現行結核菌耐性検査法に就いての吟味 ③（第 3 篇）耐性検査に於ける耐性菌の量的分布の判定に影響を及ぼす諸因子に就いて

作者

吉原 宣方

引用

京都大学結核研究所紀要 (1964), 12(2): 129-142
現行結核菌耐性検査法に就いての吟味

第3篇 耐性検査における耐性菌の量的分布の判定に影響を及ぼす諸因子に就いて

京都大学結核研究所化学療法部（主任 教授 内藤益一）

大学院学生 吉原 宣方

（昭39.1.30受付）

第1章 緒 言

著者は第2篇11に於て，耐性培地，接種菌量，培養期間等の因子が結核菌耐性検査における耐性の高さの判定に及ぼす影響について述べた。

即ち，小川培地では SM は培地 PH の変動によって製菌力が変化し，アルカリ性よりも酸性側に傾くにつれて製菌力が弱まり，従って 3% 小川培地に生理的食塩水菌液を接種した場合には，SM の耐性度は実際よりも高く出る事が判った。

又，接種菌量が多い程，培養期間長い程，製菌力は弱く現われ，特に PAS に於て著明であった。

他方，耐性培地の保存条件では保存期間が長い程，又保存温度が高い程，培地力価は減弱していく傾向がみられ，特にこの傾向は INH に於て著明であることが判った。

又，故意に耐性培地の力価が低下する様々な条件で調製した培地を用いた場合は耐性検査における耐性の高さの判定に関して耐性度は実際の値より高く表現され，未だ未だに接種剤に接觸した事のない全ての感受性菌すなわち若干の耐性があるかと誤った成績の出る事を明らかにした。

臨床上，どの程度の高さの耐性菌がどの程度の割合に存在すれば，耐性ありと判断すべきであるかという，耐性の臨床的限界に就いては今日尚，議論の点が多い22)23)24)25)26)。然しながら，臨床的な耐性検査の目的は未だ，薬が効く可能

性があるかどうかと云う事であり，当該薬剤は既に多少とも効果が落ちているかどうかとの 2 点を知る事にしばられるのではなかろうか。

厚生省の衛生検査指針72)に定められている現行の結核菌耐性検査では，耐性培地及び対照培地に一定量（10^-1mg 又は 10^-2mg）の菌を接種し，一定期間（3 週又は 4 週）培養の後に判定を行ない，薬剤を含む耐性培地に於ける被検菌の発育菌量が，薬剤を含まない対照培地のそれと比して集落数が量的に 75%以上の場合を完全耐性（但し，対照培地の発育菌集落数が 25%以上であること）とし，それ以外の場合を不完全耐性（但し，集落数が多い場合で 75%以下ということが明瞭でない場合には完全耐性（不確定）とし，全く発育しなかった場合を感受性としている。

この様に，耐性培地及び対照培地に於ける発育菌の量的比較によって判定を行なう場合には，著者等第1篇20)に於て触れた如く，接種菌量の多寡によって量的に本来不完全耐性である菌，やる場合には完全耐性に，又る場合には感受性に表現されるという事である不安定な成績がある。

それ故，厚生省衛生検査指針72)では接種菌量は培地 1 本あたり 10^-2mg 又は 10^-3mg と厳密に統一規定してある。しかし現状は，第1篇20)に述べた如く，著者が調査した関係 12 施設の接種菌量は，施設によって異なっており，接種菌量が規定されている量より少ない施設が 1 施設，
第2章 実験方法及び実験結果

第1節 菌液濃度と生菌数との関係

1. 実験材料

使用培地：1％小川培地，10％血清加キルヒナ培地，Tween-albumin 培地
使用菌株：H37Rv 感受性株
使用分解媒：Dubos 原液

2. 実験方法

予め，1％小川培地に上記菌株を2，4，6，8 週間培養したもの，及び10％血清加 Kirchner 液体培地の表面に2，4 週間培養したもの及び，Tween-albumin 培地に1，2 週間培養したもの計8通りの株を用意した。各々から白金耳を用いて約10mg 位の菌量を別々の8 コのガラス玉入コルヘンに採り，夫々正味1分間間手振りにより菌塊を磨碎し，Dubos 原液を加え，なるべく均等に分散する様に菌液を作った。

しかる後，0.15mg/cc の硫酸パリウム（厚生者の検査指針の定める標準液）の浓度と肉眼的に比識し，等しくなるまで稀釀した菌液の濃度を1mg/cc とみなした。更に，Bausch & Lomb のSpectrocolorimeter で Per Cent Transmission を測定しておいて，後日修正に資した。

これらの菌液を夫々，10²倍，10⁴倍，10⁶倍に稀釀し，培地1 本あたり0.1ccを1％小川培地3 本宛に接種し，37℃ の孵卵器内に4 週間培養し，発育菌数を数えた。

3. 実験結果

実験の結果は表1 に示す如くであった。硫酸パリウムの標準液と肉眼的に比識して決定した1mg/cc の菌液を Bausch & Lomb の Spectrocolorimeter を用い，波長475μm で Per Cent Transmission を測定してみると表1 の如く，60％Tr～71Tr％で48％Tr（48％ Transmission が1mg/cc の菌液に相当する）に比べ一般にうすい傾向がみられた。

従って，実際培地上に発育した菌数（実験方法の所で述べた10²倍稀釀菌液を0.1cc接種した場合の培地3 本に発育した菌数の平均値）は単位菌液濃度（即ち1mg/cc 当りの菌数）に修正する必要があった。

そこで菌液濃度と Per Cent Transmission との関係図表の如く，実際に接種された菌液濃度を求めそれでも発育菌数を除した値を表1 の右端の欄に示し，修正発育生菌数とした。

之によると，増菌用培地が異なると同一単位菌量1mg でもその中に含まれている発育可能な生菌単位数は異なっていた。例えば同じ2 週間の培養期間でも，Tween-albumin 培地で344×10⁸コ，Kirchner 表面培養で208×10⁸コ，1％小川培地で31×10⁸コであった。即ち小川培地で生菌数の割合は最も少なく，小川培地より Kirchner 表面培養に多く，Tween-albumin 培地で最も多かった。

