した（図11）。これらのスペクトルを検討した結果アセチル化による置換基効果について次のようなことが明らかになった。すなわち、（i）1→4-β-D-キシロースオリゴマーのメチルグリコンドのアセチル化物について、71.3 ppm のシグナルはメチル基の置換するキシロピラノースの C-2 であり、71.0 ppm のシグナルは内部キシロピラノースの C-2 である；（ii）アセチル化による置換基効果は先にキシロースのアセチル化物の項で述べたように簡単ではない。さらに、Kováč 等はキシロピラノースのホモポリマーのアセチル化物についてはビラノース環構成炭素の化学シフトの変化を次のようにまとめている。すなわち、（i）C-1 と C-5 の化学シフトには中間の結合が増加した場合規則性があり、β-結合の場合、C-1 は ～102,0 ppm（還元末端のキシロース）及び 100,1～100,6 ppm（中間のキシロース残基の重合度の増大と共にあるシグナル強度共にあわれ、C-5 は 63,3 ppm と 62.9 ppm（末端のキシロース残基）及び 62.5 ppm（中間のキシロース、重合度約13残基）及び 60.0 ppm（中間のキシロース残基、重合度約18残基）にあらわれてくる；（ii）C-4 の化学シフトは共通点が多く次の（イ）～（ニ）の特徴をもつ。すなわち、（イ）オリゴマーの還元末端残基の C-4 は 75.1～75.9 ppm で...
Fig. 10. Comparison of 13C NMR spectra of methyl β-glycosides of (1→4)-β-D-xylo-oligosaccharides

あり，(ロ) メチル β-D-グリコシドをもつオリゴマーの非還元性ユニットから次（2番目）のキシロピラノース残基の C-4 は 73.2 ～ 74.7 ppm であり，(ハ) α-結合した非還元末端残基のキシロピラノース残基の C-4 は 73.2 ～ 73.9 ppm であり，(ニ) すべて β-結合の場合，β-結合したキシロースの C-4 は 74.2 ～ 74.4 ppm である；(イ) C-3 の化学シフトは次の (イ) ～ (ニ) の特徴をもっている。すなわち，(イ) C-4 位の還元基の型によって化学シフトは変化せず，(ロ) 還元性末端残基の C-3 は 72.4 ～ 72.9 ppm にあらわれ，(ハ) 中央の残基の C-3 は約 72 ppm にあらわれ，(ニ) C-4 位で α-D-キシロピラノースを持った酸のキシロピラノースの C-4 は少し (約 0.5 ppm) 低域域シフトする；(い) C-2 の化学シフトは遠隔効果がグルコース結合のコンホメーションあるいはテールのため複雑で簡単に一般化することはできない。

以上のようにしてキシロオリゴ糖の 13C-NMR スペクトルが得られ，その特徴が明らかにされた。しかしながら，これらのキシロオリゴ糖の 13C-NMR スペクトルがそのまま高分子キシリシの 13C-NMR にあてはまるかどうかは現在のところ明らかでない。天然にはキシロースのホモポリマーは多くなく，酸性糖であるウロニ酸の存在を無視することはできない。次にアルドオリゴウロニ酸の 13C-NMR について述べる。

まず遊離のキシロウロニ酸であるが，2-O-(4-O-methyl-α-D-glucopyranosyluronic acid)-D-xylose (108) の 13C-NMR スペクトルは Kovač 等により解析された (表24) である。彼らはこのビオウン酸のメチルエステルの 13C-NMR スペクトル (107) もあわせて測定し遊離の酸の場合と化学シフトを比較した。遊離の酸の化学シフトの方がわずかであるが，低域域シフトしている。これは遊離の酸の方が pH が低いため人にに基づいている。また，キシロピラノースの化学シフトは 4-O-メチルグロクロン酸の置換による α, β-効果に基づく期待値と一致している。

