<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ティトル</td>
<td>第Ⅱ篇 肺換気面に及ぼす炭酸ガス蓄積の影響 肺結核患者に於ける炭酸ガス蓄積に関する病態生理学的研究</td>
</tr>
<tr>
<td>著者</td>
<td>田中 晋</td>
</tr>
<tr>
<td>発行</td>
<td>京都大学結核研究所紀要 増刊号</td>
</tr>
<tr>
<td>発行年月日</td>
<td>1959-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/52050</td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
肺結核患者に於ける炭酸ガス蓄積に関する
病態生理学的研究

[第Ⅱ篇] 肺換気面に及ぼす炭酸ガス蓄積の影響

京都大学結核研究所内科療法部（主任 教授 長石忠三）
田 中 晋（医師 井原 智）
（受付昭和33年9月20日）

（本論文の要旨は第2回日本麻肺学会総会及び第17回近畿結核内科研究会に於いて発表した。）

目次

緒 言
第1章 検査対象、検査方法及び検査項目
 第1節 検査对象
 第2節 検査方法及び検査項目
第2章 病事業
 第1節 肺活量（%肺活量）
 第2節 呼吸気及び酸素消費量
 第1項 呼吸気
 第2項 酸素消費量
第3節 換気量
 第1項 分時換気量
 第2項 一回換気量
第4節 動脈血酸素飽和度

緒 言

肺結核に対する外科的療法は、麻痺学、特に気管内麻痺法の進歩、及び化学療法剤の発見等によって著明な発展をみたが、その根底には幾多の病態生理学に関する研究の成果に負うところ大なるものがある。

又、肺結核患者の術前、術後に於ける心肺機能検査は治療の方針、手術式の決定、及び予後の判定に重要な因子となっている。

心肺機能面に於ける予備能力、乃至潜在性の機能低下等を知る手段として在来から種々の負荷試験が行われており、その方法に運動負荷、低酸素負荷、炭酸ガスの負荷及び諸種の薬物負荷等が挙げられるが、その中、炭酸ガス負荷に関する研究、特に換気面に於ける研究が多数見受けられる。

第5節 动脈血酸素ガス換気、pH 及び動脈血酸素ガス分圧
 第1項 动脈血酸素ガス換気
 第2項 动脈血酸素ガス分圧
 第3項 动脈血酸素ガス分圧及し肺換気検討

第6節 肺活量からみた各値の変動
第7節 死腔率及び有効肺胞換気量
 第1項 呼吸死腔
 第2項 有効肺胞換気量の変動

第3章 総括並びに考察

結 論

著者は肺結核患者に於ける炭酸ガス蓄積の心肺機能に及ぼす影響を検索し、その中、第1篇では主として、その血流面に及ぼす影響に就いて論じた。又、血流面では炭酸ガス蓄積の影響、肺の伸展性に於いて検討した。今後は3%前後の炭酸ガスの負荷を行った。
昭34.3

才から47才までの肺結核患者32例（男子28例、女子4例）である。その中、肺結核外科的療法の施行前のものは21例であり、その内訳は肋側胸成術1例を含む一側5～7本肺切除の胸成術後のもの5例、及び肋側肺全摘除術2例を含む切除療法後のもの6例等であり、切除療法を施行したものは共に肋骨切除を施行しない症例である。

術後の症例はすべて手術施行後3～6ヶ月で経過したものである。

第2節 検査方法及び検査項目

安静時に於ける呼吸分析及び血液ガス分析は第1篇で述べた通りであり、3分間の呼気ガス採取の直後に、肺動脈より直接注射針にて動脈血を採取し、ガス分析を行い、一部は直ちに3000回転、10分間遠心分離により血漿を分離水室に貯蔵した。負荷ガスは2.8～3.4 vol%，平均3.02 vol%の炭酸ガスを用い、酸素は可及的酸素濃度でChart上で20.5～21 vol%の間とした。負荷吸入法は第1篇と同じく10～15分間炭酸ガスの吸入を行い、その末期に3分間呼気を採取し、その直後に、安静時の場合と同様動脈血を採取し、安静時と負荷後における呼気ガス、血液ガス、含有及びpH等の変動を比較した。

血漿pHの測定は38℃の恒温槽内に於いて、吉村型パルプタイプガラス電極を用い720、電位差計メーター（零位方式）により測定した。

血中酸素分圧及び炭酸ガス分圧の測定法としては、Van Slyke-Neill氏法によって求めた血中酸素及び炭酸ガス含量と血漿pHとの両者に於いて、ヘモグロビン解離曲線から、酸素分圧を求め、さらにSinger-Hastigのノモグラムから炭酸ガス分圧を求めた。

呼吸死腔の測定法はBohrの公式に基づいたが、これにRiley及びCournand等41の考へ方を採用し、肺胞気ガス濃度を動脈血中のガス分圧に等しいと仮定し、総て拡散速度の速い炭酸ガスを以て次式を満足させた。

