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ABSTRACT

In this paper, we investigate the language models by stochasic context-free
grammar (SCFG), bigram and guasi-trigram. For calculating of statistics of bigram
and guasi-trigram, we used the set of sentences generated randomly from CFG that are
legal in terms of semantics. We compared them on the perplexities for their models
and the sentence recognition accuracies. The sentence recognition was experiment-
ed in the “UNIX-QA” task with the vocabulary size of 521 words. From these re-
sults, the perplexities of bigram and gquasi-trigram were about 1.6 times and 1.3
times larger than the perplexity of CFG that corresponds to the most restricted gram-
mar (perplexity=10.0), and the perplexity of SCFG is only about 1/2 of CFG. We
realized that guasi-trigram had the almost same ability of modeling as the most res-
tricted CFG when the set of plausible sentences in the task was given.

1. INTRODUCTION

In continouus speech recognition, the language processing can improve the
recognition accuracy by correcting the recognition errors occurred by using only
acoustic feature, because it can use high-order knowledges such as syntax, semantics,
pragramtics and so on. As the typical languaeg models, the models such as trigram,
regular grammar, context--ree grammar (CFG), augmented transition network
(ATNG), dependence grammar (kakari-uke) have been well-known.

The CFGs have been used for the part of language processing in the sentence
rocognition system from the facts that are suitable for the natural language models
and have well-known efficient parsing methods. However, it is difficult to construct
the CFG that accepts only the sentences allowed for the given tasks, in particular, on
the case of conversational sentences.

The bigram and trigram are stochastic grammars that approximate the sen-
tence (word sequence) occurrence probabilities using the probabilities of the word-
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pair or word-trio. Usually, these probabilities of the word-pair or word-trio are
calculated statistically from the training sentence set. In short, even if the given task
is changed, it is easy to construct the bigram or trigram model. On the other hand,
it is difficult to construct the CFG automatically from the given sentence set.

We have experimented on the sentence recognition using bigram and quasi-
trigram 1, However, the statistics of bigram and quasi-trigram were calculated
from all possible sentences generated by CFGs, so these could not inevitably appro-
ximate the given CFGs. Since the perplexities of bigram and gquasi-trigram were
about 2.6 times and 2 times larger than that of given CFG’s, however, we have ex-
pected that the stochastic grammars have the descriptive ability as same as the most
restricted CFG, if the stochastic grammars were estimated from only the set of sen-
tences that were correct in terms of syntax and semantics. This is caused by the fact
that the CFGs generate many illegal sentences in terms of semantics.

In this paper, we compare the bigram and quasi/simplified-trigram that are con-
structed by the set of legal sentences with the CFG constructed for the given task.
For this purpose, we must prepare the set of thousands of sentences. Since it is
difficult to make the set by handiwork, however, we have made the set by picking out
only the legal sentences in terms of semantics from the sentences that are generated
randomly by CFG constructed in advance. We compared their models in terms of
perplexities and sentence recognition rates. We also constructed a SCFG from the
legal sentences.

We illustrate the outline of the experiment way in Fig. 1. The sentence set A
allowed for the given task is almost equal to the sentence set C which sentences are
generated from CFG and are acceptable in terms of syntax and semantics. In fact,
though we use a part of its set, the grammar estimated. using this partial set could
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Fig. 1. The relationship among sentence sets
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generate almost all sentences in the set A. This paper focuses on comparing the
stochastic grammar estimated from the set C with the CFG. We approximate the
grammar of the set C with bigram and trigram.

2. The MEASUREMENT OF TaAsk COMPLEXITY
2.1 Perplexityt]

The entropy of CFG is calculated by the following equation by calculating the
distribution of the sentence length from training sentences and assuming that sen-
tences with the same length occur with a uniform probability distribution (The length
denotes the number of words or phoneme in a sentence):

P,: occurrence probability of the sentence with length k.
N;: the number of all sentences with length k in language L.