次に上記のキシロウロニ酸 (109) のメチルグリコシド (112, 113) の 13C-NMR であるが，これは志本により測定された (111) である。その化学シフト値を表24に示した。キシロースのアノマー位のメチル化による置換基効果は他のピラノース環内炭素の場合と同様であり，α, β-のグリコシドは容易に識別される。彼らは，
Table 20-a. 13C Chemical Shifts for Xylooligosaccharide Methyl Glucosides and Their Acetyl Derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>Chemical shifts (p.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C-1</td>
</tr>
<tr>
<td>n=0 (92)</td>
<td>C</td>
<td>105.1</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>103.1</td>
</tr>
<tr>
<td>n=1</td>
<td>C</td>
<td>105.1</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>103.0</td>
</tr>
<tr>
<td>n=2</td>
<td>C</td>
<td>105.1</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>103.0</td>
</tr>
<tr>
<td>n=3</td>
<td>C</td>
<td>105.0</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>102.9</td>
</tr>
<tr>
<td>n=4</td>
<td>C</td>
<td>105.3</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>103.1</td>
</tr>
</tbody>
</table>

![Chemical Shifts Diagram](195)

その他の化合物（110, 111, 114 及び 115）のアルドピピロロン酸についても 13C-NMR を測定している。
さらに、その他のシロピピロロン酸のメチルエステル（105）やメチルグリコシドメチルエステル（106, 109）の 13C-NMR についても Koezec 等により測定されている。その化学ソフトを表 24 にまとめて示した。
Table 20-b. 13C Chemical Shifts for Partially Acetylated Xylooligosaccharide Methyl Glycosides

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>Chemical shifts (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-1</td>
<td>C-2</td>
</tr>
<tr>
<td>n=0</td>
<td>C</td>
<td>102.0</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>99.9</td>
</tr>
<tr>
<td>n=1</td>
<td>C</td>
<td>102.1</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>100.7</td>
</tr>
<tr>
<td></td>
<td>C''</td>
<td>100.3</td>
</tr>
<tr>
<td>n=2</td>
<td>C</td>
<td>101.9</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>100.3</td>
</tr>
<tr>
<td></td>
<td>C''</td>
<td>100.3</td>
</tr>
<tr>
<td></td>
<td>C'''</td>
<td>100.0</td>
</tr>
<tr>
<td>n=3</td>
<td>C</td>
<td>102.1</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>100.5</td>
</tr>
<tr>
<td></td>
<td>C''</td>
<td>100.5</td>
</tr>
<tr>
<td></td>
<td>C'''</td>
<td>100.5</td>
</tr>
<tr>
<td></td>
<td>C''''</td>
<td>100.1</td>
</tr>
<tr>
<td>n=4</td>
<td>C</td>
<td>101.9</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>100.3</td>
</tr>
<tr>
<td></td>
<td>C''</td>
<td>100.3</td>
</tr>
<tr>
<td></td>
<td>C'''</td>
<td>100.3</td>
</tr>
<tr>
<td></td>
<td>C''''</td>
<td>100.1</td>
</tr>
</tbody>
</table>

Table 21. Some Diagnostically Important Characteristics of the 13C-NMR Spectra of Disaccharides (ppm)

<table>
<thead>
<tr>
<th>Linkage</th>
<th>Chemical shift of C-1 (residue B)</th>
<th>Location of resonances of residue A</th>
<th>Chemical shift of C-atom bearing α-substituent</th>
<th>α-Effect</th>
<th>β-Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>α(1→2)</td>
<td>99.1</td>
<td>78.7</td>
<td>+4.5</td>
<td>C-1 +0.1</td>
<td>C-3 -1.5</td>
</tr>
<tr>
<td>α(1→3)</td>
<td>100.1</td>
<td>82.9</td>
<td>+5.8</td>
<td>C-2 -1.5</td>
<td>C-4 +0.1</td>
</tr>
<tr>
<td>α(1→4)</td>
<td>101.5</td>
<td>79.4</td>
<td>+8.9</td>
<td>C-3 -1.0</td>
<td>C-5 -0.9</td>
</tr>
<tr>
<td>β(1→2)</td>
<td>103.7</td>
<td>81.8</td>
<td>+7.5</td>
<td>C-1 -0.4</td>
<td>C-3 -0.6</td>
</tr>
<tr>
<td>β(1→3)</td>
<td>104.8</td>
<td>85.3</td>
<td>+8.2</td>
<td>C-2 -0.5</td>
<td>C-4 -1.5</td>
</tr>
<tr>
<td>β(1→4)</td>
<td>103.1</td>
<td>77.7</td>
<td>+7.2</td>
<td>C-3 -2.0</td>
<td>C-5 -2.2</td>
</tr>
</tbody>
</table>

