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ABSTRACT

We propose new methods of improved speech recognition with speaker-variable In
formation. Hidden Markov Model-based recognizers which are trained by re
ference speaker(s) (RS) are normalized by our two different approaches to give a
better speaker-independent recognition rate. Our normalization methods are bas
ed on the same principle of inter-speaker Markov mapping. This mapping gives
inter-speaker parameters which are used differently in our two approaches. The
first Speaker Markov Model Converter (SMMC) converts new speaker spectral data
into label data similar to that of the reference speaker utterance, which is passed di
rectly to the recognizer. In the second Integrated Markov Model (IMM) approach,
inter-speaker emission probabilities (ISE) are integrated as weights to the HMM

emission probabilities. The recognizer in this case is modified according to inter
speaker variable information whereas the normalization is done in context. The
inter-speaker mapping in both cases are unsupervised to save new speaker (NS)
effort. HMM score thresholding, template matching and DP thresholding techni
ques are applied to select suitable data for unsupervised mapping of NS and RS
data. This mapping is done in parallel to the recognition process. Iterations are
performed to improve the unsupervised mapping.

1. INTRODUCTION

In automatic speech recognition (ASR) tasks, we strive to recognize sequences of
phonemes, words, or sentences given spectral input from signal analysis front-end.
The main goals are to achieve a reeognition rate as high as possible while keeping
the system as robust, time-efficient and user-friendly as possible. To reach an op
timal solution for such ASR systems, we need to deal with actual environmental
and human variabilities.

One variability that affects the system robustness to a great extent lies in the
differences between speakers. All ASR systems go through a training process by one
or multiple reference speakers (RS) and are modelled after the utterances of the
RS. When a new speaker (NS) makes input utterances, the system tries to recog
nize them by assuming that they come from the RS. Such assumption leads to rec-
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ognition errors and lowers the system performance.
In speaker-independent recognition systems, speaker variabilities are often

treated by having multiple RS training. Such RS aim to cover a wide range of
speaker individualities [4]. However, there are always inevitable distortions.

Speaker adaptation is used to eliminate or minimize inter-speaker distortions.
It performs a mapping from RS to NS (adaptation) or vice versa (normalization).
Our approach uses a spectrum to code mapping where input NS spectrum is map
ped to RS spectral and label data to give a Markov model between speakers. In the
first Speaker Markov Model Converter case, input NS spectral data is converted into
RS-similar code sequences which go directly through the recognition system. In
other words, given NS data, the SMMC system predicts how the RS would have made
the same utternce in the place of NS. In the IMM case, input NS data is not con
verted explicitly. The system takes in inter-speaker parameters as weights in the
recognition process. And the weighed recognition system recognizes spectral data
directly into dictionary templates.

Inter-speaker mappings done by most other research works [2, 3, 5, 9, 12, 13]
require to be supervised, that is we have to map two sets of same utterances of NS
and RS, therefore require special training data from NS. Yet we have learned that,
in real situations, even a minimal training utterance requirement causes some in
convenience in NS. It therefore becomes our chief concern that adaptation process
be unsupervised so that no training data is required from NS. In both approaches
that we propose in this paper, the mapping is unsupervised.

2. UNSUPERVISED SPEAKER NORMALIZATION

In order to eliminate training data and time of the new speaker, the inter-speaker
mapping of our Converter as well as the IMM system are obtained unsupervised in
parallel with the recognition process. This unsupervised inter-speaker mapping
process relies on the combined efforts of recognition score thresholding, template
matching, and DP thresholding.

The unsupervised mapping is based on a feedback process as shown below and
as illustrated in Figure 1
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Fig. 2. Markov modelling of inter-speaker variations

1: Initial NS input spectral data are labelled by the RS codebook.
2: The HMM recognition system outputs recognized samples together with their

scores.
3: The output phoneme sequence is screened by a recognition score threshold and

then goes through template selection from the RS training corpus to give plau
ble RS spectral/label sequence and the corresponding NS spectrum.

4: This selected RS spectrum and label sequence is fed back to do the mapping with

the corresponding NS spectrum.

These steps are iterated until the final recognition system is well established.
In step 3, each of the m NS recognized samples is matched by the same template

present in the training data of every RS (n in number) given out n X m pairs of mat
ching templates. In template matching, we assume that recognized templates
which cannot find their match in RS training data are incorrect ones and are skip
ped. HMM score threshold and template-selection eliminate some incorrectly re

cognized samples. This process sholud be such that more incorrect ones are elimi
nated than correct ones, and the resulting ratio of correct to incorrect templates sho
uld be higher than that of the recognition result in step 1. Here we assume that in
correct ones tend to get lower scores. The HMM score threshold is chosen accord
ing to this consideration. The mapping is done by the Dynamic Programming pro
cess which also contribute to the elimination of mismatched NSjRS template pairs

as described in the next section.