呼吸死腔（cc）= \frac{X-E}{X-I}

第1表 第Ⅰ群（術前後のうち病変範囲の比較的小さなるもの）
第2表 第II群（術前後の両病巣及び肋膜の変化の比較的大なるもの）

<table>
<thead>
<tr>
<th>症例</th>
<th>性別</th>
<th>VC</th>
<th>VC</th>
<th>呼気</th>
<th>RQ</th>
<th>PCO₂</th>
<th>分時換気量</th>
<th>死腔</th>
<th>気体検査</th>
<th>酸素</th>
<th>CO₂</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.10</td>
<td>男</td>
<td>3,500</td>
<td>3.1</td>
<td>2.0</td>
<td>0.82</td>
<td>20</td>
<td>57.7</td>
<td>11.5</td>
<td>39.4</td>
<td>9.67</td>
<td>187.4</td>
<td>7.41</td>
</tr>
<tr>
<td>No.11</td>
<td>男</td>
<td>3,600</td>
<td>3.0</td>
<td>1.9</td>
<td>0.75</td>
<td>147</td>
<td>6.3</td>
<td>531</td>
<td>9.15</td>
<td>17.2</td>
<td>43.0</td>
<td>7.44</td>
</tr>
<tr>
<td>No.12</td>
<td>男</td>
<td>3,700</td>
<td>2.9</td>
<td>1.6</td>
<td>0.76</td>
<td>145</td>
<td>5.6</td>
<td>644</td>
<td>9.60</td>
<td>17.2</td>
<td>43.0</td>
<td>7.44</td>
</tr>
<tr>
<td>No.13</td>
<td>男</td>
<td>2,700</td>
<td>3.1</td>
<td>1.4</td>
<td>0.76</td>
<td>131</td>
<td>4.1</td>
<td>463</td>
<td>9.30</td>
<td>16.2</td>
<td>51.1</td>
<td>7.40</td>
</tr>
<tr>
<td>No.14</td>
<td>男</td>
<td>2,800</td>
<td>3.0</td>
<td>1.6</td>
<td>0.78</td>
<td>138</td>
<td>3.0</td>
<td>414</td>
<td>9.59</td>
<td>16.2</td>
<td>51.1</td>
<td>7.42</td>
</tr>
<tr>
<td>No.15</td>
<td>男</td>
<td>2,400</td>
<td>2.9</td>
<td>1.6</td>
<td>0.76</td>
<td>130</td>
<td>7.2</td>
<td>706</td>
<td>9.00</td>
<td>14.8</td>
<td>47.0</td>
<td>7.40</td>
</tr>
<tr>
<td>No.16</td>
<td>男</td>
<td>1,200</td>
<td>3.0</td>
<td>1.9</td>
<td>0.77</td>
<td>141</td>
<td>3.7</td>
<td>216</td>
<td>9.16</td>
<td>16.8</td>
<td>52.0</td>
<td>7.34</td>
</tr>
<tr>
<td>No.17</td>
<td>男</td>
<td>1,500</td>
<td>3.0</td>
<td>1.8</td>
<td>0.79</td>
<td>126</td>
<td>4.6</td>
<td>340</td>
<td>8.76</td>
<td>16.0</td>
<td>49.1</td>
<td>7.37</td>
</tr>
<tr>
<td>No.18</td>
<td>男</td>
<td>1,800</td>
<td>2.8</td>
<td>1.9</td>
<td>0.73</td>
<td>119</td>
<td>3.4</td>
<td>270</td>
<td>8.65</td>
<td>15.9</td>
<td>47.0</td>
<td>7.37</td>
</tr>
<tr>
<td>No.19</td>
<td>男</td>
<td>2,200</td>
<td>3.0</td>
<td>1.7</td>
<td>0.90</td>
<td>145</td>
<td>6.4</td>
<td>557</td>
<td>9.30</td>
<td>17.6</td>
<td>42.7</td>
<td>7.38</td>
</tr>
<tr>
<td>No.20</td>
<td>男</td>
<td>1,800</td>
<td>2.9</td>
<td>1.2</td>
<td>0.98</td>
<td>165</td>
<td>5.8</td>
<td>611</td>
<td>9.71</td>
<td>17.4</td>
<td>44.6</td>
<td>7.39</td>
</tr>
<tr>
<td>No.21</td>
<td>男</td>
<td>1,420</td>
<td>2.9</td>
<td>1.0</td>
<td>0.72</td>
<td>119</td>
<td>7.6</td>
<td>415</td>
<td>8.13</td>
<td>17.2</td>
<td>42.1</td>
<td>7.36</td>
</tr>
</tbody>
</table>

X = 肺胞気炭酸ガス分圧 P_{ACO₂} = 動脈血炭酸ガス分圧 E = 呼気炭酸ガス分圧 P_{ECO₂} = (大気 - 47) × 呼気炭酸ガス vol% I = 呼気炭酸ガス分圧 P_{ICO₂} = (大気 - 47) × 呼気炭酸ガス vol%