最後に、より(4-O-メチルグルコース)キシランに近づくものとして、種々のキシロトリアシロン酸の 13C-NMR がやや Royle 等により測定されている（表25）。この場合キシロトリアシロン酸はキシロン酸とは独立して帰属することができる。なお、彼らは 4-O-メチルグルコース酸が α, α' 及び β, β' で結合した非還元性トリオシロン酸についても 13C-NMR を測定している。これらの化合物の化学シフトは α,
Table 22. 13C Chemical Shifts for Acetylated Xylobiose (ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>C-1'</th>
<th>C-2'</th>
<th>C-3'</th>
<th>C-4'</th>
<th>C-5'</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>99.74</td>
<td>70.63</td>
<td>70.80</td>
<td>68.59</td>
<td>61.82</td>
<td>64.04</td>
<td>92.41</td>
<td>70.15</td>
<td>72.16</td>
<td>76.67</td>
<td>CDCl₃</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>81</td>
<td>101.0</td>
<td>70.25</td>
<td>70.68</td>
<td>68.92</td>
<td>61.83</td>
<td>92.07</td>
<td>70.13</td>
<td>76.90</td>
<td>68.62</td>
<td>62.36</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>96</td>
<td>95.40</td>
<td>71.07</td>
<td>69.13</td>
<td>68.98</td>
<td>58.74</td>
<td>93.84</td>
<td>74.38</td>
<td>72.34</td>
<td>68.98</td>
<td>63.06</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>98</td>
<td>100.06</td>
<td>70.61</td>
<td>74.47*</td>
<td>67.97</td>
<td>64.76</td>
<td>92.34</td>
<td>70.01</td>
<td>72.17</td>
<td>74.55*</td>
<td>63.45</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>99</td>
<td>100.86</td>
<td>70.13</td>
<td>70.68</td>
<td>68.77</td>
<td>61.73</td>
<td>92.80</td>
<td>76.61</td>
<td>72.77</td>
<td>68.65</td>
<td>62.97</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>100</td>
<td>95.40</td>
<td>71.07</td>
<td>69.13</td>
<td>68.98</td>
<td>58.74</td>
<td>93.84</td>
<td>74.38</td>
<td>72.34</td>
<td>68.98</td>
<td>63.06</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>101</td>
<td>95.00</td>
<td>71.05</td>
<td>69.21</td>
<td>69.0</td>
<td>59.03</td>
<td>91.81</td>
<td>69.45</td>
<td>73.70</td>
<td>69.01</td>
<td>61.61</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>103</td>
<td>101.18</td>
<td>72.70</td>
<td>71.22</td>
<td>71.51</td>
<td>61.78</td>
<td>92.22</td>
<td>70.40</td>
<td>76.71</td>
<td>68.87</td>
<td>62.41</td>
<td>CDCl₃</td>
<td>20</td>
<td>45</td>
</tr>
</tbody>
</table>

Assignment of the resonances indicated by * may be interchanged.
Fig. 11. Comparison of line spectra of peracetates of methyl β-glycosides of β-xylodextrins

α-トレハロースと β, β-トレハロースの化学シフトを参考にして帰属された。興味あるのは、α, β-に結合したビオウン酸で三つのビラノース平面が異なった角度で結合しているため異なった位置をもたらし、特徴的な ¹³C-NMR スペクトルを示すと考えられている。

