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SUMMARY

In this paper, a method of phoneme recognition is described for speaker-in-

dependent connected word recognition. The phoneme recogmtIOn is carried out

by two processes, namely, segmentation and phonemic labeling.

In the segmentation, insensitivity is desirable to speaking rate or structural

difference of speech production organs. To achieve such insensitivity, we propose

an optimal segmentation technique by the variance-minimization which globally

divides the input speech pattern into segments by minimizing the sum of the vari­

ance of each segment, in stead of local and sequential division.

In the phoneme labeling, segment labels are determined on the basis of the

frame labels which are determined by template matching between phonemic refe­

rence patterns and the frames. It is devised that the phonemic reference patterns

to be matched with the frames are reduced using the inter-segment and intra­

segment information.

1. INTRODUCTION

In researches of speaker dependent connected word recognition, 99.6% reco­

gnition accuracy is achieved by the two-level DP-matching technique which carries

out the word matching and word sequence decision simultaniously. [lJ The reason

for the high recognition accuracy is attributed to the following three points.

(1) Words are employed as the recognition unit so that the coarticulation effect can

be more avoided in comparison with phoneme or syllable-unit-based approach.

(2) The amount of information contained in words is greater than that of phoneme

or syllables so that the recognition accuracy· increases compared with phoneme

or syllable-unit-based approach.

(3) Segmentation and recognition are carried out simultaniously by two-level DP­

matching algorithm (segmentation free) so that the recognition error decreases

which arises from preliminary segmentation.

Speaker dependent connected word recognition exactly shows such high recognition
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accuracy, however, it requires the registration of word-speech pattern (word-refe­

rence pattern) for each word by each speaker in advance. Therefore large voca­

bulary makes it almost impossible to perform the registration as well as real time

recognition due to the large amount of processing data (the number of word-level

DP-matching in two-level DP-matching is the product of the number of registered

word-reference patterns and the length of the input speech pattern). To enable

registration-free connected word recognition in real time, speaker independent

approach is required based on compressed speech data.

For the speaker independent approach, the following techniques have been pro­

posed to normalize the variation by speakers.

(1) Multiple word-reference patterns are prepared for each word based on statisti­

cal method.

(2) Speaker-adaptation is employed based on learning.

(3) Normaliz~tion algorithm is employed to absorb the difference in excitation and

vocal tract.

(4) Speaker-independent phoneme or syllable reference patterns are used insead

of speaker-dependent word-reference patterns to absorb the variations by

speakers. [2J

We employ the method (4), or phoneme.,-unit-based approach for speaker~indepen­

dense, because the method has the effect of speech data compression which ena­

bles the high speed processing and decreases the required memories. On the

phoneme string obtained from the input speech pattern, connected word recogni­

tion my be carried out by the two-level DP-matching algorithm for speaker­

independent recognition.

Phoneme string is produced by phoneme recognition through segmentation and

phonemic labeling which divide the input speech pattern into segments and then

assign the phonemic symbols to them. In the segmentation, insensitivity is desirable

to speaking rate or structural difference of speech production organs. To achieve

such insensitivity, we propose an optimal segmentation technique by the variance-'­

minimization which globally divides the input speech pattern into segments by mini­

mizing the sum of the variance of each segment, instead of local and sequential

division. In this optimal segmentation technique, Dynamic Programming is used

to seek the optimum number of segments and their boundaries. [3J A threshold

value used in the segmentation is also designed to be insensitive to the. differences

by speakers.

2. OVERVIEW OF THE PHONEME RECOGNITION

2.1 System Organization

Fig. 2-1 shows the block diagram of our phoneme recognition system for spea­

ker-independent connected word recognition. At present the task is limited to the
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recognition of the connectedly spoken numerals by any speakers up to four digits.