Therefore, the entropy of language L is defined as follows:

P
Hy(L)= —EP(wl") log, P(w*)=— 1082 ]\;
'——'ENh logz ——EPk lng_]_\_’k__.
E &
The entropy per unit is
——> 1 p, _
H(L)= 2 N logz N ‘? log2 N,

The perplexity is defined as the following equation:
F,(L)=25®),
In the case of bigram and trigram the entropies are described by the following
equations:
H(L)y=—3)P (wiw].) log, P(w; [w;): bigram,
H(L)=—231P (w;w,w,) log, P(w;|w;w;): trigram.
The trigram that we used in practice is the guasi-trigram that the head word of
the word-trio is transformed to one of sub-classes because of enormous combinations
of word-word-word. In other words, the trio is subclass-word-word or subclass-

subclass-subclass. Here, we classified the words into sixteen categories by Japanese
part of speech. The categories of parts of speech are the followings:

1. normal noun 9. adjective relative

2. pronoun 10. conjunction

3. proper noun 1 11. postfix

4. proper noun 2 12. adjective

5. sa-hen noun 13. adverb

6. numeral 14. prefix

7. verb 15. auxiliary verb

8. auxiliary verb 16. particle (postposition)

(connect with sa-hen noun)
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Since there exist some words belonging to several categories, however, we can
not judge which categories each word belongs to. Therefore we classify the word
class to subclass. Here, the word class is the class that consists of some resemble
words in terms of semantics. We used 268 classes. The CFG used here treats this
word class as a terminal symbol, not used a word. Therefore we assume that the words
in a word calss occur with a uniform probabilify distribution.

In the case of quasi-trigram, the probability P(w,|w,w;) in the above equation
of the entropy was calculated by the following equation, assuming that the words in
each subclass occur with a uniform probability distribution. Here, |s;| denotes the
number of words in subclass s; and H(w;w,w;) denotes the cooccurrence frequency
of the trio.

2, Hsw w15
- 2 H(siwj)/lsil .
iTwes,

And, the probability P(w;|w;) is calculated by the following equation to obtain the
word unit entropy from word class sequences. Here, |c;| is the number of words in
word class ¢;, H(c;) and H(c;c;) means the occurence frequence of c; and c;c;, res-
pectively.

— H(ww;)

Hae)l(la] x 1))

iiWEC,] FYEES

i:wz.éﬁ H{c;)/|e;]

In the case of guasi-trigram, the probability P(w;|w,w;) is calculated from the
occurence frequences of H(s;c;c,) and H(s;c;) as following:

H (w;w jwy,)

P(w,|ww;) = H o))
- H (sicio0) [ (Isil X Je;l X [])

H (si0;)[(I5:] X ;1)

i R c.,kt
:s w.ES L w,E 1”' w,

it s, jiw,.ec,
PTWES L W el

2.2 Test set perplexityt®

Generally, the perplexity must be calculated for the set of test sentences, because
the relative difficulty of sentence recognition depends on test sentences when the
number of test sentences is small. We call it “test set perplexity”. For removing
the necessity of both probabilities of the start and end of sentence for sentence recog-
nition process, we defined that the sentence begins or ends with a mark of a sentence
boundary. If the word sequence for a given sentence is represented by “Lawywyee-
w,1”, the test set perplexity is defined as follows:
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- General formula
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In the case of quasi-trigram or wordclass-based bigram, we calculate the test set
perplexity using probabilities P(w,|w;w;) and P(w;|w;) described in section 2.1.
When there are several test sentences, we calculate the geometrical mean of the test
set perplexity for each test sentence.

In the speical case that not consider the occurrence probability but consider only
the number of words predicted (branching number), if the number of the predicted
words in the right side of w; wye-w;_; is ¢;, then the test set perplexity is the
following:

F(p)= (clcz"‘cn)lh'-

In short, it is a geometrical mean of branching numbers.
3. LanNcuace MoODELS

3.1 Taskt*11I%1

The experiments were implemented in the “UNIX-QA” task with the vocabu-
lary size of 521 words and perofrmed with fifty Japanese test sentences (the average
length is 7.76 words/sentence) for every six male speakers.

