<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>現行結核菌耐性検査法に就いての吟味 〔第3篇〕耐性検査に於ける耐性菌の量的分布の判定に影響を及ぼす諸因子に就いて</td>
</tr>
<tr>
<td>Author(s)</td>
<td>吉原 宣方</td>
</tr>
<tr>
<td>Citation</td>
<td>京都大學結核研究所紀要 (1964), 12(2): 129-142</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/51880</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>京都大学</td>
</tr>
</tbody>
</table>
現行結核菌耐性検査法に就いての吟味

第3篇 耐性検査に於ける耐性菌の量的分布の判定に影響を及ぼす諸因子に就いて

京都大学総合研究所化学療法部（主任教員内藤益一）

大学院学生 吉原宣方

（昭39.1.30受付）

第1章 論 言

著者は第2篇に於て、耐性培地、接種菌量、培養期間等の因子が結核菌耐性検査に於ける耐性の高さの判定に及ぼす影響について述べた。

即ち、小川培地では SM は培地 PH の変動によって制菌力が変化し、アルカリ性よりも酸性側に傾くにつれて制菌力が弱まり、従って3％小川培地に生理的食塩水菌液を接種した場合には、SM の耐性度は實際よりも高く出る事が判った。

又、接種菌量が多い程、培養期間が長い程、制菌力は弱く現われ、特に PAS に於て著明であった。

他方、耐性培地の保存条件では保存期間が長い程、又保存温度が高い程、培地力価は減衰していく傾向がみられ、特にこの傾向は INH に於て著明であることが判った。

又、故意に耐性培地の力価が低下する様々な条件で調製した培地を用いた場合は耐性検査に於ける耐性の高さの判定に関して耐性度は実際の値よりも高く表現され、未だ常法認め接種に接種した事のない全くの感受性菌で終わる点の耐性があるか否かを誤った成績の出る事を明らかにした。

臨床上、どの程度の高さの耐性菌かどうかを判断する際、耐性ありと判断すべきであるかという、耐性の臨床的限界に就いては今日尚、論議の点が多い。然しながら、臨床的な耐性検査の目的は未だ、薬が効く可能性があるかどうかと云う事と、当該薬剤は既に多少とも効果が落ちているかどうかとの2点を知る事に他ならないこと。

厚生省の衛生検査指針と定められている現行の結核菌耐性検査では、耐性培地及び対照培地に一定量（10⁻⁷mg 又は 10⁻⁴mg）の菌を接種し、一定期間（3週又は4週）培養の後に判定をなさない。薬剤を含む耐性培地に於ける被検菌の発育菌量、薬剤を含まぬ対照培地のそれ比して集落数が量的に75％以上の場合を完全耐性（但し、対照培地の発育菌集落数が25％以上であること）とし、それ以下の場合を不完全耐性（但し、集落数が多い場合で75％以下ということが明確でない場合には完全耐性（不確定）とし、全く発育しなかった場合を感受性としている。

この様に、耐性培地に於ける発育菌量の多寡によって判定を行なう場合に、著者等第1篇に於て触れた如く、接種菌量の多寡によって菌量に本来不完全耐性である菌が、或る場合には完全耐性に、或る場合には感受性に表現されるという事は不安定な成績が見られた。

それ故、厚生省衛生検査指針では接種菌量は培地1本あたり 10⁻⁷mg 又は 10⁻⁴mg と厳密に統一規定してある。しかし現状は、第1篇に述べた如く、著者が調査した関係12施設の接種菌量は、施設によって異なっており、接種菌量が規定されている量より少ない施設が1施設、
第2章 実験方法及び実験成績

第1節 菌液濃度と生菌数との関係

第1項 増菌用培地の種類・培養期間と1mg中の生菌単位数

1. 実験材料
使用培地：1％小川培地，10％血清加カルヒナ培地，Tween-albumin培地
使用菌株：H37Rv感受性株
使用分散媒：Dubos原液

2. 実験方法

予め，1％小川培地に上記菌株を2, 4, 6, 8週間培養したものを，及び10％血清加Kirchner液体培地の表面に，4, 8週間培養したものを及び，Tween-albumin培地に1, 2週間培養したもの計8通りの株を用意した。各々から白金耳を用いて約10mg位の菌量を別々の8コのガラス玉入コルペンに採り，夫々反面1分間振りに
より菌塊を磨砕し，Dubos原液を加え，なるべく均等に分散する様に菌液を作った。

しかる後，0.15mg/ccの硫酸バリウム液（厚生者の検査指針の定める標準液）の浊度と肉眼
的に比濁し，等しくなるまで稀釈した菌液の濃度を1mg/ccとみなし。更に，Bausch &
LombのSpectrocolorimeterでPer Cent Transmissionを測定しておいて，後日の修正に資した。

これら8通りの菌液を夫々，10倍，100倍，1000倍，10000倍に稀釈し，培地1本あたり0.1ccを
1％小川培地3本宛に接種し，37℃の孵卵器内に4週間培養し，発育集落数を数えた。

3. 実験成績

実験の結果は表1に示す如くであった。硫酸バリウムの標準液と肉眼的に比濁して決定した
1mg/ccの菌液をBausch & LombのSpectrocolorimeterを用い，波長475μでPer Cent
Transmissionを測定してみると表1の如く，60％Tr～71TTr％で48％Tr（48％ Transmission
が1mg/ccの菌液に相当する）に比べ一般にうすい傾向がみられた。

従って，実際培地上に発育した集落数（実験方法の所で述べた10倍稀釈菌液を0.1cc接種し
た場合の培地3本に発育した集落数の平均値）は単位菌液濃度（即ち1mg/cc）当りの集落数
に修正する必要があった。

そこで混菌濃度とPer Cent Transmissionとの関係図表40から，実際に接種された菌液濃度
を求めてそれで発育集落数を除した値を表1の右端の欄に示し，修正発育生菌数とした。