同じ培地でも培養期間の長短で生菌数の割合は異なっていた。即ち，1％小川培地4 週間培養での1mg 中の生菌単位数は29×10²コ，6 週間で17×10³コ，8 週間で10×10³コであって，8 週目の菌数は4 週目のそれに比して約1/3に減少していた。Kirchner 表面培養でも2 週間目で208×10³コ，4 週間で113×10³コで約1/2に減少していた。Tween-albumin 培地では1 週間目で356×10³コ，2 週目で344×10³コであった。

一般に培養期間が長くなるにつれて生菌数の割合は減少して行く傾向のあることが判った。
表 1 増菌用培地の種類・培養期間と 1mg 中の単位数

<table>
<thead>
<tr>
<th>培養期間</th>
<th>使 用 培 地</th>
<th>発育単位数</th>
<th>稀 釈 藻 体</th>
<th>修正発育単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 過</td>
<td>Tween-albumin 培地</td>
<td>207×10^8</td>
<td>66% Tr.</td>
<td>5.5×10^9</td>
</tr>
<tr>
<td>2 過</td>
<td>Tween-albumin 培地</td>
<td>200×10^8</td>
<td>66</td>
<td>5.8×10^9</td>
</tr>
<tr>
<td>4 過</td>
<td>Kirchner 表面培養</td>
<td>100×10^8</td>
<td>71</td>
<td>2.0×10^9</td>
</tr>
<tr>
<td>6 過</td>
<td>1% 小川培地</td>
<td>16×10^8</td>
<td>69</td>
<td>3.1×10^9</td>
</tr>
<tr>
<td>8 過</td>
<td>1% 小川培地</td>
<td>7×10^8</td>
<td>60</td>
<td>10×10^9</td>
</tr>
</tbody>
</table>

* Per Cent Transmission は Bausch & Lomb の Spectrocolorimeter で測定した値

表 2 ガラス玉入コルベン法による集落形成時間と 1mg 中の単位数

<table>
<thead>
<tr>
<th>磨碎時間</th>
<th>発育単位数</th>
<th>稀 釈 藻 体</th>
<th>修正発育単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>10秒</td>
<td>126×10^4</td>
<td>82% Tr.</td>
<td>3.0×10^5</td>
</tr>
<tr>
<td>30秒</td>
<td>113×10^4</td>
<td>77</td>
<td>3.0×10^5</td>
</tr>
<tr>
<td>60秒</td>
<td>106×10^4</td>
<td>77</td>
<td>3.0×10^5</td>
</tr>
<tr>
<td>2分</td>
<td>13×10^4</td>
<td>81</td>
<td>4.4×10^4</td>
</tr>
<tr>
<td>5分</td>
<td>7×10^4</td>
<td>82</td>
<td>2.7×10^4</td>
</tr>
<tr>
<td>10分</td>
<td>3×10^4</td>
<td>85</td>
<td>1.0×10^4</td>
</tr>
</tbody>
</table>

* Per Cent Transmission は Bausch & Lomb の Spectrocolorimeter で測定した値

第 2 項 ガラス玉入コルベン法による集落形成時間と 1mg 中の単位数

1. 実験材料
 使用培地：1%小川培地
 使用菌株：1%小川培地に 4 週間培養した H37Rv 感受性株
 使用分散媒：Dubos 原液

2. 実験方法
 上記の菌株を白金耳により目分量で菌量約 10mg つづを6コのガラス玉入コルペンに採
 り、正味の手長磨碎時間を10秒、30秒、60秒、2分、5分、10分の6通りとし各々に Dubos原
 液を加えて均等なる菌液を作った。第1項の実
 験方法で述べたと同様の方法に従って、1mg中
 単の生菌単位数を測定した。

3. 実験成績
 表 2 に示した如く、磨碎時間正味10秒の場合、
 生菌単位数は 453×10^4 コ、30秒で 306×10^4 コ、
 60秒で 288×10^4 コ、2分で 44×10^4 コ、5 分で
 27×10^4 コ、10分で 1×10^4 コとなった。

 結局、磨碎時間が長くなるにつれて生菌数は
 明に減少する傾向がみられ、磨碎時間10秒の
 場合の生菌単位数を1とすると60秒で約1/2に
 減少し、 2 分で約1/10、10分では約1/500 に減
 少した。

第 3 項 菌液分散媒の種類と 1mg 中の単位数

1. 実験材料
 使用培地：1%小川培地
 使用菌株：1%小川培地に 4 週間培養した H37Rv 感受性株
 使用分散媒：滅菌蒸溜水、生理的食塩水、
 0.05%Twee 80 溶液、 4%
 熱性ソーダ溶液

2. 実験方法
 ガラス玉入コルペン 4 個に上記の菌株から目
 分量で菌量約 10mg つづを白金耳にて各コルペン
表3 分散媒の種類と1mg中の生菌単位数

<table>
<thead>
<tr>
<th>分散媒</th>
<th>発育生菌単位数</th>
<th>発酵発生菌単位数</th>
<th>修正発育生菌単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>生理的食塩水</td>
<td>115×10⁵コ</td>
<td>43% Tr</td>
<td>1.15mg/cc</td>
</tr>
<tr>
<td>蒸溜水</td>
<td>104×10⁵</td>
<td>45</td>
<td>1.08</td>
</tr>
<tr>
<td>0.05% Tween 80</td>
<td>92×10⁵</td>
<td>47</td>
<td>1.05</td>
</tr>
<tr>
<td>4% NaOH溶液</td>
<td>47×10⁵</td>
<td>39</td>
<td>1.28</td>
</tr>
</tbody>
</table>

*Per Cent TransmissionはBausoh & LombのSpectrocolorimeterにて測定した値

3. 実験成績
実験結果は表3に示す如くであった。第1項の実験成績で述べた様な方法で、発育生菌単位数を菌液の濃度で修正してみると、表3の右端の欄の如くなった。

これでみると、菌液の分散媒によって発育生菌単位数は多少異なっており、生理的食塩水の場合は量菌1mg中、100×10⁴コ、蒸溜水では96×10⁴コ、0.05% Tween 80液では87×10⁴コであった。4% NaOH溶液の場合は37×10⁴コであって、上記3つの場合に比べて発育生菌数は少なく、およそ1/2〜1/3程度であった。