As shown in Fig. 2-1, the system mainly consists of two blocks. They are acoustic

analysis and phoneme recognition.

input speech

(frame unit phoneme reference patterns)

r--------- ----------,
I I
I I
I I

§ I I
.... / I

''g I (a time sequence of feature ) 1
~ I vectors (frame) divided into I

~ I segments & flags for :
Q) I voice/silence I

Sl ~ I
~ I I
o I I

~l I labeling 1....--+1----------
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(

a time sequence of phonemic, )
~ymbols (phoneme string) for
Input pattern

(
a time sequence of 20-dimensional )
feature vectors

==;): flow of control

( ): data to be passed from block to block

Fig, 2-1. Block diagram of Phoneme recognition.

2. 2 Outline of the Processing

2. 2. 1 Acoustic Analysis

A speech signal is first passed into a pre-emphasis circuit with a slope of 6­

dB per octave below 1600 Hz for improving the signal-to-noise ratio at high fre:­

quencies, and then fed into the 20-channel filter-bank. After they are full-wave­

rectified and smoothed by the low-pass filter (cut-off frequency: 40 Hz), the output

waves are sampled at every 10 ms interval (frame interval) and digitized with an

accuracy of 10 bits. The center frequencies of the 20 channels increase in order

Table 2-1. Center frequency (Hz) of bandpass filter.

channell f channell f Channell f Channell fNo. center req. No. center req. No. center req. No. center req.

1 210 6 500 11 1,190 16 2,830
2 250 7 595 12 1,410 17 3,360
3 297 8 707 13 1,680 18 4,000
4 354 9 841 14 2,000 19 4,760
5 420 10 1,000

!I
15 2,380 20 5,660
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by a factor 21i4• These frequencies are shown in Table 2-1. As the result of this

acoustic analysis, a time sequence of 20-dimensional feature vectors are obtained

from the input speech.

In the following segmentation, we calculate from these feature vectors the frame-

power which corresponds to speech energy. The frame-power is defined as the

norm of feature vectors at each frame and expressed as follows;

FPi = V2J Xrq (2. 1)
q=l

where X iq is the element of the feature vector Xi at the i-th frame.

2.2.2 Phoneme Recognition

The phoneme recognition process is further divided into two sub-blocks as shown

in Fig. 2-1. They are the segmentation block and labeling block. In the segmentation

block, an input speech pattern is at first divided into voice segments and silence

segments. The voice segments are further divided into smaller segments correspon­

ding to phonemes using the optimal segmentation technique by the variance-mini­

mization. Accordingly, the data to be passed from the segmentation block to the

following labeling block is a time sequence of feature vectors divided into segments

and flags to identify the voice or silence segments.

In the labeling block, the phonemic symbols are assigned to each segment

using phoneme-reference patterns each of which is composed of one frame. Up to

this stage the input speech pattern is converted to a time sequence of phonemic

symbols (phoneme string).

The details of these blocks are to be described in the following section.

3. OPTIMAL SEGMENTATION TECHNIQUE BY THE VARIANCE-MINIMIZATION

3.1 Sequential Segmentation

The segmentation is the process to divide the input speech pattern, which is

continuously changing under the physical constraints of the articulation organs, into

the segments corresponding to phonemes which are discrete symbols. The problems

inherent· to the segmentation are caused by this conversion from continuity to dis­

creteness.

So far, two approaches are proposed for the segmentation. One is the sequen­

tial segmentation by detecting the local changes, maximum or minimum. The other

is the optimal segmentation performed by solving the minimization problem. In

the sequential segmentation, the problems caused by the conversion from continuity

to discreteness are clarified as follows.

(1) The detection errors of the segment boundaries are propagated to the following

process.

(2) The large amount of information and processing time are required for the de­

tection of the ambiguous segment boundaries.
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(3) The threshold value to detect the local changes are sensitive to speakers, speech

rate and the input speech eve!.

To solve these problems, especially (3) for speaker-independence, we incorporate

the optimal segmentation.

3.2 General Principle of the Optimal Segmentation

At segment boundaries the voice is continuously changing so that it is difficult

to decide the segment boundaries definitely. Accordingly, in the optimal segmen­

tation, the uniformity of the features in each segment is intensified in stead of

detecting the changes. As the mesure of the uniformity, we employ the variance

of the feature vectors.

The number of segments and segment boundaries of the input speech pattern

are calculated by minimizing the total sum of these variances. This optimal seg-

mentation technique by the variance-minimization has the following advantages.

