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ABSTRACT

The present paper deals with invariant features for place of articulation.' This

paper describes results of consonant discrimination using 5 running spectra extracted

during burst after 40-ms waveform of Japanese plosive-vowel syllables. The number

of talkers analyzed was 48 and the phonetic environments were /p, t, k, b, d, g/

and five Japanese vowels. The features were extracted so as to be invariant with

respect to both talker and vowel: First, a set of canonical variables was selected

and transformed from spectrum variables in each frame, and then these canonical

variables were integrated and used for final discrimination. Due to integration of con

sonantal features in these successive spectra, correct classification score was higher

than that of a single spectrum experiment. We examined the feature distribution in

the burst and the following transition spectrum, and the differences between voiced

and voiceless plosives.

INTRODUCTION

The acoustic features for discrimination of place of articulation in stop conso

nants are not unique. The roles of the burst spectrum (Winitz et aL, 1972) and the

second- and third-formant 10ci(Delattre et aL, 1955) as place cues were studied and

understood separately..

Perception experiments with natural speech as well as synthetic speech stimuli

have shown that listeners can identify place of articulation in stimuli containing only

the release burst and the first few tens of milliseconds of glottal pulsing. Although

performance of subjects improves as longer durations of the stimuli are presented

(Blumstein and Stevens, 1980; Kewley-Port, 1983), performance is well above chance

even with stimuli as short as 20- or so ms in duration.

It is widely said that there is acoustic invariance for place of articulation in

initial stop consonants. Since the articulatory gesture for a given consonant is as

sumed to be relatively fixed, the corresponding acoustic cues for place should be

invariant. Spectral analysis of the onset characteristics of natural speech utterances
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has indicated that distinguishing properties for place of articulation are found in

dependently of the particular vowel context in which the utterances occur. These

results were obtained using a relatively static representation based on the gross

shape of the spectrum in a single time frame· of analysis of 25. 6-ms duration (BIum

stein and Stevens, 1979), as well as by using a time-varying representation looking

at the spectrum over longer time frames (Searle et aI., 1979; Searle et aI., 1980;

Kewley-Port, 1983; Ide et aI., 1983).

The work of Kewley-Port (1980) provided an alternative definition of the infor

mation-bearing characteristics of the waveform at consonant release. Specifically, she

argued that the gross shape of the onset spectrum must be an insufficient cue for

stop consonant place, because it does. not incorporate the dynamic changes in spec

tral shape that occur during consonant release and subsequent articulatory movement

toward the following vowel. She proposed three dynamic spectral features as in

variant cues for stop consonant place. The tilt of spectrum at burst onset cues

bilabial place if it is falling, and alveolar place if it is flat or rIsmg. Late onset

of low frequency energy functions as a cue for velar place, since velar stops are

characterized by longer VOT that are bilabials or alveolars. Finally the presence

of midfrequency peaks extending over time is a cue for velar place; these peaks

reflect the resonant characteristics of the cavity anterior to the velar constriction.

All of these features may be evaluated during the first 2Q-4Q-ms of the stop con

sonant-vowel waveform.

Regardless of the actual nature of the invariant cue for stop consonant place,

the data of both Stevens and Blumstein (1978) and Kewley-Port (1980) indicate

that apparently this cue resides in the first 20-40-ms of the syllable waveform.

The approach taken in this paper follows the concept that plosive consonants

are characterized by several acoustic features: transitions, bursts, and timing, there

fore feature integration improves recognition accuracy. If this is the case, then

spectral analysis of first 2Q-4Q-ms of stop waveform provides effective features for

place discrimination, possibly invariant for vowel context and speaker difference.

This paper extends the previous study in which 28 talkers' voiceless stops were

investigated (Kitazawa, 1982). The number of talkers was increased and voiced

stops were examined as well as voiceless ones. This paper describes further analysis

exploiting time-varying spectral information as well feature distribution in the burst

and following transition.