第4項 亜鉛沈殿法による菌液中の粗大亜鉛除去と1mg中の生菌単位数

1. 実験材料
使用培地：1%小川培地
使用菌株：1%小川培地に4週間培養したH37Rv感受性株
使用分散媒：Dubos原液

2. 実験方法
上記菌株より白金耳により目分量で菌量約10mgをガラス巻入コルペンに採り、手振りによって正味1分間摂勧し、Dubos原液を加えて菌液を作り、遠沈せずそのまま光電管にかけて濃度を測定したもの及び1分間800〜1,000回転の速度で1分間、3分間、5分間、10分間遠心沈澱を行なって夫々の上清を光電管にかけて濃度を決め、培地1本あたり10⁻⁴mgの菌量を1%小川地12本づつに接種し、37℃の孵卵器内に培養し4週目に、発育した集落を数えて生菌単位数を測定した。

3. 実験成績
表4に示す如く、遠沈しない場合の単位重量（1mg）あたりの生菌単位数は、171×10⁴コであった。

遠沈時間正味1分間の場合は、112×10⁴コ、3分間の場合は173×10⁴コ、5分間の場合は、165×10⁴コ、10分間の場合は、140×10⁴コであって著明な差は認めなかった。

第5項 菌液比重に用いる標準液の種類と1mg中の生菌単位数

1. 実験材料
使用培地：1%小川培地
使用菌株：10%血清加Kirchner培地の表面に10日間培養したH37Rv感受性株
使用分散媒：Dubos原液
使用比浊用標準液：硫酸バリウム溶液(0.1 5mg/cc)
腸チフス診断液(5mg/cc)

2. 実験方法

上記10%血清加 Kirchner 表面に発育した菌膜を白金耳を用いて釘菌して、シャーレの中に2つ折りにした減菌紙紙にはさみとり、37℃の孵育器内に1時間放置した。

次いで、減菌した蓋付きガラス製秤量ビンの中に移し、化学天秤にて菌量を正確に測定した。この場合 9.8mg であった。

ガラス王入コルペンに取って正味2分間手振りで優し碎し、Dubos 原液を菌体 1mg あたり1ccの割合（この場合 9.8cc）に加えて菌液を作った。

次に、別々のガラス王入コルペンに上記の薬剤から日分量で約 10mg 程度の菌量を釘菌し、型の如く、手振り法による菌塊磨砕後、Dubos 原液を加えて均等な菌液を作り、この菌液を大さの等しい3本の試験管に分注した。

その中の1本は先に秤量して作った 1mg/cc の結核菌液の菌量と、次の1本は 0.15mg/cc の硫酸バリウム溶液の菌量と、残りの1本は 1mg/cc の腸チフス診断液の菌量と肉眼的に比潰して各々の菌量が等しくなる様に菌液を稀釀した。かくして出来た3通の菌液を光電管にかけて、Per Cent Transmission を測定しておいた。

これら3つの菌液を用いて、第1項の実験方法の所で述べたと同じ方法で生菌単位数を測定した。

尚、比浊の標準液として用いた 0,15mg/ccの硫酸バリウム溶液、1mg/cc の腸チフス診断液も結核菌を秤量して作った 1mg/cc の菌液も、光電管にて Per Cent Transmission を測定しておいて、肉眼判定の菌液濃度との差異の有無についても検討した。

3. 実験成績

実験の結果は表 5 に示す如くであって、第1項の実験成績の所で述べた様な方法で、発育生菌数を菌液の濃度で修正してみると表 5 の右端の欄の如くなった。

即ち結核菌を秤量して作った 1mg/cc の菌液と比樫して濃度を決めた場合の単位重量(1mg)あたりの生菌単位数は 53×10³コ、チフス診断液と比樫して濃度を決めた場合は 75×10³コ、硫酸バリウム液と比樫して濃度を決めた場合は 58×10³コであった。標準液が異なっても著明な差は認めなかった。

標準液そのものの濃度は表 5 に示す如く、結核菌を秤量して作った 1mg/cc の菌液は、光電管で47% Transmission を示したが、腸チフス診断液(1mg/cc)は32% Transmission を、硫酸バリウムは48% Transmission を示した。

上記3つの標準液と肉眼的に比樫して決めた菌液は表 5 の如く、夫々 49%、40%、45%の Transmission 値を示し、肉眼的判定による誤差は 2%〜8% Transmission 程度であって、腸チフス診断液が標準液の場合の誤差が最も大きかった。

第2節 接種菌量と耐性菌の量的分布との関係

第1項 標準耐性培地及び非標準（不良）耐性培地における接種菌量の影響

1. 実験材料

使用培地：1％小川培地、3％小川培地
使用薬剤：Dihydrotreptomycin (DHSM), Combined Streptomycin (CSM), PAS-Na, INH.

<table>
<thead>
<tr>
<th>標 準</th>
<th>液</th>
<th>発育生菌 単位数</th>
<th>菌液濃度</th>
<th>修正発育生菌 単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>結核菌液(秤量)</td>
<td>47%Tr</td>
<td>1mg/cc</td>
<td>52×10³コ</td>
<td>49％Tr</td>
</tr>
<tr>
<td>腸チフス診断液</td>
<td>32%Tr</td>
<td>1mg/cc</td>
<td>94×10³コ</td>
<td>40％Tr</td>
</tr>
<tr>
<td>硫酸バリウム液</td>
<td>48%Tr</td>
<td>0.15mg/cc</td>
<td>65×10³コ</td>
<td>45％Tr</td>
</tr>
</tbody>
</table>

* Per Cent Transmission は Bausch & Lomb の Spectrocolorimeter にて測定した値
使用菌株：Tween-albumin 培地に10日間培養した H37Rv 感受性株
使用分散媒：Dubos 原液