死腔率 = 呼吸死腔 × 100

有効肺胞換気量(I) = 分時換気量(l/min/M²) × (1 - 死腔率)
第3表 第Ⅰ群（胸成術後群）

<table>
<thead>
<tr>
<th>上肢動</th>
<th>体重</th>
<th>年令</th>
<th>性別</th>
<th>VC</th>
<th>呼吸</th>
<th>CO₂</th>
<th>肺活量</th>
<th>R.Q</th>
<th>O₂濃度</th>
<th>CO₂濃度</th>
<th>形態</th>
<th>一時</th>
<th>椎管内</th>
<th>O₂</th>
<th>CO₂</th>
<th>PH</th>
<th>PaCO₂</th>
<th>椎管内元気度</th>
<th>椎管内元気度</th>
</tr>
</thead>
<tbody>
<tr>
<td>No22</td>
<td>2700</td>
<td>3.0</td>
<td>男</td>
<td>17</td>
<td>0.83</td>
<td>162</td>
<td>6.22</td>
<td>75.0</td>
<td>91.5</td>
<td>19.52</td>
<td>47.39</td>
<td>7.38</td>
<td>4.2</td>
<td>31</td>
<td>4.98</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No23</td>
<td>2100</td>
<td>3.0</td>
<td>男</td>
<td>18</td>
<td>0.16</td>
<td>136</td>
<td>5.30</td>
<td>72.9</td>
<td>91.5</td>
<td>20.1</td>
<td>46.80</td>
<td>7.37</td>
<td>4.4</td>
<td>33</td>
<td>3.55</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No24</td>
<td>2150</td>
<td>3.1</td>
<td>男</td>
<td>14</td>
<td>0.77</td>
<td>144</td>
<td>5.87</td>
<td>63.0</td>
<td>90.0</td>
<td>18.42</td>
<td>48.80</td>
<td>7.40</td>
<td>3.9</td>
<td>35</td>
<td>3.80</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No25</td>
<td>1450</td>
<td>3.1</td>
<td>男</td>
<td>27</td>
<td>0.89</td>
<td>179</td>
<td>8.30</td>
<td>41.1</td>
<td>91.3</td>
<td>18.82</td>
<td>45.80</td>
<td>7.40</td>
<td>3.5</td>
<td>42</td>
<td>5.23</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No26</td>
<td>2000</td>
<td>2.9</td>
<td>男</td>
<td>21</td>
<td>0.92</td>
<td>182</td>
<td>6.32</td>
<td>51.1</td>
<td>91.0</td>
<td>21.0</td>
<td>46.40</td>
<td>7.35</td>
<td>4.3</td>
<td>28</td>
<td>7.00</td>
<td>222</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第4表 第Ⅳ群（切除術後群）

<table>
<thead>
<tr>
<th>上肢動</th>
<th>体重</th>
<th>年令</th>
<th>性別</th>
<th>VC</th>
<th>呼吸</th>
<th>CO₂</th>
<th>肺活量</th>
<th>R.Q</th>
<th>O₂濃度</th>
<th>CO₂濃度</th>
<th>形態</th>
<th>一時</th>
<th>椎管内</th>
<th>O₂</th>
<th>CO₂</th>
<th>PH</th>
<th>PaCO₂</th>
<th>椎管内元気度</th>
<th>椎管内元気度</th>
</tr>
</thead>
<tbody>
<tr>
<td>No23</td>
<td>2050</td>
<td>3.1</td>
<td>男</td>
<td>15</td>
<td>0.81</td>
<td>169</td>
<td>5.65</td>
<td>64.0</td>
<td>91.9</td>
<td>20.83</td>
<td>4.760</td>
<td>7.35</td>
<td>4.0</td>
<td>16</td>
<td>17.8</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No24</td>
<td>1900</td>
<td>3.1</td>
<td>男</td>
<td>17</td>
<td>0.64</td>
<td>164</td>
<td>5.86</td>
<td>53.9</td>
<td>84.6</td>
<td>16.56</td>
<td>4.44</td>
<td>7.36</td>
<td>4.5</td>
<td>37</td>
<td>3.61</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No25</td>
<td>2000</td>
<td>3.0</td>
<td>男</td>
<td>12</td>
<td>0.72</td>
<td>138</td>
<td>4.25</td>
<td>51.1</td>
<td>91.4</td>
<td>18.07</td>
<td>5.185</td>
<td>7.37</td>
<td>4.8</td>
<td>36</td>
<td>5.13</td>
<td>213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No30</td>
<td>1750</td>
<td>3.1</td>
<td>男</td>
<td>26</td>
<td>0.83</td>
<td>204</td>
<td>6.65</td>
<td>63.5</td>
<td>91.5</td>
<td>20.63</td>
<td>4.20</td>
<td>7.38</td>
<td>4.4</td>
<td>34</td>
<td>2.95</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No31</td>
<td>1420</td>
<td>3.1</td>
<td>男</td>
<td>25</td>
<td>0.84</td>
<td>145</td>
<td>5.76</td>
<td>46.4</td>
<td>87.3</td>
<td>17.37</td>
<td>4.672</td>
<td>7.39</td>
<td>4.5</td>
<td>34</td>
<td>3.45</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No32</td>
<td>2000</td>
<td>3.0</td>
<td>男</td>
<td>15</td>
<td>0.78</td>
<td>142</td>
<td>5.9</td>
<td>78.6</td>
<td>91.1</td>
<td>21.07</td>
<td>4.510</td>
<td>7.39</td>
<td>4.2</td>
<td>31</td>
<td>4.07</td>
<td>243</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

