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Development of Spoken Language Understanding System

-Comparison of Syntax-driven and Keyword-driven Approach-

Tatsuya KAWAHARA, Masahiro ARAKI and Shuji DOSHITA

ABSTRACT

We are developing a spoken dialogue system that accepts speaker-independent

continuous utterances and responds to them. Two approaches are adopted and

compared. Syntax-driven approach first applies syntactic analysis to constrain the

input and passes syntactically accepted sentence candidates to semantic analysis.

Keyword-driven approach performs keyword spotting and generates a lattice of

keyword candidates as the input to semantic analyzer. For syntactic analysis, we

realize LR parsing based on A* search, using word-pair constraint as heuristics. For

keyword spotting, heuristic language model is incorporated to constrain the input

containing the keywords. Semantic analyzer is based on a semantic network and a

semantic representation is constructed by traversing the paths of the network nodes

that are activated as the corresponding words are recognized. Experimental results

shows that syntax-driven approach is superior to keyword-driven approach that is

expected to be robust.

INTRODUCTION

As an intelligent and user-friendly human-machine interface, we are designing

and implementing a spoken dialogue system. Its platform is a personal desk-top

workstation. It features a new interactive mode to the computer, using a microphone

and a speaker. The system understands user utterances and makes responses to them

appropriately. By continuing a dialogue, it realizes the user's demand.

In this paper, we first present two approaches we adopt for spoken language

understanding: syntax-driven approach and keyword-driven approach. Then, the

components to realize the system such as syntactic analyzer and keyword spotter are

explained. Finally, the current experimental evaluations are shown, comparing the

two approaches.
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2 OUTLINE AND ApPROACH

2.1 System Design

We have set a task domain of personal schedule management. Its concept is a

"computer secretary", which checks the user's schedule and makes liaison with others

via computer networks. Present design is just a schdule database management, which

includes registration, modification and query of schedule data. It is regarded as a

kind of intelligent database access with spoken language. So the goal of the system

is to interpret the user's demand through a dialogue into a command of the database

interface.

This system is to accept continuous utterances by any speakers. However, we

now impose several constraints. At one dialogue session, just one demand which

corresponds to a database access command can be realized, though it may branch

to another sub-demand on its way. One utterance must be composed of single

sentence, though it may be broken to some extent.

The spoken dialogue system is an integration of speech processing and natural

language processing as well as knowledge processing. Figure 1 shows its flowchart.

The uppermost part is a user, who makes utterances to and gets responses from the

system.

The left part surrounded by a broken line corresponds to speech understanding

process. It inputs user utterances and extracts their meanings, considering the context

[user]

speech underst nding system,,----- ------
( ,
I
I
I
I
I speech synthesizer

sentence generator

Fig. 1. Flowchart of dialogue system
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of the dialogue. If it succeeds to generate a database access command, it calls the

database interface program.

The right part is responding process. Dialogue manager controls generation of

responding utterances, which are output to the user through speech synthesizer.

Responses to the user are also done through graphic user interface if appropriate.

2.2 Flow of Understanding Process

In order to understand user utterances, we have adopted two different approaches.

The two paths between phoneme matcher and semantic analyzer in Figure 1

corresponds to these approaches respectively.

Syntax-driven Approach

This approach performs syntactic analysis and obtains N-best sentence candidates,

which by turns are passed to semantic analyzer to construct a semantic representation.

It requires a user to utter strictly grammataical sentences, which is strong constraint

but expected to improve recognition accuracy. The function of each process is

explained in order.

1. Phoneme matcher

Phoneme matcher is the front-end processor that inputs user utterances and

performs phoneme recognition. However, it does not work alone, as phoneme

recognition without any linguistic constraints is almost impossible. It is driven

by syntactic analyzer. Namely, the parser predicts some word, which is expanded

to a phonetic sequence, and asks the phoneme matcher to evaluate it. So the

output of the matcher is a score of the predicted phoneme sequences.

2. Syntactic analyzer

Syntactic analyzer is the core in syntax-driven approach. It constructs sentence

hypotheses for an input utterance. It predicts possible partial sentences, calls

phoneme matcher, and extends the plausible ones based on the matching

results, until a complete sentence is obtained. By continuing this process, finally,

N-best sentences are output to the semantic analyzer.

