<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>（第 4 篇） 結核菌の薬剤耐性獲得に及ぼす各種併用療法の施行順序の影響に関する実験的研究 結核化学療法における各種併用療法の施行順序による効果の比較に関する実験的研究</td>
</tr>
<tr>
<td>Author(s)</td>
<td>近藤 由夫</td>
</tr>
<tr>
<td>Citation</td>
<td>京都大学結核研究所紀要 (1959), 7(3(増刊第 I号)): 377-381</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1959-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/52022</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
結核化学療法における各種併用療法の施行順序による効果の比較に関する実験的研究

【第4篇】 結核菌の薬剤耐性獲得に及ぼす各種併用療法の施行順序の影響に関する実験的研究

京都大学結核研究所化学療法部（教授 内藤滋一）

近藤 勉夫

【内容抄録】

海藻の実験的前眼部結核症を対象として、30週間後にわたって SM-PAS, INH-SI, INH-PZA, INH-PAS の 2 者併用療法を施行し順序を交替して投与したのと、終止一日、SM-INH 週 2 日→PAS 毎日の 3 者併用療法を施行し、その効果を比較検討したことについて報告したが、本篇においては各種薬の効果並びに検出された結核菌に就いて、SM, PAS 及び INH に対する耐性検査を行なった。その結果、2 者併用療法を交替させた群では耐性の発現は軽度であった。しかし SM-PAS →INH-PAS と言う順に PAS を終始使用した例では、主薬を交替しても比較的耐性の発現は高かった。3 者併用 (S2IP 毎日) を行なった群ではその中間の成績であった。併し INH に対する耐性獲得はすべての治療群に殆ど認められる事が出来なかった。

第1章 緒　言

結核化学療法が長期にわたる程結核菌の薬剤に対する耐性が上昇する事は申し訳もない。これ等の耐性の出現を防止する為に薬剤の各種の組合せによる併用療法が用いられてきたのである。併用療法にて耐性出現が阻止されることに就て、Demerecは 2 種の薬剤で各々が病原菌に作用し、しかも作用機転の異なる時には、その耐性出現率は各々の耐性出現の割合の積となるので小さくなると述べている。更に内藤は今井の実験成績に基づいて、耐性の出現は単に結核菌と薬剤が共存する期間にのみではなくて、結核菌が薬剤の侵襲を受けながらそれに負けてしまわないで、どんどんと発育するとき耐性は急速に上昇するのであろうと述べた。結核菌の耐性獲得に関しては試験管内実験及び臨床試験に於いて各方面からの検討が行われ、種々の議論が活発であるが、結核菌の薬剤耐性獲得に関する動物実験的研究に関する文献を見ると、殊に長期にわたる実験は比較的少ない様である。その主なものをあげると T. Zer-browskiは INH に関して海藻を用いて 91 日間、連日薬と 3 日目薬とを比較し、培養された結核菌に就いて、PAS 及び INH に対する耐性を試験し、PAS の耐性の発現が大なることを示し、耐性検査は先ず間隔を経て行なったものを結論している。更に三浦等はマウス結核症に各種併用化学療法を施した場合の耐性獲得について、S2IP 毎日の 3 者併用例にては、20週治療では 2 例に SM に 17/cc, INH は 1 例に 17/cc の耐性を見たが、30週治療を行なったものでは、すべて SM に 17/cc ～100γ/cc の耐性獲得を認め INH も 17/cc の耐性を示したと述べ、S2P 毎併用例にては同様 20週で SM 17/cc. 30週では 10γ/cc となり、1 例の PZA 毎併用例にては INH に 20週では 17/cc 乃至 10γ/cc, 30週では 3 例に 17/cc の耐性を示したと報告した。教室の米谷は海藻の前眼部結核症を対象として、1 年間の長期にわたる各種併用を行った後、臓器から培養された結核菌につき、各薬剤に対する耐性を示した結果 SM-PAS 併用に関しては、S2P 毎薬の方が S 毎薬の効果よりもむしろ SM の耐性発現の度合いは強い
表1. 実験材料及び実験方法