及び肋膜の変化の稍々程度のものを第Ⅰ群と
し、さらに胸成術後例を第Ⅳ群とし、各種血
除例を第Ⅳ群としてこれ等の各群に加えその各

及び肋膜の変化の稍々程度のものを第Ⅰ群と
し、さらに胸成術後例を第Ⅳ群とし、各種肺切
除例を第Ⅳ群としてこれ等の各群に加えその各

第2章 検査成績
第1節 肺活量（%肺活量）
第2節 呼吸器及び酸素消費量

第1項 呼吸器

安静時に於ける呼吸器は平均0.81で、すべての症例が0.96～0.72の間にあり、健常者の正常範囲（0.8～0.9）内にある。又、負荷後に於ける変化は全例0.04以内であり、今回の於ける3 vol%の炭酸ガス10～15分間の吸入負荷では、全症例に於ける前後に於ける著明な変化がみられず、概ね“steady state”に近い状態が保たれているものと考えられる。

第2項 分時酸素消費量（cc/min/m2）

安静時に於ける体表面積当たりの分時酸素消費量の平均は、第I群平均 157cc/min/m2、第II群 140cc/min/m2、第III群 161cc/min/m2、及び第IV群 160cc/min/m2となっている。負荷後には、全体 165cc/min/m2、150cc/min/m2、179cc/min/m2 及び 178cc/min/m2 となり、症例 No. 4 及び No. 20 に夫々 12.5%及び3.1%の減少をみた以外は全例に増加がみられた。その増加率は第I群5.1%、第II群7.5%、第III群12.1%及び第IV群11.0%であり、胸痛群、肺切除群症及び心痛群の順に増加している。

第3節 換気量

第1項 分時換気量（l/min/m2）

安静時に於ける分時換気量の平均は第I群6.06 l/min/m2、第II群5.33 l/min/m2、第III群6.60 l/min/m2、第IV群5.68 l/min/m2である。安静時に於ける健常者の換気量としては Courr~ END
症例中7例（No. 5, 6, 7, 19, 20, 23及び25）に於いて0.5～2.6平均1.5の低下を見た他は全例に増加がみられた。

負荷後に於ける平均値は第Ⅰ群では95.9で0～6.1平均2.4の増加をみ、第Ⅱ群では93.8で0.2～6.2平均2.8の増加をみ、第Ⅲ群では95.0で0～5.5平均3.7の増加をみ、第Ⅳ群では92.1で1.8～2.8平均2.4の増加がみられた。

分時換気量の増加率と動脈血酸素飽和度との関係をみると第1図のように第Ⅱ群で僅かに相関関係がみられる以外は凡て有意の相関はみられなかった。

第1図 CO₂負荷前後に於ける分時換気量の増加率と動脈血酸素飽和度との関係

尚、動脈血酸素含量及び負荷後に於けるそれの変動は、酸素飽和度及びその変動と密々同様傾向を示している。

第5節 動脈血炭酸ガス含量、pH 及び動脈炭酸ガス分圧

第1項 動脈血炭酸ガス含量（vol%）

安静時における動脈血炭酸ガス含量は第Ⅰ群では43.35 vol%～48.58 vol%（平均45.88 vol%）第Ⅱ群では41.40 vol%～52.60 vol%（平均47.64 vol%）第Ⅲ群では45.80 vol%～48.80 vol%（平均47.04 vol%）及び第Ⅳ群では44.10 vol%～50.35 vol%（平均47.16 vol%）であって第Ⅱ群が最も高値をとっているが共に健常者の正常範囲内にある。

負荷後に於ける各群の変動をみると、第Ⅰ群では44.71 vol%～50.34 vol%（平均47.78 vol%）で、全例に0.4～2.5 vol%、平均1.9 vol%の増加がみられた。第Ⅱ群では43.50～55.30 vol%（平均50.18 vol%）で2例（No.10, No.20）に夫々0.4, 0.2 vol%の減少がみられた他は0.5～7.5 vol%（平均2.54 vol%）の大きな増加をみた。第Ⅲ群では47.30～53.00 vol%（平均49.32 vol%）で、全例に0.1～4.2 vol%（平均2.28 vol%）の増加がみられた。又第Ⅳ群では45.50～51.15 vol%（平均48.83 vol%）で、当然なことながら0.4～4.9 vol%（平均1.67 vol%）と全例に増加がみられた。

第2節 動脈血酸素 pH

安静時後に於ける動脈血酸素 pH は第Ⅰ群は7.38～7.44（平均7.40）第Ⅱ群は7.37～7.44（平均7.39）第Ⅲ群は7.35～7.40（平均7.38）及び第Ⅳ群は7.35～7.40（平均7.38）である。

動脈血 pH の諸家の健常者に於ける正常値についての成績をみると Singer, Hastings 等は7.39±0.03, Alexander 7.42, 笠本7.36, 筒井7.39, 服部7.40等であり、安静時後に於ける著者成績は各群間に健常者の正常範囲にあらか、又は軽度に酸化化している。

負荷後に於ける動脈血酸素 pH は各群共に酸化化しており、第Ⅰ群では7.36～7.42（平均7.39）で全例に0.01～0.02（平均0.01）の酸化化、第Ⅱ群では7.34～7.43（平均7.38）で0～0.02（平均0.01）の酸化化、第Ⅲ群では7.32～7.39（平均7.36）であり0.01～0.03（平均0.016）の酸化化を夫々認めている。又、第Ⅳ群では7.33～7.38（平均7.36）と全例に0.01～0.04（平均0.017）の酸化化がみられ、負荷後には術後群に程度深い酸化化がみられた。術健常者及び肺気腫患者に3%炭酸ガスを負荷した Alexander の成績をみると、血漿は夫々0.01及び0.04の酸化化をみており、著者の術後例ではそれ等の値の中間値を示している。