3.2 Context-free grammars

The grammars used here are the perplexities of 10.0, 15.9, 19.3, 25.4 and 50.7
and all of them are represented by CFGM™. For the convenience sake, their gram-
mars are denoted by A, B, C, D and E, respectively. The differences are the follow-
ing:
A: semantic grammar depending on the task
B: case grammar restricting the noun phrase at the front of the postpoisitions
C: case grammar loosing the restriction in B
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D: case grammar removing the restriction in B
E: grammar without semantic information

Because the most restricted grammar A generates more than 10¥ sentences, the
majority of these sentences are illegal in terms of syntax and semantics. Each gram-
mar can generate all sentences that are allowed by the given task. The grammar
A includes a set of 535 rewriting rules (the number of non-terminal symbols of 259)
and 600 rewriting rules that produce words from word classes.

3.3 Stochastic Grammars

3.3.1 Sentence sets

To construct the bigram or quasi/simplified-trigram model, the set of sentences
concerning with the given task is necessary. The sentence set used here is a set of
legal sentences that are selected out of sentences generated randomly by the gram-
mar A of CFG in terms of semantics. The way of sentence generation is performed
by outputting a word or a nonterminal symbol using random numbers at each bran-
ching point when the CFG is expanded from top to down. Therefore there is the
inclination of the branching number followed by branching at each branching point.
So we could not generate all sentences with a uniform probability distribution and
some sentences were frequently generated several times. In our example, the most
generated sentence has the occurrence probability of 0.058. This means the sen-
tence appears 58 times when 1000 sentences are generated. However it is difficult to
generate all sentences with a uniform probability distribution from the grammar.

We made 3 types of sentence sets. One of these has 2048 sentences that are le-
gal in terms of syntax and consists of about 509, of sentences generated randomly.
The second one has 3000 sentences that are legal in terms of semantics and consists
of about 259%, of sentences generated randomly. The last one has 5048 sentences
that disjunct the first two sets. They are denoted by “sentl”, “sent2” and “sent.
mix”, respectively.

Since each set contains duplicated sentences, the number of different sentences
is 1678, 2193 and 3624, respectively, when the duplicated sentences are removed.
In either case, we can not construct the bigram or quasi-trigram model by the reason
of insufficient samples.

Accordingly we transformed the sentences (word sequences) of each set to the
word class sequences. In this way, many sentences are re-generated from a word
class sequence, therefore we can enlarge the small set to the large set in appearance.
For example, if the sentence “Mr. A will receive the mail” is generated, the sentence
“Miss B receives the mail” may also be generated. The number of sentences gen-
erated from each set of word class sequences is shown in Table 1 (there are no
duplicated sentences).

3.3.2 Bigram

The perplexities for 6 kinds of sentencs sets mentioned in section 3.3.1 are shown
in Table 2. Table 2 (a) is on the case using no flooring method for an extremely
small probability, and Table 2 (b) is on the case using a flooring method. This
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Table 1. The number of training sequences

sentl sent2 sent_mix
with duplicated sentences 2048 3000 5048
without duplicated sentence 1678 2193 3624

word sequentés generated

from wordclass sequences 6.5 x 10° 2.4x10° 8.7x10°

Table 2 The word unit perplexities for bigram
(a) using no flooring method

. test set perplexity
perplexity - —
perplexityl . perplexity2
word 0/1 class word | 0/1 : word 0/1
sentl 7.8 19.4 4.7 11.1 18.3 | 14.8 21.5
sent2 7.1 17.4 4.5 12.0 17.7 1 16.0 20.8
sent_mix 7.6 20.5 4.8 11.7 19.5 ©  15.6 22.9

(b) using flooring method (flooring value = 0.05)

. test set perplexity
perplexity - — -
perplexityl perplexity2
word 0/1 class word 0/1 1 word 0/1
sentl 18.3 - 12.3 14.7 - ¢ 19.8 -
sent2 14.2 - 9.7 13.8 - 1 184 -
sent_mix 11.9 - 7.8 12.7 - v 16.9 -

flooring method is that replaces the frequency of 0 with 0.05. This value was de-
cided by the view point that the test set perplexity and the perplecity of training data
set should become equivalent. We use no flooring method in the experiments, be-
cause all of 50 test sentences (representative sentences concerning with the given
task) are generated and the recognition accuracies become to be poor by considering
the word-pairs that generally not occur if the flooring method was used.