(1) Error propagation does not occur.

(2) There is no threshold so that speaker-independence is achievable:

(3) Segmentation is performed by solving the minimization problem so that the

process is simplified.

(4) The high ability of segmentation is achieved by small amount of information.

3.3 Formalization of the Optimal Segmentation

Let A denote the input speech pattern as follows.

A=ala2'" "'ai'" "'aN (3.1)

where ai is a m-dimensional feature vector like ai = (ail, au, ... "', aim)

Our purpose is to divide the input speech pattern into the K(l<K<N) seg­

ments. Let jk be the frame number located on the boundary between the k-th seg­

ment and the k+1-th segment as depicted in Fig. 3-1. The variance Vk of the

feature vector within the k-th segment is given as the following expression.

" h=N

--.:~.- average of the
/ feature value

within the segment
I-----:---.---.,....---.,....-----..,.-----..,.-----'-.+_ time

frame number 1 2 3 f4 5 6 • • . • • • • •

segment boundary j 0=0 j 1=3 j 2 ••• h-l j"

segment number 2 • • •• k k+l K

Fig. 3-1. Conce]Jtion of the optimal segmentation technique
by the variance-minimization.
(one-dimensional feature vector)

(3.2)(k= l",K)
m ik

vk= LJ . ~ (aiP-a~)2/ (jk- jk-l)
p=11=Jk _1+1

where a~ is the average of the p-th element of the feature vector within the k-th

segment as follows.
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i k

a~= 2J aIP/(jk-jk-l) (p=l-m, k=l-K) (3.3)
i=ik_l+1

The number of the segments K and the segment boundaries {jd are computed

by minimizing the total sum VK of the variances of all segments all over the input

speech as follows.
K

min Vk=min[min{LJ vdJ
K. Ok} K Uk} k=l

K m i k

=min[min{LJ 2J 2J (aiP-a~)2/(jk-jk_l)}J (3.4)
K Uk} k=l p=l i=ik_1+1

The initial condition is jo=O, jK=N. The expression (3.4) is the minimization

problem of the weighted summation so that it can be solved by DP (Dynamic Pro­

gramming). The DP-equation is as follows.

T(m)=min{T(l)+v(l+l, m)} l<m<N (3.5)
O<l<m

where T(m) is the minimum partial sum of the variances up to the m-th frame

with respect to 1. The vO + 1, m) is the variance within the segment starting at

the 1+ 1-th frame and ending at the m-th frame.

To reduce the computational time, we introduce the reasonable constraints that

the segment .length (jk - h-l) is bound as follows.

2<Omln<jk - h-l<tl max<N (3.6)

The threshold to these parameters 0mln and 0max do not depend on speakers as

shown by the later experiment. The segmentation results are passed to the labeling

block with the information about the length, starting and ending frame number and

the flag to indicate the voice/silence of each segment.

3.4 Experimental Result of the Optimum Segmentation

We have evaluated the abilites of the optimal segmentation III the following

points.

(1) The feature parameter sensitivity.

(2) Speaker and the speech rate dependency.

(3) The segmentation error rate with respect to each phoneme.

3.4. 1 Feature Parameter Sensitivities

The following nine feature parameters are compared each other to obtain the

most effective feature parameters for the optimal segmentation.

(a) Frame power

P lI =FPi= -I~ Xrq (one-dimension)
q=l

where X iq is the q-th element of the feature vector Xi at the i-th frame. Here

Xi is the output level from the 20-channel filter-bank.

( b ) Euclid distance between consecutive two frames.

P 21 = -I ~(Xiq - XI_1q)2 (one-dimension)
q=l

( c) Power ratio of the lower three channels to the frame power
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Pai = I±Xfq/FPi (one-dimension)
q=l

( d) Power ratio of the middle 14 channels to the frame power

P 4i = I~4Xrq/FPi (one-dimension)

( e) Power ratio of the higher three channels to the frame power

PIli = I f XrqlFPi (one-dimension)
q=18

( f) Minimum distance betwe,en each of the five vowels Cia, Iii, lui, lei, 10/)
and the frame.