之によると，増菌用培地が異なると単位菌量1mgでもその中に含まれている発育可能な
"生菌単位数"は異然していた。例えば同じ2週間の培養期間でも，Tween-albumin培地
で344×10³コ，Kirchner表面培養で208×10³コ，1％小川培地で31×10³コであった。即ち小川
培地で生菌数の割合は最も少なく，小川培地よりKirchner表面培養に多く，Tween-albumin
培地で最も多かった。

同じ培地でも培養期間の長短で生菌数の割合
は異然していた。即ち，1％小川培地4週間培
養での1mg中の生菌単位数は29×10³コ，6週
間で17×10³コ，8週間で10×10³コであって，
8週目の生菌数は4週目のそれに対して約1/3
に減少していた。Kirchner表面培養でも2週
間目で208×10³コ，4週間目で113×10³コで約1/2
に減少していた。Tween-albumin培地では1
週間目で356×10³コ，2週間目で344×10³コであっ
た。

一般に培養期間が長くなるにつれて生菌数の
割合は減少して行く傾向のあることが判った。
表1 増菌用培地の種類・培養間隔と1mg中の生菌単位数

<table>
<thead>
<tr>
<th>培養期間</th>
<th>使 用 培 地</th>
<th>発育生菌単位数</th>
<th>酵液濃度</th>
<th>修正発育生菌単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1週</td>
<td>Tween-albumin 培地</td>
<td>207×10⁴コ</td>
<td>66% Tr</td>
<td>0.58mg/cc</td>
</tr>
<tr>
<td></td>
<td>Tween-albumin 培地</td>
<td>200×10⁴コ</td>
<td>66</td>
<td>0.58</td>
</tr>
<tr>
<td>2週</td>
<td>Kirchner 表面培養</td>
<td>100×10⁵</td>
<td>71</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>1%小川培地</td>
<td>16×10⁴</td>
<td>69</td>
<td>0.52</td>
</tr>
<tr>
<td>4週</td>
<td>Kirchner 表面培養</td>
<td>70×10⁵</td>
<td>64</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>1%小川培地</td>
<td>16×10⁴</td>
<td>68</td>
<td>0.54</td>
</tr>
<tr>
<td>6週</td>
<td>1%小川培地</td>
<td>11×10⁵</td>
<td>62</td>
<td>0.66</td>
</tr>
<tr>
<td>8週</td>
<td>1%小川培地</td>
<td>7×10⁴</td>
<td>60</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*Per Cent Transmission は Bausch & Lomb の Spectrocolorimeter で測定した値

表2 ガラス玉入コルペン法による産液細胞数と1mg中の生菌単位数

<table>
<thead>
<tr>
<th>磨砕時間</th>
<th>発育生菌単位数</th>
<th>酵液濃度</th>
<th>修正発育生菌単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>10秒</td>
<td>126×10⁴コ</td>
<td>82% Tr</td>
<td>0.28mg/cc</td>
</tr>
<tr>
<td>30秒</td>
<td>113×10⁴コ</td>
<td>77</td>
<td>0.37</td>
</tr>
<tr>
<td>60秒</td>
<td>106×10⁴コ</td>
<td>77</td>
<td>0.37</td>
</tr>
<tr>
<td>2分</td>
<td>13×10⁴コ</td>
<td>81</td>
<td>0.30</td>
</tr>
<tr>
<td>5分</td>
<td>7×10⁴コ</td>
<td>82</td>
<td>0.28</td>
</tr>
<tr>
<td>10分</td>
<td>3×10⁴コ</td>
<td>85</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*Per Cent Transmission は Bausch & Lomb の Spectrocolorimeter で測定した値

第2項 ガラス玉入コルペン法による産液磨砕時間と1mg中の生菌単位数

1. 実験材料
使用培地：1%小川培地
使用菌株：1%小川培地に4週間培養したH37Rv感受性株
使用分散媒：Dubos原液

2. 実験方法
上記の菌株を白金耳により目分量で菌量約10mgづつを6コのガラス玉入コルペンに採り、正味の手振磨砕時間を10秒、30秒、60秒、2分、5分、10分の6通りとし各々にDubos原液を加えて均等な菌液を作った。第1項の実験方法で述べたと同様の方法に従って、1mg中単の生菌数を測定した。

3. 実験成績
表2に示した如く、磨砕時間正味10秒の場合、生菌単位数は435×10⁴コ、30秒で306×10⁴コ、60秒で288×10⁴コ、2分で44×10⁴コ、5分で27×10⁴コ、10分で1×10⁴コとなった。

第3項 酵液分散媒の種類と1mg中の生菌単位数

1. 実験材料
使用培地：1%小川培地
使用菌株：1%小川培地に4週間培養したH37Rv感受性株
使用分散媒：滅菌蒸溜水、生理的食塩水、0.05%Tween 80溶液、4%苛性ソーダ溶液

2. 実験方法
ガラス玉入コルペン4個に上記の菌株から目分量で菌量約10mgづつを白金耳にて各コルペン
表 3 分散媒の種類と 1mg 中の生菌単位数

<table>
<thead>
<tr>
<th>分 散 媒</th>
<th>発育生菌単位数</th>
<th>蒲 液 濃 度</th>
<th>修正発育生菌単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>生理的食塩水</td>
<td>115×10^5</td>
<td>43% Tr</td>
<td>1.15mg/cc</td>
</tr>
<tr>
<td>蒸溜水</td>
<td>10^{4}</td>
<td>45</td>
<td>1.08</td>
</tr>
<tr>
<td>0.05% Tween 80</td>
<td>92×10^4</td>
<td>47</td>
<td>1.05</td>
</tr>
<tr>
<td>4% NaOH溶液</td>
<td>47×10^4</td>
<td>39</td>
<td>1.28</td>
</tr>
</tbody>
</table>

* Per Cent Transmission は Bausoh & Lomb の Spectrocolorimeter にて測定した値

小川地12本づつに接種し，37℃の卵管内に培養し4週目に，発育した集落を数えて生菌単位数を測定した。

3. 実験成績

実験結果は表 3 に示す如くであった。第1項の実験成績で述べた様な方法で，発育生菌単位数を菌液の濃度で修正してみると，表 3 の右端の欄の如くなった。

これでみると，菌液の分散媒によって発育生菌単位数は多少異なっており，生理的食塩水の場合は量菌 1mg 中，100×10^4コ，蒸溜水では96×10^4コ，0.05% Tween 80 液では 87×10^4コであった。4% NaOH 溶液の場合は 37×10^4コであって，上記 3 つの場合に比べて発育生菌数は少なく，おそらく1/2〜1/3程度であった。