The column of “word” in each table denotes the perplexities when the word
class sequences were transformed to the word sequences, the “0/1” is the case of
is the perplexities of word class
unit. The “perplexityl” and “perplexity2” correspond whether the probabilities
of end of sentences (or word boundary mark) are included or not. We have not
used the probabilities of end of sentences in the sentence recognition process and
used only the information whether the word is the end of sentence or not, therefore
we use “perplexity2” as the test set perplexity hereafter.

From these tables, we underscand that the test set perplexities are about 16.
For these things, these perplexities are about 1.6 times larger than the perplexity
of the most restircted CFG (perplexity=10.0).

The reason, that the word class unit perplexities in the “class” columns are

smalll about 5, is that the number of word classes is only 268, just only about half
of 521 words.

2

word-pair without probabilities, and the ‘“class

3.3.3 Quasi-trigram
In the same way of bigram, we constructed the guasi-trigram model and cal-
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Table 3 The word unit perplexities for guasi-trigam

(a) using no flooring method

test set perplexity

perplexity

perplexityl | perplexity2

word 0/1 class word 0/1  word 0/1

sentl 4.1 10.0 3.3 9.1 13.2 f 12.1 15.5
sent2 3.9 9.7 3.1 9.8 12,5  12.8 14.6
sent_mix 4.1 10.9 3.3 9.5 14.0 : 12,5 16.2

(b) using flooring method (flooring value = 0.01)

. test set perplexity
perplexity - .
perplexityl perplexity2
word 0/1 class word 0/1 word 0/1
sentl 17.3 - 19.7 12.6 - 17 ~
sent2 12.7 - 13.7 11.2 - 1147 -
sent_mix 8.9 - 8.9 10.1 - 1133 —

Table 4 The word unit perplexities for simplified-trigram

test set plerplexity
perplexityl | perplexity2
word 0/1 | word 0/1
sentl 10.2 — 1137 -
sent2 11.7 - i 15.9 -
sent_mix 11.0 - 1 149 -

culated the perplexities for each sentence sets. Though the number of word calss-
trio is 16 X 268 x 268=1149184, every estimated quasi-trigram models could generate
all test sentences even if the flooring method was not used. ' The perplexities are shown
in Table 3. The flooring value at this time is 0.01.

From these tables we could know that the test set perplexities are about 13.
Therefore these perplexities are about 1.3 times larger than that of the most restrict-
ed CFG.

Also, the perplexities on the case using occurrence probabilities are 20~30%
smaller than the case using only the binary information whether the pair or trio
exists or not.

3.3.4  Simplified-trigram (Extended-bigram)

Also, we make the bigram using the probabilities whether the “w;[Jw;” occurs
or not, where “[J” denotes an arbitrary word. And, using this model with the
normal bigram together, called simplified-trigram or extended-bigram, we experiment-
ed the sentence recognition.

The probability P(w;|w;w,) for the bigram is the product of the probabilities
of normal bigram P(ws|w;) and bigram P(w;|w;). Of course, these probability
should be normalized, that is,

P(whlwiwj)=“'P(wk|wj)'P(wk|w;)»
_ 1
TSPl Pllw)”
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We calculated the perplexities using both probabilities of normal bigram and
Jumped-bigram for each set. The test set perplexities are shown in Table 4.

From this table we know that the test set perplexities are about 14. Therefore
these perplexities are about 1.4 times larger than that of the most restricted CFG.

3.3.5 Stochastic Contest-Free Grammarl™

The stochastic context-free grammar model was estimated by a method of using
CKY parsing. The initial parameters for the SCFG was taken from the CFG with
a random probabilities. For the use of the CKY parsing algorithm, the original
CFG was transformed into the Chomsky normal form.

Based on CKY parsing, every sentences in training set were analysized and each
rule used to generate the sentences also be countted. The larning of the probabili-
ties attached to rules is based on counting the times of each rule used in parsing the
sentence set. It will enable us to estimate the rule probabilities

{Prob(a—#)},
which means the probabilities that the non-terminal symbol @ at the left side will be
replaced with the right side patterns #. When the SCFG is in the Chomsky normal
form, @ is a non-terminal and g is two successive symbols of non-terminal or one
terminal.