その他、アラビノースやキシロースを含んだオリゴ糖の ¹³C-NMR の化学シフトを表 25 にまとめた。なお、アルドビオウン酸で (75) と (80) の化合物の ¹³C-NMR の測定例がない。α-アミロースなので直接キシランと関係はないが、β-アミロースとの比較をすることは意味があり今後に期待される。

以上の結果から、キシロポリマーの ¹³C-NMR スペクトルを帰属するために必要な情報は一応そろったものと考えられる。しかし、アラビノースを含んだオリゴマーや部分アセチル化されたキシロオリゴ醣等の ¹³C-NMR スペクトルは測定されておらず、今後この方法の研究の進展が期待される。

4. キシラン

木材由来の (1→4)-β-D-キシラン (123) の ¹³C-NMR スペクトルは Previato 等により測定された。彼らのスペクトルを図 12-(a) に示した。C-1 (103.1 ppm)、C-2 (74.3 ppm)、C-3 (75.3 ppm)、C-4 (78.0 ppm) 及び C-5 (64.5 ppm) からなる 5 本のシグナルを与える。メチル β-D-キシロピラノンドのシグナルとは C-4 では +7.0 ppm 及び C-5 では -2.4 ppm であると報告されている。彼らは同じく昆虫の腸内部に毛細管類の一種である Herpetomonas samuelpessoni の植物からグルクロキシランの ¹³C-NMR を測定している。そのスペクトルを図 12-(b) に示した。各シグナルの帰属は次のように行なわれた。すなわち、(i) 103.2 ppm のシグナルは上述のキシラランの 103.1 ppm より (1→4)-β-D-キシロピラノンド
東・香島：糖質の ^13C-NMR

Table 23. ^13C Chemical Shifts for Xylooligosaccharide Acetates Having α-Linked Notreducing End Unit

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>Chemical shifts (p.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C-1</td>
</tr>
<tr>
<td>R II H n=0</td>
<td>C</td>
<td>101.7</td>
</tr>
<tr>
<td>n=1</td>
<td>C'</td>
<td>96.4</td>
</tr>
<tr>
<td>n=2</td>
<td>C</td>
<td>101.9</td>
</tr>
<tr>
<td>n=3</td>
<td>C'</td>
<td>96.3</td>
</tr>
<tr>
<td>n=4</td>
<td>C</td>
<td>101.9</td>
</tr>
<tr>
<td></td>
<td>C'</td>
<td>96.4</td>
</tr>
</tbody>
</table>