表 4 遠心沈殿法による 菌液中の粗大菌塊除去 と 1mg 中の生菌単位数

<table>
<thead>
<tr>
<th>遠沈時間</th>
<th>発育菌落数</th>
<th>培地1本の菌落数</th>
<th>1mg 中の生菌単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2050</td>
<td>171</td>
<td>171×10^{4}</td>
</tr>
<tr>
<td>1分</td>
<td>1350</td>
<td>112</td>
<td>112×10^{4}</td>
</tr>
<tr>
<td>3分</td>
<td>2067</td>
<td>173</td>
<td>173×10^{4}</td>
</tr>
<tr>
<td>5分</td>
<td>1982</td>
<td>165</td>
<td>165×10^{4}</td>
</tr>
<tr>
<td>10分</td>
<td>1716</td>
<td>142</td>
<td>142×10^{4}</td>
</tr>
</tbody>
</table>

遠沈速度：800〜1000回転/分

第5項 菌液比割に用いる標準液の種類と 1mg 中の生菌単位数

1. 実験材料

使用培地：1%小川培地
使用菌株：10%血清加Kirchner 培地の表面10日間培養したH37Rv感受性株

使用分散媒：Dubos 原液
使用比浊用標準液：硫酸バリウム溶液 (0.1 mg/cc) かつチフス診断液 (5 mg/cc)

2. 実験方法
上記10％血清加 Kirchner 表面に発育した菌膜を白金耳を用いて釣菌して、シャーレの中心に2つ折りにした減菌濁紙にはさみとり、37℃の孵卵器内に1時間放置した。
次いで、濁菌した蓋付きガラス製秤量ビンの中に入し、化学天秤にて菌量を正確に測定した。この場合 9.8 mg であった。
ガラス王コルベンに取って正味2分間手振りで突砕し、Dubos 原液を菌量 1 mg あたり 1 cc の割合（この場合 9.8 cc）に加えて菌液を作った。
次に、別のガラス王コルベンに上記の菌液から各分量で約10 mg 程度の菌量を釣菌し、型の如く、手振り法による菌塊磨砕後、Dubos 原液を加えて均等な菌液を作り、この菌液を大きさの等しい3本の試験管に分注した。
その中の1本は先に秤量して作った 1 mg/cc の結核菌液の純度と、次の1本は 0.15 mg/cc の硫酸バリウム溶液の純度と、残りの1本は 1 mg/cc の腸チフス診断液の純度と肉眼的に比浊して各種の粘度が等しくなる様に菌液を稀釈した。かくして出来た三通の菌液も電気管にかけて、Per Cent Transmission を測定していただいた。
これら3つの菌液を用いて、第1項の実験方法の所で述べたと同じ方法で生菌単位を測定した。

尚、比浊の標準液として用いた 0.15mg/cc の硫酸バリウム液、1 mg/cc の腸チフス診断液も結核菌を秤量して作った 1 mg/cc の菌液も、光学電管にて Per Cent Transmission を測定しておいて、肉眼判定の菌液濃度との誤差の中についても検討した。

3. 実験成績
実験の結果は表5に示す如くであって、第1項の実験成績の所で述べた様な方法で、発育生菌数を菌液の濃度で修正してみると表5の右端の欄の如くなった。
即ち結核菌を秤量して作った 1mg/cc の菌液と比浊して濃度を決める場合の単位重量(1mg)あたり生菌数単位は 53×10^4 コ、チフス診断液と比浊して濃度を決めた場合は 75×10^4 コ、硫酸バリウム液と比浊して濃度を決めた場合は 58×10^4 コであって、標準液が異なっても著明な差は認めなかった。
標準液そのものの濃度は表5に示す如くで、結核菌を秤量して作った 1mg/cc の菌液は、光電管で 47 ％ Transmission を示したが、腸チフス診断液 (1mg/cc) は32% Transmission を、硫酸バリウムは48% Transmission を示した。

上記2つの標準液と肉眼的に比濁して決まった菌液は表5の如く、夫々49%、40%、45%の Transmission 値を示し、肉眼的判定による誤差は2%～8% Transmission 程度であって、腸チフス診断液が標準液の場合の誤差が最も大きかった。

第2節 接種菌量と耐性菌の量的分布との関係
第1項 標準耐性菌地及び非標準（不良）耐性菌地における接種菌量の影響

1. 実験材料
使用培地：1％小川培地、3％小川培地
使用薬剤：Dihydrostreptomycin (DHSM), Combined Streptomycin (CSM), PAS-Na, INH.

<table>
<thead>
<tr>
<th>表5 標準液の種類と1mg 中の生菌単位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準液</td>
</tr>
<tr>
<td>Per Cent Transmission</td>
</tr>
<tr>
<td>結核菌液 (秤量)</td>
</tr>
<tr>
<td>腸チフス診断液</td>
</tr>
<tr>
<td>硫酸バリウム液</td>
</tr>
</tbody>
</table>

Per Cent Transmission は Bausch & Lomb の Spectrocolorimeter にて測定した値
使用菌株：Tween-albumin 培地に10日間
培養した H37Rv 感受性株
使用分散媒：Dubos 原液