3. Semantic analyzer

Semantic analyzer constructs semantic representations for given user utterances.

In syntax-driven approach, it parses syntactically complete sentences by turns

from the best candidate, until a correct semantic representation is obtained.

Therefore, conventional parsers for written language can be used with minor

modifications.

4. Dialogue manager

Dialogue manager plays important roles in understanding utterances. It fills

and even modifies some slots in semantic representations according to the
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context of the dialogue. It will also provide predictive information to semantic

analayzer and syntactic analyzer.

Keyword-driven Approach

This approach performs word spotting and obtains a word lattice, a set of word

candidates with scores and time-alignment labels, which is passed to semantic analyzer.

In this case, the semantic analyzer must parse word lattices, not complete sentences.

This approach allows more flexible utterances that do not have to follow grammars.

I t proceeds as follows.

1. Phoneme matcher

Same as in syntax-driven approach, except that it is driven by word spotter.

2. Word spotter

Word spotter is the front-end processor of the approach. It recognizes words

with time-aligning. It calls phoneme matcher and extends the plausible word

candidates. A set of word candidates whose scores exceed some threshold are

output.

3. Semantic analyzer

The role of semantic analyzer is fundamentally same as that in syntax-driven

approach. In keyword-driven approach, however, it constructs sentence

hypotheses from an input word lattice. It predicts possible combinations of

words and evaluates their scores and the coverage of the input speech. Then

plausible ones are extended, until a semantic representation covering reasonable

parts of the speech is obtained.

4. Dialogue manager

Same as in syntax-driven approach.

3 COMPONENTS

3.1 Phoneme Matcher based on Discriminative HMM

Speech analysis with digital signal processing is performed in order to

extract feataures that is speaker-independent and distinctive of phonemes. In

our system, a speech sample is sampled at 16 kHz and quantized to linear 16

bit. The speech waveform is then segmented into frames. The frame length is

25 ms. The frame shift or the interval of analysis is 10 ms. Hamming window

is applied to each frame. For each windowed frame, LPC analysis of 26th

order is performed. We compute from the coefficients a smoothed power

spectrum of 28 channels that is nearly mel-scaled. Beside this, we compute a

power parameter with the residue of LPC analysis.

An input speech pattern, through the analysis, is matched with phonetic models.
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A new architecture of HMM with high discriminating ability has been developed

[1], [2]. In modifying continuous HMM so that states of the models are best separated,

distinctive features vary for different states or different models, and different

discriminant functions should be made for different competing states. In our approach,

for every pair of the states, a Bayes classifier which performs a vector transformation

based on discriminant analysis is constructed. Each classifier ranks the two states

and computes a relative value of the probabilities. Output probabilities of the HMM

states are obtained by combining and normalizing the results of the pair-wise

classifications. It realizes robust recognition by modifying pattern space to fully

separate confusing classes, while retaining analog outputs by statistical Bayes classifiers.

3.2 Syntactic Analyzer based on A* Search

We have realized an A* search algorithm for continuous speech recognition with

phoneme HMM and context-free (LR) parser [3], [4].

The heuristic search proceeds by evaluating each hypothesis n with the following

function ](n), that is a combination of the matching score of the extended part g(n)

and the estimate of the unsearched part h(n) called heuristics. It is illustrated in Figure 2.

](n) =g(n) +h(n)

In order to satisfy A*-admissibility, or guarantee the search to find the optimal

solution, the estimate must not be less than the actual score (in negative values),

namely h(n) ~h(n). However, if the estimate is far larger than the actual score, the

heuristic function is not useful and· the search extends unsurmountable number of

hypotheses. Thus, the estimate should be as accurate as possible, namely h(n) ~h(n).

Moreover, the estimation should be computationally cheap, because the overall

efficiency is evaluated by the search efficiency itselfplus the heuristics computation.

Considering the above requirements, we use a word-pair constraint as baseline

heuristics. It is represented by a single automaton called word-pair HMM, a

combination of the word models, where syntactically admissible pairs of the words

are connected. The word-pair is derived so that it accepts a superset of the language

generated by the original context-free grammar. This guarantees the A*-adrnissibility

condition. Moreover, the word-pair constraint provides powerful heuristics whose

perplexity is close to that of the original context-free grammar.