第3節 動脈血炭酸ガス分圧（mmHg）
安静時に於ける動脈血炭酸ガス分圧は第 I 類では 34.0～41.0mmHg（平均 37.4mmHg）第 II 類では 35～50mmHg（平均 41.7mmHg）第 III 類では 35～44mmHg（平均 40.6mmHg）であり、第 IV 類では 40～46mmHg（平均 43.8mmHg）であってそれぞれIV, II, I 群の順に高い値を示している。

健常者の安静時における動脈血炭酸ガス分圧についての諸家の成績をみると 41.6±2.9 mm Hg, Singer, Hastiugs 37～46.5mmHg（平均 41.5mmHg）篠本 41.6 mm Hg 及び篠井 41.9 mm Hg 等であり、肺結核患者における諸者の成績では、第 I 及び第 II 群ではその低値を、第 II 及び第 IV 群ではその高値をとっている。

負荷後における変化は、第 I 群では36.5～42 mmHg（平均 39.7 mmHg）であり、全例に 0.5～3.5mmHg（平均 2.3 mmHg）の増加がみられ、第 II 群では 37～52.5 mmHg（平均 44.7mmHg）であり、変化のみられなかった 1 例（No. 20）を除いて他は全で 1.0～7.0 mm Hg（平均 3.00mmHg）と増加し、第 II 群では38～48mmHg（平均 43.4 mm Hg）と全例に1.5～4.0mmHg（平均 2.8mmHg）の増加がみられた。又、第 IV 群では 43～50 mmHg（平均 47.1mmHg）で、1.0～5.0mmHg（平均 3.33mmHg）と各群中最も大きな増加がみられた。

第 4 項 動脈血炭酸ガス分圧と分時換気量との関係

各群別による動脈血炭酸ガス分圧の変化と、分時換気量の増加率との関係をみると、第 I 群では炭酸ガス分圧が平均 2.3 mmHg の増加に対して、換気量は62.4％の増加を見る。又、第 II 群では 2.96 mmHg の増加に対し、60.7％の増加をみ、第 III 群では 2.8 mmHg の増加に対し、57％の増加をみ、又第 IV 群では3.33mmHgの増加に対し、67％の増加率をみている。これを夫々炭酸ガス分圧 1mmHgの増加に対する換気量の増加率で表すと、I, II, III, IV群夫々27.1, 20.8, 20.3, 20.1％となり第 III群にくるべて II, III, IV群は共に増加率がかなり減少している。

第 2 図に示すように第 2 図分時換気量の増加率と動脈血 CO2分圧の変化との関係

第 6 節 %肺活量よりみた各群の変動

従来から実地臨床的に肺機能を最も単純に表す方法として肺活量が用いられているが、著者も肺換気能力表を示す指標として肺換気量をその換気値×100で表した％肺活量を採用した。

今、第 2 群に於いて％肺活量60以上ものを IIA, 60以下をものと IIb とし、その各々に就いて、各値を比較してみると、体表面積当たりの分時換気量は、安静時においては IIA, IIb, 夫々平均 5.48, 5.13 1/min/m² であり、その間に著明な差は認められないが、負荷後に於けるその増加率をみると、夫々59％, 69％となり IIb 群に著しい増加がみられる。

同換気量の増加率に就いても同様であり、IIa 群及び IIb 群の平均値は夫々40％, 46.5％となり、後者に稍多く増加がみられる。

次に動脈血酸素飽和度に就いてみると、安静
昭34. 3

時に於いては夫々平均 IIa 92.8, IIb 88.7 と
なり、後者と相当値を示している。

負荷後に於ける変化をみると IIa 群では全例
に 2.0～6.2（平均 3.1）の増加をみるが、IIb 群
では 2 例（No. 19, 20）に夫々1.6, 1.9の減少
をみており、平均0.9の増加に過ぎない。この
ように換気量が増加するにも拘らず、動脈血酸
素飽和度の上昇が少ないことは注意すべきこと
でであろう。

又、動脈血炭酸ガス分圧をみると、安静時に
於ける IIa, IIb の平均値は夫々 38.3 mmHg, 45.1mmHg となり後者に高値がみられるが、負
荷後に於ける変化率は夫々平均 3.0mmHg, 2.8
mmHg と両者の間に著明な差がみられない。

尚、呼吸数、分時酸素消費量では著明な変化
は認められない。

第7節 死腔率及び有効肺胞換気量

死腔容積の測定は、真に呼吸に関与している
と考えられる肺胞ガス換気を測定するために必
要である。有効肺胞換気の減少は死腔率の増
加によって起こるが、死腔率の増加は有効肺流
量の減少、及び肺胞膜自体の拡散障害のある場
合に起る。又、気管支及び小気管支等の解剖学
的変化並びに過換気等の呼吸運動にも影響され
ることが知られている。

尚、測定方法にもしてからの公式に基づく方
法、或いは酸素又は水素呼吸による連続換気法
等があるが、著者の目的は炭酸ガス負荷の影響
を知ることにあるから、肺胞気炭酸ガス分圧に
換えるに動脈血炭酸ガス分圧を以てした Riley
及び Cournand 183 の方法を採用した。