After each iteration, the system performance is evaluated by the recognition
rate of NS input data through it. We chose to stop feedback after a fixed number
of iterations which used the NS database comparable to data size needed for re

training HMM recognition system as in the speaker-dependent case. However, if
only eliminating NS training data is of concern, then the limit can be set according

to improvement rate, training time desired, or final improved recognition rate thre
shold.
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Overall computation time comprises of several initial recognition-mapping-final
recognition cycles. After the system is well established or system improvement
reaches certain limit, however, only a straight forward final recognition process is

carried out. The difference between SMMC and the IMM system lies in how the

inter-speaker parameters are used in the final adaptation-recognition process. In
the SMMC, final recognition has two steps - conversion of NS spectral data to RS
labels, then recognition. In the IMM, final recognition takes in NS spectral data
and performs a weighing in the recognition process.

3. MARKOV MODELLING OF INTER-SPEAKER VARIATION

We choose to use a spectrum-to-code mapping to model the inter-speaker variation
since the speaker spectral data reflects speaker features directly. Meanwhile, we

want to model such variation by parameters so that it can be easily monitered. Mo
reover, we know that speaker dynamic features are also important in normalization.
Hidden Markov Models in speech recognition have been shown to be efficient in cap
turing such features and are parametric. Therefore, we develop an improved form

of the Speaker Markov Models proposed in [12].
The feedback process gives a stream of recognized samples which are screened

by the HMM score threshold. This label stream is used to template-match with the
training data of each of the n RS. Its original spectral data are also kept with the
label data. This NS spectrum and corresponding RS spectrum and label sequence
obtained from t.emplate-matching are selected to perform inter-speaker mapping
for the Speaker Markov Models.

I : The transition probabilities of the Speaker Markov Model (SMM) are calculat
ed by counting how often one symbol follows another one in the RS label stream.

2: The initial distribution of SMM is found by counting how often each symbol
occurs at the beginning of RS label stream.

3: The NS spectrum and RS spectrum are time aligned by Dynamic Program
ming (DP). For each symbol in RS label stream, there is a vector in the cor
responding NS time window. The mean values and covariance matrices of the
inter-speaker emission probabilities (ISE) of each label are thus found. Our ISE
parameter is common for all labels in the RS codebook. This is the only para
meter that will be used in both SMMC and IMM approach. In the IMM sys
tem, no inter-speaker transitional or initial probabilities are used. Instead, the
modelling of RS behavior relies completely on the HMM models from the origi
nal RS training.

The DP distance threshold can be used to eliminate further mismatching between

NS and RS data. NSjRS couples with DP distance exceeding certain threshold are
not considered in the calculation of inter-speaker parameters. Again, we assume
that couples with very big DP distance are usually mismatched.

4. CONVERSION BY SMMC

The Viterbi algorithm is used to produce the optimal RS label sequence from NS
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input speech data in SMMC. Given NS input spectral data, the Viterbi algorithm
traces the plausible output state sequence according to the output probability, the
transition probability and the initial probability of each label in RS obtained from
SMMC training. The obtained state sequence is nothing other than the converted
label sequence.

5. IMM AS WEIGHTS IN RECOGNITION

In this approach, we modify the SMMC system. We do not use SMM initial and
transitional parameters. This is due to the belief that since such probabilities are
not phoneme-dependent, they do not give us additional information of RS behavior.
As a result, they are negligible in significance compared to normal HMM initial and
transitional probabilities in describing the RS utterance patterns. On top of improv
ing SMM parameters, we are most interested in impvoving the transformation itself.
The one-to-one conversion as done by the Viterbi algorithm in SMMC has the dis
advantage of making a conversion decision frame-by-frame which are subject to
distortions. Therefore, it is better to use a less restrictive distributed weighing func
tion of all probabilities in making the final transformation-adaptation. Moreover,

SMM conversion was done directly on spectral vectors at each frame considering only
the transition from the previous frame to the present one. We believe we can ob
tain a more reliable transformation if such process is "guided" by some higher-level

syntactical information from the context. In both isolated-word or continuous
speech context, this information comes from the lexical model. That is to say, the
transformation process and the recognition process should be interactive.