2. 実験方法

厚生省の衛生検査指針に準じて 1％小川培地を用い, DHSM 100γ, 10γ, 5γ, 1γ, PAS 100γ, 10γ, 5γ, 1γ, 0.5γ (DHSM はすべて 2 倍倍, PAS-Na はすべて 1.38倍量添加した), INH 10.0γ, 5.0γ, 2.0γ, 1.0γ, 0.5γ, 0.1γ の耐性培地及び対照培地を作り, 90℃ 1 時間加熱凝固滅菌し室温に保存し 1 間隔以内のものを標準耐性培地とした。他方, 検査指針とは異なる作製条件, 即ち表 6 に示した様に SM 耐性培地では 1％ 小川培地の代わりに 3％ 小川培地を用い, DHSM の代わりに CSM を用いて 2 倍量を添加し, PAS耐性培地では PAS-Na を秤量して 1.38倍量でなく 1 倍量のみを加え, INH 耐性培地では注射薬の古いもの（6ヶ月以上経過しているもの）を使用し, 1 倍量を加え上記の耐性培地と表現上同じ数の耐性培地及び対照培地を作った。之等の非標準培地に於ては凝固菌の温度が 90℃ に上ってから培地を入けるのではなく初めから入れておく 90℃ 1 時間加熱滅菌し, 出来たった耐性培地を 37℃ の孵卵器内に 8 週間保存した。之を非標準（不良）耐性培地と表し, 不良条件は第 1 章に述べた如く 12 施設の耐性検査法の実態調査成績から一般にあり得るものを利用したものである。

上記の耐性培地, 対照培地に上記菌株を培地 1 本あたり 3×10^{-9}mg, 10^{-9}mg, 10^{-2}mg, 10^{-3}mg, 10^{-4}mg, 10^{-5}mg, 10^{-6}mg, 10^{-7}mg, 10^{-8}mg, 10^{-9}mg, 10^{-10}mg, 10^{-11}mg の 11段階の菌量を接種し, 37℃ の孵卵器内に培養し, 3 週, 4 週, 6 週, 8 週目毎に発育した集落数を数えた。

3. 実験成績

全耐性培地を培養後, 3, 4, 6, 8 週目毎に判定を行なったが中, 4 週及び 6 週の判定成績を示すと表 7, 表 8, 表 9 の如くとなっただけ。まず 4 週判定では, 標準耐性培地に於ては SM17/cc を除く他の耐性培地には感性菌は全く発育しておらず, SM17/cc 培地でも接種菌量が 10^{-5}mg 以上の場合に若干の集落数 (2～21) が発生したよりなかった。

之に対し, 非標準培地では SM17/cc, INH 0.17/cc 培地には薬剤を含まない対照培地と殆ど同じ程度の集落数の発生があり, PASO.5γ/cc, INH2γ/cc, INH17/cc 培地にも接種菌量が最も多い 0.3mg に於いて, 菌種 2, 1, 4, 4 本の集落発生を認めなかった。

しかしながら SM 5γ/cc 以上, PAS 1γ/cc, INH 5γ/cc 以上の培地には接種菌量が 0.3mg の様に大部分の場合でも集落の発生を認めなかった。

即ち, 不良培地で接種菌量を 0.3mg と大量を選んでも 4 週判定では, SM10γ/cc, PAS1γ/cc に耐性の菌は証明されないから臨床の実際には差し支えないとと思われるが, INH の場合は 0.1mg 以下でなければならない訳の成績を得る恐れがあるよう。

次に 6 週判定では, 表 7 に示す如く, SM 標準

<table>
<thead>
<tr>
<th>表 6 非標準（不良）耐性培地</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用薬剤の種類</td>
</tr>
<tr>
<td>薬剤の添加量</td>
</tr>
<tr>
<td>培地中の種類</td>
</tr>
<tr>
<td>培地中に含有される薬剤濃度の種類（7/cc）</td>
</tr>
<tr>
<td>凝固温度・時間</td>
</tr>
<tr>
<td>保存温度・期間</td>
</tr>
</tbody>
</table>
表 7 標準耐性培地及び非標準耐性培地と接種菌量

<table>
<thead>
<tr>
<th>No.</th>
<th>接種菌量 (mg)</th>
<th>対照培地</th>
<th>SM耐性培地</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100γ/cc</td>
<td>10γ/cc</td>
<td>5γ/cc</td>
</tr>
<tr>
<td>a</td>
<td>3×10^{-1}</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>b</td>
<td>1×10^{-1}</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>c</td>
<td>10^{-2}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>10^{-3}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>10^{-4}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>10^{-5}</td>
<td>5</td>
<td>132</td>
</tr>
<tr>
<td>g</td>
<td>10^{-6}</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>h</td>
<td>10^{-7}</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>i</td>
<td>10^{-8}</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>j</td>
<td>10^{-9}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>10^{-10}</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

標1％は1％小川耐性培地（標準法によるもの）
非3％は3％小川耐性培地（標準法によるもの）

表 8 標準耐性培地及び非標準耐性培地と接種菌量

<table>
<thead>
<tr>
<th>No.</th>
<th>接種菌量 (mg)</th>
<th>対照培地</th>
<th>PAS耐性培地</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100γ/cc</td>
<td>10γ/cc</td>
<td>5γ/cc</td>
</tr>
<tr>
<td>a</td>
<td>3×10^{-1}</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1×10^{-1}</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>10^{-2}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>10^{-3}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>10^{-4}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>10^{-5}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>10^{-6}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>10^{-7}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>10^{-8}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>10^{-9}</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>10^{-10}</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
表9 標準耐性培地及び非標準耐性培地と接種菌量 4週判定及び6週判定

<table>
<thead>
<tr>
<th>No.</th>
<th>接種菌量 (mg)</th>
<th>対照培地</th>
<th>INH 耐性培地</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10γ/cc</td>
<td>5γ/cc</td>
<td>2γ/cc</td>
</tr>
<tr>
<td></td>
<td>標 1％</td>
<td>非 1％</td>
<td>標 1％</td>
</tr>
<tr>
<td>a</td>
<td>3×10^{-1}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>b</td>
<td>1×10^{-1}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>c</td>
<td>10^{-2}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>d</td>
<td>10^{-3}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>e</td>
<td>10^{-4}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>f</td>
<td>10^{-5}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>g</td>
<td>10^{-6}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>h</td>
<td>10^{-7}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>i</td>
<td>10^{-8}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>j</td>
<td>10^{-9}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>k</td>
<td>10^{-10}</td>
<td># # # #</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

標1％は1％小川耐性培地（標準法によるもの）
非1％は1％小川耐性培地（標準法によるもの）

次に、PAS 標準培地に於ては 4 週判定の場合、同様にあり、0.5γ/cc 以上の耐性培地に発酵菌落を認めたなかった。

考察に対して、PAS 耐性培地では 4 週判定ではみられなかった 1γ/cc 培地にも接種菌量が 0.1mg、0.3mg の場合には未発育落数を認め、完全耐性と判断した。