<table>
<thead>
<tr>
<th>No.</th>
<th>K.01</th>
<th>07/17, 10/29</th>
<th>K.07</th>
<th>04/17, 10/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S M</td>
<td>PAS</td>
<td>INH</td>
<td>S M, PAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>番号</th>
<th>S M</th>
<th>PAS</th>
<th>INH</th>
<th>S M, PAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S M</td>
<td>PAS</td>
<td>INH</td>
<td>S M, PAS</td>
</tr>
<tr>
<td>2</td>
<td>S M</td>
<td>PAS</td>
<td>INH</td>
<td>S M, PAS</td>
</tr>
<tr>
<td>3</td>
<td>S M</td>
<td>PAS</td>
<td>INH</td>
<td>S M, PAS</td>
</tr>
<tr>
<td>4</td>
<td>S M</td>
<td>PAS</td>
<td>INH</td>
<td>S M, PAS</td>
</tr>
</tbody>
</table>

1. SM-PAS先実験: INH 検査
2. S M-PAS後実験: INH 検査
3. S M-PAS後実験: INH 検査

第2章. 検査成績

1. SM-PAS先実験: INH 検査
2. S M-PAS後実験: INH 検査
3. S M-PAS後実験: INH 検査

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

第3章. 検査方法

1. SM-PAS先実験: INH 検査
2. S M-PAS後実験: INH 検査
3. S M-PAS後実験: INH 検査

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

第4章. 検査成績

1. SM-PAS先実験: INH 検査
2. S M-PAS後実験: INH 検査
3. S M-PAS後実験: INH 検査

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

第5章. 検査方法

1. SM-PAS先実験: INH 検査
2. S M-PAS後実験: INH 検査
3. S M-PAS後実験: INH 検査

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>番号</th>
<th>番号</th>
<th>番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
置対照群の検査値は SM に対してのみ 0.1γ/cc の軽度の耐性を示したが、PAS, INH は共に 0.1γ/cc に感性であった。治療群においては SM, PAS に耐性獲得を認めたのである。更に SM の耐性獲得につき各群を比較すれば、3 者併用例において各群の相違が他の 2 者併用例より強い傾向で、SM 0.5γ/cc 不完全耐性、SM 1γ/cc 不完全耐性を示した。しかし有意の差は有るとは思われなかった。PAS の耐性に就ては、各治療群ともに軽度であり僅かに 3 者併用例において、PAS 0.5γ/cc 不完全耐性を示す以外は 0.1γ/cc 不完全耐性を呈したのみだった。INH に関しては各治療群とも全例感性であり、併用方法の相違による差違を認めることは出来なかった。

2）SM-PAS 先行後 INH-PZA に交互した例及びその逆の順序の投与例並びに 3 者併用例の比較 小川他若病地を使用して行った耐性検査の成績は表 2。図 2 の中であって、これも耐性獲得を呈したのは SM, PAS のみであった。両治療群の間には SM 対しても共に 1γ/cc 過に不完全耐性を認めめたが、耐性獲得上有意の差は見られず、PAS においても共に 0.1γ/cc 不完全耐性を認めなかった過ぎない。強いで言えば、PZA 毎→S P 毎群に SM 及び PAS の耐性獲得の度合が僅かに高度であると思われる成績であった。INH に関しては両治療群共に耐性培地に菌発育を認めず全例感性であった。3 者併用例（表 1、図 1 参照）と比較すれば、両治療群ともやや SM 耐性獲得の度合は少ない様であった。

