
STUDIA PHONOLOGICA XIX (1985)

The Human Interface of a Speech Work-Station

Alain de CHEVEIGNE, Minobu ABE and Shuji DOSHITA

INTRODUCTION

This paper describes an interactive speech input terminal, designed to make

speech acquisition easier and more pleasant.

Such a tool is not NECESSARY, might one say-but then, interactive char

acter terminals were not necessary when they first appeared, nor were word pro

cessors ...

A speech editor is like a text editor. The speech waveform is seen AS IT IS

INPUT. Then it can be manipulated, cut, labeled, and played back. There

are many ways to make a text editor: some are simple, efficient and friendly, and

others are complex, heavy and hard tolearn. The same applies to speech editors:

careful engineering of the user-machine interface can lead to a tool that is a plea

sure to use.

The heart of the design lies in one idea: TWO modes are involved in speech

scquisition, each with its own time scale. The first, that of natural speech, is

fast and erratic, and closely related to a SUBJECTIVE time scale. The second

time scale is that of the manipulation of the data.

Any design must respect both, and a key problem is to find a way of switching

from one mode to the other.

A. DEFINING THE NEED

Is anything wrong?

The typical researcher in speech lives in a room full of computers so noisy

he can scarsely hear himself think. Working all day with data files, poles and

lpc coefficients, he may come to view these abstract objects as speech, and the

sound itself, the gesture, their place in human life, as epiphenomena. Speech

input then is a chore, to be done quickly and efficiently before "real" work can

begin.

Within this context the important issues are mainly technical: memory size,

Alain de CHEVEIGNE: JSPS invited scholar, Department of Information Science, Faculty of
Engineering, Kyoto University (also: LIMSI, Universite de Paris-Sud-Orsay, 91405 Orsay
France).

Minobu ABE (~$~JJ*:): Master course student, Department of Information Science, Faculty
of Engineering, Kyoto University.

Shuji DOSHITA (¥:"F{~=m): Professor, Department of Information Science, Faculty of Engineer
ing, Kyoto University.

The Human Interface of a Speech Work-Station 19

direct memory access, disc access, real-time processing and so on. Compared to

these difficult problems, "human interfaces" may appear an unnecessary luxury:

nice if we had them, but not really worth the trouble.

However, one might argue that this outlook is itself the product of the avail

able technology. New techniques could bring a new outlook. For example,

before high level languages, interactive computer terminals, or text editors ap

peared, not one user in a hundred felt the need. So may it be with speech input.

2) The luxury

Now let's try another angle. Imagine a quiet room (maybe your sound booth,

or your office, or perhaps the garden?) with a terminal, a microphone, a teapot,

cups, and a few seats for guests. The terminal gives you full control over the

whirring clanking beasts locked up in the computer room. While the guests are

chatting, you watch the speech as it flows in. You see how much of your (limited)

memory is occupied, and where each bit of speech is stored. You can blow up

any portion to inspect it, or splice pieces together and play them forewards or

backwards. You can label them and put them in your data bank, call out your

processing programs, make sonagrams, extract pitch, match templates. The

printer in the next room makes hard copies for you to autograph and give to your

guests to take home.

3) Designing a speech input interface.

The processing capabilities of such a speech owrk-station are important, as

is the interactive interface by which processing is initiated and the results dis

played. However, before speech can be processed, it must be input, and this

constitutes an interface of a quite different kind. Addressing this problem is the

object of the work described here.

a) Two time scales

Speech is a part of human activity, and proceeds at its own rhythm. Saying

to a speaker: "Please speak NOW" or "Sorry, the level was wrong, please re

peat ...NOW" forces an unnatural and unpleasant situation, and may lead to

poor quality speech data. Speech input must therefore be continuous. This is

the first time scale.

However memory space is limited. Even if it were infinite, there is not much

point in gathering infinite quantities of data. A solution is to input continuously,

writing over old data, thus keeping a constant length record of past speech.

Data input in this way is volatile. There must be some way of "freezing"

it at times, so that it can be manipulated. This is the second time scale, that of

data manipulation.