P6i = min - /~ (Xiq - rVq) 2 (one-dimension)
V= {/a!,!i!,!u!,!e!,/o!} Vq=l

where, rv= (rvl' rv2' , rv20) is the reference pattern of the five vowels.

(g) Feature vector

P n = (PaJP4i , P5i/P4J (two-dimension)

(h) Feature vector

PSi = (Pab P 4b P 5J (three-dimension)

( i) Feature vector from the 20-channel filter-bank

P 9i =Xi = (Xil ,Xi2 , , X i20) (20-dimension)

The result is shown in Table 3-1. The experimental conditions are as follows.

Table 3-1. Experimental result of the segmentation by the different
nine feature parameters. (unit %)

feature
parameter

correct 63.9 42.2 56.5 51.1 46.0 53.2 42.6 49.4 55.3

split 30.9 25.3 13.9 16.5 19.0 24.1 14.8 18.6 36.7

merge 2.1 16.0 14.3 16.0 17.3 11. 0 20.7 16.0 3.4

omission 3.0 16.5 15.2 16.5 17.7 11.8 21. 9 16.0 4.6

dimension 1 1 1 1 1 1 2 3 20

threshold: tl min =3 (30 msec) , tl max =15 (150msec)

input speech: 10 sentences containing 233 phonemes

speaker: one male

speech rate: 8.1 phonemes per second on an average.

In the Table 3-1, "split" indicates that the feature vector sequence correspon­

ding to one phoneme is further divided into small segments. "Merge" and "omis­

sion" are the phenomena in the case where the feature vector sequence correspon­

ding to several phonemes is regarded as one segment; the longest sequence of the

feature vectors corresponding to one phoneme contained in the segment is called

the merged segment and the others are called the omitted segments. It should be

noted that the input speech pattern is controlled to be excessively divided into

segments due to the following two reasons by setting the threshold for {}min and
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()max to be the small value.

(1) "Merge" and "omission" cause the fatal errors in the connected word recogni-

tion.

(2) "Split" can be absorbed in the connected word recogmtIOn.

From the experimental results, it is clear that the feature parameter Pli (frame

power) and P 9i (output from the 20-channel filter-bank) are effective in the sense

that their rate of "merge" and "omission" is lower than others. Taking into account

that the amount of computation is proportional to the dimension of the feature para­

meter (vector), we employ the frame power P Ii as the feature parameter for the

optimal segmentation.

It is interesting to consider why the feature parameters Pli and P 9i show the

high ability in the segmentation. In Japanese language, a vowel follows a consonant

so that the feature parameters whose values change relatively large between vowels

and consonants show the high ability in the segmentation.

3.4.2 Speaker and Speech Rate Dependency

The experimental conditions are as follows.

threshold: (J min =3, (J m~x =15

feature parameter: frame power

input speech: 10 sentences containing 198 phonemes

speaker: five males. Two males speak at the different speech rate.

The experimental result is shown in Table 3-2. The result shows that the error

rate ("merge", "omission") depends on the speech rate but not on the speakers.

This dependency on speech rate resutls from the effect of the coarticulation in

high-speed input rate.

Table 3-2. Experimental result of the segmentation by the different
speakers and speech rate. (unit %)

speaker A-1 1 A-2 I B-1 I B-2 c D E

correct 68.7 68.7 63.1 60.6 63.9 70.7 70.7

split 16.2 22.2 23.4 21. 7 30.9 22.2 14.6

merge 6.1 4.0 6.3 8.6 2.1 3.0 4.5

omission 9.1 5.1 7.2 9.1 3.0 4.0 10.1

phoneme/second I 16.5 I 12.4 I 13.4 I 14.9 I 8.9 I 12.5 I 13.7

3.4.3 Segmentation Error Rate with Respect to Each Phoneme

The experiment has been conducted under the same conditions of the experi­

ment for speaker and speech rate dependency as described in (3.4.2). The experi­

mental result is shown in Table 3-3. From the Table, the followings can be con­

cluded.