しかし、5γ/cc 以上の耐性培地には 4 週判定の場合、接種菌量が多い場合 (0.3mg) でも 4 週判定の場合と同じく発酵菌落数を認めたかった。

INH 標準培地では、4 週判定の場合に発酵菌落を認めなかった 0.17/cc 培地に、接種菌量が 0.3mg の時のみ、1コの発酵菌落を認めた他は、4 週判定の場合、同様にあった 0.5γ/cc 以上の耐性培地に発酵菌落を認めなかった。

INH 非標準培地では 4 週判定の場合、同様である。0.17/cc 耐性培地では対照培地と殆ど同じ程度の発酵菌量であった。INH 17/cc 及び 27/cc 耐性培地では接種菌量が 0.3mg の場合のみ、1コ、1コの発酵菌落を認めた。しかしながら 5γ/cc、10γ/cc 耐性培地には接種菌量が多い場合にも発酵菌落を認めなかった。

第2項 接種菌量と耐性菌検出率

1. 實験材料

使用培地：1％小川培地
使用薬剤：DHS M
使用菌株：1％小川培地に驯らした H37RV R-SM 10γ/cc 耐性株及びH37RV 感受性株
使用分散媒：Dubos 原液

2. 實験方法

まず 1％小川培地で DHS M を 20γ/cc に含む培地（力価 10γ/cc）を DHS M を含める対照培地の 2 種類の培地を作った。次に上記 SM 耐性株と感受性株を用いて SM 耐性菌の含まれる割合が 50％、20％、10％、約 1％、約 0.1％とするような人工培養菌株を作った。この 6 種類の菌株の他に、SM 耐性菌の株のもの、感受性菌の株を用いて SM 10γ/cc 培地、対照培地の各々に 1本あたり 10^-1 mg、10^-2 mg、10^-3 mg、10^-4 mg、10^-5 mg、10^-6 mg の 8 段階の菌量を接種し、37℃の孵卵器内に培養し 3 過目及び 4 過目に判定を行なった。

3. 實験結果

その結果は表10に示す如くで、接種菌量は同
じでも耐性菌の混入率が低い程、SM 10γ/cc 培地に発育する集落数が少なかった。

即ち、接種菌量が 10⁻³mg の場合には 100％耐性株で 17γ、50％耐性株で 13γ、20％耐性株で 3γ の発育を認めだが、10％、約 1％、約 0.1％、約 0.01％各耐性株では集落の発生を認めなかった。

接種菌量が 10⁻⁴mg の場合には 100％耐性株で 85γ、50％耐性株で 88γ、20％耐性株で 27γ、10％耐性株で 6γ の集落を認めたが、約 1％以下の耐性株では発育を認めず、耐性菌検出是不可能であった。

接種菌量が 10⁻⁵mg の場合には、100％及び 50％耐性株で発育菌数（冊）で対照比地の発育菌数と殆ど同じであった。20％、10％、約 1％耐性株では夫々 282γ、139γ、30γ、6γ の発育を認めたが、約 0.1％以下の耐性株では発育を認めず、耐性菌検出是不可能であった。

接種菌量が 10⁻⁶mg の場合には、100％、50％耐性株では発育菌数（冊）で対照比地と同じ位であった。20％、10％、約 1％、約 0.1％耐性株では夫々 282γ、139γ、30γ、6γ の発育集落数を認め、約 0.01％耐性株では発育を認めず耐性菌検出是不可能であった。

接種菌量が 10⁻⁷mg の場合は、100％～10％耐性株はすべて発育菌数は（冊）に達し、対照比地のそれと殆ど同じであった。約 1％耐性株で（冊）約 0.1％耐性株で 231γ、0.01％耐性株で 40γ の発育集落数を認めた。

又、100％感性株の場合は、耐性培地に発育した集落を全く認めず、最大接種菌量 0.1mg 中に SM1.0γ以上の自然耐性菌と思われるものは未検出で存在していなかった。

以上の実験結果から、耐性菌を検出するためには耐性菌の混入率が大である場合には、接種菌量が少なくてても可能であったが、耐性菌の含有率が低い場合には接種菌量を多くする必要があった。

例えば、約 1％耐性株から耐性菌を確実に検出するためにには 10⁻³mg では不充分で、10⁻²mg 以上の接種菌量が必要であった。

又、0.01％耐性株の場合は 10⁻¹mg 以上の菌量が必要であった。

この様な事実から耐性株を検出するために必要な接種菌量には、耐性菌の含まれている割合に応じて、一定以下の菌量では耐性菌を見落す恐れがって接種菌量には下限のあることが判った。

他方、耐性菌の含有率が 10％～20％の如くかなり高い場合には 10⁻²mg～10⁻¹mg の如く接種菌量が多ければ、耐性培地に対照培地と殆ど同じ位集落が発育し、本来不完全耐性株を完全耐性株と判定される。

従って、10％～20％耐性株で逆に感受性菌の存在を明らかにするためには、接種菌量は 10⁻³mg 以下であることが必要であった。即ち、

<table>
<thead>
<tr>
<th>接種菌量 (mg)</th>
<th>接種菌検出率(%)</th>
<th>SM 10γ/cc</th>
<th>100%</th>
<th>50%</th>
<th>20%</th>
<th>10%</th>
<th>約1%</th>
<th>約0.1%</th>
<th>約0.01%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹</td>
<td>10γ</td>
<td>約 40</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻²</td>
<td>10γ</td>
<td>約 30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻³</td>
<td>10γ</td>
<td>約 15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>10γ</td>
<td>約 8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁵</td>
<td>10γ</td>
<td>約 6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>10γ</td>
<td>約 4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁷</td>
<td>10γ</td>
<td>約 3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁸</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100% SM 耐性菌混入率と接種菌量 4 項判定

表 10 SM 耐性菌混入率と接種菌量
表11 至適接種菌量

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
<th>耐性菌含有率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>約0.01%</td>
<td>約0.1%</td>
</tr>
<tr>
<td>耐性菌検出に必要な最少接種菌量</td>
<td>*10^{-1}mg以上</td>
<td>10^{-2}mg以上</td>
</tr>
<tr>
<td>感受性菌検出に必要な最大接種菌量</td>
<td>10^{0}mg以下</td>
<td>10^{-1}mg以下</td>
</tr>
</tbody>
</table>