For each sentence B(i) in a training set, based on CKY parsing it could be anali-
sized into one or more parsing trees if it is ambiguous. Denoting D(3,j) as the j-th
parsing tree of the sentence B(i), and num(a—f#) as the number of times that the
rule (@—p#) is appeared in D(i,j), then the probability of parsing tree D(i,j) could
be calculated as

Prob (D(1,j))=1II Prob (a—3).
and the times of rule (@— ) used to parse the sentence B(i) is given by
>} Prob (D(i,j)) X num (a—g)

CGl,a—pg)=- 31 Prob (D(i,k)) ’

After normalization of C(i,a—3)
) 3 Clisa—>4)
(a—>p8) —‘Z—m,

it is replaced with the Prob(e¢—p8). Repeating the iteration until parameters be
converged will bring us an estimated SCFG. From the estimating process, obviously
the rule frequently used has a high probability and the rarely used one has a lower
probability.

By using of SCFG model, the perplexities of training sentence and test sentence
sets are listed in Table 5. Both are about 1/2 of the perplexity of the original CFG.

Here we should notice that we used only legal sentences which were generated
from the original CFG.

Table 5 The word unit perplexities of SCFG (beam width=45)

sample data test data

word class word class
sent_mix 4.53 2.95 5.71 3.43
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Fig. 2. System organization of SPOJUS-SYNO

4. RecocNITION EXPERIMENTS

4.1 Recognition System and Speech Materials

Figure 2 illustrates the recognition system (SPOJUS-SYNO). At firstl this
system makes word-based HMMSs automatically by concatenating syllable-based
(trained) HMMs. Japanese syllables consist about 110 syllables each of which is
composed of a consonant and a vowol(CV), a syllabic nasal(N), a vowol(V), or a con-
sonant, a semivowol and a vowel(CYV). We adopted a continuous output proba-
bility HMM with a discrete duration probability!?[*®]. This model consists of five
states and four transitions. The four parameters set of duration (transition) and
output probabilities (the mean vector and covariance matrix of feature vectors)
were calcuated by suing the Baum-Welch estimation algorithm. Then a word lat-
tice is hypothesized by a word spotting algorithm and word-based HMMs. A hy-
pothesized word consists of the beginning frame, the ending frame, the matching
score (likelihood) and the word name. Finally, the time-synchronous left-to-righ
parsing algorithm is executed to find the best word sequence from the word lattice
according to synrtactic and semantic knowledge represented by a context-free seman-
tic grammar, bigram, trigram and so on.

The recognizer makes the partial sentence hypotheses frame-synchronously.
The parser predicts possible words at the righ-hand side for each given partial sentence
hypothesis at the current processing frame. The partial sentence hypotheses are
. updated by connecting predicted candidate word in the word lattice. This process
is continued until the ending frame of the input sentence. All experimenis were
performed in a multi-speaker modell,

Each of six male speakers uttered 216 words, 80 loan (foreign) words and 50
sentances in a soundproof room, respectively. These words were segmented into
syllable units by the inspection and used for training syllable-based HMMs. The
other fifty sentences for test data were related to the content of “Question or Demand
for Electric Mail’, which was a part of the task of UNIX-QA. The speed of utteran-
ces ranged from 8 to 9 morae per second (about 16 to 18 phonemes per second).
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It was moderately fast. One sentence consists of 7.4 words on the average. These
utterances were sampled/digitized with the accuracy of 12 bits/sampling by 12 kHz
and analyzed by the 14 order LPC. We obtained 14 LPC cepstrum coefficients and
signal power for every 5 ms. These coefficients were transformed to 10 LPC mel-
cepstrum coefficients. The vocabulary size of a part of the task is 521 words.

4.2.  Sentence recognition resultst®]

The recognition results using 5 kinds of CFGs are shown in Table 6. The esti-
mation values in this table are the results estimated by using the evaluation method
we proposedll. The results for the bigram constructed from sent2 (not use the flo-
oring method) are shown in Table 7, the case of guasi-trigram constructed from sent
_mix (not use flooring method) is shown in Table 8 and the case of simplified-trigram
constructed from sent_mix (not use flooring method) is shown in Table 9. Finally
the case of the stochastic context-free grammar is summarized in Table 10.