第1項 呼吸死腔量

死腔の測定方法に関しては未だ一般臨床検査
法に決定的なものがない。種々批判もあり、諸
種の測定成績もまだまちまちである。即ち Bohr の
方法に基づき測定した諸家の成績をみると、Ka-
ltreider 等は 38～63才の男子で 256cc と云い、
Hurtado 等は青年女子で 144cc と云っている。
又、連続換気法で行った Fowler 281 の平
均値では男子 156cc±28cc、女子 104cc と云つ
ている。尚, Riley 及び Cournannd 等183 よ
れば呼吸死腔量は 130cc、であり一回換気量と
の比率、即ち死腔率は 30％以下を正常としてい
る。又 Fowler は死腔率の平均は 25.9％±7.67
％と述べている。

今、安静時の死腔量をみると第 I 群では 127
～274cc（平均 170cc）、第 II 群では 196～283cc
（平均 177cc）、第 III 群では 158～232cc（平均
200cc）、第 IV 群では 147～279cc（平均 204cc）
であり、第 I, II, III 及び第 IV 群の順に低くでは
あるが死腔量の增加がみられ、Riley 等の正常
値 130cc よりは相当値を示している。

負荷後に於ける死腔率の変動をみると、第 I
群では 8cc の減少をみた 1 例（No. 5）以外は
157～338cc（平均 209cc）と全例に増加をみ
ており、平均増加率 23％であり、第 II 群で
は 122～388cc（平均 206cc）で No. 14 及び
No. 20 に夫々 50cc, 7cc と減少を見た以外はす
べて増加を示し、平均増加率16％であり、第 III
群では 215～309cc（平均 263cc）であり、No. 25 に
僅かに減少をみた以外はすべて増加を示し、平
均増加率31％であり、第 IV 群では変化をみなか
った No. 27 の外は 147～322cc（平均 246cc）で
平均20％の増加をみた。負荷後に於ける死腔量
の変化は第 I 群に強く第 II 群、第 III 群及び第 IV
群には著明な差はみられない。第 II 群の a 及び
b 群に於ける間にも著明な差は認められない。

第2項 死 腔 率

安静時に於ける呼吸死腔量と一回換気量の比
率をみると、第 I 群 21～35％（平均 27％）、第
II 群 28～49％（平均 38％）、第 III 群 31～45％（平
均31％）及び第 IV 群は 23～44％（平均 34.3％）
であり、安静呼吸時の死腔率は第 II 群が最高
で、第 I 群及び第 III 群が Riley 等のいう正常
値に近く近い値である。

負荷後に於けるその変動をみると、第 I 群で
は 15～34％（平均 23％）となり全例に平均 4％
の減少がみられ、第 II 群では 20～38％（平均29％）
であり 6％の増加をみた症例 No. 19 を除
く全例に平均 9％の減少を見た。第 IV 群では増
減相半ばし、28～38％（平均33.6％）で死腔率
は負荷後に Joule 2.6% の増加を見ている。第 IV 群では単に增加を示した No. 28 以外は 16～39%（平均 29.8%）と平均 4.5%の減少がみられた。

向、第 II 群の a、及び b 群についてみると、安静時には夫々平均 34.8% 及び 41.3% となり、%秒流量 60%以下の b 群に死腔率の増大がみられ、各群に差最も高い値も示している。負荷後ににおける変化は夫々、平均 27.5% 及び 31.6% と著明に減少している。

何れにしても、負荷後には死腔率が増大するも拘らず、胸成術後の第 II 群以外は各群共に死腔率に於いては減少がみられた。

第 3 項 有効肺胞換気量の変動

安静時に於ける有効肺胞換気量は平均第 I 群 4.57 l/min/m²、第 IIa 群 3.69 l/min/m²、第 IIb 群 3.19 l/min，第 II 群 4.25 l/min/m² 及び第 IV 群 3.98 l/min/m²で，第 II 群に特に低値がみられる。

負荷後に於ける有効肺胞換気量は，分時換気量の増加に従って，全症例に増加がみられるが，その増加率は第 I 群では 32～41%（平均 69%）第 IIa，群 31～143%，（平均 73%）第 IIb 群 42～130%，（平均 90%）第 II 群 50～61%，（平均 56%）及び第 IV 群 48～89%，（平均 68%）であり，増加率は第 II、I、IV 及び第 III 群の順に低下し，第 III 群に著明に少なく，第 IIb 群に於いて著明に多くなっている。

今，分時換気量の増加率を 100 として，各群の有効肺胞換気量の増加率をみると，第 I 群 111%，第 IIa 群 a 142%，第 IIb 群 121%，第 II 群 97%及ぶ第 IV 群 107%となり，第 IIa、I、IV 群の順に増加が小さくなっている。

個々の症例に於ける分時換気量と有効肺胞換気量の増加率との関係をみると，第 3 図のようになり，負荷後第 I 群及び第 IV 群の多くは大気中央値に対してあり，中央線より左の領域，即ち分時換気量の増加に有効肺胞換気量が伴わない領域には，第 II 群及び第 IIa 群のものが多い。

