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Abstract

This paper proposes a method to separate speaker information from phonetic information
included in speech data. A speaker recognition method using the separated speaker informa­
tion is also proposed and shown to be equivalent with a method based on speaker subspace.
A new speaker recognition method robust for time session difference is also proposed. The
validity of this proposed method was verified by carring out simple speaker recognition ex­
periments.

1 Introduction

Speech recognition sometimes requires who is speaking, because intention of an utterance
becomes different depending on speakers. This requirement leads to an idea that speaker
recognition should be integrated into speech recognition. In other words, they are ought to
be carried out simultaneously.

From this view point, this paper investigates speaker information and phonetic informa­
tion included in speech signal and trys to separate them each other. As a result, using the
separately extracted speaker information, we carry out speaker recognition.

A speech production model, we assume, is that speech data presented in an observation
space as a sequence of short time spectra is produced by projecting speech data presented in
an individual speaker space to the observation space. We also assume that the speech data
presented in an individual speaker space are neutral and include only phonetic information.
The individual speaker space is defined by orthonormal bases computed from the speech
data. This concept coincides with a subspace method proposed by Oya.[l]

According to the subspace method, we prepare a projection matrix to each speaker by
computing the orthonormal bases of the speech data. Using the projection matrices, we
recognize who is speaking by finding a speaker subspace to which the projection length of
the input speech data is maximized. We carried out three experiments including CLAFIC
and principal component analysis and compared the results. A new speaker recognition
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method is proposed which uses relative feature vector originated from the speaker's mean
vector, instead of absolute feature vector.

2 Separation Model

2.1 Singular Value Decomposition

Let us consider a situation where we are observing speech data XA of speaker A and speech
data X B of speaker B in an observation space shown in Fig.I. The speech data are a
sequence of spectral feature vectors XAt and XBt obtained at time t by short time spectral
analysis. We denote the speech data XA as a matrix whose row is a spectral feature vector
X~t, (1 ::; t ::; M). The column of the matrix corresponds to frequency i, (1 ::; i ::; N).

Figure 1: Observation space and speaker space

By singular value decomposition, the speech data matrix XA is decomposed as

(1)

Here UA and VA are the matrices whose columns are eigenvectors of XAXI and XI X A

respectively, and ~A is the singular value matrix of XA.

If r numbers of the larger singular values are selected from the matrix ~A, the matrix UA

becomes M x r dimension and the row still corresponds to time. The matrix vI becomes r x
N dimension and the column corresponds to frequency. A new interpretation of equation (1)
is that the speech data matrix UA~A is produced by projecting the speech data matrix XA in
the observation space to the individual speaker space through the orthogonal transformation
matrix VA. The reverse projection is also interpreted as that the individual speaker space
is projected to the observation space through the orthogonal transformation matrix VI.

Since the speech data matrix UA~A is represented in own speaker space, we can say
that speaker information is less included in UA~A than the speech data matrix X A pre­
sented in the observation space. This interpretation means that UA~A has mainly phonetic
information and VA has mainly speaker information.
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2.2 Eigenvalue Decomposition
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Here we investigate more the speaker information matrix VA. VA is the matrix whose
columns are eigenvectors of a correlation matrix XIx A . It is expressed by eigenvalue
decomposition as follows:

(2)

The eigenvectors of the correlation matrix XI XA are shown to be orthonormal bases,
of the speech data XA, computed based on a criterion that the total distance between an
observed speech vector XAt and the orthonormal bases is minimized.

2.3 Subspace Method

Since the speaker information matrix VA is composed of orthonormal bases {VAl"'·' VAT}
of the speech data XA, the matrix VA constructs the speaker subspace. Here we consider a
distance from an arbitrary speech feature vector x in the observation space to the speaker
subspace VA. It is presented as follows using a projection matrix PA from the observation
space to the speaker subspace.

where the projection matrix PA is defined as:

T

PA = LVAkV~k
k=l

(3)

(4)

T

because the projected vector PAX is presented as L VAk(V~kX), Equation (4) is written as
k=l

follows:

(5)

Equation(5) means that the projection matrix from the observation space to the speaker
subspace is obtained using the orthonormal bases of the speech data XA. Once the projection
matrix PAis obtained, the distance from the speech feature vector x in the observation
space to the speaker subspace (the projected vector PAX) can be computed. The speaker is
identified as one with the subspace nearest to the input speech feature vector x.