* 自然耐性菌の混入するおそれがある。

感受性菌の存在を検出すためには耐性菌の含有率が相対的に高い場合には、その含有率に応じて接種菌量に上限のあることが判った。

第3節 集落採取菌数と耐性分布との関係

1. 実験材料

使用培地：DHSM 107/cc(20γ/cc), PAS 1γ/cc (PAS-Na 1.38γ/cc), INH 1γ/ccの各1%小川耐性培地及び1%小川培地

使用分散媒：生理的食塩水, 石油ベンジン
使用菌株：H37Rv: H37Rv R-INH: H37Rv R-PAS: H37Rv R-SM=1000:100:10:1の割合に混合して、種々の接種菌量の下に1%小川培地に、37℃の孵卵器内に5週間培養し、斜面に一面に発育したものから、数えられる程度の菌発育のものまでを作り、採取集落数の少ない場合は数えられる程度のものを選び、全集落の約1/3又は全集落の場合に

在培地斜面全面に発育したものを選んで菌を採取した。

なお、H37Rv は感受性菌を示し、H37Rv R-INH は INH 耐性菌で耐性的高さは 5γ/cc 以上で、catalase (+) を示す。H37Rv R-PAS は PAS 耐性菌で 25γ/cc 以上、H37Rv R-SM は SM 耐性菌で 10γ/cc 以上の耐性的高さを示すものである。各菌は1%小川培地に数日継代培養をして小川培地に移した研究室保存菌株である。

2. 実験方法

上記の如くして培養した培地斜面より、大集落1コのみを採取し、カラス玉入コルベットにより手振り時間処理1分間、生理的食塩水を入れて均等な菌液をつくり、上記の耐性検査用培地に培地1本あたり10^{2}mg の菌量を接種した。

又、採取集落数 3 ～ 5 コの場合、集落数10コの場合、培地斜面上の約1/3の集落数、殆ど全集落から採取した場合も同様にカラス玉入コルベットにて均等な菌液をつくり、培地1本あたり10^{-2}mg を接種した。但し、集落数の極めて少ない場合は生食水を自分量で減少したので、必ずしも厳密に10^{-2}mg とは断言出来ない。

別に、石油ベンジンを斜面に流して全集落よりなるべく平均に採れる様にしてベンジン菌液を作り、培地1本あたり約10^{-3}mg を接種した。

かくして、全培地を 37℃の孵卵器内に4週間、培養後判定を行なった。

3. 実験成績

成績は表12に示す如くであった。表中、表下段の耐性分布の欄は、本節の実験材料のところを述べた使用菌株から予想される耐性分布である。

この表をみると、採取した集落数が1コのみの場合を4回実験を行なったが、SM, PAS, INH 各耐性培地のいずれも(-)で、対照培地のみに(+)の発育菌量を認めた場合が1回、SM, PAS 各耐性培地に(-)で、INH 耐性培地及び対照培地に(+)の発育菌量を示した場合が2回あり、SM, INH 各耐性培地に(-)で、PAS 耐性培地、対照培地の夫々に(+)の発育菌量を示した場合が1回あった。

SM 耐性培地に発育を認めたものはなく、約0.1%に含まれる SM 耐性菌は4回の実験では検出されなかった。

次に、採取集落数が3 ～ 5 コの場合を3回実
昭39.3

試験しているが、SM 耐性培地に（+）、PAS 耐性培地に（－）、INH 耐性培地に（+）、対照培地に（+）の発育菌量を認めた場合が 1 回、SM、PAS 各耐性培地に（－）で、INH 培地に（+）～（+）、対照培地に（+）の発育菌量を示した場合が 2 回あった。

次に、採取集落数が 10 コの場合を 2 回実験したが、SM、PAS 各耐性培地に（+）、INH 耐性培地に（+）、対照培地に（+）の発育菌量を示した場合が 1 回あり、SM 耐性培地には（－）で、PAS、INH 各耐性培地に（+）、対照培地に（+）の発育菌量を示した場合が 1 回あった。

次に、採取集落数が全集落の約 1/3、培地斜面上の全集落のことを六々 2 回実験を行ない、更に、培地斜面に石油ペンゼン流して全集落を集めて菌液を作った場合の実験を 1 回行なった。いずれの実験に於ても SM 耐性培地には（+）～（+），PAS耐性培地には（+）～（+），INH 耐性培地には（+）～（+）、対照培地には（+）～（+）の発育菌量を示した。

従って、培地斜面上の全集落の約 1/3 以上を採取すれば、耐性菌の検出は可能であった。

他方、耐性菌の量的分布の再現性という点からみると、被検菌の構成から予想される耐性検査成績は表の最下欄に示す如く SM(+), PAS(+), INH(±), 対照(±)の発育菌量を示す管である。

ところで、斜面上の約 1/3 の集落を採取した場合、2 回の実験では SM (+), PAS (+), INH(+), 対照(±), 及び SM (+), PAS(+), INH (+), 対照(±)であって、いずれも予想された成績と異なっていた。

培地の斜面上の集落の殆どすべてから平等に少量つつ採取した場合、2 回の実験では SM (+), PAS (+), INH (+), 対照(±), 及び SM (+), PAS (+), INH (+), 対照(±)の判定成績を示し、10%に含まれる INH 耐性菌が対照培地の菌発育量(±)と殆ど同じ発育を示し完全耐性（不確定）と判定された場合が 1 回みられたが、之が許容されるとすれば略予想される成績を示した。

但し、ペンゼンを斜面に流し全集落を採択した場合には、SM(+), PAS(±), INH(±)の成績を示し、集落数には差がみられたが、INH(±), 対照(±)で差が認められなかった。即ち、10%に耐性菌を含む場合には完全耐性と判定したわけで、恐らく菌量が多過ぎたためと思われる。一般にペンゼン菌液は菌量決定が困難である。