2. 実験方法
厚生省の衛生検査指針に準じて 1％小川培地
を用い、DHSM 100γ, 10γ, 5γ, 1γ, PAS 100γ, 10γ, 5γ, 1γ, 0.5γ (DHSM はすべて 2 倍量,
PAS-Na はすべて 1.38倍量添加した), INH 10.0γ, 5.0γ, 2.0γ, 1.0γ, 0.5γ, 0.1γ の耐性培地
及び対照培地を作り、90℃ 1 時間加熱凝固減
菌し室温に保存し 1 週間以内のものを標準耐性
培地とした。他方、検査指針とは異った作製条
件、即ち、表 6 に示した様に SM 耐性培地では
1％ 小川培地の代わりに 3 % 小川培地を用い、
DHSM の代わりに CSM を用いて 2 倍量を添加
し、PAS耐性培地では PAS-Na を秤量して 1.38
倍量でなく 1 倍量のみを加え、INH 耐性培地
では注射薬の古いもの（6ヶ月以上経過して
いるもの）を使用し、1 倍量を加え上記の耐性培
地と表現上同じ数の耐性培地及び対照培地を
作った。之等の非標準培地に於ては凝固器の温
度が 90℃ に上ってから培地を入 cortisol の非
く初めから入れておき 90℃ 1 時間加熱減菌し、
出来上った耐性培地を 37℃ の孵穏器内に 8 週
間保存した。之を非標準（不良）耐性培地とし
た。この不良条件は第 1 篇 9) に述べた加く 12施
設の耐性検査法等の実態調査成績から一般にあ
り得るものを入れたのである。

上記の耐性培地、対照培地に上記菌株を培地
1 本あたり 3×10⁻³ mg, 1×10⁻³ mg, 10⁻⁴ mg, 10⁻⁵ mg, 10⁻⁶ mg, 10⁻⁷ mg, 10⁻⁸ mg, 10⁻⁹ mg の 11段階の薬量を接種し、
37℃ の孵穏器内に培養し、3 週, 4 週, 6 週、
8 週目毎に発育した菌落数を数えた。

3. 実験成績
全耐性培地を培養後、3, 4, 6, 8 週目每
に判定を行なったがその中、4 週及び 6 週の判
定成績を示すと表 7, 表 8, 表 9 の如くとなっ
た。

まず 4 週判定では、標準耐性培地に於ては
SM1γ/cc を除く他の耐性培地には感性菌は全く
発育しておらず、SM1γ/cc 培地でも接種菌量が
10⁻¹ mg 以上の場合は全て培地の発育が見られ
なかった。

之に対し、非標準培地では SM1γ/cc, INH
0.1γ/cc 培地には薬剤を含まない対照培地と殆ど
同じ程度に菌落の発生があり、PAS0.5γ/cc,
INH0.5γ/cc, INH1γ/cc 培地にも接種菌量が最も
多い 0.3mg に於いて、夫々 2 コ, 1 コ, 4 コ
の集落発生を認めた。

しかしながら SM 5γ/cc 以上、PAS 1γ/cc,
以上、INH 5γ/cc 以上の培地には 接種 菌量が
0.3 mg の様に大量の場合でも集落の発生を認
めてなかった。

即ち、不良培地で接種菌量を 0.3 mg と大量を
選んでも 4 週判定では、SM10γ/cc, PAS1γ/cc
に耐性の菌は証明されなかった。臨床の実際には
差し支えないと考えられるが、INH の場合は 0.1mg
以下でなければ訳の成績を得る恐れがあるよう。

次に 6 週判定では、表 7 に示す如く、SM 標準

<table>
<thead>
<tr>
<th>表 6 非 標 準（不 良）耐 性 培 地</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用薬剤の種類</td>
</tr>
<tr>
<td>薬剤の添加量</td>
</tr>
<tr>
<td>培地の種類</td>
</tr>
<tr>
<td>培地中に含有される薬剤濃度の種類 (7/cc)</td>
</tr>
</tbody>
</table>
| 凝固温度・時間 | 90℃ 1 時間。但し、凝固器の温度が 90℃ に上昇してから培地を入れるのでは
く、初めから入れておく。 |
| 保存温度・期間 | 37℃ の孵穏器に 8 週間保存 |
昭39.3
耐性培地に於ては17/cc培地の場合は、4週判定と大差を認めなかった。SM57/cc、SM107/cc、SM1007/cc各培地には4週判定と同じく発育集落を認めなかった。
之に対し、SM非標準培地ではSM57/cc培地にも接種菌が0.3mgの場合には発育菌量を認め、不完全耐性と判定された。SM107/cc培地にも接種菌が0.3mgの場合には45コの発育集落数、0.1mgの場合には11コの発育集落数を認めた。

<table>
<thead>
<tr>
<th>接種菌量 (mg)</th>
<th>対照培地</th>
<th>SM耐性培地</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 3×10^{-1}</td>
<td>3</td>
</tr>
<tr>
<td>b 1×10^{-1}</td>
<td>3</td>
</tr>
<tr>
<td>c 10^{-2}</td>
<td>3</td>
</tr>
<tr>
<td>d 10^{-3}</td>
<td>3</td>
</tr>
<tr>
<td>e 10^{-4}</td>
<td>3</td>
</tr>
<tr>
<td>f 10^{-5}</td>
<td>3</td>
</tr>
<tr>
<td>g 10^{-6}</td>
<td>3</td>
</tr>
<tr>
<td>h 10^{-7}</td>
<td>3</td>
</tr>
<tr>
<td>i 10^{-8}</td>
<td>3</td>
</tr>
<tr>
<td>j 10^{-9}</td>
<td>3</td>
</tr>
<tr>
<td>k 10^{-10}</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>接種菌量 (mg)</th>
<th>標準耐性培地及び非標準耐性培地と接種菌量</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
<th>4週判定</th>
<th>6週判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 3×10^{-1}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>b 1×10^{-1}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c 10^{-2}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>d 10^{-3}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e 10^{-4}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>f 10^{-5}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>g 10^{-6}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>h 10^{-7}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>i 10^{-8}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>j 10^{-9}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>k 10^{-10}</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

標準1%は1%小川耐性培地（標準法によるもの）
非3%は5%小川耐性培地（標準法によるもの）
<table>
<thead>
<tr>
<th>No.</th>
<th>接種菌量 (mg)</th>
<th>対照培地</th>
<th>INH 耐性培地</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>標1％</td>
<td>非1％</td>
</tr>
<tr>
<td>a</td>
<td>3×10⁻¹</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>b</td>
<td>1×10⁻¹</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>c</td>
<td>10⁻²</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>d</td>
<td>10⁻³</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>e</td>
<td>10⁻⁴</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>f</td>
<td>10⁻⁵</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>g</td>
<td>10⁻⁶</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>h</td>
<td>10⁻⁷</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>i</td>
<td>10⁻⁸</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>j</td>
<td>10⁻⁹</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>k</td>
<td>10⁻¹⁰</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