残基の C-1; (ii) 99.0 と 98.4 ppm のシグナルは α-結合したキシランの C-1 及び α-D-グルコロン酸の C-1 と重なったもの; (iii) 61.0 ppm のシグナルは糖の環状素に不完全な環構造をもつ。メソル α-D-
キシロピラノシドの C-5 が 62.6 ppm であり、置換基の β-効果が約 -1 ppm であることを考慮に入れると α-D-
キシロピラノシル残基の 4-O-置換体と推定される; (iv) 66.6 ppm のシグナルは非置換 β-D-
キシロピラノースの C-5 (66.8 ppm) に近いので
β-D-キシロピラノースの C-5; 及び (v) 63.3 ppm のシ
Table 24. \(^{13}\text{C}\) Chemical Shifts for Aldobiouronic Acid Derivatives (ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>4-O-Methyl-(\alpha)-glucuronic acid residue</th>
<th>(\alpha)-Xylose residue</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-1' C-2' C-3' C-4' C-5' CH_3-4' CH_3-5</td>
<td>C-1 C-2 C-3 C-4 C-5 OCH_3-1</td>
<td></td>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td>105</td>
<td>98.9 72.1 73.2 82.5 70.7 173.2 61.1</td>
<td>(\alpha) 93.2 82.3 73.1 70.6 62.0</td>
<td>D_2O</td>
<td>room temp.</td>
<td>46</td>
</tr>
<tr>
<td>106</td>
<td>103.8 74.4 75.8 82.4 74.7 172.1 61.2</td>
<td>(\beta) 96.7 83.3 76.9 70.6 66.4</td>
<td>D_2O</td>
<td>room temp.</td>
<td>46</td>
</tr>
<tr>
<td>107</td>
<td>98.0 72.1 73.2 82.5 70.7 173.2 61.1</td>
<td>(\alpha^*) 90.8 77.8 72.1 70.7 61.9</td>
<td>D_2O</td>
<td>room temp.</td>
<td>46</td>
</tr>
<tr>
<td>108</td>
<td>98.0 72.2 73.4 82.9 70.8 174.4 61.3</td>
<td>(\beta^*) 99.1 79.9 75.5 70.8 65.2</td>
<td>D_2O</td>
<td>room temp.</td>
<td>46</td>
</tr>
<tr>
<td>109</td>
<td>99.3 72.1 73.2 82.5 70.7 173.3 61.1</td>
<td>105.6 79.1 75.4 70.7 66.1 58.6</td>
<td>D_2O</td>
<td>room temp.</td>
<td>46</td>
</tr>
<tr>
<td>110</td>
<td>99.1 72.1 73.0 82.8 72.1 175.2 60.9</td>
<td>101.0 83.1* 74.1 78.8 61.4 56.0</td>
<td>D_2O</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>111</td>
<td>99.1 71.1 73.0 82.6 71.7 175.2 61.0</td>
<td>107.8 86.6 74.4 83.4 61.8 56.2</td>
<td>D_2O</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>112</td>
<td>97.7 72.1 73.0 83.1 72.1 175.1 60.8</td>
<td>97.3 76.6 72.3 70.3 61.7 55.8</td>
<td>D_2O</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>113</td>
<td>98.6 71.9 72.9 82.6 71.9 175.1 60.8</td>
<td>105.2 78.5 74.9 70.3 65.7 58.2</td>
<td>D_2O</td>
<td>30</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\alpha)-Galacturonic acid residue</th>
<th>(\alpha)-Xylose residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>101.1 88.8 69.6 70.9 70.9 173.8</td>
<td>100.0 71.7 72.9 79.3 60.8 56.0</td>
</tr>
<tr>
<td>115</td>
<td>100.9 88.8 69.6 70.9 70.9 173.8</td>
<td>104.5 73.4 75.3 78.8 64.7 57.9</td>
</tr>
</tbody>
</table>

*Preponderating anomer in equilibrated aqueous solution.

Assignment of the resonances indicated by * may be interchanged.
Table 25. 13C Chemical Shifts for Oligosaccharides Containing Uronic Acid

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ring</th>
<th>13C Chemical Shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-1</td>
<td>C-2</td>
</tr>
<tr>
<td>C</td>
<td>105.21</td>
<td>74.18</td>
</tr>
<tr>
<td>116</td>
<td>103.01</td>
<td>78.46</td>
</tr>
<tr>
<td>C'</td>
<td>99.37</td>
<td>72.23</td>
</tr>
<tr>
<td>C</td>
<td>105.34</td>
<td>74.18</td>
</tr>
<tr>
<td>117</td>
<td>101.71</td>
<td>83.27</td>
</tr>
<tr>
<td>C'</td>
<td>104.95</td>
<td>74.57</td>
</tr>
<tr>
<td>C</td>
<td>95.87</td>
<td>71.72</td>
</tr>
<tr>
<td>118</td>
<td>95.87</td>
<td>71.72</td>
</tr>
<tr>
<td>C'</td>
<td>95.87</td>
<td>71.72</td>
</tr>
<tr>
<td>C</td>
<td>100.30</td>
<td>74.46</td>
</tr>
<tr>
<td>119</td>
<td>100.30</td>
<td>74.46</td>
</tr>
<tr>
<td>C'</td>
<td>100.30</td>
<td>74.46</td>
</tr>
<tr>
<td>C</td>
<td>101.85</td>
<td>73.40</td>
</tr>
<tr>
<td>120</td>
<td>104.33</td>
<td>73.80</td>
</tr>
</tbody>
</table>

Table 26. \(^{13}\)C Chemical Shifts for Oligosaccharides Containing Arabinose and Xylose