表12 集落採取箇所と耐性検査成績

<table>
<thead>
<tr>
<th>集落採取箇所</th>
<th>SM107/cc</th>
<th>PAS17/cc</th>
<th>INH17/cc</th>
<th>対照</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 コ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1 コ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1 コ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 ～ 5 コ</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3 ～ 5 コ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>10 コ</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 コ</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>斜面±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>斜面±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>全斜面</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
</tbody>
</table>

| 耐性分布 | + | + | ± | ± |

第3章 総括及び考察

第2 篇に於て、著者は耐性検査に於ける耐性の高さの判定に影響を及ぼす因子が種々あり、特に耐性培地 PH、耐性培地保存条件、接種菌量、培養期間の相違によって、SM、PAS、INH の MIC が変化し、制菌力が弱く現われる条件下では耐性度は実際よりも高く表現される事を述べた。

又、上記の諸因子が一度に重なった、いわば最不良の条件下では制菌力はどれ位低下するか是就いても実験的検討を行なった。

既に述べた如く、耐性検査の成績は本質上耐性の高さの判定はもとより、耐性菌の量的分布の面をも正しく示すものであることが要求される。

従って本篇ではどの様な方法で耐性検査を行うか、耐性検査成績の判定条件を考慮して検討を要する。
なれば、主に耐性菌の量的分布の判定を比較的正しく可能ならしめるかを目標に、接種菌数を
接種菌数、及び集落採取方法が耐性検査における接種菌数の分布の判定にどの程度影響
するかを知って検討を行ない、更に、耐性検査
成績を臨床に応用する際に、適当と思われる接
種菌数に就いて検討を行なった。

接種菌数と耐性検出率の点に関しては、小
寄りの菌数の多少により耐性の読みが違っ
てくる事を指摘しており、島田は接種菌数が
少なくなった時に従って耐性別検出率が低下する
事で述べている。

一方、小川（注9）、林（注10）、島田（注11）、P. J.
Coletos（注12）は接種菌数が多ければ、見せかけた
耐性が現われる事や、不完全耐性が完全耐性の
姿をとる事を述べている。

更に、小酒井（注12）は接種菌数が多かった時全体の
菌の僅か10％の耐性菌でも「完全耐性」となる
としている。

Edwin A. Brosse et al（注9）は耐性菌の量的分
布を正しく知るためには接種菌数を少なくする
必要があると云っており、Georges Canetti（注9）も
耐性菌が1〜100％存在すると紛れて耐性と表
現される可能性があるから接種菌数は10mg
程度に少なくする必要のある事を述べている。

又、佐藤（注11）によれば接種菌数を間接法によ
る INH 耐性測定誤差の原因は、感受性菌と耐
性菌の菌数間の変動の他に、2 検査法間の接
種される菌数の大きさの差に基づくと云ってい
る。

河原（注12）らは同一培地を使用した場合の技術差
では、接種菌数の差による事が著明であったと
し、以上の如くいずれも接種菌数の耐性検査成
績に与える影響の重要性を強調している。安保
・東村（注12）はその点、 actual count 法は接種菌
数が一定なので菌数の影響を除外出来るから良
いと述べ、現行法の方が菌数がより多いので
actual count 法によるより、現行法による方が
完全耐性となる率が高いと云っている。

そこで、著者は以上の点を明らかにするため
に研究室保存の H37Rv 感受性株、同 SM 耐性
株及びこれら 2 株を混合作成した50％、20％、
10％、約1％、約0.1％耐性株を被検株
とし、接種菌数を10mg、10mg、10mg……
10mg までの 8 段階とし耐性検査を行ない、
耐性菌検出に関する菌数の影響を調べた。その
結果は表10に示す如く、一般に耐性菌を含む割
合が多い株では接種菌数を多くすると完全耐性
に、逆に耐性菌の少ない株では菌数を少なくす
ると感性に判定された。

従って耐性菌を含む割合に関じて感受性菌を
証明し得る接種菌数には上限があり、反対に耐
性菌を検出し得る接種菌数には下限がある事が
示された。例えば、10％耐性株から感受性菌を
証明するには10mg以下の菌数を、約0.01％耐
性株から耐性菌を確実に検出するには10mg
以上の菌数を植える必要があった。

故に、菌数を10mgと10mgの2段階で
接種すれば表10の如く、10％〜0.01％の耐性株
から感受性菌及び耐性菌を証明することが可
能である。

次に、現行の耐性検査法に於いては菌数は薬
液の希釈によって決めているが、実際にはた
とえ肉眼的には同じ程度の希釈を示していても、
その中に含まれている発育可能な菌の占める
割合は薬液作成条件によって著しい影響をうけた。
実際に薬は、集落採取時に卵培地成分が混
入して薬液の濃度が増大することもありうるし又生
菌の占める割合は表1の如く分離増菌用培地に
よっても異なり、Tween-albumin 培地、10％
血清加 Kirchner 培地を用いた時が多く、小川
培地4周間培養の菌数単位数はこれに約
1/10であった。

その上、培養期間が長くなると培地の菌種を
問わず生菌数の割合を減少して行った。例え
ば、小川培地 4 週間培養での生菌数を 1 とする
と同じ小川培地 5 週間培養では約 1 2/1 に、約 8
週間培養では約 1/3 に減少した。

次に、生菌数に対するガラス玉入コルベンに
による菌数測定時間の影響もかなり著明で、実質
10秒間測定した時の生菌数を 1 とすると60秒間
では凡そ1/2に、2分間で約1/10に、5分間で
約1/20に、10分間で約1/500に減少した。

この他、透無による菌液中の粗大菌塊除去の
有無、分散媒の種類（蒸溜水、生理的食塩水、
京大結研紀要 第12巻 第2号
0.05%Tween 80液，4% NaOH溶液，菌液濃度測定法（比色計，0.15mg/ccのBaSO₄液との比色，誠チフス診断液との比色，化学天秤による菌の秤量）による生菌単位数の変動を検討したが余り影響しなかった。

以上の事実から肉眼的に同じ皆度を有していても、その中に含まれている生菌数には著明な差が生じていることもある事が判ったので、実際の検査の施行に当っても常に生菌数という事を考慮し、出来るだけ接種される生菌数が一定になる様に心掛ける必要がある。