標1％は1%小川耐性培地（標準法によるもの）
非1％は1%小川耐性培地（標準法によらぬもの）

二次に、PAS 標準培地に於ては 4 週判定の場
合と全く同じであって、0.5γ/cc 以上の耐性培
地には発育集落を認めなかった。

之に対し、PAS非標準耐性培地では 4 週判定
ではみられなかった 1γ/cc 培地にも接種菌量
が 0.1mg、0.3mg の場合には夫々、1コ、2 コの
発育集落数を認め、不完全耐性と判定された。
しかしながら 5γ/cc 以上の耐性培地には 4 週判
定の場合と同じく、接種菌量が数場合 (0.3
mg) でも 4 週判定の場合と同じ発育集落数を
認めなかった。

INH 標準培地では、4 週判定の場合に発育集
落を認めなかった 0.17/cc 培地に、接種菌量が
0.3mg の時のみ、1 コの発育集落を認めた他は、
4 週判定の場合で全く同じであって 0.5γ/cc 以
上の耐性培地には発育集落を認めなかった。

INH 非標準培地では 4 週判定の場合と同じで
あって、0.1γ/cc 耐性培地では対照培地と殆ど同
じ程度の発育菌数であった。 INH 1γ/cc 及び
2γ/cc 耐性培地では接種菌量が 0.3mg の場合
のみ、4 コ、1 コの発育集落を認めた。しかし
ながら 5γ/cc、10γ/cc 耐性培地には接種菌量が
多い場合にも発育集落を認めなかった。

第 2 項 接種菌量と耐性菌検出率

1. 実験材料
使用培地：1％小川培地
使用薬剤：DHSM.

使用菌株：1%小川培地に騒した H37Rv
R-SM 10γ ug 耐性菌及び H37Rv
感受性菌

使用分散媒：Dubos 原液

2. 実験方法
まず 1％小川培地で DHSM を 20γ/cc に含
む培地（力価 10γ/cc）と DHSM を含まぬ対照培
地の 2 種類の培地を作った。次に上記 SM 耐性
株と感受性株を用いて SM 耐性菌の含まれる割
合が 50％、20％、10％、約 1％、約 0.1％、約
0.01％となる様な人工耐性菌を作った。この 6
種類の株の他に、SM 耐性菌のみのものを、感受
性菌のみのものを用いて SM 10γ/cc 培地、対照
培地の各々に 1 本あたり 10⁻¹mg、10⁻²mg、10⁻³
mg、10⁻⁴mg、10⁻⁵mg、10⁻⁶mg の 8 段階の菌量を接種し、37℃ の孵卵器内に
培養し 3 週目及び 4 週目に判定を行なった。

3. 実験成績
その結果は表10に示す如くで、接種菌量は同
じでも耐性菌の混入率が低い程、SM 10γ/cc 培地に発育する集落数が少なかった。

\[
\begin{align*}
\text{接種菌量が } 10^{-3} \text{mg の場合には } 100\% \text{耐性株で } 17\text{コ},
\text{50\%耐性株で } 13\text{コ}, \text{20\%耐性株で } 3\text{コの発育を認めたが, } 10\%, \text{約 } 1\%, \text{約 } 0.1\%
\text{, 約 } 0.01\%\text{耐性株では集落の発生を認めなかった。}
\end{align*}
\]

接種菌量が 10^{-4}mg の場合には 100\%耐性株で 85\%, 50\%耐性株で 88\%, 20\%耐性株で 27\%, 10\%耐性株で 6\ コの集落を認めたが, 約 1\%以下の耐性株では発育を認めず, 耐性菌検出是不可能であった。

接種菌量が 10^{-5}mg の場合には, 100\%及び 50\%耐性株で発育菌量（冊）で対照培地の発育菌量と殆ど同じであった。20\%, 10\%, 約 1\%耐性株では夫々 92\%, 42\%, 6\ コの発育を認めたが, 約 0.1\%以下の耐性株では発育を認めず, 耐性菌検出是不可能であった。

接種菌量が 10^{-6}mg の場合には, 100\%, 50\%耐性株では発育菌量（冊）で対照培地と同じ位であった。20\%, 10\%, 約 1\%, 約 0.1\%耐性株では夫々 282\%, 139\%, 30\%, 6\ コの発育集落数を認め, 約 0.01\%耐性株では発育を認めず耐性菌検出是不可能であった。

接種菌量が 10^{-7}mg の場合には, 100\%, 50\%耐性株では発育菌量（冊）で対照培地と同じ位であった。20\%, 10\%, 約 1\%, 約 0.1\%, 約 0.01\%耐性株で夫々 (冊), 27\%, 3\ コの発育集落を認めた。

接種菌量が 10^{-8}mg の場合は, 100\%〜10\%耐性株はすべて発育菌量は（冊）に達し, 対照培地のそれと殆ど同じであった。約 1\%耐性株で (冊) 約 0.1\%耐性株で 231\%, 0.01\%耐性株で 40\ コの発育集落数を認めた。

又, 100\%感性株の場合は, 耐性培地に発育した集落を全く認めず, 最大接種菌量 0.1mg 中に SMI. 0γ以上の自然耐性菌と思われるのは本実験では存在していなかった。

以上の実験結果から, 耐性菌を検出するためには耐性菌の混入率が大きい場合には, 接種菌量が少なくても可能であったが, 耐性菌の含有率が低い場合には接種菌量を多くする必要があった。

例えば, 約 1\%耐性株から耐性菌を確実に検出するためには 10^{-4}mg では不十分で, 10^{-2}mg 以上の接種菌量が必要であった。

又, 0.01\%耐性株の場合は 10^{-3}mg 以上の菌量が必要であった。

この様な事実から耐性株を検出するために必要な接種菌量には, 耐性菌の含まれている割合に応じて, 一定以下の菌量では耐性菌を見落とす恐れがあって接種菌量には下限のあることが判った。