To achieve this goal, we integrate the ISE into the recognition process as weights,
(see Figure 3). The optimum integrated score for all RS phoneme models at state
i are computed by combining the HMM phoneme output probability with ISE ob
tained from the Speaker Markov Model estimation for RS label band NS spectral
vector v:



54 Pascale FUNG, Tatsuya KAWAHARA, Shuji DOSHITA and Martine AOOA

Table I Condition of experiments

Daia set IDS 1 IDS 2 IDS 3

total number of phonemes (HMMs) 26 11 11
RS speakers 2 male 2 male 10 male

NS utterances 585 290 290
RS total utterances 1164 575 1142
HMM training samples (RS) 1164 575 1142
HMM testing samples (closed) RS 1164 RS 575 RS 1142
HMM testing samples (open) NS 585 NS 290 NS 290

In other words, given new speaker input spectral data, the system recognizes
which template (word, sentence) it is by weighing the difference between this utterace
and all the templates in the reference speaker training corpus. At the meantime,
the description of such difference is aided by considering the syntactical context in
isolated-word or continuous speech recognition:

Plikelihood(V Ii) =maxi-l[Pliklihood(Vprm i-I)]*PHMMtrans(i Ii-I)*P1NT(V Ii)
Here, the SMM transition from the previous frame label to the next frame label

is given by the HMM phoneme models. Since the ISE of each frame vector is de
pendent on the previous frame vector, it is therefore dependent on the sequence of

HMM models contained in the word or sentence context. We can see that for
each word or sentence utterance in the dictionary, there is a distinctive way by which
inter-speaker difference is described.

6. EXPERIMENTAL RESULTS

Due to the collaboration effort of the authors, the experiments were done in two dif
ferent laboratories in Japan and France, using Japanese database for the first approach

and French database for the second.

6.1 Speaker Markov Model Converter

We evaluated our SMMC method in phoneme (consonant) recognition. Input NS
data was a sequence of isolated Japanese words each containing one vowel-consonant
vowel phoneme sample spectrum extracted manually. The recognition system

was a speaker-independent Hidden Markov Model phoneme recognition system,
trained by multiple RS phoneme sequence contained in isolated words. There were
26 HMM phoneme models in one case and 11 in another experiment. The two dif

ferent sets of samples were chosen to provide different initial rates for the recogni
tion system so as to see how the Converter performance is affected. In addition,

we also inv~stigated the effect of having more RS on the Converter and recogni
tion performance.

The condition of the experiments for SMMC is listed in Table 1. LPC analy

sis was used for the signals, sampled at 16 kHz, 16bits.

In DS 1, one of the RS uttered 581 words while the other one made 583 utteran-
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Fig. 4. Recognition results of the SMMC-HMM system

correct

Table 2 Data size at different stages of SMMC

data ite. initiaIjcorreC£THMM-'---correctf:*temp:- correct~* DP
NS I Ii select. match. match.

f--=----c=--c---f-----+----d-c-atc-a_1~--Irt-I-:-:-=---+--':--=---:-::0--

DS 1 1 146 I 34.2% II 115 38.3% 95 46.3% 75 52.0%
2 292 139.4% Ii 237 42.6% 1199 50.6% 82 57.2%
3 1438 3_7.7%,0, 1357 40.6% 303 47.7% 128 53.5%
~585 i40.3% ,483 43.6% 415 50.4% 173 56.7%

I--:D=-S=-=--"2+1 183---- 66.3o/;-r73 68.5% 65 76.90f0-----t-:5=5--+---::8'-:-I-=.7%-::-:-o-j
2 172 I 68.0% I 149 I 71.8% 135 78.9% 116 84.1 %
3 1 224 I 67.0% i 199 70.4% 185 75.4% 160 81.2%

i--=--~- _~_r3~_1~6~-:-6% Ii 256 72.3% 241 76.6% 210 82.1%
DS 3 1 72 169.4% II 67 71.6% 60 73.6% 53 82.4%

2 145 69.0% Ii 131 70.2% 119 77.4% 104 81.1%
3 216 '170.4% II 196 72.4% 181 78.1 % 161 82.3%
4 290 , 70.0% 11260 73.1 % 241 77.8% 209 81.5%

* (virtual NSIRS template palrs)l(number of RS)

ces. In DS 2, only those RS utterances from DS 1 which contained the 11 phonemes
wanted were chosen as training data. In DS 3, 8 other speakers making a total
utterance of 567 words were added to DS 2 to form a larger RS training sample
group with 11 phonemes.

To test the SMMC performance, each NS data set was divided into four smaller
groups to go through iterations. After each iteration, all the four groups of data
were converted and recognized to evaluate Converter performance and improve
ment of the HMM recognition system. In addition, superivsed training was per
formed to compare with and evaluate unsupervised training performance. In su
pervised training, template-matching was supervised to ensure no mismatching.
We performed supervised training using the entire data group.

Since the recognition accuracy for the five Japanese vowels reaches above 90%
in general, we assumed vowels preceding and following the consonants were recog
nized and known. This information was used for both supervised and unsupervis
ed template matching. The results are shown as in Figure 4.