These two modes (called FLOW and FREEZE from now on) are exclusive:

you cannot both have your cake and eat it. You cannot input new data and keep

the old, at least not with the same memory. The best that can be done is to faci

litate the transition between the two.

20 Alain de CHEVEIGNE, Minobu ABE and Shuji DOSHITA

b) Visulaizing speech data.

Switching between FLOW and FREEZE, one can easily lose track of what

memory actually countains. A solution is to make the memory content visible

at all times on the screen.

It is important that the visual mapping be the same in both modes. In FRE

EZE mode it is relatively easy to define a mapping of data to screen.

In FLOW mode, mapping is much more difficult. Data conversion, storing,

processing (for mapping) and display must be all done in real time. Also, if we

wish the mapping to be continuous in time and homogenous with FREEZE mode,

the displayed waveform must "float" accross the screen. This requires special

control over the bitmap display.

e) Simplicity of manipulation.

The philosophy was: "Make it simple". When "simple to use" conflicted

with "simple to make", we chose the former. We strived to make the options

few and the commands intuitive.

B. THE EDITOR

I) Architecture

The editor is divided into two parts: the host and the terminal. The first

part stays in the computer room, with it's analog-digital converter (ADC), memory,

disks, computing power and appliaition programs. The second part is the one

that you carry into the garden, with the microphone.

We did not wish our design to be constrained too closely to any given host/

terminal pair. The host is likely to be an existing computer system, the terminal

could be one of many available micro-computers (not all are adequate, see further

on). The most common means of communications is the RS-232C serial line.

In our implementation, the host is a NEC PC-980 I, chosen for the wide

range of add-on boards (ADC, DAC, etc.) available, linked to a HITAC-240H

mainframe computer. The termnial is a NEC PC-IOO, chosen for it's high re-

USER

HOST TERM I NAL

Fig. 1. Architecture of speech editor.

The Human Interface of a Speech Work-Station 21

solution bit mapped graphic screen, and easy control of the bitmap. The two com

municate over a 9600 bit/s RS-232C serial line (Fig. 1).

The user interacts with the PC-lOO, the PC-9S0l is it's slave.

2) Mapping memory to screen.

a) Scaling

The host data memory contains 256k samples of data, but the terminal screen

can only show 512 samples at a time. The data must therefore be reduced by a

certain ratio (called SCALE). SCALE will take the value 1'""512. To SCALE

samples correspond one point (or vertical line) on the screen (Fig 2). SCALE=

512 maps the entire memory to the screen.

b) Anti-aliasing

Displaying one sample out of every SCALE would cause severe aliasing.

256K samples

IDATAMEMORY

I I
'-----." J

SCALE samples

one line

SCREEN

512 lines

Fig. 2. Scaling all or part of the data memory to fit the screen.

-r-----------.....----....----MAX

-t--·~II--------_+-MIN

MAX

MIN

K

SCALE samples

Fig. 3. Anti-aliasing.

vertical line
on display

22 Alain de CHEVEIGNE, Minobu ABE and Shuji DOSHITA

Down-sampling is possible, but it is equivalent to severe low-pass filtering, and we

do not particularly want to see low-pass filtered speech.

The solution adopted (Fig 3) is to calculate the maximum and minimum of

every group of SCALE samples:

MIN=min (Sk+ i) }
i=O,"'SCALE-l (1)

MAX=max (Sk+i)
i=O,"'SCALE-l

(where Sj,j=1, ... 215k are the speech data samples and k is the index of the first

sample of the group)

We then draw a vertical line from MIN to MAX on the screen.

For large values of SCALE, this guarantees that we see the envelope of the

waveform. For samller values of SCALE we get more detail, and for SCALE= 1

we see each original sample.

c) Visual continuity

For SCALE small, consecutive lines may not overlap, so there may be gaps

in the displayed wave-form. To ensure a minimum overlap, the previous cal

culation is modified:

MIN=min (Sk+i, previous MAX)
i=O,.· 'SCALE-l

MAX=max (Sk+i, previous MIN)
i=O,"'SCALE-l

} (2)

This guarantees the visual continuity of the display (Fig 4).

d) Data transfer

MAX and MIN are the only data that need transfering via the serial line.