Table 6 Sentence recognition results using CFG (beam width =45)

perplexity 10.0 15.9 19.3 25.4 50.7

sent.rec.% | sent.rec.% | sent.rec.% | sent.rec.% | sent.rec.%

speaker
est. | exp. | est. | exp. | est. | exp. | est. | exp. | est. | exp.
TI 76.5 | 78.7 | 66.1 | 66.0 | 61.4 | 63.8 | 54.6 | 63.8 | 37.7 | 51.1
MA 54.6 | 79.6 | 40.8 | 46.9 | 35.2 | 44.9 | 27.8 | 34.7 | 14.1 | 26.5
HU 68.3 | 71.7 | 56.5 | 58.7 | 51.9 | 54.3 | 44.1 | 45.7 | 27.8 | 32.6
KO 67.2 | 71.7 | 565.1 | 58.7 | 49.8 | 56.5 | 43.4 | 47.8 | 26.3 | 26.1
SE 77.7 | 60.0 | 70.5 | 51.1 | 66.1 | 51.1 | 59.9 | 40.0 | 42.6 | 20.0
SN 60.9 | 50.0 | 46.1 | 25.0 | 40.8 | 25.0 | 31.6 | 18.8 | 14.5 | 8.3
average | 67.5 | 68.7 | 556.9 | 51.1 | 50.9 | 49.3 | 43.6 | 41.8 | 27.2 | 27.4

Table 7 Tecognition results using bigram for sent 2 (beam width=100)
(test set perplexity2 = 16.0)

speaker |input |word acc,|% correct |subst.| ins. | del. |sent. rec.
TI 341 91.2% 90.3% 6.7% | 0.9% | 2.1%: 61.7%
MA 372 84.4 82.8 12.9 1.6 | 2.7 51.0
HU 328 | 87.5 85.1 10.7 2.4 1.8 56.5
KO 334 88.3 86.5 9.6 1.8 2.1 45,7
SE 319 86.2 83.4 12.5 2.8 1.3 44.4
SN | 357 73.4 64.4 22.7 9.0 3.9 51.0

average | 342 85.2 82.1 12.5 3.1 2.3 47.3

Table 8 Recognition results using quasi-trigram for sent_mix (beam width=100)

(test set perplexity2 = 12.5)

speaker |input |{word acc.|% correct.|subst.| ins. | del. |sent. rec.
TI 341 95.0% 94.7% 3.8% | 0.3% | 1.2% 76.6%
MA 372 87.1 85.5 10.8 1.6 2.2 53.1
‘HU 328 87.5 86.3 10.4 1.2 2.1 56.5
KO 334 87.7 85.6 9.9 2.1 2.4 52.2
SE 319 88.1 87.2 10.7 0.9 1.3 46.7
SN 357 73.1 68.1 23.8 5.6 2.5 29.2

average | 342 86.5 84.6 11.7 2.0 2.0 52.4
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Table 9 Recognition results using simplified-trigram for sent_mix

(beam width=100) (test set perplexity2 = 14.9)

speake |input |word acc.|% correct |subst.| ins. | del. |sent. rec.
TI 341 94.7% 93.6% 4.4% | 1.2% | 0.9% 70.2%
MA 372 88.4 87.6 9.7 0.8 1.9 61.2
HU 328 92.1 90.6 6.1 1.5 1.8 65.2
KO 334 91.0 90.1 6.9 0.9 2.1 63.0
SE 319 91.5 90.6 7.8 0.9 0.6 57.8
SN 357 72.0 59.1 25.2 |12.9 | 2.8 27.1

average | 342 88.3 85.3 10.0 3.0 | 1.7 57.3

Table 10 Recognition result using SCFG (beam width=45)

speaker TI MA | HU | KO SE SN | average
sentence recognition 7.7 | 8.6 3
rate (%) 8. . 73. 69.6 | 62.2 | 54.2 69.5