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Shifts (ppm)</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-O-β-L-Arabinofuranosyl-a,β-D-glucose</td>
<td>101.9</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>6-O-α-L-Arabinofuranosyl-a,β-D-glucose</td>
<td>108.9</td>
<td>D₂O</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>4-O-β-D-Galactopyranosyl-α-Xylose</td>
<td>77.7</td>
<td>D₂O</td>
<td>room temp.</td>
<td>42</td>
</tr>
<tr>
<td>4-O-β-D-Glucopyranosyl-α-Xylose</td>
<td>77.4</td>
<td>D₂O</td>
<td>room temp.</td>
<td>42</td>
</tr>
<tr>
<td>4-O-β-D-Galactopyranosyl-β-D-Xylopyranosyl-α-Serine</td>
<td>104.2, 103.9</td>
<td>Xyψp</td>
<td>73.8, 74.9, 77.7, 64.2</td>
<td>D₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galp</td>
<td>71.9, 73.8, 69.9, 76.6, 62.4</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 12. \(^{13}\)C-NMR spectra of (a) \((1→4)-\beta-D-\)
xylopyranose from wood and (b) glucuroxylan from *H. Samuelpessoa*.

Fig. 13. \(^{13}\)C-NMR spectrum of xylan from red
lauan wood in 0.3 N NaOH aqueous solution. The upper chart is the one
extended four times in the range of 50–110 ppm.
Table 27. 13C Chemical Shifts for Xylan and Acetylated Xylan

<table>
<thead>
<tr>
<th>Compound</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1→3) β-O-Xylan</td>
<td>105.32</td>
<td>74.87</td>
<td>88.45</td>
<td>67.52</td>
<td>69.01</td>
<td>1 N NaOD</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>(1→4) β-O-Xylan</td>
<td>102.9712</td>
<td>72.6042</td>
<td>83.7218</td>
<td>67.5408</td>
<td>64.9092</td>
<td>DMSO-d$_4$</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>Acetylated (1→3) β-O-Xylan</td>
<td>103.1</td>
<td>74.3</td>
<td>78.0</td>
<td>75.3</td>
<td>64.5</td>
<td>D$_2$O</td>
<td>70</td>
<td>48</td>
</tr>
<tr>
<td>Acetylated (1→4) β-O-Xylan</td>
<td>101.7818</td>
<td>72.7741</td>
<td>74.0006</td>
<td>75.8094</td>
<td>63.2343</td>
<td>DMSO-d$_4$</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>Acetylated (1→3) β-O-Xylan</td>
<td>99.8399</td>
<td>71.4876</td>
<td>76.6096</td>
<td>69.1573</td>
<td>61.4866</td>
<td>CDCl$_3$</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>Acetylated (1→4) β-O-Xylan</td>
<td>100.2940</td>
<td>71.2206</td>
<td>72.9845</td>
<td>74.6190</td>
<td>62.8518</td>
<td>CDCl$_3$</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>Acetylated (1→3) β-O-Xylan</td>
<td>99.9332</td>
<td>71.4681</td>
<td>72.5847</td>
<td>75.0607</td>
<td>62.8750</td>
<td>DMSO-d$_4$</td>
<td>—</td>
<td>34</td>
</tr>
<tr>
<td>Acetylated (1→4) β-O-Xylan</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>D$_2$O</td>
<td>80</td>
<td>32</td>
</tr>
</tbody>
</table>

4.0-methyl-glucuronoxylan (Red Luan) 0.3 N NaOH — 31

<table>
<thead>
<tr>
<th>Compound</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-O-methyl-glucuronic acid residue</td>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
<td>C-6</td>
<td>OCH$_3$-4</td>
<td>—</td>
</tr>
<tr>
<td>unsubstituted xylene residue</td>
<td>99.2</td>
<td>73.5</td>
<td>74.0</td>
<td>83.3</td>
<td>73.2</td>
<td>178.4</td>
<td>61.5</td>
<td>—</td>
</tr>
<tr>
<td>2-substituted xylene residue</td>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
</tr>
<tr>
<td>C-4</td>
<td>103.6</td>
<td>74.5</td>
<td>76.9</td>
<td>78.1</td>
<td>103.9</td>
<td>84.1</td>
<td>75.7</td>
<td>77.9</td>
</tr>
<tr>
<td>C-5</td>
<td>64.9</td>
<td>57.8</td>
<td>69.2</td>
<td>83.4</td>
<td>92.5</td>
<td>177.0</td>
<td>62.05</td>
<td>—</td>
</tr>
</tbody>
</table>