Although 11 phoneme data set gives better initial rate of NS than 26 phoneme
data set, the improvement rate of recognition is higher in the 26 phoneme set. We
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Fig. 5. Results of IMM Recognition System

can deduce from the supervised SMMC performance that improvement rate decreases
as initial rate rises. The effect of having more RS is that it gives a better initial
NS rate as expected. Also, having more RS training samples brings the unsuper
vised SMMC performance on recognition improvement closer to supervised SMMC
performance when we compare DS3 with other data sets. Since supervised training
on DS3can only bring a 4% increase in NS recognition rate, the unsupervised
process can be considered to have performed well with its 3% increase.

It is also evident that iteration improves SMMC performance, this is attribut
ed to an increase in input NS sample that can be used to train SMMC. However,
the improvement rates of all data groups are not linear. Although the rate is posi
tive in general, there is a momentary negative rate in DS2 and a local maximum
in DS3. This shows that there is a saturation point for SMMC improvement at
least locally.

Furthermore, we observed the effectiveness of HMM score threshold, template
matching, and DP distance threshold in improving the rate of correctly matched
NSjRS data couples to incorrect ones as shown below.

As we can see from Table 2, HMM score threshold eliminates more incorrectly
recognized samples than correct ones. Moreover, template matching and DP dis
tance threshold did the same on mismatching templates. These steps help to give
more plausible matching between NS and RS since the ratio of correct matching to
mismatching is increased after each step.

6.2 Integrated Markov Model Recognition System

For this approach, we have performed the experiments using one male speaker as
the reference for training the HMM isolated-word recognition system, another male
speaker as the new speaker. The database is 500 isolated French words for each
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speaker. There are 2421 phonemes in the lexicon. Speaker-dependent recogni
tion rates for teh reference speaker and the new speaker is 93 % and 92 % respecti
vely. Speaker-independent rate is 53.6%.

Experiments have been done using new speaker data set, divided into many
groups, and passed to the IMM system group by group to further evaluate the effect of
unsupervised mapping. In the initial zero iteration, no speaker information is used.
In the final iteration, all recognized words over the HMM score threshold are used
for mapping. The performance of the system at each iteration point is evaluated
by passing all the 500 NS words into the system and shown in Figure 5. The re
cognition result of the phonemes contained in these words is also presented in Figure
5.

By comparison, the IMM system has a more steady increase in performance over
the iterations than SMMC and we do not observe a local maximum in its graph.

7. DISCUSSION

The greatest advantage of our method is that no extra training utterance is required
for NS. NS user only needs to speak what is to be recognized, and the system is
modified at the same time. Compared with conventional SMM systems[12], our ap
proach eliminates any amount of NS test data and any retraining of the recognition
system. Both the SMMC and the IMM system switch automatically for different
NS without any need for specification since it is dependent upon NS input data.

To realize unsupervised inter-speaker mapping, HMM score threshold, tem
plate selection and DP distance threshold have been proved to be effective in reduc
ing NSjRS mismatching.

From the SMMC experimental results, we can also conclude that as closed
recognition rate decreases with the increase of the number of reference speakers,
the possible range for speaker normalization improvement is also reduced. When

the difference between RS closed recC'gnition rate and NS open recognition rate is

big as with DSI, the range for SMMC performance is large as well. A perfect
SMMC performance would bring the open recognition rate to the level of closed re
cognition rate. A poorer SMMC performance would still have more room to im
prove 1he open recognition rate. In general, it is easier to improve a recognition
system that performs poorly on NS than one that performs well initially.

From the results of the IMM, we can say that this system is efficient in com
bining the acoustical phonetic information, higher-level syntacitcal information
from the lexicon as well as the inter-speaker variable information to give an im

proved speaker-independent recognition rate. It performs better than the non-adapt
ed speaker-independent system and is more robust than the SMMC system. It
saves the conversion time needed for the SMMC. It also shows that HMM phone
tic models are sufficient in describing RS behavior. Thus the SMM initial distri
bution and transitional porbabilities are not necessary for inter-speaker mapping.
Moreover, we have observed the general trend of system improvement and conclude
that if we take enough input data at each iteration point, the system is guaranteed

to improve its performance. In other words, any set back in the system improve-
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ment IS only local and can be avoided by paying attention to the interval of itera

tions.
We have also observed that in isolated word recognition task, there is less mis

matching between word templates as in vowel-consonant-vowel sets. As a result,
DP-distance thresholding can be skipped in such a case when HMM score threshold~

ing and template-matching have already eliminated many mismatched NSjRS
template pairs.

It is our next step to compare SMMC and IMM using the same database to
further confirm our above conclusions. We will also perform IMM experiments

on different RS and NS to observe its general performance.
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