Since the perplexity of the bigram in Table 7 is 16.0, thus is compared with the
results for the CFG (grammar B) with the perplexity of 15.9. Also the perplexity of the
quasi-trigram in Table 8 is 12.5, so this is compared with the results for the CFG with
the perplexity of 10.0 or 15.9 (grammar A or B). And the perplexity of the simplified-
trigram in Table 9 is 14.9, so this is compared with the results for the CFG with the
perplexity of 15.9 (grammar B). In either case the corrdspoding sentence recognition
rates are nearly equal. In short, if the perplexities are equal each other, the recog-
nition rates are equal even if any language models are usedi™. On the other hand,
we expected that the using case of SCFG would remarkable improve the recognition
rate, however, the rate was slightly improved. We guess one of the reasons that the
hypothesized sentences (recogniton results) using CFC were almost all legal sentences
on the syntax and semantics. We have an open problem for combining the time
synchronous recognition algorithm with SCFG.

Since the perplexity is 12.5 on the case of the guasi-trigram, the model is roughly
equivalent to the CFG with the best accuracy. And we understand that the quasi-
trigram model has the descriptive ability as same as the most restricted CFG. The-
refore the quasi-trigram model has higher ability for the language modeling. On
the other hand, the simplified- trigram has the descriptive ability as almost same as
the guasi-trigram because the perplexities is 14.9, and the estimation of simplified-
trigram is easier than that of quasi-trigram.,

When the task is changed, i. is difficult to construct the CFG with the good
accuracy that generate or accept only the legal sentences allowed by the given task and
not generates or accepts the other illegal sentences. But the trigram model has the
advantage that the models with the good accuracy are constructed briefly if the large
number of training sentences is given.

4.3. Consideration on processing time

For one sentence, the number of spotted words is abot 5000, and the processing
times are 27 minutes for bigram, 28 minutes for quasi-trigram and 13 minutes for C-
FG (in the case of the grammar A: perplexity=10.0) using SUN-SPARK station-1
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(12 MIPS). The processing time is usually expected that the fastest one is trigram
and next one is bigram and the latest is CFG, but the order became to opposite.
The reason is as follows:

First, although the guasi-trigram model calculates the occurrence frequencies of
subclass-wordclass-wordclass before the parsing process begins, the probabilities of
subclass-word-word are calculated at every time that the sentence hypotheses are
updated (because it can not take the array size of 16 X 521 x521). For these things,
the processing time of the guasi-trigram model becomes to be later. '

Second, the perplecity of guasi-trigram is slightly larger than that of CFG.
Third, the sentence hypotheses are expanded and pruned by the beam search
strategy for keeping off the explosively increase of the number of sentence hy-
potheses. Since the beam search width is 45 for CFG, 100 for bigram and 100 for
quasi-trigram, the CFG becomes to be the fastest one.

In short, for the bigram the beam width is about 2 times and the perplexity is
about 1.5 times larger than the case of CFG, however, the processing time is about
2 times. Therefore we can guess that the processing time for the language model by
the bigram is slightly faster than thai by CFG for one partial sentence hypothesis.
Since the guasi-trigram model has smaller perplexity than that of the bigram, the
processing time will be faster than the bigram. However, in practice, the beam
search width depends on the perplexity.

5. CoONCLUSION

In this paper, we investigated the language models for the bigram and quasi-
trigram and SCFG. Constructing each model from sentence set, the perplexities of
bigram and gquasi-trigram were about 1.6 times and 1.3 times larger than that of the
most restricted CFG’s, respectively. Though we uses the guasi-trigram that the
head word of the word-trio is transformed to one of sub-classes, the descriptive
ability will become to be higher if we use a normal trigram. The simplified-trigram
has the perplexities as almost same as the quasi-trigram. From these results we
can conclude the trigram model has the high ability for language model because
the descriptive ability of trigram model is equivalen: to the most restricted CFG.

When the task applied to the recognition system is changed, it is difficult to
construct the restricted CFG that generates only the legal sentences allowed for the
given task and not the others. However, the bigram and trigram models are construct-
ed easily when the set of sentences concerning to the given task is given, because
these use only the statistics. But we should notice tha. it is also difficult to prepare
the set of sentences that are more than thousands. The superiority or inferiority
strongly depends on the amount of available data base and the complexity of a given
task (vocabulary size, perplexity and so on).
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