(1) Vowels and unvoiced fricatives lsi, /c/ tend to be split due to the small value

of (}max for their long stability.
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Table 3-3. Experimental result of the segmentation by different
speakers with respect to each phoneme. (unit %)

phoneme I lal I Iii I lui I lei I 101 I Ikl I ItI I Ipl I lsi I Icl I Ihl

correct 40.3 40.9 I 54.5 160.2 64.0 97.7 93.6 100.0 86.1 40.0 97.7
split 45.2 48.3 27.3 33.3 29.7 12.5 60.0
merge 14.4 9.41 13. 6 4.9 5.7 0.8 2.6 1.4 2.3
omission 1. 3 4.5 1.6 0.6 1.6 3.8

phoneme I Inl I Iml I Irl I Ijl I Iwl I Igl I Idl I Ibl I Izl I INI I total

correct 75.6 78.8 68.1 36.0 36.8 100.0 93.6 94.6 66.7 60.0 66.0
split 4.9 9.1 44.0 16.7 22.0 22.4
merge 7.3 9.1 4.3 4.0 16.7 12.0 6.5
omission 12.2 3.0 27.5 16.0 63.2 6.4 5.4 6.0 5.0

(2) Voiced sound except for plosives tend to be omitted due to the small change

between vowels and voiced sound.

As the experimental results, using the value of the power at each frame as a feature

parameter, the error rate of the "omission" and "merge" in the segmentation was

5% and 6.5% respectively.

4. SPEAKER-INDEPENDENT PHONEMIC LABELING

4.1 Phonemic Symbols and Phonemic Labels

At present, the task for the system is the connectedly spoken Japanese numer­

als. Table 4-1 shows the representation of Japanese numerals by phonemic symbols.

The number of the required phonemic symbols is 14 as shown in Table 4-1,

however, we have used 18 phonemic labels, which were expanded from phonemic

symbols, as shown in Table 4-2. The additional four phonemic labels are silence

label and the three labels derived from Iii, Ikl and /j/. 12 is the nazalized Iii in

the word Ini!. K6 and K9 are the plosive Ikl in Irokul and the fricative Ikl in

Ikjul respectively. Y4 and Y9 are phonetically different in Japanese.

4.2 Labeling Technique

4. 2. 1 Classification of Labeling Technique

There are following three techniques to assign the phonemic labels to each

segment.

(1) Template matching based on the similarity between the segment and phonemic

reference patterns.

(2) Statistical decision like a discriminant function which discriminates the phone­

mic class using several feature parameters.

(3) Logical decision like a decision tree which classifies the unknown segment

into the certain phonemic class by using the feature parameters sequentially.

The problem of the pattern matching (1) is time consumption because the amount

of computation is proportional to the number of reference patterns. In order to
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Table 4-2. phonemic symbols and
phonemic labels used
in the system.

phonemic symbol I phonemic Label

*1 12 indicates the nasalized/i/in/nil.
*2 K6, K9 indicate the plosive/k/in/

roku/and fricative/k/ in/kyu/res­
pectively.

*3 Y4, Y9 indicate the semivowel/j/
in/jon/and yoon/j/in/kju/respecti­
vely.

Table 4-l. Representation of
Japanese numerals
by phonemic sym-
bols.

numeral Iphonemic 'ymhol

1 /ici/

2 /nil

3 /SaN/

4 /joN/

5 /go/

6 /roku/

7 /nanaj

8 /haci/

9 /kju/

0 /re(i)/

/a/

/il
/u/
/e/
/0/
/k/
/s/
/n/
/g/
/r/
/c/
/h/
/j (y)/

/N/
silence

A
Il, 12*1

U

E

o
K6, K9*2

S

N

G

R

C

H
Y 4, Y9*3

X

reduce the computational time, pre-selection of the reference patterns for matching

is required. The problem of statistical decision (2) is the processing redundancy

that all the feature parameters are used even in the case where a few parameter

are sufficient. The problem of logical decision (3) is the low matching ability due

to the lack of the error recovery.

We employ the mixed technique (1) and (3) to reduce the computational time

by using the technique (3), to some extent, for pre-selection of the reference pat­

terns to be matched.