3）SM-PAS 先行後 INH-PAS に交互した例及び共の逆の順序の投与例並びに 3 者併用群の比較 小川若地に依る耐性の成績は表 3、図 3 に示

| 表 2 SM, PAS 先行 INH, PZA 及びその逆の投与例の腸内菌の耐性成績 |
|-------------|-------------|-------------|
| No. | SM | PAS | INH |
| | 0.1γ 0.5γ 1γ 10γ 50γ | 0.1γ 0.5γ 1γ 10γ 50γ | 0.1γ 0.5γ 1γ 10γ 50γ |
| S P毎→I 毎 PZA毎 | (＋) (＋) (－) (－) (－) | (＋) (＋) (－) (－) (－) | (＋) (－) (－) (－) (－) |
| | (＋) (＋) (＋) (＋) (－) | (＋) (＋) (＋) (－) (－) | (＋) (－) (－) (－) (－) |
| I 毎 PZA毎→S P毎 | (＋) (＋) (＋) (＋) (－) | (＋) (＋) (＋) (－) (－) | (＋) (－) (－) (－) (－) |
| | (＋) (＋) (＋) (＋) (－) | (＋) (＋) (＋) (－) (－) | (＋) (－) (－) (－) (－) |
した如くであるが、これも耐性獲得を認めたのはSM, PASのみでINHに対する耐性は証明出来なかった。SMの耐性獲得は薬治療群ともに1γ/cc迄みてみたが、S₂P毎→I每P群においてはSM1γ/cc迄不完全耐性なるに反して、I每P毎→S₂P群群にては1γ/cc迄完全耐性を示し、やや耐性獲得の度合が高いのを認めた。PASも1γ/cc程度の軽い耐性を示したが、共に不完全耐性であり有意の差は有るとは思わなかった。INHに関しては既に述べた如く、全体に感性であり比較検討することは不可能であった。3者併用例（表1、図1参照）と比べるとI每P毎→S₂P每群においてSMの耐性獲得は高度であったが、これにしてもSM1γ/ccの完全耐性を呈したに過ぎない。PASに関しては2者併用例は3者併用例と比較してやや歩か

表3 SM, PAS先行INH, PAS及びその逆の投与例の臓器内結核菌の耐性成績

<table>
<thead>
<tr>
<th>No.</th>
<th>S M</th>
<th>K 0.1γ 0.5γ 1γ 10γ 50γ</th>
<th>P A S</th>
<th>K 0.1γ 0.5γ 1γ 10γ 50γ</th>
<th>I N H</th>
<th>K 0.1γ 0.5γ 1γ 10γ 50γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I每P毎→S₂P毎</td>
<td>3</td>
<td>(+a)+(a)+(a)+(a)+(−)(−)</td>
<td>(+a)+(a)+(a)+(a)+(−)(−)</td>
<td>(+a)+(a)+(a)+(a)+(−)(−)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>(+a)+(a)+(a)+(a)+(−)(−)</td>
<td>(+a)+(a)+(a)+(a)+(−)(−)</td>
<td>(+a)+(a)+(a)+(a)+(−)(−)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第4章総括並びに考察

著者は海嶺の実験的前眼結核症を対象として、30週にわたりSM, PAS, INH, SI, PZAの5種の抗結核剤に依る各種併用療法を試み、SM及びINHを主剤とした各種併用療法の施行順序を交替した投与法につき、終始SM, INH

週2日、PAS毎日3者併用法及び無処置群と比較検討した後、臓器内結核菌の定量培養により検出された結核菌株につき、夫々使用薬剤であるSM, PAS, INHにつき耐性検査を施行し成績を見た次第である。

その概略を述べると、各種2者併用法はいずれを先に、いずれを後に施行するも其の薬剤に対する耐性獲得の上で、著明な差は認め得なか
つった。SM に関しては前期、後期共に PAS を併用した I P 毎→S ｐ 毎群に SM 1 θ/cc の完
全耐性を認め、SM の最も高い耐性獲得を呈した。PAS に関しては SM の場合と同様に、PAS を
前、後期共に使用した群に多少の耐性獲得を
認めた。然しながら INH の耐性獲得は 1 例も
認める事は出来なかった。

義谷が SM-PAS 併用群においては、3 者
併用群に比べ比較的著明な耐性獲得が見られる
と述べたが、本実験においては、SM-PAS 併
用を行ってもその前期群は後期に全く新しい薬
剤たる SI 又は PZA に INH を併用する治療
を加えた場合には、むしろ SM 及び PAS の耐
性獲得は 3 者併用群よりもよく阻止される様で
あった。これより 3 者使用群は終始 SM、PAS を
併用して使用することより、前者は SM、PAS の使用期間が短絡であるが、