I. J\1ETHOD

A. Acoustic Segmentation of Stop-Consonant-Vowel Syllables

Acoustic analysis of plosive-vowel syllables reveals five quantitatively distinct

segments before a stable vowel reached: (1) a period of occlusion (usually silent,

though occasionally voiced); (2) a transient explosion (usually less than 20-ms) pro-
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duced by shock excitation of the vocal tract upon release of occlusion; (3) a very

brief (O-la-ms) period of frication, as articulators separate and air is blown through

a narrow (though widening) constriction, as in the homorganic fricative; (4) a brief

period (2-2a-ms) of aspiration, within which may be detected noise-excited formant

transitions, reflecting shifts in vocal-tract resonances as the main body of the tongue

moves toward a position appropriate for the following vowel; (5) voiced formant

transitions reflecting the final steps of tongue movement into the vowel position

during the first few cycles of laryngeal vibration.

The present paper attempts to investigate acoustic features for place of articu

lation over these segments, mainly the burst portion comprising the explosion and

aspiration. In this experiment, as in earlier studies of stop consonants, the burst

frame was located visually in the waveform by the experimenter.

Voiced Japanese stops lack the aspiration phase. A short fricational segment

can be seen in / d/ and / gj. The duration of the / g/ and /k/ transients is longer

than in any other stops. Uninterrupted voicing can be superimposed during all

phases of /b/, /d/, and /gj.

The duration of the interval between the stop-release and the onset of voicing

is refered to as Voice-Onset-Time (VOT) by Lisker and Abramson (1964). Since

the VOT has important implication in the following discussion, Fig. 1 shows histo

grams of VOT for each consonant, which in the present experiment are visually

measured using an interactive graphic terminal.
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B. Subjects

Fourty-eight male speakers produced the set of consonant-vowel syllables that

were analyzed in this study. Five of the speakers made three repetitions. For

some speakers a few syllables were missing, however the num.ber of repetions of

a given syllable was less than 43. Only one of each syllable /p, t, k, b, d,g/

paired with/a, i, u, e, 0/ was used in this study. Each syllable was read from

ordered list. Further recording procedure is described in the previous paper

(Kitazawa, 1982). Each syllable was digitized for analysis. Waveforms were first

low-pass filtered at 8.9-kHz and then sampled at 18.5-'-kHz using a 12-bit analog

to digital converter. The total number of syllables examined in this experiment

was 869 from voiceless stops, and 837 from voiced stops.

C. Analysis of Running Spectrum

The waveforms were edited and differentiated once (pre-emphasized with coef

ficient 0.95). Linear prediction coefficients were calculated for each window using

the autocorrelation method where a 25-ms window was used. Smoothed spectra were

calculated by means of a discrete Fourier transform of the coefficients with added

tM=Ta'lJTA HIROSHI
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Fig. 2. Running spectra and analysis window. Window is 25-ms Hamming, and
frame interval is lO-ms. The first window centered at the burst onset. The
running spectra display transition from burst to target vowel /a/.
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zeros. The resulting 256-point spectrum excluding the gain factor is a zero-mean

all-pole spectrum on a log magnitude scale with 36. I-Hz resolution.

A new spectral section or frame was calculated at lO-ms intervals. The 25-ms

Hamming windows used in this analysis have an effective duration of about l2.5-ms.

Thus the lO-ms update interval produces some spectral overlap between frames

without severe oversampling. These temporal parameters are a little bit rough to

preserve the onsets of formant transitions as acculately as possible. Fig. 2 shows

window position.

In these running spectral analysis, the Hamming window was positioned visually

by the experimenter in such a way that the portion of the burst emcompassed by

the frame, had an effective duration of about 5-ms. Therefore the first frame can

be said to display spectral energy from the release burst only. In contrast, Blumstein

and Stevens say that a rather longer window duration is appropriate. Twenty-six

coefficients were used to calculate frames regardless of consonantal voicing or CV

boundary vocalization. Although, voiceless frames and consonantal frames need

fewer coefficients to specify the spectrum adequately, according to Markel and Gray

(1976), adding extra coefficients gave rippled peaks closer to Fourier spectrum in

detail, probably because of zeros. Therefore, in this analysis, several more co

efficients were used in analysing the consonantal frames. A running spectral dis

play was then saved in a file for the first 5 frames-or 40-ms interval-of each CV.