4.2.2 Advantages of Labeling after Segmentation

The phonemic labeling is performed on the divided segments of the input

speech. The advantages of this kind of labeling are as follows.

(1) Contextual (inter-segments) information is available so that plosives can be

detected by checking the previous segment to be silent or not.

(2) Intra-segment information is available so that the candidates for corresponding

phonemic labels can be reduced by using the peak and valley in the spectrum.

(3) Coarticulation effect can be avoided by selecting the middle frames and discar­

ding the frames around the segment boundaries. This process has the another

advantage that the processing time is reduced due to the reduction of the data.
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Taking these adva.ntages into consideration, we employ the segment labeling tech­

nique based on the middle three frame labeling within the segments.

4.2.3 Flow in the Labeling Process

Fig. 4-1 shows the flow in the labeling process. The process is divided into

three. blocks. The first is the frame selection block to select the fra.mes to be· mat­

ched with the· phonemic reference patterns within the segment. The second is the

frame-based-Iabeling block· to· match the selected three frames with the phonemic

reference patterns. The last one is the segment label decision block to decide the

segment label based on the majority decision about the phonemic labels of the three

frames.

[

a time sequence of feature vectors ]
divided into segments

identification ~ag for the voice/silence

segment label decision by template
matching of starting' three frames
between input speech pattern and
each word reference pattern.

yes

'>-n~o~---'" silence label

three frame selection

frame-based-Iabeling

segment label decision

labeling result

the first candidate label
the second candidate label
the confidence of the first candidate
duration

Fig.4-1. Flow in the labeling process.

(1) Frame sele.ction block

The middle three frames are selected from the segments. For the plosive seg­

ments which can be detected by checking the existence of silence before the

segment (contextual information), the first three segments are selected because

they shows their effective features. For the segments before silence, the first
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three segments are also selected because of the decrease of the power at the

middle frames within the segment.

(2) Frame based-labeling

Phonemic labels are assigned to the selected three frames in each segment.

Before template matching between the three frames and the phonemic reference

patterns, the number of the phonemic label candidates to be assigned to each

segment is reduced by a rough decision tree (logical decision for the labeling).

The rough decision tree classifies the phonemic labels into four groups in the

following manner.

( a ) Plosive consonants are decided by the existence of silence before the

segment.

(b) Consonants are decided by the existence of the valley of the power within

the segment.

( c ) Vowels and semivowels are decided by the existence of the peak of the

power within the segment.

(d) Another phonemic labels are grouped which are not included in (a) to

(c).

Among the reduced phonemic label candidates for the frames, phonemic labels

are determined by using the concentration of the power and template matching

with phonemic reference patterns.

The phonemic reference patterns are created by averaging the phonemic pat­

terns of ten males.

(3) Segment label decision

Segment labels are decided based on the majority decision about the phonemic

labels for three frames. For the starting segment of the input speech, to cope

with the distortion, the phonemic labels are decided by selecting the first three

frames from the segment and matching them with the phonemic reference pat­

terns for the heading part of each word.

The output from this. block {Qr the i-th segment .contains the following informa­

tion.

(11' 12, Pin, T)i (i=l.......,lin)

11 : the first candidate phoneme

12 : the second candidate phoneme if necessary

Pin: confidence of the first candidate phoneme

T: duration of the segment in terms of the number of frames

where lin is the number of segments contained in the input speech. We call

this output the input pattern label.

As the result of this labeling for the input speech, a sequence of input pattern

labels are obtained. Fig. 4-2 shows the example of the labeling and a sequence

of the input pattern labels for the input speech f751j.