They are both represented by one byte, so it takes 0.83 seconds to transmit a screen

of data (1024 bytes) on a 9600 bit/s line.

3) FLOW mode

The editor has a data acquisition mode, FLOW, and a data manipulation

-+-A::-----+- previous MAX

-+-----t-- previous MIN I_ previous line

MAX

_new line

MIN

SCALE samples

Fig. 4. Insuring visual continuity.

The Human Interface of a Speech Work-Station

PRESENT
PAST FUTURE

23

SCREEN flow of wave-form

BIT-MAP MEMORY

...

..t---. .

~display refresh
start address

new MAX, MIN

DATA MEMORY

RECENT OLD
DATA DATA

tnew samples

Fig. 5. Mapping data memory to screen in flow mode.

mode FREEZE.

In FLOW mode, the mapping discussed above is done in real time. Within

the data acquisition loop, the following operations are performed for each asmple:

* sample the input signal,

* convert it to value Si,

* compare Si to the current MAX and MIN, update MAX or MIN if

necessary.

Every SCALE samples the loop contains the following steps:

* send MAX and MIN to the RS-232C port,

* swap MAX and MIN (see formulae (2))

24 Alain de CHEVEIGNE, Minobu ABE and Shuji DOSHITA

This loop is written in machine language for speed, and resides in the PC

9801. The PC 100 simultaneously performs a machine language loop that does

the following:

* take MAX and MIN from the RS-232C port,

* draw a line from MIN to MAX,

* increment the bitmap refresh start address.

The last step is necessary to obtain a homogenous mapping of memory to

screen: The screen is a picture of memory, in which the most recent samples map

to the right hand edge. Each time a group of samples is over-written, the old

line thta represented them "floats" off the left edge, and a new line is drawn to

the right. The entire wave-form appears to flow leftwards, hence the name of

the mode.

Udpating the refresh start address avoids copying the whole bitmap when the

display shifts leftward (Fig 5).

A simpler alternative would have been to display left-to-right, erasing or over

writing the display each time it is full. However this produces an inhomogenous

"saw-tooth" visual feedback, and we felt that it would have defeated our purpose.

The display loop in the PC-lOO does one more thing: test the key-board.

An "E" (expand) or an "8" (shrink) changes the value of SCALE (values of 128,

256 and 512 are available in FLOW mode). An "F" (FLOW/FREEZE) transfers

to FREEZE mode.

4) FREEZE mode.

FREEZE is basically simpler than FLOW: there is no input, all one does

is browse through the frozen speech data.

The display defines a window opened on data memory, that can be centered

anywhere, with any scale (between 1 and 512, in powers of2). SCALE is modified

using the same keys "E" and "S" as in FLOW mode.

A cursor on the display can move left or right, in steps of 1 or 10 points.

The cursor points to a unique sample in data memory. When the scale is modi

fied, the cursor defines the fixed point around which the waveform expands or

shrinks. This fixed point can be brought to the center of the display by the com

mand "C" (this shifts the window position in data memory).

Ten markers are available and can be set by placing the cursor at a sample

and pressing any key between ·'0" and "9". If the marked samples are within

the window, the markers show up as red lines. In addition, the position in time

of each marker relative to marker 0 is calculated and displayed.

The markers define cutting points for editing or playback (not yet imple

mented). For example, to file a portion of data on diskette one can place a marker

at each end, press the key "M", input the .file name, and input the marker numbers.

By using more than two markers one can splice portions together. Inverting the

markers stores the portion backwards.

The Human Interface of a Speech Work-Station 25

Finally, by pressing "F" one can toggle back to FLOW mode.

5) Additional remarks

The input speech is sampled at 32 KHz and converted to 12 bits, stored as 16

bit words.

Both micro-computers use 16 bit 8086 processors. The main programs and

subroutines were written in lattice Cover MS- DOS. The FLOW subroutines

(some of which are used by the FREEZE mode also) were written in assembly

language for speed.

The reader wishing to implement a similar system must make sure that the

machine that he intends to use as a terminal supports bit-by-bit refresh address

incrementation (smooth horizontal scroll). This is essential for the FLOW mode.