逆に中央線より右の領域，即ち換気量の増加に比べ有効肺胞換気量の増加した群には第 II 群のものが多い。

第 4 章 結論並びに考察

以上，外科的療法施行前，及び施行後の肺結核患者に対し，非麻酔下に於ける，低濃度炭酸ガスの吸入負荷の換気面に及ぼす影響について述べたが，その成績を総括すると，以下の如くである。

安静時に於ける分時換気量は各群ともに健常者に於ける指標の 4.5 l/min/m² と Gray の 6.87 l/min/m² との間あり，又 Cournard の 3.6 l/min/m² よりも著明に増加している。

負荷後に於ける分時換気量の増加率は%秒流量 60%以下の IIb 群に於いて最大であり，胸成術の II 群に最も少ない。しかし，個々の成績よりみると，換気量に及ぼす炭酸ガス蓄積の影響に於は，炭酸ガスに対する個体の感受性が多分に関与しているようであり，この点に就いては改めて検討する必要があるものと考える。

又，負荷後 gazeにおける呼吸数の変化が平均 15%の増加に過ぎないことより，換気量の増加は主として一回換気量の増加によるものと思わられる。このことは血液面に於ける肺出流量の増加が，心搏数よりも一回肺出流量の増加によっているのと同様である。

Dripps 等は健常者に 7.6% 及び 10.4%の炭酸ガスを吸収させ呼吸，循環系の反応を観察し，循環系よりも呼吸引の強さことを認めている。
Dobkin17 及び Haldane27 等は健常者に於いては、肺胞内の炭酸ガスが 0.2%（1.5 mm Hg）増加すると換気量は 2 倍に増加すると云い、又 Beecher26 は 1%の肺胞内炭酸ガス分圧の上昇は換気量を分時約 50 1 増加させると云っている。

肺結核患者について行った著者の成績では、換気量の増加はこれ等に比較して少ないようである。この点に関して、Schock 及び Soley21 等は健常者について夫々、1, 2, 4 及び 5%の炭酸ガスを大気に混じたものを用いて、換気量の変化をみているが、第 4 図、著者の成績ではそれ等の成績に近い値がみられた。

第 4 図

安静時における動脈血液酸素飽和度は第Ⅰ, Ⅱ, Ⅳ及び第Ⅵ群の順に減少しているが、各群共に著者の正常値より稍々低下がみられる。

負荷後には各群共著明に増加し、正常値に近い値を示している。

これは低酸素負荷時における血中炭酸ガス含量の減少により、分時換気量が増加した結果と考えられる。

安静時における血中炭酸ガス含量は第Ⅰ, Ⅳ, Ⅵ及び第Ⅶ群の順に低値を示しているが、各群共に著者の正常値の範囲内にあり、負荷後に増加がみられるのは当然であるが、その増加の割合は第Ⅰ, Ⅱ, Ⅳ及び第Ⅵ群の順に減少している。

安静時における動脈血 pH は各群共 7.38～7.40で健常者の正常範囲内か、或いは僅かな酸性化がみられた。

負荷後には各群共に 0.02以内の軽度の酸性化がみられるが、術後群に稍々強い傾向がある。

炭酸ガス負荷時における動脈血炭酸ガス分圧の変化に関して、3% 炭酸ガスの負荷を行った Alexander29 の実験では、健常者に於いては、0.5～4.5mmHg（平均 2.5mmHg）であり、肺気腫患者では、その変化は 1.0～8.0mmHg（平均 5.1mmHg）と夫々増加をみている。

Alexander の成績と著者のそれを比較すると、第Ⅰ群では Alexander の健常者に於ける変化に等しく、第Ⅵ群では健常者より稍々高い値を示している。

又、肺内病変及び肋膜に高度の変化がある症例、並びに肋骨切除を行わずに肺を過膨脹させた肋切開術後の症例群、即ち最も肺気腫の因子が加味されていると考えられる、第Ⅰ及び第Ⅱ群に於いては Alexander の肺気腫群に比して、血中炭酸ガス分圧の変動が少ないという事実は、限局性肺疾患である肺結核と肺全体の疾患である慢性肺気腫との相違によるものと考えるが、術後再考する必要があるよう。

胸肺術はincoming, 肋切開術に於いては、種々の程度に障害された肺病変の除去により、理論的には無効換気及無効循環がなくなり、機能的には改善されて少なくとも負担はないと予想される。しかし、実際には術後肋和の変化、胸膜運動の異常及び胸膜の変形等を当然来たすであろう。又、特に注目される事は術後の残存肺の過膨張、及び膨張不全を招来することである。即ち、術後に起こる、反対側に含む残存肺の代償性肺気腫状態である。

Comroe13 は肺切開術後、残存肺の換気量は減少するが、呼吸死腔量は相当増大すると述べており、筐本は残存肺の膨張が良好な場合は過膨張による肺胞機能障害を起こすといい、又膨張不全の場合は拘束性機能障害及び肺胞気体障害等を招来して、共に右心に対する負荷を増大し肺性心を起す危険を警告している。

又、Rossier 及び Bühmann 等は肺的切除療法後における残存肺の過膨張が切除術後胸成術により防止し得るなら、呼吸死腔量は減少する
といっている。

その他 Fowler20 及び三宅40 等も切除術後の呼吸死腔に関し報告している。

又、切除術後の通気量に関しては、Birath、Lesler、Gensler26 及び従来41 等によると必ずしも切除量にはならないが、一般に多区域に亘る切除に、その傾向が認められている様である。