他方, 耐性菌の含有率が 10\%〜20\%の如くかなり高い場合には 10^{-2}mg〜10^{-3}mg の如く接種菌量が多いと, 耐性培地に対照培地と殆ど同じ位集落が発育し, 本来不完全耐性株を完全耐性株と判定された。

従って, 10\%〜20\%耐性株で逆に感受性菌の存在を明らかにするためには, 接種菌量は 10^{-3} mg 以下であることが必要であった。即ち,

<table>
<thead>
<tr>
<th>受検菌株 (mg)</th>
<th>接種菌株 (V.U.)</th>
<th>H37Rv R-SM の H37RvS に含まれる率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM 107γ/cc</td>
<td>SM 107γ/cc</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>10^4</td>
<td>10^4</td>
</tr>
</tbody>
</table>
表11 至達接種菌量

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
<th>耐性菌含有率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>約0.01%</td>
<td>約0.1%</td>
</tr>
<tr>
<td>耐性菌検出に必要な最少接種菌量</td>
<td>*10⁻¹mg以上</td>
<td>10⁻²mg以上</td>
</tr>
<tr>
<td>感受性菌検出に必要な最大接種菌量</td>
<td>10⁰mg以下</td>
<td>10⁻¹mg以下</td>
</tr>
</tbody>
</table>

* 自然耐性菌の混入するおそれがある。

感受性菌の存在を検出するためには耐性菌の含有率が比較的高い場合には、その含有率に応じて接種菌量に上限のあることが判った。

第3節 集落採取数と耐性分布との関係

1. 実験材料

使用培地：DHS M 10⁻⁷/cc(20γ/cc)，PAS 1γ/cc (PAS-Na 1.38γ/cc)，INH 1γ/ccの各小川耐性培地及び1%小川培地

使用分散膜：生理的食塩水，石油ベンジン

使用菌株：H37Rv : H37Rv R-INH : H37Rv R-PAS : H37Rv R-SM = 1000 : 100 : 10 : 1の割合に混合して、種々の接種菌量の下で1%小川培地に、37℃の卵卵器内に5週間培養し、斜面上に一回に発育したものから、数えられる程度の菌発育のものまでを作り、採取集落数の少ない場合は数えられる程度のものを選び、全集落の約1/3又は全集落の場合に培地斜面全面に発育したものを選んで菌を採取した。

表12に示す如くであった。表中、最下段の耐性分布の欄は、本節の実験材料のところから述べた使用菌株から予想される耐性分布である。

この表でみると、採取した集落数が10コのみの場合を4回実験を行なったが、SM, PAS, INH各耐性培地のいずれも（-）で、対照培地のみに（＋）の発育菌量を認めた場合が1回、SM, PAS各耐性培地に（-）で、INH耐性培地及び対照培地に（＋）の発育菌量を示した場合が2回あり、SM, INH各耐性培地に（-）で、PAS耐性培地、対照培地の夫々に（＋）の発育菌量を示した場合が1回あった。

SM耐性培地に発育を認めたものはなく、約0.1%に含まれるSM耐性菌は4回の実験では検出されなかった。

次に、採取集落数が3～5コの場合を3回実
昭39.3

騒しているが、SM耐性培地に(+), PAS耐性
培地に(-), INH耐性培地に(+), 対照培地に
(+), の発育菌量を認めた場合が1回, SM, PAS
各耐性培地に夫々(-)で, INH 培地に(+)～
(+)、対照培地に(+)の発育菌量を示した場合
が2回あった。次に、採取集落数が10コの場合を2回実験し
たが、SM, PAS 各耐性培地に(+), INH耐性
培地に(+), 対照培地に(+)の発育菌量を示し
た場合が1回あり、SM耐性培地には(-),
PAS, INH 各耐性培地に(+), 対照培地に(+)
の発育菌量を示した場合が1回あった。
次に、採取集落数が全集落の約1/3, 培地斜
面上の全集落の場合は夫々2回実験を行ない、
更に、培地斜面上に石油ベンジンを流して全集落
を集めて菌液を作った場合の実験を1回行なっ
た。いずれの実験においてもSM耐性培地は
(+)(+), PAS耐性培地は(+)(+), INH耐性
培地は(+)(+), 対照培地は(+)～
(+)の発育菌量を示した。
従って、培地斜面上の全集落の約1/3以上を
採取すれば、耐性菌の検出は可能であった。
他方、耐性菌の群の分布の再現性という点か
らみると、被検菌の構成から予想される耐性検
査成績は表の横下欄に示す如くSM(+), PAS(+),
INH(++), 対照(++)の発育菌量を示す数である。
ところで、斜面上の約1/3の集落を採取した
場合、2回の実験ではSM(+), PAS(++),
INH(++), 対照(++)及びSM(+), PAS(+),
INH(+)、対照(++)であって、いずれも予想
された成績と異なっていた。
培地の斜面上の集落の殆どすべてから平等に
少量つつ採取した場合、2回の実験ではSM
(+), PAS (++), INH (++), 対照 (++) 及び
SM (+), PAS (++), INH (++), 対照(++)の判
定成績を示し、10％に含まれるINH耐性菌が
対照培地の発育菌量(++)と殆ど同じ発育を示し
完全耐性（不確定）と判定された場合があるが、之が許容され
るとすれば略予想される成績を示した。
但し、ペンジンを斜面上に流し全集落を採取し
た場合には、SM(+), PAS (++), INH (++) の
成績を示し、集落数には差がみられたが、INH
(++)、対照(++)で差が認められなかった。即
ち、10％に耐性菌を含む場合には完全耐性と判
定されずで、恐らく菌量が多過ぎたためと思
われる。（一般にベンジン菌液は菌量決定が
困難である）

表12 集落採取箇所と耐性検査成績

| 集落採取箇所 | 耐性培地 | 対照
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SM107/cc</td>
<td>PAS17/cc</td>
<td>INH17/cc</td>
</tr>
<tr>
<td>1コ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1コ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1コ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3～5コ</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3～5コ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10コ</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10コ</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>斜面½</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>斜面½</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>全斜面</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>全斜面</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>全斜面(ペンジン)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