In practice, the length of the projected vector II PAX II is computed, instead of the
distance, and the speaker is identified as one with the maximum length of the projected
vector to his subspace. It can be expressed as follows:

The decision boundary of the subspace method is defined as non-linear.

(6)

BoundarYAB {xlxTPAx = XTPBX}

{xlxT(PA - PB)X = O}

(7)
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3 Speaker Recognition

Fig.2 shows a system of speaker training and speaker recognition based on the subspace
method.

3.1 Speaker training

The training step of individual speaker information proceeds as follows:

(1) Speech signals sampled at 12KHz are converted into frequency domain by 256-point
FFT analysis for each speaker.

(2) The frequency domain below 6,OOOHz is converted into log scale and divided into 16
bands.

(3) A sequence of 16 order spectral feature vectors XAt is obtained by averaging and log­
scaling the energy at each band.

(4) A correlation matrix xIx A is computed.

(5) Orthonormal bases VAk of the speech data XA is obtained by eigenvalue decomposition
of the correlation matrix XIXA. The matrix VA is composed of the bases VAk.

(6) The projection matrix PA is computed by equation (5). Since VA and PA are the ma­
trices with 16x16, speaker information of each speaker is presented by 256 parameters.

Input speech Input speech

Speaker's subspace

r=--- ----,

i[][] - - - ~I"""'-...J
- - - - - - - - - --l L..-_--.-__-'

(Training) (Recognition)

Figure 2: Speaker training and recognition
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3.2 Speaker Recognition
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Speaker recognition is performed by applying the projection matrices of each speaker to
input speech. The step proceeds as follows.

(1) A sequence of 16 order spectral feature vectors Xt, (1 ~ t ~ K) is obtained from speech
signal in the same way as the training step.

(2) Projected length of the speech vector Xt to the subspace of speaker A is computed
using the projection matrix PA by equation (6). The averaged length yA of the input
speech projected to the subspace of speaker A is computed as follows:

(8)

(3) Speaker is identified by selecting the maximum averaged length of the input speech
projected to the subspace.

4 Recognition Experiment

4.1 Database and Experimental Condition

Speech data are sentences spoken by 15 speakers (10 males and 5 females) at three time
sessions during 10 months. [2] These sessions are denoted as 90-8, 91-3 and 91-6 in this paper.

The 15 speech sentences, including each 5 utterances with normal speed, fast speed and
slow speed respectively were selected from each speaker for training. The averaged duration
of the sentences is about 4 seconds. They were 256-point FFT analyzed and a time sequence
of 16 order spectral feature vectors was produced. Table 1 shows the condition of speech
analysis.

Table 1: Condition of speech analysis

Sampling frequency 12KHz
High-pass filter 1 - O.97z 1

Feature analysis FFT spectrum(256)
Feature parameter 16 band energy
Frame length 20ms
Frame shift 5ms
Window type Hamming window

4.2 Speaker Recognition Experiments

[Experiment 1] CCR
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To investigate the dimension of the speaker subspace, we computed a cumulated contri­
bution rate CCR which is defined by the following expression:

16

CCR(s) = L:adL:ai
i=1 i=1

(9)

Here, ai indicates the ith eigenvalue obtained by eigenvalue decomposition of the correlation
matrix XIXA. Table 2 shows the cumulated contribution rate as a function of a number
of dimensions. From the table, it can be seen that the subspace dimension is enough up to 5.

Table 2: Cumulated contribution rate(%)

[Experiment 2] CLAFIC method

The projection matrices Pk (1 :s; k ~ 15) were produced using the speech data at one
time session 90-8 for each speaker, and registered as speaker templates.

Speaker recognition was carried out using 15 different sentences (text independent) spo­
ken at normal, fast and slow speed for each 5 sentences. The time session used for the
recognition was 90-8, 91-3 and 91-6. The speaker was identified by selecting the longest
projection vector on the 15 speaker subspaces. This method corresponds with CLAFIC
method in subspace based pattern recognition.