4.0-methyl-glucuronoxylan (Beech) D$_2$O 80 32

<table>
<thead>
<tr>
<th>Compound</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-O-methyl-glucuronic acid residue</td>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
<td>C-6</td>
<td>OCH$_3$-4</td>
<td>—</td>
</tr>
<tr>
<td>unsubstituted xylene residue</td>
<td>98.45</td>
<td>72.88</td>
<td>73.58</td>
<td>83.06</td>
<td>70.38</td>
<td>177.06</td>
<td>62.05</td>
<td>—</td>
</tr>
<tr>
<td>2-substituted xylene residue</td>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
<td>C-4</td>
<td>C-5</td>
<td>C-1</td>
<td>C-2</td>
<td>C-3</td>
</tr>
<tr>
<td>C-4</td>
<td>102.49</td>
<td>73.57</td>
<td>74.62</td>
<td>77.30</td>
<td>63.88</td>
<td>101.99</td>
<td>77.91</td>
<td>74.43</td>
</tr>
<tr>
<td>C-5</td>
<td>63.69</td>
<td>77.1</td>
<td>63.88</td>
<td>61.99</td>
<td>77.91</td>
<td>74.43</td>
<td>74.43</td>
<td>63.69</td>
</tr>
</tbody>
</table>

Arabinoxylan (bagasse) D$_2$O 80 32

4.1.4-linked xylene residue 4-arabinofuranose residue

<table>
<thead>
<tr>
<th>R</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>121 H</td>
<td>122 Ac</td>
</tr>
<tr>
<td>123 H</td>
<td>124 Ac</td>
</tr>
</tbody>
</table>

混合結合キシランが存在し、その 13C-NMR スペクトルが測定されており（図14）、化学シフトを表23に示した。我々も Hol‘meda cucurata 由来の (1→3)-β-D-キシランの 1 N NaOH 中で 13C-NMR を測定した。そのスペクトルを図15-(a, b) 及び化学シフトを表2に示した。非常に簡単に5本のシグナルを与え規則性があることを示している。また、キシランの 13C-NMR スペクトルにおいてアルカリ中と DMSO-d$_6$ 中とで化学シフトが異なることが示された。これは、Colson等や Usos等が提案しているように、OH 基のイオン化とアルカリ存在下によるコンホメーションの変化に起因すると考えられる。化学シフトの溶媒依存性は一般に水に不溶なキシランの場合セルロースと同様に重要である。キシランの場合セルロースとは異
なりアルカリ中と DMSO-d6 中で C-4 の化学シフト差が約 5.2 ppm にもとづることが示され、今後キシランの 13C-NMR のスペクトルを解析する上で注意を要すると思われる。

キシランジアセテートの 13C-NMR スペクトルは（1→3）-D-キシラン（122）と（1→4）-D-キシラン

Fig. 14. The 13C-NMR spectrum of the xylan from Nematium vermiculare, 5% solution in D2O, 50°C

Fig. 15. 13C-NMR spectrum of (1-3)-D-xylan in 1N NaOD

Fig. 16. 13C-NMR spectra of arabinoxylan from bagasse in (a) DMSO-d6 and (b) 1N NaOD

Fig. 17. Cross polarisation/magic angle spinning 13C-NMR of (a) Whatman CF-1; (b) Xylan from bagasse, and (c) Xylan from beech
東・越島：糖質の 13C-NMR

(124) について Utille と Vettero によって測定しており3, その化学シフトを表 25 に示した。彼らは先
に述べたアセチル基の置換基効果をもとにシフトの計算を試みており (1→3)-β-D-キシランの場合よい一致
をみている。