To realize this heuristic search, we adopt two pass search strategy [5]. The first

pass applies computationally cheaper constraint to get heuristics, which is utilized to

guide the search of the second pass, where all the available knowledge sources are

applied. For heuristics computation, the word-pair model is applied from the end of

the input speech to the beginning, and a backward trellis is generated. The heuristic

score from any word at any time-frame to the end of the speech is computed and

stored. The scores are common to all the sentence hypotheses. In the forward search,

we perform LR parsing, to predict the following words of the current sentence
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hypothesis and to check if the hypothesis is accepted as a complete sentence at the

end. A forward trellis is generated for each sentence hypothesis by concatenating

HMMs according to the transcription. The hypothesis is evaluated by the Viterbi

score on concatenation of the forward trellis and the backward trellis. The search

proceeds best-first, namely extends the currently most promising hypothesis. The first

hypothesis that is accepted by the grammar and reaches the end of the input is

guaranteed to be the optimal solution.

The search algorithm is described below.

1. A backward trellis is generated to compute the heuristic scores by the word-pair

model.

2. The words that can appear at the beginning of sentences are picked up. For

each of them, a new sentence hypothesis is generated and pushed to the stack

with its evaluation score ](n).

3. The hypothesis n with the largest score is popped from the stack.

4. If the hypotyhesis n reaches the end of the input speech and is accepted by

the given grammar, then it is the optimal solution. Finish the search.

5. The words that can follow the hypothesis n are predicted. For each of them,

a new sentence hypothesis replacing n is generated and pushed to the stack

with its evaluation score ](n). Go to Step 3.

This is easily extended to an N-best algorithm. If we continue the search after

finding the optimal solution, we can obtain the N-best sentence candidates.

Moreover, we realize a probabilistic version of this. Namely we derive a

probabilistic word-pair grammar which is subset of a probabilistic context free

grammar and thus provides A*-admissible heuristics.

input speech

<----

f(n)=g(n)+h(n)

h

f( 1»f(2»f(3»f(4»f(5)

g(2) ;:1/7
g(3) ?
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h(lY'····· /

.....·········:~.::.1t
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Fig. 2. Evaluation of sentence hypotheses
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3.3 Word Spotter with Heuristic Language Model
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The goal of word spotter for speech understanding is to spot all the signifacant

words that contributes to sentence meaning in a given task domain. In this kind of

multiple word spotting in a sentence utterance, we can assume that an input contains

some word to be spotted as well as other words. Namely, an input is a sequence of

spotted words, other (unknown) words, filled and silent pauses. Therefore, it is

desirable to model the language and incorporate this knowledge into spotting phase.

In the conventional study on word spotting, a word model is matched assuming

that every time-frame be starting point or end point of the word. But it is difficult

to compare Viterbi scores that are different in length (scoring problem). It is also

hard to precisely identify starting points and end points that give the maximum

score (segmentation problem), without identifying neighboring parts. This sort of

bottom-up matching is always annoyed with local noise or similarity.

We have proposed to put linguistic constraint on the whole input and to find

the best hypothesis that contains the spotted word and satisfies the constraint. The

evaluation function for a hypothesis that the input contains word w in time t1 '" t2

is defined as the sum of the score for the word itself g(W,t b t2 ) and the score h(W,tb t2 )

for the rest part I'" t1, t2 '" T. The spotting model is illustrated in Figure 3.

The heuristic score h that the rest part makes plausible sentence in a task is ignored

as zero in conventional strategies. Since we incorporate heuristic knowledge on

language, we call this strategy heuristic word spotting. The heuristic score is divided

into the preceding part (I'" t1) and the following part (t2 '" T) of the word.

We call them left-context heuristics h,(w,l/i) and right-context heuristics hr (w,t2 ,T),

respectively.

This formulation solves the problems of scoring and segmentation which arise

in length-free matching, as it judges after scanning the whole input. Our strategy

uses a language model that is not a strict grammar but constrains inputs to be

heuristic language model

word model w

heuristic language model

Fig. 3. Spotting model with heuristic language model
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plausible sentences in a task.