D. Optimal Classification Rule Based on Canonical Variable

There are two different approaches of acoustic-phonetic features processing for

automatic recognition. The first models the acoustic characteristics of phonemes ex

plicitly, using specially designed rules and features, the second models the knowl

edge implicitly by, for instance, representing all phonemes as probabilistic se

quences of spectra. The former is called rule-based or feature-based approach. The

other defines a template model or a probabilistic model.

The advantage of the first approach, the heuristic approach, is that one can

incorporate various kinds of knowledge, e. g. in terms of distinctive features,

relationship between phoneme class and features, and give a heuristic weight to

each of several alternatives; but the lack of a methematical formalism is a severe

drawback.

The advantage of the second approach, the minimum distance classifier or the

minimum error probability classifier, is the possibility of a wide range of applica

tion to phonemes or pseudo phonemes, using a dynamic programming algorithm,

and probabilistic scores to find the optimal sequence. Perhaps the most important

aspect of this method is that the training of the probabilistic network is automatic.

This allows the system to utilize very large databases.

Suppose that there are g-groups, and that observation x is a k-vector (for

example a k-parameter frame spectrum). In order to classify consonants according
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to three or more place of articulation, an optimal classification rule for multiple

groups can be applied. A set of linear classification functions is developed out· of

a number of measurement variables. A method using canonical variables that is a

direct generalization of Fisher's approach is suitable for this application.

This method develops canonical variables based on the between-group (B) and

within-group (W) covariance matrix. Fisher suggested finding the linear compound,

.:<, which maximized

l'B':<
y= l'W':< (1)

Differenciating y by':<, and equating this to zero, the following equation is yielded

(B-yW).:<=O (2)

This equation has a nontribial solution only if

jB-yWj=O (3)

The solutions to this equation are eigenvalues of W-l B. There are no more than

min(g-l, k) nonzero solutions.

The corresponding eigenvalues are the linear compounds .:< that are used for

discriminating. If r vectors are used, the rule becomes: Assign to IIi if

(4)

Since k is quite large compared to g, a convenient representation of the informa

tion results from this canonical-vector approach.

E. Feature Extraction and Data Representation

With spectrally analyzed speech, several possible representations of the frequen

cy-by-ampliitude dimensions can be chosen. Linear prediction spectra are typically

represented on a linear frequency scale. In the auditory system, however, frequency

on the basilar membrane is equally distributed in approximately bark intervals,

which is often approximated by a simple log-frequency scale. Thus, for research

employing auditory filters, a bark frequency or modified log scale (technical Mel)

is probably more appropriate for representing frequency than is a linear scale. And

spectral sections can be best represented in a log frequency scale and in decibels

for amplitude dimensions.

Another property of running spectral dimension is the representation of time:

we know that the auditory system can closely track time variations in waveforms in

terms of synchrony of discharge firings with the input signal. Apparently, the im

portant acoustic distinctions in speech vary much more slowly than the temporal pro

cessing capabilities of the ear. Therefore the limits of the representation of the time

dimension for processing speech spectra should be set according to the observed

rates of change in the speech signal. For speech, this limit would be placed some

where between 1 and 20-ms.

The time intervals between spectra currently employed by different investigators

are in the 5- to 10-ms range. For consonantal analysis, much finer waveform changes
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have to be tracked, therefore, a frame interval shorter than 10-ms may be necessary

in order to analyze, for example, bilabial stops. Since we placed the first analysis

window center at the burst point by visual examination, thus incorporating a shorter

portion of burst, we regarded the 1a-ms frame update interval as appropriate even

for bilabial stops. But in some cases 3-5-ms intervals may be more appropriate.