Many micro-computers olny support 16 bit word-by-word incrementation, and

this produces a jerky movement instead of a smooth one.

The limited rate of the 9600 bit/s serial line introduces a small but perceptible

lag in the redrawing of the screen (0.83 seconds), and limits the value of SCALE

to 128 in FLOW mode. If the available rate is lower than 2400 bits/s, it is pro

bably not worth trying to impelement an editor of this type.

If the host and terminal wrer the same machine we would avoid the com

munication problem. However, if only one processor is available, the data input

and drawing loops must be interleaved in real time.

C. PERSPECTIVES

The FLOW mode, and the visual continuity of the FLOW/FREEZE transi

tion are the main featurse of our editor. They form a firm basis for the speaker

machine-user interface.

Once the data is input, more sophisticated manipulation, processing and vis

ualisation are possible, and a natural step would be to extend the editor in that

direction.

A user may wish to access in quick succession different portions of a signal, or

the same portion at diffreent scales, or several different signals, or the result of

processing (spectrograms, pitch curves, phonetic labelling, etc). Even with the

data reduction involved in scaling, the amount of potential visual information is

enormous. Smalltalk-like mouse-driven windows would provide an efficient means

of managing this information.

For processing, a number of environments have been proposed. Kopec

(1984a, b) proposed a system built over a Lisp-machnie workstation and incor

porating a signal representation language SRL (Kopec 1983), ISP environment

and interactive user interface. Johnson (1984) proposed a software system based

on UNIX, that enables signal processing "tools" to be assembled as blocks within

a data-flow language (each block is executed when it's input data is ready). The

tools can be written in any language. A "scope" tool manages a multi-window

26 Alain de CHEVEIGNE, Minobu ABE and Shuji DOSHITA

display. Gong and Haton (1985) proposed a UNIX-based environment that

combines interactive features similar to Kopec (1984a, b) with richer processing

and data base managing possibilities.

The ideal would be to integrate a FLOW mode into one of these environments.

This is possible only if the system that the environment is built upon allows real

time data input and display, and in particular if the bitmap refresh address can

be updated. If this turns out impossible, a solution might be to use multiple

displays (as in Kopec's system), one being dedicated to input monitoring.

The real-time input niterface may seem a minor element in a sophisticated

signal processing environment. This is certainly true if the emphasis is on in

teractive processing or analysis of stored data. However if, as it should, the in

teraction is to include speech input (and not just key-punching and mouse shaking),

then the ideas expressed here may prove useful.

CONCLUSION

We described our efforts to design a smooth speaker-machine-user interface for

a speech work-station, and the motivations behind these efforts.

The editor we built is an easy-to-use and useful tool for monitoring speech

input. In addition to speech, it should be ideal for monitoring the input of con

tinuous slowly varying signals such as biophysical parameters (brainstem poten

tials, nerve action potentials, EEC, ECG, etc.) or speech parameters such as pitch

and intensity (de Cheveigne 1982).

It is our hope that these ideas can successfully be integrated into future speech

and signal processing environments.

ACKNOWLEDGEMENTS

The first author is supported by a fellowship granted by the Japan Society

for the Promotion of Science. He wishes to thank the second author for doing

most of the work, Dr Ariki for trying some of these ideas in his real-time speech

analysis-synthesis system, and the members of prof. Doshita's lab for their help.

REFERENOES

de Cheveigne, A. (1982) "Memoire digitale de transitoires, contribution a la phonetique instrumen
tale" These de 3e cycle, Universite Paris 7.

Cong, Y. and Raton, J. P. (1895) "Assia, un editeur "intelligent" pour la manipulation et l'analyse
du signal vocal" Actes des 14eJEP du GALF.

Johnson, D. R. (1984) "Signal processing software tools" Proc. IEEE ICASSP-84, 8.6. 1-3.
Kopec, G. E. (1984a) "The integrated signal processing system ISP" Proc. IEEE ICASSP-84, 8.1.

1-4.
Kopec, G. E. (1984b) "The integrated signal processing system ISP" IEEE trans ASSP-32, 842

851.
(Aug. 31, 1985, received)