Heuristic spotting algorithm consists of two phases: heuristics computation and

spotting itself. First of all, the heuristic model is applied to whole part of an input

speech. Although the same model is used to approximate the left part and the right

part of the spotted word, Viterbi scores for the two must independently computed.

Therefore, we apply the model both left-to-right and right-to-left, and stores the

respective generated trellis. Thus, the overall procedure becomes a three-pass algorithm

on the input including the spotting phase itself. The evaluation function !(w,tt,t2 ) is

obtained by concatenating the three trellises.

The key of heuristic word spotting is language modeling that can work as

constraint for the spotter, but not for users. Several models are examined.

• Syllable-concatenation model

The loosest constraint is just parallel concatenation of the possible syllables

without lexical knowledge. Its model is self-looping of syllables that are

possible in the language. In japanese, there are about 100 CV

(Consonant-Vowel) syllables. Therefore, this model can accept any japanese

sentences.

• Word-concatenation model

This model approximates an input utterance with a sequence of known

words including spotted words, using large vocabulary lexical knowledge

[6]. It is a parallel combination of all the possible word models. To cope

with spontaneous utterances, models of filled pauses are also added.

• Word-pair model

In addition to the lexical knowledge, this model constrains the connections

of the words. Only the syntactically admissible pairs of the words are

connected. Syntactic constraint on the word connections is often violated

in japanese conversational speech. But this constraint will improve the

spotting accuracy.

3.4 Robust Semantic Analyzer with Semantic Network

To realize flexible and robust parsing, we have developed semantic analyzer

based on a network representation [7]. Semantic network represents the relation of

words and their concepts, quite compactly. Taking the paths of arbitrary nodes, a

semantic repesentation is obtained.

The semantic network we adopt is layer structured and loop-free, actually. The

lower level represents the lexical knowledge, and the terminals or leaf nodes correspond

to keywords that construct the meaning of sentences. The upper level represents the

semantic and the pragmatic knowledge, and the top nodes are cores of the semantic
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Fig. 4. A part of semantic network
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types of sentences. The arcs between nodes have several types of attributes such as

1S a and instance_of A part of a network is shown in Figure 4.

The basic strategy to network parsing is classified into two types: marker passing

[8] and analogue spreading activation [9]. Here we adopt the former strategy as

analogue activation is difficult to formulate and estimate parameters.

When a word is recognized or spotted, the corresponding node of the network

is activated. The semantic representation for the input is constructed by traversing

the paths between activated nodes. An arbitrary path between two nodes makes a

partial semantic representation.

For example, when we recognize "tomorrow" and "meeting", then following

two paths are found in the network shown in Figure 4.

(a) tomorrow -+ day -+ time -+start_time-+sentence+- object+- event+-present+- meeting

(b) tomorrow-+day-+time+-+event+-present+-meeting

They are transformed to following semantic representations, respectively.

(a) [assert, [start_time, [time, tomorrow]], [event, [present, meeting]]]

(b) [assert, [event, [time , tomorrow], [present, meeting]]]

If necessary, syntactic dependency is checked by referring functional words.

As following words are obtained, new paths with neighboring words are generated

and semantic representations are extended. Here semantic consistency is verified and

contradictory hypotheses are not extended. A sentence is completed if a semantic

representation is fulfilled and whole input is parsed. Words are picked up so that

they cover the whole parts.

The parsing algorithm is described below.

1. Get a word. If it completes a sentence, then finish.
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2. Get another word.

3. Traverse paths with neighboring words, and extend semantic representations.

4. If a hypothesis completes a sentence, then finish. Otherwise go to step 2.

This mechanism realizes robust parsing against minor recognition errors or

spontaneous utterances.

4 EXPERIMENTAL EVALUATIONS

We have implemented all the described methods to build a spoken language

understanding system.

We have evaluated it with two kinds of sentence sets. A set of 50 fixed sentences

are chosen and each of them is uttered by 8 male speakers. Another set of 25

sentences that contain several filled pauses thus we call spontaneous sentences are

also uttered by 8 male speakers. The net vocabulary size is 232, and the number

of the keywords to be spotted is 220. We have also made comparison of the proposed

two approaches: syntax-driven and keyword-driven. Both use the same semantic

analyzer. The difference is its input is 10-best sentence candidates or a keyword lattice.