耐性分布
+ | + | + |

第3章 総括及び考按

第2篇に於て、著者は耐性検査に於ける耐
性の高さの判定に影響を及ぼす因子が種々あ
り、特に耐性培地 PH, 耐性培地保存条件, 接
種菌量、培養期間の相違によって、SM, PAS,
INH の MIC が変化し、制菌剤が弱く現われ
る条件下では耐性度は實際よりも高く表現される
事を述べた。
又、上記の諸因子が一度に重なった、いわば
最不良の条件下では制菌剤はどれ位低下するか
に該依でも実験的検討を行なった。
既に述べた如く、耐性検査の成績は本質上耐
性の高さの判定はもとより、耐性菌の量的分布
の面をも正しく示すものであることが要求され
る。
従って本篇ではどの様な方法で耐性検査を行
なえば，主に耐性菌の量的分布の判定を比較的正しく可能ならしめるかを目標に，接種菌量に接種菌量，及び集落採取方法が耐性検査における耐性菌の量的分布の判定にどの程度影響するかに就いて検討を行ない，更に，耐性検査成績を臨床に応用する際に，適当と思われる接種菌量に就いて検討を行なった。

接種菌量と耐性検査成績の点に関しては，小森は接種菌量の多少により耐性の読みが違って来る事に注意しており，島田は接種菌量が少なくなるに従って耐性菌の検出率が低下する事を述べている。

一方，小川（辰）は接種菌量の多少により耐性の読みが違って来る事を指摘しており，島田は接種菌量が少なくなるに従って耐性菌の検出率が低下することを述べている。

更に，小酒井は接種菌量が多い時は全体の菌の僅か10％の耐性菌でも「完全耐性」となるとしている。

Edwin A. Broshe et al19）は耐性菌の量的分布を正しく知るためには接種菌量を少なくする必要があると述べており，Georges Canettiも耐性菌が1〜100％存在すると論して耐性と表現される可能性があるから接種菌量は10⁻³mg程度に少なくする必要のある事を述べている。

又，佐藤（直）13）により強接法と間接法によるINH耐性測定誤差の原因は，感受性菌と耐性菌の混合度の変動の他に，2検査法間の接種される菌量の大小の差に基づくと言っている。

河原は同一培地を使用した場合の技術差では，接種菌量の差による事が著明であったとし，以上の如くいずれも接種菌量の耐性検査成績に与える影響の重要性を強調している。安保・東村19）はその点，actual count法は接種菌量が一定なので菌量の影響を除外出来るから良いと述べ，現行法の方が菌量がより多いのでactual count法によるより，現行法による方が完全耐性となる率が高いと云っている。

そこで，著者者は以上の点を明らかにするために研究室保存のH37Rv感受性株及びSM耐性株及びこれら2株を混合作成した50％，20％，10％，約1％，約0.1％耐性株を被検株とし，接種菌量を10⁻³mg, 10⁻²mg, 10⁻¹mg……10⁻²mgまで8段階とし耐性検査を行ない，耐性検査成績に関する菌量の影響を調べた。その結果は表10に示す如く，一般に耐性菌を含む割合が多い株では接種菌量を多くすると完全耐性に，逆に耐性菌の少ない株では菌量を少なくすると感性に判定された。

従って耐性菌を含む割合に応じて感受性菌を証明し得る接種菌量には上限があり，反対に耐性菌を検出し得る接種菌量には下限がある事が示された。例えば，10％耐性株から感受性菌を証明するには10⁻³mg以下の菌量を，約0.01％耐性株から耐性菌を確実に検出するには10⁻¹mg以上の菌量を植える必要があった。

故に，菌量を10⁻³mgと10⁻²mgの2段階で接種すれば表10の如く，10％〜0.01％の耐性株から感受性菌及び耐性菌を証明する事が可能である。

次に，現行の耐性検査法に於いては菌液の細度によって決んでいるが，実際にはとえ肉眼的には同じ程度の細度を示していても，その中に含まれている発育可能な菌の占める割合は菌液の細度が増すこともありうるし又生菌の占める割合は表1の如く菌分離菌用培地によって異なり，Tween-albumin培地，10％血清加Kichner培地を用いた時が多く，小川培地4週間培養の菌数単位数はこれに比べ約1/10であった。

その上，培養期間が長くなると培地の種類を問わず菌数の割合は減少して行った。例えば，小川培地4週間培養での菌数を1とすると同じ小川培地6週間培養では約1/2に，8週間培養では約1/3に減少した。

次に，菌数に対するガラス玉入コルベンによる菌液砕碎時間の影響もかなり著明で，実質10秒間砕碎した時の菌数を1とする約60秒間では凡そ1.2に，2分間で約1.10に，5分間で約1/20に，10分間で約1/500に減少した。

この他，過酸による菌液中の粗大菌塊除去の有無，分散媒の種類（蒸溜水，生理的食塩水，
0.05%Tween 80液、4%NaOH溶液）、菌液濃度測定法（比浊計、0.15mg/ccのBaSO₄液との比浊、酸チフス診断液との比浊、化学天秤による菌の秤量）による生菌単位数の変動を検討したが有り影響しなかった。

以上の事実から肉眼的に同じ密度を有していても、中に含まれている生菌数には著明な差が生じていることもある事が判ったので、実際に生菌検定の施設に当ては常に生菌数という事を考慮する必要がある。これらの菌数は前に述べた如くに種が一定になる様に心掛ける必要がある。

次に、表6に示す様に、故意に培地濃度が低下すると考えられる様な不良条件下で耐性検査を行なった場合には、4週目判定で感受性株がSM 17%/cc、及びINH 0.17%/ccに完全耐性を示し、6週目判定では接種菌数が0.1~0.3mgの如く多い場合にはSM 10%/cc、PAS 17%/cc、INH 17%/cc培地にも多数の集落が生じて不完全耐性と判定された。しかし日常の耐性検査が行われる条件では感受性株がSM 10%/cc、PAS 17%/cc、INH 17%/ccの各々に完全耐性として表現される事は殆ど起き得ないと考えて良いと思われる。