The span of analyzed interval is 40-ms or 5 frames, due to tractable size of in

formation in the following statistical analysis, however, 40-ms interval seems to be

sufficient for consonantal features from other studies.

When we discuss feature selection for classifying two or more distributions, we

will allow a mo're general class of transformations. This is because the class separa

bility, for example the probability of error due to the Bayes classifier, is invariant

under any nonsingular transformations as far as classification is concerned. Feature

selection is generally considered a process of mapping the original measurement

into more effective features.

Therefore, feature selection for maximizing y in equation (1) means finding a

subsequence for a given m, such that the eigenvalues Ai in the subspace are larger

than those of other m-dimensional. subspaces.

A set of features was selected in the following three steps.

(1) Intuitive reduction following the concept of critical bandwidth.

(2) Ordering according to the amount of information in each variable concerning

the separability between groups. However, to do this, not only the individual

significance level but also the joint significance level must be taken into account.

Automatic stepwise entry or deletion of variables is used in BMDP7M (Dixon et

al., 1\977) .

(3) With a linear transformation, n-dimensional feature space is reduced to a sub

space of m-dimension maximizing a criterion by the process for the eigenvalue

computation from which canonical vectors were obtained as described in I-D.

Features are selected intuitively from discrete Fourier spectrum, then a separability

maximizing criteria is applied to reduce into minimum dimentional feature space,

and then optimal transformation is applied.

II. EXPERIMENT

A. Discriminant Analysis for a Time-Window

Spectrum is computed every 1a-ms after release of burst up to 5 frames. Each

spectrum at a given delay after the burst can be contrasted with other consonants

to distinguish consonantal features. The results show the location and distribution

of stop features after burst. The features are extracted from the spectrum data set

of the same order frames by the procedure described above adjusted so as to maxi

mize the separability of consonants, and they are stored for later analysis as a set

of canonical vectors.
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. Table 1. Frame-wise discrimination and discrimination by canonical
variables for 5-frames in 3-group case.

frame p k total ICl Cz I b d g total ICl Cz

1 79.9 69.0 68.6 72.5 1 6 81.0 71.9 65.2 72.8 1 5

2 78.5 64.1 80.0 74.2 5 3 84.8 76.2 80.8 80.8 2 3

3 72.7 52.8 81.4 68.9 2 71.4 73.1 73.2 72.5 4 6

4 66.4 47.2 65.5 59.7 59.7 66.2 68.6 64.8

5 61.2 47.9 57.9 55.7 4 54.8 61.9 66.2 60.9

c-all 86. 5 70. 7 87. 6 81. 6 I 189.082.782.684.8 I

Table 2. Frame-wise discrimination and discrimination by canonical
variables for 5-frames in 4-group case.

frame p k total I Cl Cz C3 I b d g g total I Cl Cz C3

1 81.7 72.8 87.9 74.1 78.9 1 3 83.1 77.7 84.2 69.8 79.8 1 3 7

2 79.6 70.7 90.8 75.0 78.3 9 4 2 82.882.380.176.781.2 2 4 6

3 61.6 49.3 79.3 81.0 63.6 6 7 67.9 70.877.2 74.1 71.6 9

4 66.4 50.0 66.7 64.7 60.8 54.1 68.1 69.666.463.3 5

5 52.9 46.9 55.2 56.0 51.8 8 5 52.4 62.3 65.5 68.1 60.3 8

c-all 87.5 76.6 90.8 84.5 84.1 I 187.9 86.9 90.6 76.7 86.61

Analysis results are shown in Tables 1 and 2 for 3-group and 4-group discrimi

nation respectively. In 4-group analysis, velars were divided into ones followed by

a back-vowel and another palatalized ones followed by a front-vowel.

(1) Four-group analysis resulted in higher correct discrimination rate than 3-groups.

(2) Allover correct discrimination decreases as the analysis frame moves toward

vowel from consonant plosion. This means more stops feature reside around

the burst portion.