次に、表6に示す様に、故意に培地力価が低下すると思われる様な不良条件下で耐性菌検査を行なった場合には、4週目判定で感受性株がSM 17/cc，及びINH 0.17/ccに完全耐性を示し、6週目判定では接種菌量が0.1～0.3mgの如く多い場合にはSM 107/cc，PAS 17/cc，INH 17/cc培地にも多数の集落が生じて不完全耐性と判定された。しかし日常の耐性菌検査が行われる条件下では感受性株がSM 107/cc，PAS17/cc，INH 17/ccの各々に完全耐性として表現される事は殆ど起こり得ないと考えて良いと思われる。

次に，どの部位の割合に耐性菌が含まれている菌株からは，培地上的集落をどの位，採取して検査すれば耐性菌を見逃さず，耐性菌の量的分布を比較的正しく再現し得るかに関しては，約0.1%～10%の耐性株から耐性菌を検出するためには培地斜面上の全集落の約1/3以上を採取する必要がある様に思われた。採取集落数が10コの場合でも，約0.1%含まれているSM耐性菌を検出しているが，之は多分に偶然性に左右されたものと考えられる。

又，耐性菌の量的分布の再現性に関してみると全集落数の約1/3を取った場合でも不充分であったが，全集落から少量つつ平行に採取した場合には，被検株の耐性菌分布から予想される耐性分布，即ちSM (+)，PAS (+)，INH (+)対照（-)という判定成績を概ね再現し得た。しかし，たとえ集落採取が良好の場合でも接種菌量が多過ぎると，表12の成績にもみられる如く，本来不完全耐性株が完全耐性（不確定）を示し，耐性分布の再現性が困難となるので，適切な菌量を接種することが望ましい。

第4章 結 語

著者の検討によれば，耐性菌検査に於ける耐性菌の量的分布に影響を及ぼす諸因子の中，最も重大なるものは接種菌量，特に接種菌量であって見かけ上，同じ菌液濃度を示した場合でも，その中に含まれている生菌単位数は分離菌株用培地の種類，培養期間（即ち菌の古さ），集落磨砕時間の長さによって相当な差異を示す事を知った。

一方，菌液散布器の種類，遠心による粗大菌塊除去の有無や菌液濃度判定に用いる標準液の種類には著明な影響をうけなかった。

接種菌量と耐性菌検出率との関係は，接種菌量の多い場合には数少しか含まれていない耐性菌をも検出可能であったが，菌量が少ない場合には検出不可能であり，感受性と判定された。但し，接種菌量の多い場合は本来不完全耐性であるべき株が完全耐性（不確定）に判定される傾向がみられた。

従って，接種菌量には目的によって上限及び下限のある事が判した。臨床家の立場から，まだ薬剤が少しでも効くかどうかを知るために，菌量を少なく（10～mg）接種し，薬剤の効力が少しでも低下しているかどうかを知るために，菌量を多く（10～1mg）接種する。即ち2段階の菌量で検査を行うのが良いと考えられた。

又，不良条件下で耐性菌検査が行なわれた場合には感受性菌でもSM 17/cc，INH 0.17/ccに完全耐性に判定される可能性があり，更に培養期間が4週から6週になると，SM 107/cc，PAS 17/cc，INH 17/ccの各培地にも多数の集落が生じ，不完全耐性と判定される場合のある事を認めた。

次に，培地上的集落の中からどれ位の数を集めて検査すれば満足すべき成績が得られるかという集落採取菌数の問題を検討し，耐性菌の量的分布の再現性の関係では，約0.1%に耐性菌を含む株から耐性菌を検出するためには，培地斜面の少なくとも約1/3以上の集落を採取する必要があり，一方被検株の耐性分布を正しく再
現するためには培地斜面上の全集落から少しずつ等分に採取することが必要である事が判った。この場合でも接種菌量が多過ぎる、本来不完全耐性を完全耐性（不確定）と誤まる可能性がある。

【全篇のまとめ】

同一株の研究協力に施設における耐性検査成績は、耐性の高さの点でも、耐性菌の量的分布の点でも施設間に著明な相違のあることがみられた。

この事から、著者は各施設の耐性検査術式を詳しく調べたところ、耐性検査成績を不安定にせしめる因子の数多くあることに気づいた。

そこで、著者はこれ等因子の中、主なるものについて基礎的実験を行なったのである。

その結果、先づ、耐性の高さの判定に対して最も重大なる影響を及ぼしたものは、SM では耐性培地の PH であり、PAS では接種菌量及び培養期間であり、INH では耐性培地保存温度及び保存期間であった。

耐性菌の量的分布の判定に最も大きな影響を及ぼしたものは接種菌量及ぶ接種細菌数及び集落採取箇数であった。

耐性検査の臨床的な目的は、一つは薬剤の効力が既に少しでも落ちているかを知ることと、今一つは当該薬剤が未だ少しでも効果があるかどうかを知ることに集約されると思われる。従って、前者の目的のために、換言すれば少数箇の耐性菌でも検出するためには接種菌量を多く（10^{-4}mg），又後者の目的のために、換言すれば被検株中に感受性菌が存在している事を証明するためには接種菌量を少なく（10^{-4}mg）して検査を行う方が良いと実験の結果から考えられた。

文 献
1) 吉原：京大結研紀要，12-1：52～57，昭38
2) 東村：日本胸部臨床，21-5：370，1962
3) 永坂：結核，36-7-8：484，1961
4) 杉山：臨床と研究，34-4：328，昭29
5) 小川（政）：最新医学，9-2：2，昭29
6) 小酒井：治療，44-12：151，1962
7) 厚生省衛生検査指針，1～6，昭34
8) 吉原：京大結研紀要，11-1：44，昭37
9) 小川（政）：結核研究の進歩，30：4，昭36
10) 佐藤（直）：医学と生物学，31-5：250，昭29
11) 工藤（総）：結核，36-7-8：480，1961
12) 小酒井：日本臨床結核，15-4：250，昭31
13) H. Hackel：Tbk-Arzt，9-8：472，1955
14) 小森：臨床と研究，38-7：98，昭36
15) 島田（亮）：結核，35-10：679，昭35
16) 林（治）：Modern media，9：140，1963
17) 島田（英）：結核，35-9：622，1960
18) P. J. Coletsons：Poumon，19-2：109，1963
21) 佐藤（直）：結核の臨床，2-5：430，昭29
22) 河澄他：結核，37-4：160，昭1962
23) 安朋・東村：結核，36-3：129，昭36
24) 津久間他：京大結研紀要，8-1：3，昭34