The result is shown in Fig.3. In the figure, the horizontal axes is the subspace dimen­
sion and the results at the three time sessions were .shown by different lines. The highest
recognition rate was 100 % at the same time session as training, and the lowest was 91 %
at the different time session. From the figure, it can be seen that the subspace dimension is
enough at 5 which corresponds well with the result by [Experiment 1].

[Experiment 3] Training by two different time session

To solve a problem that the recognition system is suffered from difference of the time
session, speech data over two time sessions were used for training. Namely, the projection
matrices Pk (1 ~ k ~ 15) were produced using the speech data over two time sessions for
each speaker.

Speaker recognition was carried out using 15 different sentences spoken at normal, fast
and slow speed for 5 sentences respectively. The time session for the recognition was re­
maining one among 90-8, 91-3 and 91-6.

The result is shown in FigA. In the figure, the horizontal axes is the subspace dimension
and the results at the three time sessions were shown by different lines. The line part1
shows the result recognized at time session 91-6, trained over 90-8 and 91-3. The line part2
and part3 are the result at time session 91-3 and 90-8 respectively, trained over remaining
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Figure 3: Result of speaker recognition by CLAFIC method
(Trained at 90-8)
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Figure 4: Result of speaker recognition
(Trained over two time sessions)
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Figure 5: Result of speaker recognition by principal component analysis
(Trained at 90-8)

two sessions. The highest recognition rate was 94.0 %. From the figure, it can be seen that
training over two sessions improves the recognition a little.

[Experiment 4] Principal component analysis

In CLAFIC method, orthonormal bases are computed as eigenvectors of the correlation
matrix XI XA. Bu in this principal component analysis method, the orthonormal bases

are computed as eigenvectors vii) of the covariance matrix R(i), which is the correlation
matrix of feature vectors, after subtracting the mean vector J-L(i) from them. Here i indicates
the seapker identification number. The projection matrix is computed by the equation (4).
When input speech {xt} is given, the mean vector JL(i) is subtracted, and Xt-J-L(i) is projected
to the speaker subspace by p(i)(Xt -, J-L(i)). Then the projected vector is obtained by adding
the mean vector as p(i)(Xt - J-L(i)) + JL(i). The averaged distance between the input speech
{xt} and the speaker subspace is computed by the following expression.

Dist(V(i), {xt}) ~ L Ilxt - {p(i)(Xt - J-L(i)) + J-L(i)}11
t

~ L 11(1 - p(i))(Xt - J-L(i))11
t

(10)

The speaker is identified as i when Dist(V(i), {xt}) is minimum.
The speaker recognition experiment was carried out in the same way as the [Experiment

1]. The result is shown in Fig.5. The highest recognition rate was 95.1% for 91.6 testing
data at 3 dimension. The recognition rate is higher by 4.1% than the [Experiment 1].
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Figure 6: Result of speaker recognition by time difference normalization
(Trained at 90-8)

[Experiment 5] Time difference normalization

This training method is completely same as principal component analysis method. In
testing, the mean vector J-L of the input speech {xd is computed at first. The time difference
for the speaker is regarded as J-L - J-L(i) , and it is subtracted from the input speech {Xt}. The
time difference normalized speech Xt - (J-L - J-L(i)) is used in the principal component analysis
method to identify the speaker. Then the following distance expression is obtained between
speaker subspace and the input speech.

Dist(V(i), {xd) = ~ L 11(1 - p(i))(Xt - (J-L - J-L(i)) - J-L(i))11
t

= ~ L 11(1 - p(i))(Xt - J-L)II
t

(11)

The speaker recognition experiment was carried out in the same way as the [Experiment
4]. The result is shown in Fig.6. The highest recognition rate was 96.0% for 91.3 testing
data at 5 dimension. This is higher by 5% than [Experiment 1].

5 Conclusion

A model to separate speaker information from phonetic. information was described on the
basis of singular value decomposition. The speaker recognition using the separated speaker
information was shown to be equivalent with the speaker subspace method. The experimen-
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tal results show the effectiveness of the proposed method. Further work will be required to
apply the system to many speakers about 100.
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