(3) The second frame analysis (lO-ms after burst) achieved the highest result.

Therefore, the 10-20-ms waveform after burst possesses most important stop

features. The shape of time window is one important factor for stop feature extraction,

that is, what part of waveform have to be integrated into a spectrum. The first

frame discrimination obtained here, however, was inferior to previous discrimination

described in Kitazawa et al. (1982). The reason is that the present analysis uses a

25-ms Hamming window, while the previous analysis used a half- Hamming window

like the one suggested by Blumstein and Stevens (1978).

Each analysis frame discriminated consonants differently. Bilabials Ipl and Ibl
tended to be discriminated best in. the first frame, velars Ikl and Igl in the sec

ond, dentals ItI in the first, Idl in the second, and palatalvelars Ikl and Igl in

the second and third. These results reflect location of each phoneme feature,

though, there is no direct correspondence with recognition rate. Since this feature

was evaluated by between-phoneme discrimination, the discrimination rate is method

dependent and individual phoneme discrimination rate is in reciprocal relationship.



Plosive Discrimination by Running Spectra in 40-ms Initial Segment 35

As a consequence the integrated features from multiple frames can be expected to

improve the rate of correct classification to some extent.

B. Discrimination with a Set of Canonical Variables

Once the presence or absence, or degree of presence or absence, of each fea

ture of a pattern has been evaluated, all this information must be combined in

order to determine the overall goodness of the match to the phoneme pattern.

There should be a physiological background of integration of features, however,

currently there seems to be no established hypothesis, therefore, the integration

procedure used here is a purely mathematical one, that is, a statistical optimal de

cision process.

The consonantal discriminant features were represented in compact canonical

variables for each frame as described in II-A. Canonical variables of a frame com

prise two (in 3-groups) or three (in 4-groups) variables which were put together

to compose 10 (in 3-groups) or 15 (in 4-groups) input variables over all frames.

Although, it may be apparent that more features given a more accurate result in

recognition, it is recommended to select variables by the stepwise enter and remove

process in practical application. Selected variables are shown in Table· 1 and 2 in

the c column. In both voiced and voiceless case, individual consonant discrimination

rate became better than the best one among 5 frames, and overall score was

improved as well. This shows the features for place of articulation are effectively

integrated.

C. Maldistribution of Phonetic Features

In the stepwise variable selection process of the discriminant analysis, some effec

tive features were evaluated from a canonical variables set. This selection reflects

which canonical variable is most effective. Consonantal information does not dis

tribute uniformly among frames, but rather some frames are redundant or highly

correlated with others, eventhough they are individually effective, because they are

coarticulated under the adjacent phoneme influence. Therefore each variable is

effective for discrimination to the extent it is relatively independent.

The resultant selection of variables is shown in Table 1 and 2 in the row Ci

0=1, 2, or 1, , 3). The first canonical variable is for bilabial and velar distinc-

tion and the second is for dental and velar distinction. .Both 3- and 4-group discrim

ination selected the canonical variables in first and second frames with high sig

nificance values for classification. On the other hand, third, fourth, and fifth frames

were not so effective, especially, the fourth frame was almost redundant or unneces

sary to compute.

From these results, we can consider non-uniform spectrum observation is appro'

priate, the burst spectrum have to be observed with a small frame increment, but

CV-boundary spectra are sufficient to be observed with larger increment. As can
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be seen from the table, even the fifth frame, 40-ms from the burst, is still effectively

recognizable, possibly due to difference in duration of aspiration interval as shown

in histograms of VaT for each consonant (Fig. 1). Since for some velar samples

the onset of vowel was very slow, late spectrum may still be effective for discrimina

tion. The short-time spectra used in this study represent vowel independent

spectral features only, and do not represent time-varying features such as formant

transitions or formant locus which are dependent on the following vowel. Moreover,

it should be noted that time-varying energy feature was not used in this experiment,

because spectra used were power normalized.