4.3 Experimental Result
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segment the first the second confidence duraticn
number candidate candidate

. phoneIl'e phoneme
NO.= 1 N R 31 LENGTH:: 4
NO.:: 2 A 100 LENGTH:: 5
NO.:: J N 100 LENGTH::: 6
NO.= 4- A 100 LENGTH::: 4
NO.:: 5 A 100 LENGTH::: 9
NO.::: 6 N 100 LENGTH::: 7
NO.:: 7 a 100 LENGTH:: 10
NO.::: 8 a x SO LENGTH:: 5
NO.= 9 0 100 L ENGTH= 5
NO.= 10 Y4· E 9 LENGTH= 4
NO.= 11 11 100 LENGTH= 4-
NO.= 12 til 100 LENGTH= 8
NO.= 13 C 'K9 89 LENGTH= 4
NO.:: 14- C S 22 LENGTH:: 4
NO.:: 15 11 lao LENGTH~ 7
NO.:: 16 11 100 LENGTH= '+
NO.= 17 11 u 78 LENGTH= 4

Fig. 4-2. Example of the labeling C(751)/nanagoici/)

Table 4-3. Experimental result of labeling. (unit %)

A 92.8

45.1114. 5
0.7 1.7 1.7 1.1 0.1 1.6 0.2 0.2 1020

I1 10.6 2.7 2.5 0.1 0.3 0.6 9.7 4.3 9.4 0.1 678
12 5.450.4 8.4 0.4 0.4 3.6 0.2 3.1 7.7 20.1 0.2 478
U 2.4 61.2 0.3 16.2 2.4 2.6 7.4 0.3 3.5 3.8 340
0 5.5 0.5174.5 9.0 9.9 0.5 365
C 8.9 2.8 0.385.0 2.0 0.9 0.1 892

K6 90.4 0.8 8.0 0.8 125
K9 7.3 91.3 0.5 1.0 207
C 0.3 6.989.0 3.6 0.3 364
S 1.0 5.292.9 0.5 0.5 210
H 88.0 0.7 3.3 8.0 150
N 0.5 4.1 0.9 0.2 1.452.1 0.7114.0 11. 9 1. 811.0 1.4 436
G 2.2 0.7 14.231. 338.1 3.7 0.7 9.0 134
R 0.9 0.9 1.316.6 0.449.8 5.7 0.4 24.0 229
Y4 4.5 4.5 5.1 1.1 7.9 0.6 2.8 8.4

1

56.7 4.5 2.2 1.7 178
Y9 2.5 0.3 0.6 6.7 0.3 1.3 57.3

1

30.9 314
X 1.7 0.5 17.9 0.7 2.1 1.2 11. 7 9.8 1. 2

1

52. 0 0.5 0.7 419

~~:I A II1 112 1u I0 Ic IKGI K91 cis 1H 1N 1G 1R IY41 Y91 X I.·1~~~·ltot'l

Table 4-3 shows the confusion matrix obtained by the phonemic labeling. The

experimental conditions are as follows

speaker: three males

input speech: 10 one-digit-numerals



52 Kiyoshi MAENOBU, Yasuo ARIKI and Toshiyuki SAKAI

100 two-digit-numerals

50 three-digit-numerals

20 four-digit-numerals

From the Table 4-3, the followings are concluded.

(1) (8, C, H, Kg) shows the high recognition accuracy due to their stability.

(2) K6 also shows the high recognition accuracy due to the pre-decision as plosive

before labeling.

(3) Voiced consonants show the low recognition accuracy due to the large spectrum

variations within the segment.

(4) Recognition errors to X or U occur frequently because high frequency compo­

nents decrease at th~ end of the input speech so that the recognition error to

X or U occurs which has relatively strong low frequency components.

(5) Y4 shows the low recognition accuracy due to its transient property.

6. CONCLUSION

In this paper, we described the phoneme recognition for speaker-independent

connected word recognition.

To normalize the speaker vanatIOn, we employed the phoneme recogmtIOn by

the segmentation and labeling in the segmentation, the optimal segmentation tech­

nique. by the variance-minimization IS proposed and showed the effectiveness for

speaker variation.

In the phoneme labeling, segment labels 'are determined on the basis of the

frame labels which are determined by template matching between phonemic refe­

rence patterns and the frames. It is devised that the phonemic reference patterns

to be matched with the frames are reduced using the inter-segment and intra­

segment information.

The remaining works will be the development of the connected word recogni­

tion on these labeled segment and the tuning up of the labeling abilities.
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