At first, we evaluated the performance of LR parser and keyword spotter

themselves. It is measured by the word accuracy. As for LR parsing, the word

accuracy of the I-best and the 10-best sentence candidates is investigated. As for

keyword spotter, W-best and 3W-best word candidates are investigated, where W is

the number of the words to be spotted.

The results of syntactic parsing are shown in Table 1. Here two grammars are

used. Grammar GSI has filled pauses in its syntactic rules and vocabulary, while

grammar GSO does not. The word perplexity of GSO and GSI is 44.4 and 47.3,

respectively. For spontaneous utterances that contain filled pauses, GSO can not cope

and gets less accuracy than GSI. For fixed utterances, GSI whose perplexity is larger

due to the registered filled pauses, got a bit worse.

Table 1. Word recognition accuracy with syntactic parser

fixed spontaneous
grammar without filler 81.7 68.8
(GSO) (92.2) (81.9)
grammar with filler 80.8 71.7
(GSl) (91.6) (85.6)

upper row: in I-best sentences candidates
lower row: in 10-best sentence candidates

The results of 220 keyword spotting are listed in Table 2. Here we compared

three heuristic language models: syllable concatenation model, word concatenation

model, and word-pair model. The filled pauses are also registered in their lexicon.
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Table 2. Word spotting accuracy

fixed spontaneous
syllable model 42.2 41.7

(65.4) (61.9)
word model 60.9 56.2
(with filler) (83.3) (76.4)
word-pair model 80.9 69.6
(with filler) (93.6) (84.4)

upper row: in 1W-best word candidates
lower row: in 3W-best word candidates
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The word preplexity of word-pair model is 51.7. With the more powerful heuristic

language model, the spotting accuracy gets better. But the difference of the accuracy

for fixed and spontaneous utterances is little with a loose model. It should be noticed

that, when we use word-pair model as heuristics, the word recognition rate is much

the same as that of syntactic parsing.

Finally, we made experiments of sentence understanding, by applying semantic

analysis based on the semantic network. In syntax-driven approach, the 10-best

sentence candidates are analyzed by turns until a semantic representation is obtained.

In keyword-driven approach, a set of spotted keywords is directly parsed by semantic

analyzer. Here, we used the lattice obtained with word-pair model, which was the

best in the previous experiment. For fixed utterances, syntax-driven approach gets

much better accuracy by about 20%. As the word accuracy is much the same for

the both approaches, it is concluded that the word lattice is so relaxed and inadequate

as an interface representation. For spontaneous utterances, the grammar without

filled pauses (GSO) failed to obtain correct sentence hypotheses. With adding fillers

to the grammar, the accuracy is improved. This results, conversely, proves that the

syntax is not robust. The keyword-driven approach did not work better than expected

Table 3. Comparison of syntactic parser and word spotter as front-end recognizer

fixed spontaneous perplexity
syntax-driven approach 65.8 24.0 44.4
(grammar without filler: GSO) (82.3) (41.5)
syntax-driven approach 64.0 49.0 47.3
(grammar with filler: GSl) (81.5) (69.0)
keyword-driven approach 44.0 27.5 51.7
(with word-pair heuristics) (59.5) (41.0)

perplexity: at front-end recognizer
upper row: semantic accuracy
lower row: accuracy tolerating 1 slot error
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in this case, either. Although the word accuracy is the much the same in any methods

performed here, there is much difference in the sentence accuracy.

5 DISCUSSIONS

Syntax-driven approach is effective for fixed patterns of utterances. However,

there are problems to be solved for spontaneous speech understanding. First,

syntax-driven approach is not robust against the violation of the grammar. Second,

keyword-driven approach is not sufficient, especially for a large vocabulary task, as

the quality of the obtained keyword lattice is poor for the following semantic analysis.

We are exploring a new approach which uses poweful constraints as III

syntax-driven approach and is robust against the out-of-grammar utterances aimed

by keyword-driven approach.
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