III. DISCUSSION

Some authors view discriminant analysis as a technique for the description and

testing of between-group differences. Although the stepwise variable selection proc

ess selects some significant variables, the best set of two variables may not include

the best single variable. The observation of selected variables in the different frames,

whether consonant is voiced or voiceless, or whether the data-base is supposed to

discriminate difference between 3- or 4-grou,ps, may give us some insight into stop

consonant features. The resultant selections of variables are shown in each case in

the colwnn in Table 3. The number in the column represents the significance

order under different discriminant conditions. Every frame selects some ten variables

out of 28 variables according to the between-group F-values which reflect the extent

of contribution of each variable. Generally, high frequency components are effective

near the burst point, and decrease afterward as time goes by.

Differences of features between voiceless and voiced consonants can be stated as

follows:

For voiceless stop discrimination, low frequency components around 200-Hz are

primary features, while for voiced stop discrimination, middle frequency components

around 2,60D-Hz are primary features. The possible reason is that voiced plosives

are superimposed with low-frequency energy t4at was caused by early voicing before

plosion. So, the spectrum of voiced consonants around low-frequency is relatively

similar regardless of place of articulation, and higher frequency components thus

are the first selected. On other hand, in voiceless bilabials dominates low frequency

components, apparently contrasting from the other place of articulation.

The fact that the performance reported here is better than those reported in

competing works may have little significance because they have been obtained with

different data sets. The true important result is that performances improve remarka

bly as more significant features are integrated into the rules. A wise integration of

powerful features is more important than a refinement of an algorithm working on

sets of data which have not been carefully selected. The good performance achieved

so far makes this approach suitable to be used in a general purpose speaker independ-
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Table 3. Resultant variable selection for each frame. Variables are ordered
according to the significance for discrimination.

37

Spectrum 4-group 3-groupvariables

channel I kHz
voiceless

5 I
voiced voiceless

5 ,
voiced

frame 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5

1 .03 11 13 6 4 1 1 8

2 .12 1 III 8 4 5 1 2 7 8

3 .23 7 4 10 12 3 6

4 .34 11 1 14 8 17 8 6 15

5 .45 7 14 6 9 1 13 14 15 11 10 11

6 .56 3 6 10

7 .66 9 9 6 6 14 13 9 9

8 .77 2 4 2 7 1 3 2 6 16 7 4

9 .88 11 1 13 16 2 4 1 1010 3

10 .99 3 9 10 13 5 15 9 3 13 2 8 7

11 1.12 9 3 2 15 7 4 7 210 4 16

12 1. 26 17 2 2 2

13 1.42 310 7 2 11 3 5 2 12 6 4

14 1. 62 12 4 14 3 14 7 2 17 11 12

15 1.84 6 5 5 7 12 6 9 3 9 12 4

16 2.07 5 13 3 7 7 7 3 5 5

17 2.35 5 210 5 11 10 6 8 10 4 4 7 11 10 12 5 9 14

18 2.65 12 1 4 8 8 2 2 1 1 11 4 2 2 9 1 1 1 1

19 3.02 10 14 12 15 12 5 5 5 5 3

20 3.41 10 3 2 1 6 9 910 8 8 3 7 6 12 14

21 3.85 8 8 9 1 6 911 1 8 15

22 4.34 9 13 3 4 6 5 7 8 9 7 12 4

23 4.90 6 8 3 5 6 3 511 6 4 5 13 13

24 5.53 7 14 12 12 11 8 12 16 1111

25 6.23 7 6 9 11 13 13 10 13 8

26 7.03 15 14 10

27 7.92 4 4 10 5 8 10 3 9 14

28 8.80 12 8 11 11

ent speecch recogmtIOn system. Also, these results partially support the acoustic

invariance hypothesis, because the performance was achieved under vowel context

and speaker independent condition.

Several problems still remain to be investigated further. Present result is only

preliminary. For example, time varying features may be important. Though implicitly

included in the current result, they are not yet explicitly extracted.
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