以上の点を考慮に入れて我々は種々のキシランの 13C-NMR を測定した。その結果を図 1α 及び 1β 及び
表 2 に示した。13C-NMR は十分高分子キシランに適用できることが明らかになり、今後増々 13C-NMR
は糖質の構造の解析に用いられると思われる。

5. 固体高分解能 NMR

以上の糖質中のキシラン系糖質の 13C-NMR について単糖から高分子への構造と化学シフトとの
関連性を中心に述べた。しかしながら、キシランは一般に本にとけないかとけにくい場合が多く植物体内で
はセルロースやリグニンと深く関与し固体あるいは固体に近い状態で存在していると考えられる。今固またを
一旦溶解すれば固体としての物性を消失し、結晶構造、非晶構造、相構造等の構造を解析することはできな
い。従って、溶液状態で得られた情報がそのまま固体に適用できないことは明らかである。この欠点を補
い、固体のままキャラクタリゼーションすることを試みているのが固体高分解能 NMR である。

今、固体の NMR はゴム質の試料を除いて、通常磁気双極子相互作用による非常に幅広い単一のシ
グナルが得らされるのみであり、これから詳細構造を論じることは極めて困難である。固体試料を溶媒に近い
状態での NMR と同程度の高分解能スペクトルを得るためにはこの磁気双極子相互作用による起因する効果を
消去する必要がある。このために三種の方法が考案されている。一つの方法は交差磁化法 (クロスポー
ラリゼーション法あるいはプロトン・エッペンス法) であり、第二の方法はマジック角度回転法と呼ばれて
いる方法で、試料を定回転角に対して 54.7° (マジック角度) 傾斜した方向を回転軸として高速回転し双極子
相互作用を消去する方法であり、第三の方法は多重パルス法である。現在交差磁化法とマジック角度回転法
を併用した CP/MAS 13C-NMR により固体高分解能 NMR が測定されている。前回はこの方法のセルロ
ースの適用についてのべた$^2)。今回はキシランについて測定したデータを紹介する。図17はブナの (4-O-
メチルグルクロノ) キシランとバガスのアラビノ (4-O-メチルグルクロノ) キシランの例である。微細な構造
に起因するシグナルや量的に少なき糖残基のシグナルは微細に留まっているが溶液 (図15-(a) 及び15-(b))
とよく類似したシグナルを与え、ウィットマンセルロースの CF-I のシグナルとは明確に異なることがある。
またバガスのキシランの方が C-2, 3 及び4 の領域のシグナルが明確に分離している。これらのスペクトルの解析は今後の問題である。以上、固体高分解能 NMR は糖の構造差を結晶・非晶構造差を反
映していると考えられ、今後種々の多糖への利用が期待される。

6. おわりに

糖質の 13C-NMR シリーズも二回目になりキシラン系糖質をとりあげた。キシランの骨格は化学的には
前回述べたセルロースとは C-6 の CH$_2$OH が欠失しているにすぎないが、13C-NMR スペクトルは大き
く異なっている。植物体内にこれらの糖としては同系体だが異質な成分が共存している所に自然の驚異を感じ
ている多糖。次回はヘミセルロースの中で針葉樹に特に重要なグルコンマンを対象としてマッサン系糖質の
13C-NMR についてまとめる予定である。

文献

1) 第 5 回糖質シンポジウム、プログラム、プログラム講演要旨集、昭和57年 7 月（名古屋）
2) 東 畢一、越島哲夫：木材研究・資料, 16, 63–96 (1981)
3) 前川義一：木材研究・資料, 13, 13–34 (1979)
7) 西村和彦: 化学, 36, 622 630 (1981)
48) M. PREVIATO, P. A. J. GORIN and J. O. PREVIATO: Biochemistry, 18, 149~154 (1979)
52) J. AZUMA, A. KATO and T. KOshIJIMA: Manuscript in preparation
53) J. AZUMA, F. HORII, K. HIrAI and T. KOshIJIMA: Manuscript in preparation