負荷後における死腔量は各群とも、安静時比べて、16〜31%の増加がみられたが、胸成群に最も強い増加がみられ、他の各群間には著明な差はみられなかった。

死腔量は理論40 による健常者では通気呼吸とか意識的な過換気（voluntary hyperventilation）をすると 45〜95cc の増加を示す。即ち、炭酸ガスの負荷による過換気は死腔量を増大させることは予想されるものである。

しかし、このことを死腔量でみるとうかようにみると、安静時ににおける死腔量は第１群以外は、Riley19 等の健常者限界（30%）を越えているのが30%に若干近い値を示している。

負荷後には第２群以外は平均値に於いて各群と比較して死腔量の減少がみられた。

このことは肺結核患者に於いては肺実質、肋膜等に多少変化があり、又その為に起こる二次的の変化が、単独に又は種々合併されているために、或程度の過換気を行った時に却って安静時に於けるより換気状態が改良されたものと考えられる。

この点より第１群の胸成術後の症例をみると、負荷後死腔量が増減相半ばし、軽度ではあるが却って増加を見る事は、肋骨切除が従来動振、奇異症等を誘発し呼吸機能面に於いて、非効率的に作用するためと考えられる。

又、このことと、切除法症例の安静時における死腔量が正常値に近いこと、即ち、術後赤血細胞の過換気による肺の機能低下を防止するための「切除術後胸成術の施行」と言うことに無批判に賛成し得ないものがある。

負荷後における分時換気量と有効肺胞換気量との関係をみると、その増加率は第 Ⅱa, Ⅱb, 及び第 Ⅰ群の順に肺及び肋膜の変化の高度なるものが基盤、術後のものに最も分離の傾向を示し、肋膜肺胞の強いものに過換気がより効率的に作用することがある。

併し、個々の症例についてみると、各値に相当の差異があり、換気面に及ぼす炭酸ガスの影響には何、個体の感受性をも併せ考えなければならないように思われる。

結 論

肺結核患者に於ける、炭酸ガス蓄積の換気面に及ぼす影響を、病巣の性質及び肺機能等に就いて検討し、又、胸成術及び切除術等の術後例をもこれに加え、炭酸ガス負荷前後に於ける変化に就き観察し、以下の結論を得た。

1) 安静時における成績

分時換気量ではその平均が、肺結核の比較的軽度の第Ⅰ群、6.06 l/min/m²，病巣及び肋膜の変化の強い第Ⅱ群 5.33 l/min/m²，胸成術後の第Ⅲ群 6.60 l/min/m² 及び切除例群の第Ⅳ群 5.68 l/min/m² であり第Ⅱ群に最も少ない値がみられた。

動脈血酸素飽和度では各群とも正常値より幾分低下をみており、第 Ⅰ, Ⅱ, Ⅲ及び第Ⅳ群の順に減少している。

動脈血液酸素ガス含量及び pH は各群とも略々正常範囲内にあった。

呼吸死腔量では各群とも健常者に比べて増加しているが、特に術後群では強く増加がみられた。

死腔量の平均は第Ⅰ群 27%，第Ⅱ群 38%，第Ⅲ群 31%及び第Ⅳ群 34.3%で第Ⅰ群以外は健常者の限界を相当超えている。

第Ⅱ群の中、%肺活量の60%以上を a 群、60%以下を b 群として分類すると、有効肺胞換気量は第Ⅰ群 4.57，第Ⅱa 群 3.69，第Ⅱ b 群 3.19，第Ⅲ群 4.25及び第Ⅳ群 3.98l/m² で，第Ⅱ b 群に低値をみた。

2) 負荷後における変化

分時換気量の増加率は第Ⅱ群に最大で、胸成術の第Ⅰ群に最も少ない値を示す。

動脈血酸素飽和度は各群とも著明に増加し、正常値に近い値を示す。
動脈血pH値の低下は術前群に比し術後群に明らかに減少が認められる。

動脈血炭酸ガス分圧の変化は第Ⅰ群では、平均2.3mmHg、第Ⅱ群平均3.0mmHg、第Ⅲ群平均2.8mmHg及び第Ⅳ群平均3.3mmHgを示し、第Ⅱ、第Ⅳ群に特に第Ⅳ群に著明であった。

呼吸死腔量では各群とも安静時の16～31％の増加がみられるが第Ⅲ群に最も強い増加をみた。死腔率では、第Ⅱ群以外は減少をみた。

3）肺結核に於いては安静時には肺、胸膜の病巣及び胸廓の二次的変化等により、程度の差はあるが換気不全が招来される。しかし、炭酸ガスを負荷することによって増大する換気運動によって、機能が減退し、このために負荷
後における死腔率の減少がみられるものと考えられる。

4）負荷後に於いて第Ⅱ群にみられる死腔率の増加は、肋骨切除の換気機能に非効率的であると考えられる。

5）以上のことより、肺切除術後の過膨張及び膨張不全を防ぐ意味での臨床的検査を施した上で必要な最小限の肋骨切除を行うことが望ましい。

（文献は第3篇の末尾に掲載する）