次に、どの位の割合に耐性菌が含まれている菌株からは、培地上の集落をどの位、採取して検査すれば耐性菌を見逃さず、耐性菌の量的分布を比較的正しく再現し得るかに関しては、約0.1%~10%の耐性株から耐性菌を検出するためには培地斜面の全集落の約1/3以上を採取する必要がある様に思われた。採取集落数が100の場合でも、約0.1%含まれているSM耐性菌を検出しているが、之は多分に偶然向に左右されたものと考えられる。

又、耐性菌の量的分布の再現性に関しては、全集落数の約1/3を取った場合でも不充分であったが、全集落から少量づつ平均に採取した場合は、被検株の耐性菌分布から予想される耐性分布、即ちSM (+)、PAS (+)、INH (+)対照(−)という判定成績を概ね再現した。しかし、たとえ集落採取が良好な場合でも接種菌数が多過ぎると、表12の成績にもみられる如く、本来不完全耐性株が完全耐性（不確定）を示し、耐性分布の再現性が困難となるので、適切な菌量を接種することが望ましい。

第4章 結 語

著者の検討によれば、耐性検査に於ける耐性菌の量的分布に影響を及ぼす諸因子の中、最も重大なるものは接種菌数、特に接種生菌数であって見受け、同様に生菌数を示した場合でも中には含まれている生菌単位数は分離増菌用培地の種類、培養期間（即ち菌の古さ）、集落磨碎時間の長さやその相当な差異を示す事を知った。

一方、菌液分散媒の種類、適当による粗大菌塊除去の有無や菌液濃度判定に用いる標準液の種類に著明な影響をうけなかった。

接種菌量と耐性菌検出率との関係は、接種菌量の多い場合には少しが含まれていない耐性菌をも検出可能でなかったが、菌量が少ない場合には検出不可能であり、感受性と判定された。但し、接種菌量の多い場合は本来不完全耐性であるべき株が完全耐性（不確定）に判定される傾向がみられた。

従って、接種菌量には目的によって上限及び下限のある事が判した。臨床家立場から、まき薬剤が少しでも効くかどうかを知るために、菌量を少なく（10^4mg）接種し、薬剤の効力が少しだら下下しているかどうかを知るために、菌量を多く（10^4mg）接種する。即ち "2段階の菌量" で検査を行なうのが良いと考えられた。

又、不良条件下で耐性検査が行われた場合には感受性菌でもSM 1%/cc、INH 0.1%/ccに完全耐性に判定される可能性があり、更に培養期間が4週から6週になると、SM 10%/cc、PAS 17%/cc、INH 17%/ccの各培地にも多数の集落が生じ、不完全耐性と判定される場合のある事を認めた。

次に、培地上の集落の中からどれ位の数を集めて検査すれば満足すべき成績が得られるかという集落採取数の問題を検討し、耐性菌の量的分布の再現性の関係では、約0.1%に耐性菌を含む株から耐性菌を検出するためには、培地斜面の少なくとも約1/3以上の集落を採取する必要があり、一方被検株の耐性分布を正しく再
現するためには培地斜面上の全集落から少しづつ複数回採取することが必要である事が判った。この場合でも接種菌数が多過ぎる場合、本来不明確な耐性（不確定）と誤まる可能性がある。

【全篇のまとめ】
同一株の研究能力に準じて、耐性検査成績は、耐性の高さの点でも、耐性菌の量的分布の点でも施設間で著明な相違があることがみられた。
この事から、原著者は各施設の耐性検査術式を詳しく調べたところ、耐性検査成績を不安定にせしめる因子の数多くあることに気づいた。
そこで、著者は、これから著者の中、主なるものについて基礎的実験を行なったのである。
その結果、先づ、耐性の高さの判定に対して最も重大なる影響を及ぼしたものは、SM では耐性培地の PH であり、PAS では接種菌量及び培養期間であり、INH では耐性培地保存温度及び保存期間であった。
耐性菌の量的分布の判定に関して最も大きな影響を及ぼしたものは接種菌量に及ぼす菌数及び集落採取菌数である。
耐性検査の臨床的な目的は、一つは薬剤の効力が既に少しでも落ちていないかを知ることと、今一つは当該薬剤が未だ少しも効果があるかどうかを知ることに集中されると思われる。従って、前者の目的のために、観察すれば少数箇の耐性菌でも検出するためには接種菌量を多く（10^{-1}mg）、又後の目的のため、観察すれば被検株中に感受性菌が尚存在している事を証明するためには接種菌量を少なく（10^{-4}mg）して検査を行う方がよいと実験の結果から考えられた。

文 献
1) 吉原：京大結核実験要，12-1：52～57，昭38
2) 村村：日本臨床，21-5：370，1962
3) 永坂：結核，36-7-8：484，1961
4) 杉山：臨床と研究，34-4：328，昭29
5) 小川（政）：最新医学，9-2：2，昭29
6) 小澤（崇）：治療，44-12：151，1962
7) 厚生省衛生検査指針，1～6，昭34
8) 吉原：京大結核実験要，11-1：44，昭37
9) 小川（政）：結核研究の進歩，30：4，昭36
10) 佐藤（直）：医学と生物学，31-5：250，昭29
11) 工藤（昭）：結核，36-7-8：480，1961
12) 小澤（崇）：日本臨床結核，15-4：250，昭31
13) H. Hackel：Tbk-Arzt，9-8：472，1955
14) 小森：臨床と研究，38-7-9：98，昭36
15) 島田（英）：結核，35-10：679，昭35
16) 林（治）：Modern media，9：140，1963
17) 島田（英）：結核，35-9：622，1960
18) P. J. Coletsos：Poumon，19-2：109，1963
21) 佐藤（直）：結核の臨床，2-5：430，昭29
22) 河村他：結核，37-4：160，昭1962
23) 安野・村村：結核，36-3：129，昭36
24) 津久間他：京大結核実験要，8-1：3，昭34