或いはその前或いは後に行った INH-SI 又
は INH-PZA の併用によって、かなりの治療効果
があげられた事が原因しているかも知れない。
しかしながら 1 貫して PAS を併用した第 3 篇
の SM-PAS→INH-PAS の場合には、たとえ主
剤をかえても SM、PAS に対する耐性獲得は、
3 者併用群よりも高値が大きい印象を受けた。
かかる如く本実験成績よりは、明らかに 2
者併用療法がそれに及ばず耐性を有しない、全く
新たな薬剤による 2 者併用に交替させて治療し
た場合には、むしろ 3 者併用療法 (S ｐ ｐ p p)
を終始一貫して使用する場合より、その耐性獲
得の度は少なかったのである。しかも前記義
谷「3 者併用又は 2 者併用にて、INH を含
む組合せの場合、INH の耐性発現が
少ないと述べている。更に三富「各種併用療
法の動物実験にて、20週より 30週目において明
らかに耐性獲得の上昇を認めてゐるが、この事
実はより途中で薬剤を全く交替させる事は、終
始一貫同一治療を継続するよりも理論的にも耐
性獲得の度が少なく有利であろうと考えられ
るし、実際に著者の実験成績からもその事が言
える様である。勿論、本篇に於ける如き動物実
験的な検討は試験管内実験と、臨床試験の中
間的な位置を占め、臨床的な耐性獲得を究明す
る為の 1 つのより所となるにすぎないものと考
えられる。現在結核化学療法は効果の増強及び
耐性獲得の防止の両面から、2 者併用又は 3 者
併用等の併用療法が用いられているが、尚全く
耐性を異なる薬剤による 2 者併用療法の施行
順序を変える事が、耐性獲得に及ぼす得失つ
いては明らかになっていない状態である。著者
は海陸を用いて各種併用化学療法の施行順序を
変えた場合の耐性発現の度合を比較検討したの
であるが、更に臨床面においてこの点が追究さ
れ、その様々な併用療法の様々な順序で、更に
どの様々な病型、病症に対して施行するのが最も
有利であるかと言う複雑な問題が解明される日
が来れば、新抗結核薬の発見にも劣らず結核化
学療法を大いに豊かにするであろうと考える。

第 5 章 結 論

以上 30週間にわたり動物実験の成績につき結
論すれば、前眼部病変の経過に及ぼす効果につ
いては、INH 先行 2 者併用群は各群とも、3 者
併用群及び SM 先行群より勝り、3 者併用群は
その中の成績であった。しかしながら 2
者併用療法の順序による耐性発現率における
差は認めず、この点についてはいずれを先に
するか有利と言えなかった。しかし、全く
新しい薬剤で交替させる事は明らかに他の終始一
貫同一組合せの薬剤を投与した群に比べ有利の
様だった。

(関筆に臨み、終始御指導御援助を賜った前川助教
授、義谷先生に深甚の謝意を表し、合わせ実験推進に
何か御便宜を賜った同風園院長今井尚喜博士に深謝
する。)

文 献

1) Demerec, M., J. Bact. '56, 63, (1948)
2) 内藤益一：日本医研新報、No. 1098, 8, (昭
31, 11, 10)
3) 今井金郎：胸部疾患、1 – 1, 25, (昭32.4)
4) 今井金郎：胸部疾患、1 – 2, 68, (昭32.5)
5) 今井金郎：胸部疾患、1 – 3, 124, (昭32.6)
6) 今井金郎：胸部疾患、1 – 4, 164, (昭32.7)
7) T. Zerbowski, et al.: Beiter, Klin, Tu
berk., 111–4, 4, (1954.)
8) 三富和郎他：結核、32巻増刊号、132, (1957)
9) 義谷健比古：胸部疾患、2–10, 456, (昭33.10)